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Abstract: 
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1. Introduction 

The rising environmental awareness and legislative measures to promote eco-friendly solutions have a 

significant impact on development in different fields of technology. The refrigeration problematic is one 

of the major fields of concern. There are several reasons for this - it represents a considerable potential 

for energy consumption savings. In addition to this, there is a negative impact of numerous refrigerants 

on the environment, especially in topics like ozone layer depletion or the greenhouse effect. 

Because of this, the most harmful refrigerants are banned or being phased out. Therefore, it is necessary 

to develop new alternative refrigerants to substitute the undesirable ones. This can include developing 

new mixtures, testing non-traditional substances or simply using the natural substances, which are 

generally less harmful to the environment than the artificial ones. 

As for the electricity consumption savings, the ways to increase the energy efficiency of refrigeration 

systems are of main interest. This can include innovative refrigeration engineering approaches as well as 

the use of more efficient components, which is enforced by the EU legislative measures (e.g., Ecodesign). 

This thesis deals with a refrigeration system that could lead the future way in certain fields of refrigeration 

– a cascade refrigeration system. It is an interconnection of two separate refrigeration cycles operating at 

different temperature and pressure levels. By choosing suitable refrigerants for a given application, 

considerable energy efficiency boost can be achieved. On the top of that, such system is characterized 

with solid operation stability under different conditions.  

The described advantages can be further increased if the refrigeration cycle components are selected 

appropriately. For purposes of this thesis, progressive refrigerants have been selected – carbon dioxide 

for the low temperature cycle and R452A (widely considered as a substitute for R404A) as one of the 

newest refrigerant mixtures for the high temperature cycle.  

The main objective of this thesis is to formulate a complex calculation procedure of the cascade 

refrigeration cycle with special emphasis on the cascade heat exchanger for purpose of verifying the cycle 

working parameters and functionality under specified ambient/refrigerated space conditions. 

The thesis is constructed from several basic elements. The first, theoretical part provides an overview of 

vapor-compression refrigeration cycle principle and its elementary components, including the hardware 

elements as well as description of selected refrigerants. As the main focus of the thesis is the cascade heat 

exchanger, the second part is dedicated to the heat exchanger problematic. The work offers an overview 

of heat exchanger types with biggest emphasis on the plate-type as well as extensive study on heat 

exchanger design including the description of the SEWTLE procedure – a calculation method used for 

the purposes of this thesis. Another notable part of this paper is the analysis of applicable heat transfer 

correlations, which is important for the success of the whole calculation. The final part elaborates on the 

refrigeration cycle calculation structure with specific results provided at the very end of the thesis.  
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2. Vapor compression refrigeration system 

The most common method of refrigeration in current applications is a vapor compression system. 

However, there are also other less ordinary possibilities such as [1]: 

 absorption system, 

 gas cycle, 

 steam jet cycle, 

 dry ice refrigeration, 

 thermoelectric system, 

 and many others. 

Refrigeration and air-conditioning systems absorb heat from the cooled space (a heat source). In case of 

vapor compression systems, this heat is absorbed in an evaporator (refrigerant undergoes a phase change) 

and it is to be released later if the system is intended to work continuously as a cycle. Most commonly, 

the heat absorbed in evaporator is rejected in a condenser (or a gas cooler in case of supercritical 

applications) to ambient air. To achieve this, the refrigerant pressure levels are set accordingly – to ensure 

that the temperature inside a refrigerated space is within required range and that the pressure on the 

condenser side is high enough to make the heat transfer from inside the cycle out into the ambient air 

(heat sink) possible. 

The system basically operates between two pressure levels – evaporation and condensation pressure. To 

simplify basic thermodynamic calculations, the vapor compression cycle is considered as a Reverse 

Rankine Cycle where secondary pressure losses and heat losses throughout the system are neglected [2]. 

A standard basic refrigeration system consists of four essential elements [3]: 

 a compressor, where the compression part of a cycle takes place, 

 a condenser, where desuperheating, condensation and subcooling generally occur, 

 a throttling device, which maintains the pressure difference between condensing and 

evaporating part of the cycle and sprays the coolant into the evaporator, 

 an evaporator, where evaporation and superheating take place.  

The pressure-enthalpy diagram with relevant thermodynamic changes is shown in Figure 1. In real 

applications, there are many more additional devices for regulation purposes - to improve the operation 

characteristics, to ensure safe operation under all working conditions, to increase the overall system 

efficiency, additional evaporators for multipurpose refrigeration etc. 
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Figure 1: Vapor compression refrigeration cycle [100] 

Vapor compression systems cover a wide spectrum of applications ranging from as low as few Watts of 

refrigeration capacity up to Megawatts [4]. It is used for a broad variety of cooling/freezing purposes [5]: 

 household and commercial freezers and refrigerators, 

 industrial, commercial, home as well as transportation air conditioning, 

 food processing and cold storage, 

 industrial cooling. 

In certain cases, the temperature difference between heat source and heat sink is too large to be handled 

by a common single-stage compressor. Either, the pressure ratio is out of compressor technical 

capabilities, or the discharge temperature is higher than the safety limits for the materials used in 

compressors [6]. This issue is generally solved by dividing the compression process into smaller steps 

(two or more), which leads to lower discharge temperatures, lower compressor work needed for desired 

compression and subsequently higher coefficient of performance (COP), which means that the 

refrigeration cycle works more efficiently. Another possible solution is a cascade refrigeration system. 
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2.1. Cascade refrigeration system 

A cascade refrigeration system consists of two (or more) refrigeration cycles (a low and a high 

temperature) linked together by an intermediate heat exchanger. This heat exchanger serves as a 

condenser for the low temperature cycle and the other side as an evaporator for the high temperature cycle 

simultaneously. A basic process schematic of individual devices in a cascade refrigeration system is in 

following Figure 2. 

 

Figure 2: Cascade refrigeration system 

However, it is often necessary to equip a cascade cycle with a gas desuperheater after the low-temperature 

compressor. The reason for this is to minimize the risk of thermal fatigue of a cascade heat exchanger – 

the low-temperature compressor discharge temperatures can often be around 80°C whereas the evaporator 

side of a cascade unit can be as low as - 20°C [7].  Cascade heat exchangers are most often plate-type for 

their compactness or more robust shell-and-tube type (example of such heat exchanger working with CO2 

(low) and NH3 (high) is in Figure 3). In majority of cascade systems there are two different refrigerants 

in each sub-cycle. However, applications where the same fluid is in both loops can also be found [8]. 

condenser 

cascade 

heat exchanger 

evaporator 
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Figure 3: Shell and tube cascade heat exchanger [101] 

As mentioned above, a cascade system is employed when the pressure ratio or discharge temperature 

would be too high from compressor perspective or simply too inefficient. However, it also helps to 

overcome a situation when the pressure range (i.e., temperature range) is too wide to manage with only 

one refrigerant with a regard to its thermodynamic properties. A common application for cascade 

refrigeration is therefore moderately low-temperature freezing (appr. from - 25°C to - 75°C) [9], [10]. 

The main advantages are [11]: 

 maximum possible energy efficiency is achieved by selecting the refrigerants with the most 

suitable temperature characteristics for both cycles, 

 the system operation is stable even for ultra-low-temperature conditions, 

 reasonable operating and service costs. 

 

2.2. Compressors used in refrigeration systems 

The essential part of every vapor-compression refrigeration system is the compressor itself. In basic 

arrangement, the compressor draws in the superheated gas from the evaporator (the low-pressure part of 

the refrigeration loop), compresses and delivers it to the condenser at higher pressure. 

Numerous types of compressors have been developed for many specific applications. Based on the 

required working parameters, refrigerants, available power supply and other features it is generally 

possible to determine the suitable kind of compressor. The following types have proven themselves as 

the most suitable for refrigeration applications [12]: 

 reciprocating compressors, 

 rotary compressors, 

o scroll, 

o screw, 
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o rotary vane, 

 centrifugal compressors. 

2.2.1. Hermetic / Semi-hermetic / Open 

Commonly used refrigerants (e.g., F-gases or ammonia) have negative impact on the environment and/or 

in some cases even present a threat to human health. Therefore, the highest possible tightness of a 

refrigeration circuit is required. 

The best protection from undesirable leakage presents a hermetic compressor - the entire device is welded 

in a casing, which is not intended to be opened under any circumstances. When a part of such compressor 

fails, it generally cannot be repaired and the whole appliance is replaced. On the other hand, semi-

hermetic compressors offer a fine balance of good tightness properties and a possibility of opening the 

shell (in case of servicing, repair etc.) without damage. 

However, hermetic and semi-hermetic compressors are limited to only one possible drive source – the 

electricity. The open-type compressor overcomes this limitation – it can be driven by an internal 

combustion engine or a turbine [13]. Nevertheless, the long-term tightness of such arrangement can be 

problematic.  

2.2.2. Reciprocating compressors 

Thanks to its massive use in major appliances (home refrigerators), reciprocating compressor is currently 

the most common type. Many different designs and operation variants have been developed – the 

individual models can be lubricated or oil-free, be single- or double-acting or have specific number of 

cylinders in different geometrical arrangements. The working elements are pistons driven by a crankshaft. 

Majority of piston compressors work with self-acting valves that ensure the intake of refrigerant and its 

exhaust after compression. The use of lubricated compressors brings additional issues that require special 

attention. The oil for refrigeration compressors needs to have specific properties to ensure the proper 

functionality of the system [14]: 

 compatibility of the refrigerant-oil couple – good miscibility and solubility of the oil in the 

refrigerant, 

 favorable thermodynamic properties at low temperatures, 

 chemical and thermal stability, 

 resistance against ageing. 

Oil in a refrigeration compressor has several important roles [15]: 

 protection against corrosion, 

 reduction of friction between moving parts (pistons, piston rings, valves etc.), 

 better sealing, 

 compressor cooling. 
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One of the advantages of this compressor type is flexibility when working under other than nominal 

conditions. Unlike other types with built-in volume ratio (e.g., scroll or screw compressors), the 

reciprocating compressors by nature of their operation adjust to the actual evaporating/condensing 

pressure [16]. This generally leads to smoother operation or lower energy consumption. On the other 

hand, they are generally less “compact” than more sophisticated types. Example of such compressor is in 

Figure 4. 

 

Figure 4: Reciprocating hermetic compressor [102] 

2.2.3. Scroll compressors 

One of the world’s first scroll compressor specimens was built in 1979 [17]. Since then, it spread across 

many fields of technology. Significant is their success among the heat pump industry where they have 

sidelined the originally dominant reciprocating compressors [18]. 

There are several reasons for this [19], [20]:  

 smooth, silent operation without great pressure or volume pulsations on the discharge, 

 very low or none clearance volume compared to reciprocating compressors, 

 low level of vibrations, 

 most commonly non-lubricated design, which leads to low oil concentrations in discharge gas 

(e.g., suitable for compressed air applications), 

 high durability and reliability thanks to simple design (lack of moving parts). 

The compressor itself comprises of two main elements – the fixed (stationary) spiral and the eccentrically 

mounted orbiting spiral. The two parts are coupled in a manner, which ensures that the gas is periodically 

captured and drawn in at the outside diameter and is then gradually compressed and moved towards the 

center where the discharge is situated. 
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2.2.3.1. Enhanced vapor injection 

To achieve reduction in total operation costs or increase in the efficiency of a refrigeration system, several 

measures can be taken. One of them is equipping the system with the so called EVI (Enhanced Vapor 

Injection) compressor instead of a regular one. In chilling systems with evaporating temperatures below 

- 25°C (in combination with subcooling of saturated liquid-phase refrigerant) the savings on electricity 

can be as high as 30 % with an EVI compressor [21]. For refrigeration applications, the increase in COP 

and cooling capacity is of importance. This increase in capacity can lead to lower requirements on 

compressor size – thereby saving space and costs. 

The fundamental principle of its operation is combining of two refrigerant streams at different pressure 

levels during the compression process. After the refrigerant was condensed in the condenser, a portion of 

the flow is separated and throttled by an expansion valve to the intermediate pressure. After this, it flows 

into the economizer (generally a counterflow plate heat exchanger), where it is evaporated, while 

subcooling of the condensate takes place on the other side of the economizer (Figure 5). During the first 

stage of the compression the refrigerant exiting the evaporator is compressed to the intermediate pressure. 

Now, the vapor from the economizer is injected into the scroll compressor by two symmetrically 

positioned ports to ensure the induced forces are balanced [22]. The two refrigerant streams are then 

mixed and compressed to the condensation pressure.  

 

Figure 5: Circuit diagrams - the main circuit (mass flow rate m) and  

the economizer circuit (mass flow rate i) [22] 

Although EVI compressors are suitable particularly for air source heat pumps [22], their many advantages 

can be used in refrigeration applications as well. By mixing the partially compressed refrigerant from 

evaporator and the minor quantity of refrigerant evaporated in economizer, temperature of the resulting 

mixture is significantly lower than for ordinary single-stage compression. Thanks to this, the discharge 

area materials are not so heavily exposed to high temperatures. Another advantage is a larger operating 

envelope and therefore larger range of compressor usability.  
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2.2.4. Screw compressors 

Screw compressors are mostly used for commercial refrigeration. Their design combines the advantages 

of reciprocating, rotary and even dynamic compressors. Although special configurations with a single 

rotor or three rotors exist, they generally contain two screw-profile rotors (Figure 6) with the opposite 

sense of rotation. The intake gas is compressed in gradually dwindling chambers formed by the outside 

of the rotors (a male and a female) and the casing. This arrangement has a built-in volume ratio, which 

can be viewed as a slight disadvantage [23]. 

 

Figure 6: Two-rotor screw compressor [103] 

However, a screw compressor has only a minimum of moving parts and no significant sources of rotor 

imbalance. Thanks to this, it can work at very high speeds (1,450 – 30,000 RPM [3]), thus making the 

compressor compact even for higher performance levels [24]. The maintenance requirements are 

relatively low. Moreover, the volumetric efficiency is very high - similarly to above mentioned scroll 

compressors -  due to the absence of clearance volume. The oil-related problematic is extensive with 

screw-type compressors.  

Cooling capacities of the systems with screw compressors for refrigeration purposes can range from tens 

to thousands kW [3]. They are suitable for majority of currently used refrigerants. 

  



10 

 

2.4. Internal heat exchange 

Internal heat exchange is a measure that involves inserting an extra heat exchanger into the existing vapor 

compression cycle (Figure 7). The hot side of this heat exchanger contains the condensed refrigerant. 

Heat is transferred into the refrigerant vapor at the other side of the HE. The resulting effect of this on 

the whole refrigeration cycle can vary depending on the refrigerant used. Coefficient of performance 

(COP) can be increased (e.g., R134a) as well as decreased (R717 - ammonia) [6]. Generally, the outcome 

is highly dependable on vapor heat capacity – the higher the value, the higher potential efficiency of the 

cycle [25]. 

Nevertheless, the internal heat exchange is frequently used to stabilize the system operation, to protect 

the integrity of its components as well as to increase the amount of heat contained in vapor after 

compression. It can also result in increased specific compressor suction volume and discharge 

temperature, lower mass flow rate and the internal HE itself is a source of a pressure drop [26]. 

 

Figure 7: Internal heat exchange 

According to [27], compressor manufacturers often recommend the superheating of 20 K for commercial 

refrigeration systems using CO2. The reason for this is to prevent the problems with compressor 

lubrication, which can occur at temperatures well below 0°C. The superheat can be achieved by setting 

the expansion device correspondingly so that the entire superheating process takes place in evaporator.  

Another option is to use an internal liquid-line/suction-line heat exchanger, which is very common in 

commercial refrigeration [25]. In case of a simple subcritical CO2 cycle, this device is not 

thermodynamically favorable as it tends to slightly reduce the cycle overall COP [28]. However, when 

used inside a cascade cycle, the internal heat exchange can have a positive effect on the COP under certain 

conditions [27]. 
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2.5. Expansion valves 

Expansion valves play an important role in any vapor compression refrigeration system. They help to 

facilitate the pressure difference between the condenser and the evaporator side of a cycle. An expansion 

valve is also one of its elementary regulation elements – it has a direct effect on refrigerant vapor 

superheating at the evaporator outlet [29]. 

Expansion valves inject a certain amount of refrigerant into the evaporator in order to achieve the proper 

level of superheating. A sufficient level of superheating is necessary for a smooth and reliable operation 

of the compressor which intakes this superheated vapor. This should ensure that pure vapor without any 

residual liquid drops enters the compressor. If the undesirable liquid drops enter the compression 

chamber, a severe damage to the compressor due to a sudden pressure surge (liquid hammer) can occur 

[30]. 

A thorough analysis is necessary to choose the most appropriate type of expansion element for given 

refrigeration system. There is currently a lot of types of expansion elements (Figure 8) and the research 

in this field continues [31]. 

 

Figure 8: Expansion elements for vapor compression systems [104], [3] 
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2.6. Refrigerants 

Refrigerants lie at the heart of refrigeration cycles operation. Basically, any fluid can be used as a 

refrigerant in vapor compression cycles. However, certain important properties are required for a 

refrigerant to be used conveniently and reliably in a larger scale. The most relevant properties are [3]: 

 range of working pressures and temperatures, 

 easy production or wide availability, 

 safe handling, low level of toxicity and flammability, 

 other properties related to energy efficiency or environmental friendliness. 

2.6.1. Classification 

Refrigerants can be divided by various characteristics. The most common is their classification by origin: 

 natural – e.g., ammonia, carbon dioxide, water, air, hydrocarbons (HCs) or sulfur dioxide, 

 synthetic – e.g., hydrofluorocarbons (HFCs) or hydrofluoroolefins (HFOs). 

Refrigerants can either be pure or mixtures. There are azeotropic and zeotropic (i.e., non-azeotropic) 

mixtures. The difference between these two types of mixtures is their behavior during a phase change – 

azeotropic refrigerants (as well as pure substances) evaporate/condense at a constant temperature, 

whereas zeotropic mixture temperature at the beginning and the end of a phase change differs. This 

temperature difference is called as a temperature glide [32]. 

2.6.2. Ozone depletion potential 

ODP quantifies the refrigerant potential to damage the ozone layer. It is a relative value, the basis 

represents R11 (trichlorofluoromethane) - a fully halogenated chlorofluorocarbon with ODP equal to one. 

The use of refrigerants with ODP greater than zero is regulated [33]. 

2.6.3. Global warming potential 

GWP quantifies the impact of a refrigerant on the global warming process. Again, GWP is a relative 

value. The basis represents carbon dioxide – its GWP is equal to one. The refrigerant GWP indicates, 

how much does it contribute to the greenhouse effect in comparison with CO2. The value is determined 

by refrigerant radiation properties as well as by time of its dissolvement in the atmosphere [33]. 
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2.6.4. Montreal Protocol 

The first attempt to suppress the negative impact of various substances on the environment was discussed 

at the Vienna Convention for the Protection of the Ozone Layer in 1985 [34]. On the successive 

conference in 1987, The Montreal Protocol on Substances that Deplete the Ozone Layer was signed and 

entered to force from the start of 1989. Majority of the world’s countries, including Czech Republic, USA 

or China, have committed themselves to comply with these treaties [35]. The aim of these efforts is to 

reduce the production of ozone depleting refrigerants and subsequently reduce their presence in the 

atmosphere [36]. 

The Montreal Protocol undergoes continuous adjustments in accordance with evolving scientific 

knowledge and more demanding environmental requirements. The last adjustment was adopted in 2008 

[36]. It is one of the best functioning environmental treaties due to the elaborate financial mechanisms 

for consumption reduction support and for the phase-out of the most harmful substances [35]. 

2.6.5. F-gases legislation 

The group of fluorinated greenhouse gases, often abbreviated as the F-gases, contains substances such as 

partially fluorinated hydrocarbons (HFCs), fully fluorinated hydrocarbons (PFCs), sulfur hexafluoride 

SF6 and many others [37]. They have only negligible ODP. However, their GWP can amount to as high 

as tens of thousands in some cases [38]. 

Because of this negative impact, the EU attempts to regulate their use by issuing legislative acts. Most 

recently, there are two documents [39]: 

 MAC Directive – deals with air conditioning systems of personal vehicles. The Directive 

prohibits the use of F-gases with GWP greater than 150. 

 F-gas Regulation – covers all other key applications where F-gases are of importance. The 

original Directive was adopted in 2006, the update one applies from the beginning of 2015. The 

three fundamental principles are [39]: 

1. Limiting the total quantity of the most relevant F-gases, 

2. Banning the use of F-gases in numerous new types of equipment, 

3. Preventing emissions of F-gases from already existing equipment. 
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2.6.6. Refrigerant R744 (carbon dioxide) 

Carbon dioxide as one of the most common natural refrigerants has a long tradition of use in the field of 

mechanical cooling. Highly valued was its inertness to construction materials and non-flammability. The 

use of CO2 systems reached its peak during the 1920s and the early 1930s [40]. After wide expansion of 

halogenated hydrocarbon-based refrigerants the R744 importance diminished [6]. However, with 

increasing environmental protection tendencies in the last few decades it became clear, that carbon 

dioxide could be a reasonable solution. It has zero ODP and only a GWP equal to unity.  

R744 has convenient thermodynamic properties and together with low energy usage it could possibly be 

a suitable refrigerant for applications such transport and commercial refrigeration, mobile air 

conditioning, cascade refrigeration systems, industrial heat extraction or shipping vessels [41]. As for 

now, it is mostly used in stationary refrigeration (e.g., supermarkets). The effectiveness of R744 systems 

is enabled by its low moisture content, which also contributes to low corrosive effects on refrigeration 

installation [42]. The above mentioned convenient thermodynamic properties also lead to lesser 

requirements on refrigerant charge, thus leading to saving on piping.  

One of the most significant attributes of carbon dioxide as a refrigerant are its relatively high operating 

pressures in comparison to other commonly used refrigerants. The new rise of R744 was also made 

possible by the development of brazed plate heat exchangers (BPHE), which can withstand these high 

pressures [43]. In combination with low critical temperature (approximately 88°F / 31°C) it is not a 

suitable solution for retrofitting of existing, e.g., fluorocarbon systems [41]. Because of that low critical 

temperature, carbon dioxide installations working with ambient air condensers would often get into the 

supercritical region. 

On the top of that, there are numerous potential hazards that are to be taken into account. Carbon dioxide 

is a natural component of the Earth’s atmosphere. However, it can become toxic when its concentration 

is high enough - as low as 2 % concentration in the air can cause breathing problems, 20 % concentration 

is generally fatal [44]. Moreover, contact of liquid or solid R744 with human skin can cause freeze burns 

[45]. 

Table 1: Selected R744 properties [41] 

ASHRAE Number R-744 

Critical Pressure 72.8 barg 

Critical Temperature 31°C 

Ozone Depletion Potential 0 

Global Warming Potential 1 

ASHRAE Safety Classification A1 

Temperature Glide 0 K 
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2.6.7. Refrigerant R452A 

R452A, known also under its commercial name Opteon XP44, is a relatively new mixture that was in a 

larger scale introduced in 2014 [46]. Right from this beginning, it was intended as a possible future 

substitute for R404A in new devices or retrofits in low/medium temperature transport and commercial 

refrigeration applications [47]. R452A is a non-flammable hydrofluoro-olefin (HFO) based refrigerant 

mixture consisting of R32 (11 %), R125 (59 %) and R1234yf (30 %). It offers a 45 % reduction in GWP 

in comparison to R404A [47] and has a zero ODP.  

Apart from lower environmental impact, it also exhibits lower temperatures at compressor discharge, 

which has a positive effect on compressor service life [48]. The ASHRAE Standard for Designation and 

Safety Classification of Refrigerants recognizes the R452A as a low toxic compound with no flame 

propagation – therefore putting it into the Safety class A1. R452A is a quasi-azeotrope refrigerant 

mixture, which means that it exhibits a temperature glide during phase changes. Overview of the main 

R452A properties is in Table 2.  

Table 2: Selected R452A properties [49] 

ASHRAE Number R-452A 

Composition (weight %) 

R-32 (11) / 

R-125 (59) / 

R-1234yf (30) 

Boiling point at 1 atm - 47°C 

Critical Pressure 39.0 barg 

Ozone Depletion Potential 0 

Global Warming Potential 1945 

ASHRAE Safety Classification A1 

Temperature Glide ≈ 3 K 
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3. Heat exchangers 

Heat exchangers are devices used for transfer of heat between two (or more in special cases) substances 

at different temperature levels. As a result of validity of the fundamental laws of thermodynamics, heat 

leaves the warmer substance and is absorbed by the colder substance. 

The following types of HEs are among the most commonly used in refrigeration engineering [58]: 

 plate heat exchangers, 

 microchannel heat exchangers, 

 tubular heat exchangers (e.g., internal heat exchange), 

 coaxial coil heat exchangers (e.g., water-cooled condenser, liquid cooling evaporator), 

 fin-and-tube heat exchangers (e.g., air-cooled condenser, air cooling evaporator). 

Due to the extensive use of PHEs in refrigeration applications, biggest emphasis will be put on this HE 

type in the following text. 

3.1. Plate heat exchangers 

Thanks to their specific advantages and unique characteristics, PHEs are nowadays employed as 

substitutes for less compact shell-and-tube heat exchangers and are used for numerous applications in 

refrigeration – as condensers, evaporators and coolers of gases or liquids [59]. 

Most of the available literature focus mainly on traditional gasketed plate and frame HEs, which consist 

of either smooth or corrugated thin plates held together by compression bolts in a frame (Figure 9).  

 

Figure 9: Plate heat exchanger [105] 

The channels can be arranged in numerous ways – two basic configurations are depicted in Figure 10. 

Different combinations of these two approaches are possible. 
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Figure 10: Parallel and series PHE channel arrangement [65] 

3.1.1. PHE advantages 

The main advantage is high compactness – large heat transfer area per unit volume. This feature makes 

it particularly suitable for applications where dimensions and weight reduction are of special 

importance – e.g., transport refrigeration and other mobile applications. Their convenient construction 

enables to achieve nearly ideal countercurrent flow. This fact, in combination with intense turbulent flow 

(high Reynolds numbers induced by the plate corrugation) inside PHE channels provides excellent heat 

transfer characteristics [60]. 

A great advantage of basic gasketed PHEs (not brazed nor welded) is their operational flexibility. They 

can be disassembled rather easily, which enables the operator to remove (resp. add) plates from the 

package if needed. Additionally, the inspection and cleaning activities are also simplified [61]. 

Mechanical fouling is relatively low due to high turbulences of the flow, however [62]. Another 

advantage is of economical nature – cost of PHEs is relatively low [63]. 

3.1.2. Brazed PHEs 

Gasketed PHEs are limited to a certain pressure and temperature level – high pressures can cause 

undesirable leakages; high temperatures generally have a negative impact on the gasket material etc. To 

extend the PHE usability to higher operating conditions and to ensure safe handling of environmentally 

hazardous substances (e.g., chemicals or HFC refrigerants), welded and brazed PHEs were introduced.  

BPHEs are generally manufactured in a vacuum furnace – corrugated stainless steel plates are brazed 

together using copper or nickel, which makes the channels perfectly tight and ready to use under high 

pressures [64]. 
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3.1.3. Plates 

The plates have generally one hole (port) in every corner and are sealed around in a way that the fluids 

flow alternately in the channels formed by successive plates while the heat is being exchanged between 

the fluids through these plates [65]. There are basically two options how the fluid can be forced to flow 

along a plate - it can either flow diagonally or parallel (Figure 11). 

 

Figure 11: Fluid flow along a PHE plate [106] 

Most of BPHEs have their plates corrugated, but even corrugation patterns and characteristics can vary. 

Probably the most important herringbone parameter is its corrugation angle (referred to most often as 

beta or theta in literature). The chevrons can either be acute (i.e., high-beta plate or L-channel type) or 

obtuse (i.e., low-beta plate or H-channel type) or multiple corrugation angles can be used inside one 

BPHE (i.e., mixed plate or M-channel type) [66]. The most characteristic dimensions of PHE plates and 

corrugation are depicted in Figure 107. 

 

Figure 12: PHE plate geometry [107] 
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3.2. Heat transfer modes 

There are three main physical heat transfer modes [50]: 

 conduction, 

 convection, 

 radiation. 

3.2.1. Conduction 

Conduction is a transfer of heat energy from the more energetic (warmer) to the less energetic (colder) 

particles of one substance due to interactions between these particles. Through conduction, the 

temperature field across one substance tends to even out, as the heat energy is transferred from the more 

energetic (warmer) to the less energetic (colder) particles of this substance due to the interactions between 

its particles. Mostly, this heat transfer mode occurs in solid substances; to a lesser extent also in liquids 

and gases [51]. Conduction is generally quantified with the Fourier’s law, which states that “the time rate 

of heat transfer through a material is proportional to the negative gradient in the temperature and to the 

area.” [52] : 

Qcnd =  −λ. Scs,n. (
dt

dx
)               (3.1) 

3.2.2. Convection 

Convection, on the other hand, is the major heat transfer mode concerning fluids and their interaction 

with solid objects. There are two basic types. Natural convection is induced by spontaneous motion of 

fluid based on local differences in its densities (according with Archimedes’ principle). However, due to 

fact that fluid velocities are low with natural convection, the heat transfer coefficients also remain 

relatively low [53]. 

Much higher heat transfer coefficients can be achieved with forced convection, which occurs when 

intervention from outside (e.g., pump, ventilator or pressure difference) initiates the fluid flow. The rate 

of convection heat transfer is expressed in the Newton’s Law of Cooling [54]. It states that “rate of change 

of the temperature of an object is proportional to the difference between its own temperature and the 

temperature of its surroundings” [55]. This idea can be transformed into a formula valid for both 

convection regimes [50] (for tw > to): 

qcnv =  α. (tw − to)               (3.2) 

The heat transfer coefficient is a complex empirical figure which depends on numerous variables related 

to flowing fluid properties, flow regime, geometric characteristics of the wall etc. More detailed analysis 

on heat transfer coefficients is provided later in the thesis.  
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3.2.3. Radiation 

In most of commonly used industrial heat exchangers, the radiation plays an insignificant role. A matter 

– solid as well as liquid or gas - that has a temperature above absolute zero (0 K) emits a certain amount 

of energy in the form of electromagnetic radiation. This process is quantified by the Stefan-Boltzmann 

Law, which states that „the thermal energy radiated by a blackbody radiator per second per unit area is 

proportional to the fourth power of the absolute temperature“ [56]. For other objects than blackbody 

radiators the formula can be written as [57]: 

Qrad =  e. σSB. T4. Ssur               (3.3) 

In a real heat exchanger, all three heat transfer modes are present to a certain extent. To make calculations 

as accurate as possible, the overall heat transfer coefficient incorporating various thermal resistances that 

occur in the way of a heat flow is to be used. 
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3.3. Heat exchanger design 

Selection of an adequate heat exchanger for given application is a complex problem. It comprises of quite 

a lot of different tasks - such as design specification, thermal, hydraulic and mechanical design as well as 

cost calculations or optimization aspects [67]. Most of above mentioned tasks are interconnected - 

therefore it is necessary to solve them in as complex and simultaneous manner as possible (an example 

of such process in Figure 13). The result of such analysis can be ambiguous - more different solutions 

can prove themselves suitable. 

 

Figure 13: Heat exchanger design methodology [108] 
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3.3.1. Rating and sizing 

Among the heat exchanger design problematic, two areas are of special significance – rating and sizing 

of a heat exchanger. A rating task is generally performed for an existing equipment (i.e., geometry and 

arrangement of the heat exchanger is given) and includes most commonly heat transfer and pressure drop 

performance evaluation, temperature distribution [68] etc. The objective can be testing the heat exchanger 

under other than nominal conditions or verifying specifications given by a vendor [67]. 

Sizing requires an actual design procedure – choosing the appropriate heat exchanger construction type, 

selecting the materials to use and determining the necessary physical dimensions (including heat transfer 

areas, plate geometry in case of PHE etc.) [69]. 

Although both rating and sizing procedures are fundamentally universal, slight differences need to be 

taken into consideration when dealing with different types of heat exchangers. In case of PHE, the sizing 

process gets “easier” as there is only a limited range of available plate types. This applies particularly for 

gasketed PHE as it is quite simple to add or remove plates if the heat exchanger performance differs from 

expected values.  

3.3.2. HE design methods 

Numerous heat exchanger design methods have been developed and are described in available literature. 

The most widely used are the Logarithmic Mean Temperature Difference (LMTD) Method and the 

Effectiveness-Number of Transfer Units (ε-NTU) method. Although each of these methods uses a 

different approach to analyze given heat exchanger, the results concerning exchanger thermal capacity 

should be identical [70]. 

However, these basic methods generally adopt several simplifications (such as single-phase flows, 

constant thermo-physical properties along the heat exchanger, negligible longitudinal heat conduction 

throughout the wall etc.), which make them not accurate enough for solving more complex cases 

(e.g., phase changes) and due to great local differences in fluid properties, as well as friction factor and 

heat transfer coefficient, the discretization of the HE becomes inevitable [71]. Because of the need to 

develop a reliable approach for these less common cases, a group of specialists from Universitat 

Politècnica de València developed a method called SEWTLE. 
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3.3.3. SEWTLE 

The authors themselves describe their HE analysis tool as a cell-by-cell type general finite volume 

technique for the calculation of complex heat exchangers and decided to call it Semi Explicit Method for 

Wall Temperature Linked Equations (SEWTLE) [72]. This method is based on an iterative procedure 

consisting of several steps. It requires the knowledge of inlet fluid conditions on both sides (cold and hot) 

of the heat exchanger as well as their mass flow rates. Outputs of this method are thermodynamic 

properties of both fluids at HE outlets, including pressure drop. The authors claim that convergence of 

the presented technique is rapid and that it generally takes no more than ten iterations to reach it.  

3.3.3.1. General solution procedure 

After the heat exchanger is discretized into elementary cells (there are generally two types – fluid cells 

and wall cells), an initial estimation of temperature distribution across the wall cells is to be performed. 

After this, thermodynamic calculations for all fluid cells are to be carried out. As soon as this is achieved 

and thermodynamic properties at every fluid cell are known, the wall temperature distribution is 

recalculated based on fluid properties in the surrounding fluid cells and with the regard to the balance of 

heat transferred across the given wall cell.  

This sequence of steps is repeated until the convergence is achieved, i.e., the heat removed from the hot 

side fluid stream equals the heat absorbed by the cold side fluid stream [73]. Thanks to its flexibility, the 

SEWTLE can be applied on various heat exchanger types and configurations. However, this thesis will 

mainly focus on plate heat exchanger specifics of this approach in the following text. 

3.3.3.2. Finite Volume Method (FVM) 

As mentioned above, the SEWTLE procedure represents a finite-volume-type approach. The FVM is a 

discretization technique designed for partial differential equations (PDE), conveniently used for those 

that can be derived from physical conservation laws [74]. In comparison with older Finite Element 

Methods (FEM) or the Finite Difference Methods (FDM), the FVM is particularly suitable and popular 

in Computational Fluid Dynamics (CFD) [75]. Reasons for this are [76]: 

 faithful to the general physics (especially conservation), 

 ability to capture shocks, 

 ability to produce relatively simple stencils, 

 possibility of applying a wide range of fluid flow equations, or 

 facilitation of multigrid solutions. 
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The FVM discretization procedure involves two basic steps [75]: 

1. The PDEs are integrated and transformed into balance equations over an element, which results 

in a set of semi-discretized equations. 

2. Interpolation profiles are chosen to approximate the variation of the variable members within 

the element, relate the surface and the cell values of the variable members and thus transform 

the relations into algebraic equations. 

3.3.3.3. Discretization scheme 

To carry out the numerical calculation, it is necessary to divide the heat exchanger into a certain number 

of elementary pieces called cells. This procedure must be done for both fluid streams and the walls 

separating them. For a purpose of keeping the computational time in acceptable boundaries, a simplifying 

assumption is made – the fluid flows are considered as one-dimensional along a fluid cell [72], which 

corresponds fairly to the actual flow properties inside a PHE inter-plate channel. 

In Figure 14 there are two different discretization approaches of a simple plate geometry with a parallel 

countercurrent flow of the refrigerants. Figure 14a shows us the so called centered arrangement, where 

the wall cell (plate is treated as a two-dimensional body for this purpose) area is identical to a “wall side” 

of both three-dimensional fluid cells at each side of the wall. Due to this, the wall temperature is defined 

at the center point of the wall cell – halfway between the inlet and the outlet point of a fluid cell.  

On the contrary, the staggered discretization arrangement (Figure 14b) defines the fluid inlet and outlet 

properties in the same place as the wall temperatures – the wall cells are shifted relatively to the “wall 

sides” of the fluid cells. The SEWTLE authors strongly recommend the former arrangement as the latter 

approach is problematic in terms of satisfying the boundary conditions at the edge of the heat exchanger 

plates and therefore is not suitable for the FVM used here [72]. 

 

Figure 14: Discretization of a wall: (a) centered, (b) staggered arrangement [72] 
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3.3.3.4. PHE governing equations 

Depending on whether the heat transfer process includes phase changes of refrigerants or not, the form 

of applied governing equations may differ. However, the first one is common for both cases – the 

conservation of the mass flow rate (or mass velocity) along a fluid path is represented in the continuity 

equation [77]. The mass velocity G can be calculated upon the knowledge of the refrigerant inlet 

conditions and remains constant: 

𝐺 =  𝜌. 𝑢 =  
𝑚

𝑆𝑐𝑠,𝑐ℎ
= 𝑐𝑜𝑛𝑠𝑡.               (3.4) 

Apart from the continuity equation, there are two more fundamental governing equations in the field of 

computational thermodynamics – the energy equation (based on the principle that energy is conserved) 

and the momentum equation (based on the Newton's Second Law of Motion) [78]. For the purposes of 

PHE calculations using SEWTLE, their following forms are used [71]: 

 the energy equation for a steady single-phase one-dimensional flow: 

𝑆𝑐𝑠,𝑐ℎ𝐺
𝑑 (𝑖 +

𝑢2

2 )

𝑑𝑧
= ∑ 𝑃𝑗𝛼𝑗(𝑡𝑤𝑗 − 𝑡)               (3.5)

2

𝑗=1

 

 the momentum equation for a steady single-phase one-dimensional flow: 

𝑑𝑝

𝑑𝑧
= −

𝑑(𝜌𝑢2)

𝑑𝑧
−

1

2
𝑓𝜌

𝑢2

𝐷ℎ
−

𝑑(𝑧𝑔𝜌)

𝑑𝑧
               (3.6) 

 the energy equation for a steady two-phase one-dimensional flow: 

𝑆𝑐𝑠,𝑐ℎ𝐺
𝜕

𝜕𝑧
[𝑥 (𝑖𝑔 +

𝐺2𝑥2

2𝜌𝑔
2𝛿2

) + (1 − 𝑥) (𝑖𝑙 +
𝐺2(1 − 𝑥)2

2𝜌𝑙
2(1 − 𝛿)2

)] + 

+ 𝑆𝑐𝑠,𝑐ℎ𝐺
𝜕

𝜕𝑧
(𝑧𝑔𝑠𝑖𝑛𝜃) = 𝑃𝛼(𝑇𝑤 − 𝑇)                                (3.7) 

 the momentum equation for a steady two-phase one-dimensional flow: 

−
𝑑𝑝

𝑑𝑧
=

2𝑓𝐺2(1 − 𝑥)2

𝐷ℎ𝜌𝑙
𝛷2 + 𝐺2

𝑑

𝑑𝑧
(

𝑥2

𝜌𝑔𝛿
+

(1 − 𝑥)2

𝜌𝑙(1 − 𝛿)
) + (𝛿𝜌𝑔 + (1 − 𝛿)𝜌𝑙)𝑔𝑠𝑖𝑛𝜃          (3.8) 
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3.3.3.5. Discretized governing equations 

Due to the nature of processes inside a cascade heat exchanger, the two-phase governing equations are of 

the greatest importance. After their discretization, we get an explicit equation for the pressure drop along 

a cell (or more precisely - cell outlet pressure) [71]: 

𝑝𝑜 = 𝑝𝑖 − [
2𝑓𝐺2(1 − 𝑥)2

𝐷ℎ𝜌𝑙
𝛷2

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
]

′′

∆𝑧 +  𝐺[𝐶𝑉𝑜 − 𝐶𝑉𝑜]∗ + (𝛿𝜌𝑔 + (1 − 𝛿)𝜌𝑙
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)

′′
𝑔 𝑠𝑖𝑛𝜃 ∆𝑧   (3.9) 

where superscript * indicates “evaluated at previous iteration”. Term CV can be determined as: 

𝐶𝑉 = 𝐺 [
𝑥2

𝜌𝑔𝛿
+

(1 − 𝑥)2

𝜌𝑙(1 − 𝛿)
]               (3.10) 

Determining the cell outlet pressure is the first step towards the calculation of all other outlet 

thermodynamic properties of the fluid. Most importantly the temperature - in case of zero temperature 

glide of the refrigerant (e.g., carbon dioxide), the pressure itself is sufficient for temperature 

determination. However, when the temperature glide is present (e.g., R452A), the outlet temperature is 

to be determined upon the knowledge of outlet pressure and outlet enthalpy [71]: 

𝑖𝑜 = 𝑖𝑖 + ∑
𝛼𝑗

𝑚
(𝑡𝑤𝑗 −

𝑡𝑖 + 𝑡𝑜

2
) 𝑃 ∆𝑧 − 𝑔 𝑠𝑖𝑛𝜃 ∆𝑧

𝑗

               (3.11) 

or 

𝑖𝑜 = 𝑥𝑜 (𝑖𝑔,𝑜 +
𝐺2𝑥𝑜

2

2𝜌𝑜
2𝛿𝑜

2
) + (1 − 𝑥𝑜) (𝑖𝑙,𝑜 +

𝐺2(1 − 𝑥𝑜)2

2𝜌𝑜
2(1 − 𝛿)2

)               (3.12) 

For the purposes of this thesis, the first equation has been chosen as the second one requires the estimation 

of the fluid outlet quality (the equation can be found in [71]), which further increases the difficulty and 

computational requirements of the whole calculation.  
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3.3.3.6. Wall temperature distribution 

As soon as the thermodynamic calculations for all fluid cells are completed, it is time to recalculate the 

initial guess about the wall temperature distribution (i.e., wall temperature at the center of every wall 

cell). To find the desired wall temperature (in case that the wall thickness is neglected), an equilibrium 

must be found between the heat leaving the hot fluid and the heat absorbed by the cold fluid: 

𝑄ℎ𝑜𝑡 = 𝑄𝑐𝑜𝑙𝑑                  (3.13) 

𝛼ℎ𝑜𝑡 𝑃ℎ𝑜𝑡 ∆𝑧ℎ𝑜𝑡(𝑡ℎ𝑜𝑡 − 𝑡𝑤) = 𝛼𝑐𝑜𝑙𝑑 𝑃𝑐𝑜𝑙𝑑 ∆𝑧𝑐𝑜𝑙𝑑(𝑡𝑤 − 𝑡𝑐𝑜𝑙𝑑)              (3.14) 

For most PHE, the perimeter and Δz (elementary cell height) are for both fluids the same, therefore the 

equation (3.14) is reduced to: 

𝛼ℎ𝑜𝑡 (𝑡ℎ𝑜𝑡 − 𝑡𝑤) = 𝛼𝑐𝑜𝑙𝑑 (𝑡𝑤 − 𝑡𝑐𝑜𝑙𝑑)               (3.15) 

and the expression for the wall temperature (under the assumption of negligible longitudinal heat 

conduction) is then: 

𝑡𝑤 =
𝛼ℎ𝑜𝑡𝑡ℎ𝑜𝑡 + 𝛼𝑐𝑜𝑙𝑑𝑡𝑐𝑜𝑙𝑑

𝛼ℎ𝑜𝑡 + 𝛼𝑐𝑜𝑙𝑑
               (3.16) 

The equation (3.16) as well as (3.11) and (3.9) contains friction factors or heat transfer coefficients. These 

parameters depend on numerous variables and their calculation is often carried out using experimentally 

determined correlations.  
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3.4. Heat transfer coefficient determination 

Convection is the dominant heat transfer mode in the channels of a BPHE. When describing the attributes 

or intensity of such heat transfer and carrying out the necessary calculations, one of the fundamental 

issues is to determine the convection heat transfer coefficient α and subsequently also the overall heat 

transfer coefficient U (of a wall separating two fluids, for instance), which considers convection heat 

transfer on both sides of the wall as well as heat conduction through it (Figure 15).  

 

Figure 15: Heat transfer through a wall [109] 

In this case, the overall HTC can be determined as [79]: 

𝑈 = [
1

𝛼𝑐
+

𝐿𝑤

𝜆𝑤
+

1

𝛼ℎ
]

−1

              (3.17) 

The local HTC α describes the convection process in one specific point of the fluid-wall interface. 

However, this parameter is of little use when investigating the heat exchanger as whole. For this purpose, 

the average heat transfer coefficient 𝛼̅ along the entire fluid path is more appropriate [50]: 

𝛼̅ =
1

𝐴
∫ 𝛼 𝑑𝐴               (3.18)

 

𝐴

 

3.4.1. Dimensionless parameters 

The general approach contains the use of dimensionless parameters to obtain the desired HTC – most 

commonly the Reynolds, the Nusselt, the Prandtl, the Grashof or the Péclet number. HTC is most closely 

connected to the Nusselt number, which is commonly described as a basic dimensionless convective HTC 

and represents the ratio of convection heat transfer to conduction with a hydraulic diameter Dh [80]: 

𝑁𝑢 =
𝛼. 𝐷ℎ

𝜆
               (3.19) 
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The Reynolds number is a ratio of inertia and viscous forces inside a fluid. Apart from its use in HTC-

related correlations, it is an important figure for a purpose of determining of whether the flow is turbulent 

or not.  

𝑅𝑒 =
𝜌. 𝑐. 𝐷ℎ

𝜇
=  

𝐺. 𝐷ℎ

𝜇
               (3.20) 

Another parameter commonly used in investigated HTC correlations is the Prandtl number, which 

represents the ratio of the molecular momentum and the thermal diffusivities [83]: 

𝑃𝑟 =
𝜇. 𝑐𝑝

𝜆
               (3.21) 

 

3.4.2. Heat transfer correlations 

HTC as well as pressure drop correlations have been studied extensively in the last decades and the results 

of these investigations were published in numerous articles. However, a general theory able to cover the 

whole variety of PHE geometries and arrangements still does not exist and is most likely impossible to 

create [82]. Therefore, each investigation for these correlations should be carried out bearing in mind that 

presented methodology is only applicable to a limited range of cases.  

There are correlations suitable for quick informative calculations as well as more complex relations which 

take more variables into account and should generally provide better accuracy. Moreover, when applying 

a correlation for a certain case, one must keep in mind that most of these relations have their specific 

range of validity, e.g., given by the Reynolds numbers, heat fluxes etc. 

 

3.4.2.1. Hydraulic diameter 

Every heat transfer correlation needs to determine the characteristic dimension to calculate with. In case 

of tubular or other form of somehow channeled flow, the hydraulic diameter Dh is generally considered 

to be the characteristic dimension. The generic equation to determine this value is [83]: 

𝐷ℎ =
4𝑆𝑐𝑠,𝑝

𝑂𝑝
                (3.22) 
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The examples of hydraulic diameter values for basic channel or duct geometries are in Figure 16. 

 

Figure 16: Hydraulic diameter calculation examples [110] 

In case of plate heat exchangers, the channel cross sections are not as simple as the depicted cases. 

Therefore, the hydraulic diameter calculation needs to be somewhat simplified to obtain satisfactory 

results without the need to deploy advanced calculations. Two relations were extracted from the available 

literature. Mori et al. define Dh followingly [84]: 

𝐷ℎ =
2𝑏

𝜑
              (3.23) 

where φ is the surface enlargement factor. It is a function of the corrugation pitch and depth. The authors 

recommend to φaverage = 1.17. 

More complex relation including also the plate width w is provided by Abu-Khader in [60]: 

𝐷ℎ =
4𝑏𝑤

2(𝑏 + 𝑤𝜑)
               (3.24) 

The author approves to use the simplified version if b << w, however. These two relations were tested as 

a part of the investigation – the calculated differences were quite negligible. 
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3.4.2.2. Single-phase correlations 

In case of forced convection, which generally occurs in BPHE channels, heat transfer coefficients are 

commonly correlated using the following relation [81]: 

𝑁𝑢 = 𝐶1𝑅𝑒𝐶2𝑃𝑟𝐶3 (
𝜇𝑚

𝜇𝑤
)

𝐶4

               (3.25) 

where the Nusselt number is a function of the Reynolds and the Prandtl number, the ratio of dynamic 

viscosity in the middle of the fluid flow and on the wall. The correction factors C1, C2, C3 and C4 are 

experimentally determined parameters, which generally can depend on heat exchanger geometric 

characteristics, plate pattern or even type of working fluid. However, in the studied literature are 

presented also different forms of correlations. 

 

3.4.2.2.1. Correlations by Focke, Thonon and Muley&Manglik 

Hayes and Jokar provide in their text [85], which studies carbon dioxide condensation in BPHEs and 

applicable correlations, a comprehensible comparison of well-established single-phase correlations used 

for this type of heat exchangers for heat transfer (Table 3) as well as friction factor analysis.  

Table 3: Single-phase correlations coefficients (Focke, Thonon, Muley&Manglik) [85] 

  β Re C1 C2 C3 C4 

Focke 

30 20 – 150 1.89 0.46 0.50 0.00 

30 150 – 600 0.57 0.7 0.50 0.00 

30 600 – 16,000 1.11 0.6 0.50 0.00 

45 45 – 300 1.67 0.44 0.50 0.00 

45 300 – 2,000 0.41 0.7 0.50 0.00 

45 2,000 – 20,000 0.84 0.6 0.50 0.00 

60 120 – 1,000 0.77 0.54 0.50 0.00 

60 1,000 – 42,000 0.44 0.64 0.50 0.00 

Thonon 

30 50 – 15,000 0.29 0.7 0.33 0.00 

45 50 – 15,000 0.3 0.65 0.33 0.00 

60 50 – 15,000 0.23 0.63 0.33 0.00 

Muley&Manglik 

30 over 1,000 0.09 0.7 0.33 0.14 

45 over 1,000 0.08 0.76 0.33 0.14 

60 over 1,000 0.08 0.78 0.33 0.14 
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3.4.2.2.2. Correlation by Khan&Khan 

Study [86] presented in 2010 contains even larger comparison of different correlations for corrugated 

PHE. Based on performed experiments, it also presents correlations of its own for two different chevron 

angles – for symmetric (30° and 60°) as well as mixed plate arrangement (30°/60° plates alternately in 

one PHE). The study highlights significant effect of corrugation angle and the Reynolds number on the 

HTC [86]. The correlation form is again 

𝑁𝑢 = 𝑐1𝑅𝑒𝑐2𝑃𝑟𝑐3 (
𝜇𝑚

𝜇𝑤
)

𝑐4

               (3.26) 

where the correction factors ci differ depending on the chevron angle (Table 4). The Prandtl number 

exponent remains the same as well the coefficient C4. 

Table 4: Khan&Khan single-phase correlation coefficients [86] 

β C1 C2 C3 C4 

60/60 0.1449 0.8414 0.35 0.14 

30/60 0.1437 0.7810 0.35 0.14 

30/30 0.1368 0.7424 0.35 0.14 

 

The paper also presents a universal correlation that can be used for PHE regardless of the plate chevron 

angle. It is valid for Reynolds numbers ranging from 500 to 2,500, in case of the Prandtl numbers the 

range is from 3.5 to 6. 

𝑁𝑢 = (0.0161
𝛽

𝛽𝑚𝑎𝑥
+ 0.1298) 𝑅𝑒

(0.198
𝛽

𝛽𝑚𝑎𝑥
+0.6398)

𝑃𝑟0.35 (
𝜇

𝜇𝑤
)

0.14

               (3.27) 

where βmax is the maximal value of chevron angles used in given PHE. 
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3.4.2.3. Condensation correlations 

For the case of condensation inside a PHE, the range of available literature is considerably more limited. 

However, some of the PHE correlations were obtained directly for the carbon dioxide condensation, e.g. 

[87]. In the end, several potentially appropriate correlations were chosen and tested. 

3.4.2.3.1. Correlation by Hayes 

As stated previously, the study [87] presents HTC correlations developed primarily for CO2 condensation 

inside a BPHE for three different chevron angles. The authors created a complex relation, where the 

Nusselt number is a function of not only the Reynolds and the Prandtl numbers, but also of four more 

dimensionless terms. The three observed chevron angles were: 

 low profile (L) – 60° chevron angle, 

 medium profile (M) – consists of 60° and 27° alternating plates, 

 high profile (H) – 27° chevron angle. 

Each of these angles goes with different correlation coefficients as well as range of validity. 

𝑁𝑢 = 𝐶1𝑅𝑒𝑙
𝑐2𝑃𝑟𝑙

𝑐3 (
𝐺2

𝜌𝑙
2𝑐𝑝,𝑙∆𝑇

)

𝑐4

(
𝜌𝑙

2𝑖𝑙𝑔

𝐺2
)

𝑐5

(
𝜌𝑙𝜎𝑙

𝜇𝑙𝐺
)

𝑐6

(
𝜌𝑙

𝜌𝑙 − 𝜌𝑔
)

𝑐7

               (3.28) 

The coefficients valid for different chevron angles are in Table 5. As in the Khan&Khan single-phase 

correlation, the Prandtl number exponent is constant and equal to 0.35 in all three cases. 

Table 5: Hayes condensation correlation coefficients [87] 

Plate C1 C2 C3 C4 C5 C6 C7 Re range 

L 0.37 0.706 0.35 1.07 0.91 0.0320 1.18 67 – 1,276 

M 0.16 0.727 0.35 1.07 0.90 0.1470 1.00 164 – 1,233 

H 0.11 0.771 0.35 1.04 0.92 0.0105 2.00 129 – 1,156 

 

3.4.2.3.2. Correlation by Mancin 

Although the paper [88] studies the condensation of hydrofluorocarbon refrigerants R410A and R407C, 

the developed correlation has been selected for our purposes to be tested. The reason for this was besides 

other favorable features the fact that the correlation provides direct calculation of the HTC. Moreover, it 

incorporates the influence of vapor quality to the calculation, which was perceived as an important fact. 

This approach determines the total HTC as a form of average between the gravity dominated HTC αNu 

and the shear dominated HTC αA: 

𝛼𝑡𝑜𝑡𝑎𝑙 = √𝛼𝐴
2 + 𝛼𝑁𝑢

2                (3.29) 
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The shear dominated heat transfer coefficient: 

𝛼𝐴 = 𝛼𝐿𝑂. [1 + 1.128 𝑥0.817 (
𝜌𝑙

𝜌𝑔
)

0.3685

(
𝜇𝑙

𝜇𝑔
)

0.2363

(1 −
𝜇𝑔

𝜇𝑙
)

2.144

𝑃𝑟−0.1]                (3.30) 

where αLO is according to [89]: 

𝛼𝐿𝑂 = 0.023
𝜆𝑙

𝐷ℎ
𝑅𝑒𝐿𝑂

0.8𝑃𝑟𝑙
0.4 = 0.023

𝜆𝑙

𝐷ℎ
(

𝐺𝐷ℎ

𝜇𝑙
)

0.8

𝑃𝑟𝑙
0.4                (3.31) 

where the “LO” subscript stands for the liquid state with the total flow rate.  

The gravity dominated heat transfer coefficient: 

𝛼𝑁𝑢 = 0.943. [
𝜌𝑙  (𝜌𝑙 − 𝜌𝑔) 𝑔 𝑖𝑙𝑔 𝜆𝑙

3

𝜇𝑙 𝐿 (𝑇𝑠𝑎𝑡 − 𝑇𝑤)
]

0.25

               (3.32) 

3.4.2.3.3. Correlation by Han 

The authors of the paper [96] have studied the condensation of refrigerants R410A and R22 and the BPHE 

chevron angles of 20°, 35° and 45°. They came up with the conclusion, that the HTC (as well as the 

pressure drop) increases with the increasing mass flux and the vapor quality. On the hand, it decreases 

with the increasing condensation temperature and the chevron angle. They have proposed the HTC 

correlation in the following form: 

𝑁𝑢 =  𝐺𝑒1𝑅𝑒𝐸𝑞
𝐺𝑒2𝑃𝑟1/3                (3.33) 

The coefficients Ge1 and Ge2 depend on the HE geometry (including the corrugation pitch pco): 

𝐺𝑒1 = 11.22 (
𝑝𝑐𝑜

𝐷ℎ
)

−2.83

(
𝜋

2
− 𝛽)

−4.5

                (3.34) 

𝐺𝑒2 = 0.35 (
𝑝𝑐𝑜

𝐷ℎ
)

0.23

(
𝜋

2
− 𝛽)

−1.48

                (3.35) 

This correlation can be used for the range of the equivalent Reynolds numbers Reeq from 300 to 4,000. 

It can be determined as: 

𝑅𝑒𝑒𝑞 =
𝐺𝑒𝑞𝐷ℎ

𝜇𝑙
                (3.36) 

where the equivalent mass flux is: 

𝐺𝑒𝑞 = 𝐺 [1 − 𝑥 + 𝑥 (
𝜌𝑙

𝜌𝑔
)

1/2

]                (3.37) 
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3.4.2.4. Evaporation correlations 

In contrast to the carbon dioxide condensation, there is a temperature glide present when a mixture of 

two or more refrigerants with different evaporation temperature is used. Therefore, it is necessary to use 

appropriate correlations, which take the temperature glide-related phenomena into consideration. 

3.4.2.4.1. Correlation by Han 

The group of authors led by Dong-Hyouck Han have developed not only condensation correlations for 

BPHEs, but also relations for evaporation using R410A and R22 again [97]. The approach is similar with 

the condensation case – using geometrical coefficients which make the HTCs significantly dependent on 

corrugation properties.  

The equivalent Boiling number Boeq is introduced in this correlation: 

𝐵𝑜𝑒𝑞 =
𝑞𝑤

𝐺𝑒𝑞𝑖𝑙𝑔
                (3.38) 

where qw is the heat flux through the wall and Geq is the equivalent mass flux, which is vapor quality-

dependent. The HTC increases with the increasing mass flux and the vapor quality and it decreases with 

the increasing evaporation temperature and the chevron angle. 

The Nusselt number correlation and the geometrical coefficient are defined as follows: 

𝑁𝑢 =  𝐺𝑒1𝑅𝑒𝐸𝑞
𝐺𝑒2𝐵𝑜𝐸𝑞

0.3𝑃r0.4                 (3.39) 

𝐺𝑒1 = 2.81 (
𝑝𝑐𝑜

𝐷ℎ
)

−0.041

(
𝜋

2
− 𝛽)

−2.83

                 (3.40) 

𝐺𝑒2 = 0.746 (
𝑝𝑐𝑜

𝐷ℎ
)

−0.082

(
𝜋

2
− 𝛽)

0.61

                (3.41) 
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3.4.2.4.2. Correlation by Hsieh 

As well as in previous Han’s correlation, also in this case have been the results developed upon 

experiments with R410A [98]. However, only one chevron angle value (60°) has been investigated. The 

authors came to conclusion that the HTC is affected almost negligibly by the mass flow rate, but it 

increases linearly with the increasing heat flux [81]. The changes of saturation pressure have only limited 

effect on the HTC. 

Based on the experimental measurements, the authors correlate the boiling HTC as: 

𝛼𝑟,𝑠𝑎𝑡 = 𝛼𝑟,𝑙(88𝐵𝑜0,5)                 (3.42) 

where αr,l is the all-liquid nonboiling HTC and is determined as: 

𝛼𝑟,𝑙 = 0.2092 (
𝜆𝑙

𝐷ℎ
) 𝑅𝑒0.78𝑃𝑟1/3 (

𝜇𝑚

𝜇𝑤
)

0.14

                 (3.43) 

and the boiling number is calculated as [99]: 

𝐵𝑜 =
𝑞

𝐺𝑖𝑙𝑔
                 (3.44) 

 

3.4.2.4.3. Correlation by Yan 

The group of authors Yan, Lin and Yang derived a heat transfer and a pressure drop correlation based 

upon experiments with the refrigerant R134a. As in the previous case, only one chevron angle (60°) has 

been investigated. This correlation puts emphasis on the vapor quality – it is explicitly present in the HTC 

correlation through the equivalent mass flux. 

Some of the interesting conclusions of this study [90]: 

 the mass flux has a significant effect on the HTC only in the region of high vapor qualities, 

 the heat flux, on the other hand, shows bigger influence in the region of low vapor qualities, 

 an increase in the evaporation pressure results in a lower HTC at higher vapor qualities. 

The heat transfer correlation for the refrigerant Nusselt number can be expressed as [81]: 

𝑁𝑢 = 1.926𝑃𝑟𝑙
1/3

𝐵𝑜𝑒𝑞
−0.3𝑅𝑒𝑒𝑞

0.5 [(1 − 𝑥) + (
𝜌𝑙

𝜌𝑔
)

0.5

]                 (3.44) 

and is valid for equivalent Reynolds number Reeq ranging from 2,000 to 10,000. 
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3.4.2.5. Correlations comparison 

Although it is a very important task to choose the suitable heat transfer correlation for the heat exchanger 

calculations, it is often not completely unambiguous, which one is the “correct” one. The results can 

differ significantly when applying different correlations on the same flow conditions.  

The group of authors around J. R. García-Cascales has published a comparison of several heat transfer 

multi-phase correlations commonly used in PHE design. As can be seen from the Figure 17 comparing 

the HTC values obtained for the boiling case for defined mass flow rate, different correlations provide 

very variable results depending on vapor quality. In case of lower qualities, the correlation conformity is 

relatively satisfactory. On the other hand, in the high vapor quality region the resulting HTC can vary by 

as much as hundred per cent. 

 

Figure 17: Boiling heat transfer coefficient variation [81] 
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Even greater differences can be observed among the condensation correlations (see Figure 18). Most of 

these correlations consider the HTC to increase with increasing vapor quality – except for the Thonon 

correlation. This is in contrast with the boiling correlations where the agreement of all the authors on this 

HTC-quality dependency is universal.  

 
Figure 18: Condensation heat transfer coefficient variation [81] 

A slight discrepancy can be also observed in the approach of different authors to the influence of the 

chevron angle on the HTC. In some of the correlations the HTC increases with the decreasing chevron 

angle (e.g., Han, Focke or Thonon), others show the opposite dependency (e.g., Muley and Manglik). 

Generally, the inclination angle between the plate corrugations is considered as one of the most vital 

parameters in the thermohydraulic performance calculations of PHEs.1 However, the PHE manufacturers 

generally do not disclose this kind of data as it is an important part of their know-how. 

 

  

                                                      
1 The effect of the corrugation inclination angle on the thermohydraulic performance of plate heat exchangers 
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4. Cascade heat exchanger – calculation theory 

The goal of this thesis is the calculation of thermal processes taking place inside a given cascade brazed 

plate heat exchanger. The basic task is given like this: to calculate the outlet conditions of both 

refrigerants for the given inlet conditions and the heat exchanger geometry and characteristics. After 

an extensive research, it was decided to use the SEWTLE procedure for this purpose as it proved itself to 

be an interesting and non-traditional method. 

However, to perform a calculation like this, it is necessary to incorporate the heat exchanger into the 

closed refrigeration cycle to prove its usefulness for practical purposes. Therefore, the heat exchanger 

numerical analysis is only one of the calculations performed within the whole refrigeration system 

calculation process. Nevertheless, it is by far the most complex calculation of all the refrigeration cycle 

components. 

 

Figure 19: Advanced cascade refrigeration cycle 
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4.1. Refrigeration cycle – calculation theory 

To perform thermodynamic calculations of the whole refrigeration cycle, it is necessary to define its main 

components first. To have an opportunity to compare the calculated figures with available empirical 

results, the refrigeration cycle had to be chosen accordingly. The cycle with its most significant 

components is in Figure 19.  

In order to keep the whole calculation process at an acceptable complexity level, certain simplifying 

assumptions were adopted. This applies for instance to internal heat exchange, EVI compressor or gas 

cooler as will be described in the following paragraphs. 

4.1.1. Calculation methodology 

The general idea of this calculation method is to find the equilibrium between the heat absorbed by the 

low temperature cycle (abbr. CC – cold cycle) refrigerant inside the evaporator and the heat released by 

the high temperature cycle (abbr. HC – hot cycle) refrigerant inside the condenser while meeting all the 

specified conditions (input values). Of course, also the heat balance between the two sides of the cascade 

heat exchanger is to be met to ensure the equilibrium of the cascade cycle. 

The entire cycle calculation can be therefore divided into several sub-calculations, such as: 

 CC calculation, 

 HC calculation, 

 CC evaporator balance, 

 HC condenser balance, 

 heat flows balance, 

 cascade heat exchanger balance. 

These sub-calculations are combined and repeated to create an iterative procedure that should provide the 

desired solution – the state of equilibrium of the whole cascade refrigeration cycle. This means that the 

refrigerant properties at any point of the cycle are known. 

The vital task is the determination of all four pressure levels (i.e., the phase change temperatures) inside 

the system. The system operates only at these pressures as the pressure losses are neglected in our 

calculation: 

 CC evaporation pressure pevap,CC => CC evaporation temperature tevap,CC 

 CC condensation pressure pcond,CC => CC condensation temperature tcond,CC 

 HC evaporation pressure pevap,HC => HC evaporation temperature tevap,HC 

 HC condensation pressure pcond,HC => HC condensation temperature tcond,HC 

First, these pressures (i.e., corresponding saturation temperatures) are given by the initial estimate. In the 

course of the calculation, they are changed until the system convergence is reached. The iterative 

procedure is based on the bisection method, which is described in the previous part of the thesis. 

The saturation temperatures were selected over the pressure levels in the calculations as it proved to be 

advantageous for the iteration procedure and related calculations. There is no difficulty with this approach 
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with pure refrigerants and azeotropic mixtures. However, zeotropic refrigerant mixtures exhibit 

temperature glide during a phase change. In this case, the condensation/evaporation temperature is 

considered the one on the saturated vapor line. Throughout the calculation, critical temperature is tested 

at several points to ensure the cycle stays within the sub-critical boundaries. 

4.1.2. Bisection method 

Throughout the global calculation procedure, there are several points where desired result cannot be 

explicitly calculated. In these cases, an iterative process is necessary to obtain such values. Therefore, a 

variant of the bisection method is employed inside the SEWTLE procedure. Its authors recommend the 

Newton-Raphson algorithm, which is based on the similar foundations. Even though it generally offers a 

faster convergence than the bisection method, it can become quite unreliable at certain conditions [91]. 

It is a numerical method generally used to find a root of a given function [92]. In our modification of the 

bisection method when calculated values xcalc are compared with the input ones xinput, the sequence of 

steps is defined followingly: 

1. Calculation is performed using the initial estimate input vinitial to obtain xcalc,1 

2. Both values are compared: xcalc,1 – xinput = y1 

3. Depending on the y1 value, three possible scenarios are to be selected from: 

a. │xcalc,1 – xinput│ < z, where z is the desired calculation accuracy. If this condition is met, the 

root has been found and the calculation cycle is terminated. 

b. │xcalc,1 – xinput│ > z and y1 is a positive value: the initial estimate vinitial is adjusted by adding 

(resp. subtracting)2 initial step sinitial. 

c. │xcalc,1 – xinput│ > z and y1 is a negative value: the initial estimate vinitial is adjusted by 

subtracting (resp. adding) initial step sinitial. 

4. Calculation is performed using the adjust value vadjusted,1 = vinitial +/- sinitial to obtain xcalc,2 

5. Values are compared again: xcalc,2 – xinput = y2 

6. Depending on the y2 value, several possible scenarios are to be selected from: 

a. │xcalc,2 – xinput│ < z, where z is the desired calculation accuracy. If this condition is met, the 

root has been found and the calculation cycle is terminated. 

b. │xcalc,2 – xinput│ > z: now, the sign of the y2 value is to be analyzed – if it is the same as for 

the previous value (y1 in this case), the adjusting step s2 = sinitial 

c. │xcalc,2 – xinput│ > z: if the sign of y2 value is different from the previous value (y1 in this 

case), the adjusting step is halved: s2 = sinitial / 2. Additionally, if sinitial was added previously, 

s2 is now subtracted and vice versa. 

7. The iteration cycle continues as described until │xcalc,i – xinput│ < z. 

                                                      
2 the choice between adding and subtracting has to be made according to the impact that this will have on the final value  
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4.1.3. Input values 

4.1.3.1. Compressors 

Due to the fact, that every compressor is designed for different operating conditions or substances, it 

becomes necessary to choose the optimal compressor for given requirements. Generally, the possible 

range of application is defined by the compressor operating envelope. It defines the limitations to the use 

of a given compressor. In other words, the manufacturer cannot ensure its reliable operation when running 

outside these boundaries [93]. These are mostly given in terms of allowed evaporation-condensation 

temperature pairs for a certain refrigerant (see Figure 20). 

 

Figure 20: Operating envelope – compressor ZFD18KVE-TFD [94] 

For this approved range of temperatures pairs, certain measured data (e.g., cooling capacity, power input 

P, mass flow rate m or electric current) are provided by the manufacturer, as well as nominal value of 

displacement Vn, level of suction superheat, sound pressure levels [94] etc. 

First, it is necessary to consolidate these data to make the following calculations possible. The aim is to 

obtain a pressure-ratio-dependent relation for both isentropic efficiency and volumetric efficiency. 

From given temperature pairs, the respective refrigerant pressures (and the pressure ratio σ, subsequently) 

are determined using the CoolProp (a refrigerant library extension for MS Excel). 
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The compressor suction temperature ts is calculated as a sum of the evaporation temperature and the 

suction superheat ΔTs: 

𝑡𝑠 = 𝑡𝑒 + ∆𝑇𝑠               (4.1) 

Thanks to the knowledge of the suction temperature and the evaporation pressure, the refrigerant suction 

state is determined completely - it is now possible to identify the enthalpy is, entropy ss and density ρs at 

this point of the cycle. 

In the case of an isentropic compression of the refrigerant, also the refrigerant properties at 

the compressor discharge (e.g., enthalpy id,ie) can be determined as functions of condensation pressure 

and entropy. The isentropic power input Pie is calculated as: 

𝑃𝑖𝑒 = 𝑚 (𝑖𝑑,𝑖𝑒 − 𝑖𝑠)               (4.2) 

This value is then compared with the power input P given by the manufacturer – thus the isentropic 

efficiency ηie is determined: 

𝜂𝑖𝑒 =  
𝑃𝑖𝑒

𝑃
               (4.3) 

The theoretical mass flow rate mth can be determined at the compressor suction as: 

𝑚𝑡ℎ =  𝑉𝑛 𝜌𝑠               (4.4) 

This value is then compared with the mass flow rate m given by the manufacturer – thus the volumetric 

efficiency λ is determined: 

𝜆 =
𝑚

𝑚𝑡ℎ
               (4.5) 

These calculations are carried out for all the temperature pairs and the resulting isentropic and volumetric 

efficiencies are transferred into the chart as functions of the pressure ratio. Finally, the appropriate 

trendlines (generally polynomial) are selected (e.g., Figure 21 for ZFD18KVE-TFD EVI). The resulting 

coefficients of these equations are then used as input parameters, along with the compressor displacement, 

for the whole refrigerant system calculation. 
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Figure 21: Volumetric and isentropic efficiency 

 

4.1.3.2. Internal heat exchange 

Inside an internal heat exchanger, the subcooling of the condensed vapors take place on one side, while 

on the other side the evaporated refrigerant is further superheated. To keep the calculation at relatively 

simple level, the decision has been made to withdraw from the intention to define the internal heat 

exchanger in detail. Instead, the IHE effectiveness is introduced. 

First, the heat capacity rates of the two fluids (hot and cold) are to be compared [95]: 

𝐶ℎ = (𝑚 𝑐𝑝)
ℎ

               (4.6) 

𝐶𝑐 = (𝑚 𝑐𝑝)
𝑐
               (4.7) 

where m is the mass flow rate and cp is the specific heat. In elementary case when the mass flow rate is 

on both sides equal, the vapor side (i.e., the cold side) heat capacity rate will always be lower due to fact 

that the specific heat of a gas is generally lower than of a liquid. Therefore, the inlet liquid temperature 

presents the upper limit for vapor outlet temperature. However, this potential is never fully utilized – the 

vapor outlet temperature will always be lower, which is reflected by the IHE efficiency. Therefore, it is 

another cycle calculation input. 
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4.1.3.3. Gas cooler 

In case of an ambient-air-cooled gas cooler, which is used in our low temperature part of the cycle, we 

assume that its heat transfer area and the air flow rate are large enough to always ensure the same cold 

side temperature difference ΔTcooler, which is also one of the input parameters for the cycle calculation. 

For instance, if ΔTcooler is set to 2 K and the ambient air temperature tair,c is 40°C, the resulting outlet 

temperature of the cooled carbon dioxide will be: 

𝑡3 =  𝑡𝑎𝑖𝑟,𝑐 + 𝛥𝑇𝑐𝑜𝑜𝑙𝑒𝑟 = 40 + 2 = 42°𝐶 

4.1.3.4. Economizer (EVI) 

The theoretical analysis of a system containing an EVI compressor (i.e., the refrigerant mass flow is 

divided after the condenser and reunited in the compressor again) is a complex difficult process and 

exceeds the options and the scope of this thesis. Therefore, we omit this feature in our calculations – 

the compressor is for purpose of our calculations considered to be an “ordinary” one. The economizer is 

also left out.  

4.1.3.5. Expansion valves 

Expansion valves control the amount of gas-liquid mixture entering the evaporator, thus directly affecting 

the resulting vapor superheating. This level of superheating is necessary to be determined as one of the 

input parameters for the cycle calculation – for the CC evaporator as well as HC evaporator (i.e., cascade 

heat exchanger in this case). 

Apart from the superheating, also the level of refrigerant subcooling after the condensation is a necessary 

input variable for both high and low temperature parts of the cycle. 

The throttling process is considered as adiabatic, which is valid for expansion valves placed close to the 

evaporator. 

4.1.3.6. Heat exchangers 

In order to be able to carry out the evaporator and the condenser heat balance calculation, several input 

values are necessary. In case of the evaporator, the heat is transferred from the freezer air to the 

refrigerant. In the condenser, the heat is released from the refrigerant into the ambient air. The required 

properties of the freezer air and the ambient air are: 

 mass flow rate, 

 inlet temperature, 

 specific heat. 

Another important heat exchanger characteristic is to be added – the “size” of both the evaporator and 

the condenser. In this calculation, the size of a heat exchanger is specified if the overall heat transfer 

coefficient U and the heat transfer area A are known. 
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In case of the cascade heat exchanger, there are refrigerants on both hot and cold side. Therefore, there 

are no inputs regarding ambient or freezer air necessary. However, its size is still to specified using the 

same approach as for the previous HEs – using the overall HTC U and the heat transfer area A. These 

two parameters are later used together as UAinput. 

4.1.4. Sub-calculations 

As mentioned earlier, the whole calculation consists of several sub-calculations that provide results for 

the designated part of the system. Some of them contain an iterative calculation. 

4.1.4.1. High Temperature Cycle Calculation 

The aim of this sub-calculation is the determination of refrigerant properties at all relevant points of 

the HC, which are (with their respective numbers, Figure 22): 

1. end of evaporation  

2. evaporator (i.e., cascade HE) outlet 

3. compressor intake 

4. compressor discharge = condenser inlet 

5. start of condensation 

6. end of condensation 

7. condenser outlet 

8. evaporator (i.e., cascade HE) inlet

 

Figure 22: High temperature cycle, theoretical T-i diagram 

As stated earlier, the condensation and evaporation temperature levels are known (either from initial 

estimate or some of the following iterations). This enables us to calculate the refrigerant properties: 

 point 1 – end of evaporation 

o t1 = known 

o p1 = f (t1, x = 1) 

o i1 = f (p1, x = 1) 
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 point 2 – evaporator (cascade HE) outlet 

o t2 = t1 + ΔTevap  (ΔTevap … superheating in the evaporator) 

o p2 = p1 

o i2 = f (t2, p2) 

 point 3 – compressor intake 

o t3 = t2 + ΔTs (ΔTs … suction superheat) 

o p3 = p2 

o i3 = f (t3, p3) 

o entropy s3 = f (t3, p3) 

o density ρ3 = f (t3, p3) 

 point 4 – compressor discharge / condenser inlet 

o p4 = f (t5, x = 1) 

o pressure ratio σ = p4 / p1 

o isentropic efficiency ηie can be calculated upon the knowledge of the pressure ratio 

o volumetric efficiency λ can be calculated upon the knowledge of the pressure ratio 

o enthalpy in case of isentropic refrigerant vapor compression i4_ie = f (p4, s3) 

o i4 = i3 + [(i4_ie – i3) / ηie]  (4.83) 

o t4 = f (p4, i4) 

 point 5 – start of condensation 

o t5 = known 

o p5 = p4 

o i5 = f (p5, x = 1) 

 point 6 – end of condensation 

o t6 = f (p6, x = 0) 

o p6 = p5 

o i6 = f (p6, x = 0) 

 point 7 – condenser outlet 

o t7 = t6 – ΔTcond  (ΔTcond … subcooling in the condenser) 

o p7 = p6 

o i7 = f (t7, p7) 

 point 8 – evaporator (cascade HE) inlet 

o p8 = p1 

o i8 = i7 (throttling is considered as adiabatic) 

o t8 = f (p8, i8) 

The refrigerant mass flow rate in the HC is calculated as:  mHC = Vn ρ3 λ  (4.84) 

 



48 

 

4.1.4.2. Low Temperature Cycle Calculation 

The aim of this sub-calculation is the determination of refrigerant properties at all relevant points of 

the CC, which are (with their respective numbers, Figure 23): 

1. end of evaporation  

2. evaporator outlet 

3. IHE outlet (vapor) 

4. compressor intake 

5. compressor discharge 

6. gas cooler outlet 

7. after first stage of vapor cooling (CHE) 

8. start of condensation 

9. end of condensation 

10. condenser (CHE) outlet 

11. IHE outlet (liquid) 

12. evaporator inlet 

 
Figure 23: Low temperature cycle, theoretical T-i diagram 

As stated earlier, the condensation and evaporation temperature levels are known (either from initial 

estimate or some of the following iterations). This enables us to calculate the refrigerant properties: 

 point 1 – end of evaporation 

o t1 = known 

o p1 = f (t1, x = 1) 

o i1 = f (p1, x = 1) 

 point 2 – evaporator outlet 

o t2 = t1 + ΔTevap  (ΔTevap … superheating in the evaporator) 

o p2 = p1 

o i2 = f (t2, p2) 

 point 3 – internal heat exchange outlet (vapor) 

o p3 = p2 
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o temperature t3_theor for theoretical case of 100 % IHE efficiency is equal to the 

temperature of the subcooled condensed vapor t9 

o i3_theor = f (p3, t3_theor) 

o the IHE enthalpy change ΔiIHE considering the actual IHE efficiency ηIHE: 

ΔiIHE = ηIHE (i3_theor – i2)  (4.85) 

o i3 = i2 + ΔiIHE 

o t3 = f (p3, i3) 

 point 4 – compressor intake 

o t4 = t3 + ΔTs  (ΔTs … suction superheat) 

o p4 = p3 

o i4 = f (t4, p4) 

o entropy s4 = f (t4, p4) 

o density ρ4 = f (t4, p4) 

 point 5 – compressor discharge / gas cooler inlet 

o p5 = f (t7, x = 1) 

o pressure ratio σ = p5 / p1 

o isentropic ηie and volumetric efficiency λ are calculated from the pressure ratio 

o enthalpy in case of isentropic refrigerant vapor compression i5_ie = f (p5, s4) 

o i5 = i4 + [(i5_ie – i4) / ηie]  (4.86) 

o t5 = f (p5, i5) 

 The refrigerant mass flow rate in the CC is calculated as:  mCC = Vn ρ4 λ  (4.87) 

 point 6 – gas cooler outlet / condenser (cascade HE) inlet 

o p6 = p5 

o t6 = tair,c + ΔTcooler 

o i6 = f (t6, p6) 

 point 7 – after first stage of vapor cooling 

o the energy released between points 6 and 7 Q6-7 equals the energy needed to 

superheat the refrigerant on the HC side of cascade HE 

o Q6-7 = mHC (i2,HC – i1,HC)  (4.88) 

o i7 = i6 – (Q6-7 / mCC)   (4.89) 

o p7 = p6 

o t7 = f (p7, i7) 

 point 8 – start of condensation 

o t8 = known 

o p8 = p7 

o i8 = f (p8, x = 1) 
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 point 9 – end of condensation 

o t9 = f (p9, x = 0) 

o p9 = p8 

o i9 = f (p9, x = 0) 

 point 10 – condenser outlet 

o t10 = t9 – ΔTcond  (ΔTcond … subcooling in the condenser) 

o p10 = p9 

o i10 = f (T10, p10) 

 point 11 – internal heat exchange outlet (liquid) 

o p11 = p10 

o i11 = i10 – (i3 – i2)  (4.90) 

o t11 = f (p11, i11) 

 point 12 – evaporator inlet 

o p12 = p1 

o i12 = i11 (throttling is considered as adiabatic) 

o t12 = f (p12, i12) 

4.1.4.3. High Temperature Cycle Condenser Balance 

The first two sub-calculations (HC and CC Calculation) do not have any effect on the value of the four 

main temperatures. They only use their value to calculate the thermodynamic properties of refrigerants 

throughout the cycles. HC condenser balance, on the other hand, has direct impact on one of the four 

main temperatures – the HC condensation temperature tcond,HC.  

The main part of this sub-calculation is the cycle, which loops the calculation until the convergence is 

reached and the actual condenser UAcalc is equal to the one prescribed as an input value. In each step of 

the calculation cycle the tcond,HC is adjusted in accordance with the bisection method. 

 

Figure 24: High temperature cycle condenser sections 
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The calculation cycle is constructed as follows: 

1. The previously defined sub-calculations HC and CC calculation are performed to recalculate both 

hot and cold cycles with the new tcond,HC. 

2. The UAcond,i for all three respective sections of the condenser are calculated: 

a. Liquid refrigerant subcooling section (first section) 

heat transferred in the 1st section:  Qcond,1 = mHC (i6,HC – i7,HC)  (4.8) 

air temperature at the 1st section outlet: tair,2,c = tair,1,c + [Qcond,1 / (mair,c cp,air,c)] (4.9) 

temp. difference at the 1st section cold side: ΔTc,cs,1 = t7,HC – tair,1,c  (4.10) 

temp. difference at the 1st section hot side:  ΔTc,hs,1 = t6,HC – tair,2,c  (4.11) 

LMTD in the 1st section:3 LMTDcond,1 = (ΔTc,cs,1 - ΔTc,hs,1) / [ln (ΔTc,cs,1 / ΔTc,hs,1)] (4.12) 

UA of the 1st section:   UAcond,1 = Qcond,1 / LMTDcond,1  (4.13) 

b. Vapor condensation section (second section) 

heat transferred in the 2nd section:  Qcond,2 = mHC (i5,HC – i6,HC)  (4.14) 

air temperature at the 2nd section outlet: tair,3,c = tair,2,c + [Qcond,2 / (mair,c cp,air,c)] (4.15) 

temp. difference at the 2nd section cold side: ΔTc,cs,2 = t5,HC – tc,air,2  (4.16) 

temp. difference at the 2nd section hot side:  ΔTc,hs,2 = t6,HC – tc,air,3  (4.17) 

LMTD in the 2nd section: LMTDcond,2 = (ΔTc,cs,2 - ΔTc,hs,2) / [ln (ΔTc,cs,2 / ΔTc,hs,2)] (4.18) 

UA of the 2nd section:   UAcond,2 = Qcond,2 / LMTDcond,2  (4.19) 

c. Vapor desuperheating section (third section) 

heat transferred in the 3rd section:  Qcond,3 = mHC (i4,HC – i5,HC)  (4.20) 

air temperature at the 3rd section outlet: tair,4,c = tair,3,c + [Qcond,3 / (mair,c cp,air,c)] (4.21) 

temp. difference at the 3rd section cold side: ΔTc,cs,3 = t4,HC – tair,3,c  (4.22) 

temp. difference at the 3rd section hot side:  ΔTc,hs,3 = t5,HC – tair,4,c  (4.23) 

LMTD in the 3rd section:4 LMTDcond,3 = (ΔTc,cs,3 - ΔTc,hs,3) / [ln (ΔTc,cs,3 / ΔTc,hs,3)] (4.24) 

UA of the 3rd section:   UAcond,3 = Qcond,3 / LMTDcond,3  (4.25) 

 

                                                      
3 for ΔTc,cs,1 > ΔTc,hs,1 
4 for ΔTc,cs,1 > ΔTc,hs,1 
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3. The partial UAi are then summed up to obtain the total condenser UAcalc,c: 

UAcalc,c = UAcond,1 + UAcond,2 + UAcond,3   (4.26) 

4. The total UAcalc,c is compared with the UAinput,c and the difference │UAcalc,c - UAinput,c│ is calculated 

a. If │UAcalc,c - UAinput,c│ > 10, the tcond,HC is adjusted in accordance with the bisection method 

and the calculation cycle is performed again. 

b. If │UAcalc,c - UAinput,c│ < 10, the desired accuracy has been achieved and the calculation loop 

is terminated. 

 

4.1.4.4. Low Temperature Cycle Evaporator Balance 

The sub-calculation called HC condenser balance is relatively similar with the previous one. It has direct 

impact on one of the four main temperatures – the CC evaporation temperature tevap,CC.  

The main part of this sub-calculation is the cycle, which loops the calculation until the convergence is 

reached and the actual evaporator UAcalc is equal to the one prescribed as an input value. In each step of 

the calculation cycle the tevap,CC is adjusted in accordance with the bisection method. 

 

Figure 25: Low temperature cycle evaporator sections 

The calculation cycle is constructed as follows: 

1. The previously defined sub-calculations HC and CC Calculation are called to recalculate both hot 

and cold cycles with the new tevap,CC. 
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2. The UAevap,i for both sections of the evaporator are calculated: 

 

a. Refrigerant vapor superheating section (first section) 

heat transferred in the 1st section:  Qevap,1 = mCC (i2,CC – i1,CC)  (4.27) 

air temperature at the 1st section outlet: te,air,2 = te,air,1 - [Qevap,1 / (me,air cp,e,air)] (4.28) 

temp. difference at the 1st section cold side: ΔTe,cs,1 = te,air,2 – t1,CC  (4.29) 

temp. difference at the 1st section hot side:  ΔTe,hs,1 = te,air,1 – t2,CC  (4.30) 

LMTD in the 1st section:5 LMTDevap,1 = (ΔTe,cs,1 – ΔTe,hs,1) / [ln (ΔTe,cs,1 / ΔTe,hs,1)] (4.31) 

UA of the 1st section:   UAevap,1 = Qevap,1 / LMTDevap,1  (4.32) 

 

b. Refrigerant evaporation section (second section) 

heat transferred in the 2nd section:  Qevap,2 = mCC (i1,CC – i12,CC)  (4.33) 

air temperature at the 2nd section outlet: te,air,3 = te,air,2 – [Qevap,2 / (me,air cp,e,air)] (4.34) 

temp. difference at the 2nd section cold side: ΔTe,cs,2 = te,air,3 – t12,CC  (4.35) 

temp. difference at the 2nd section hot side:  ΔTe,hs,2 = te,air,2 –  t1,CC  (4.36) 

LMTD in the 2nd section: LMTDevap,2 = (ΔTe,hs,2 – ΔTe,cs,2) / [ln (ΔTe,hs,2 / ΔTe,cs,2)] (4.37) 

UA of the 2nd section:   UAevap,2 = Qevap,2 / LMTDevap,2  (4.38) 

 

3. The partial UAi are then summed up to obtain the total evaporator UAcalc,e: 

UAcalc,e = UAevap,1 + UAevap,2    (4.39) 

 

4. The total UAcalc,e is compared with the UAinput,e and the difference │UAcalc,e - UAinput,e│ is calculated 

a. If │UAcalc,e - UAinput,e│ > 10, the tevap,CC is adjusted in accordance with the bisection method 

and the calculation cycle is performed again. 

b. If │UAcalc,e - UAinput,e│ < 10, the desired accuracy has been achieved and the calculation loop 

is terminated. 

  

                                                      
5 for ΔTe,cs,1 > ΔTe,hs,1 
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4.1.4.5. Heat Flows Balance 

The former two sub-calculations have impact on the “non-cascade-HE” temperatures. In this case, 

saturation temperatures for both the cold side and the hot side of the cascade HE are involved.  

The core of this sub-calculation is again an iterative cycle that aims to achieve the balance of the heat 

flows on both sides of the cascade HE by adjusting both tevap,HC and tcond,CC. These two temperatures are 

coupled through the ΔTCHE variable:  

∆TCHE = tcond,CC − tevap,HC               (4.40) 

This value remains constant throughout this sub-calculation and is also a subject to iteration in the further 

calculations.  

The sequence of steps in this sub-calculation is: 

1. The previously defined sub-calculations CC Evaporator Balance and HC Condenser Balance are 

performed with the most actual values. 

2. Heat transfer rates on both sides of the cascade HE are calculated: 

QCHE,CC = mCC (i6,CC − i10,CC)               (4.41) 

QCHE,HC = mHC (i2,HC − i8,HC)               (4.42) 

3. The two calculated values QCHE,CC and QCHE,HC are then compared: 

a. If │ QCHE,CC - QCHE,HC │ > 10, the tcond,CC is adjusted in accordance with the bisection method 

and the calculation cycle is performed again. At the same time, the value of tevap,HC is also 

adjusted as ΔTCHE remains unchanged. 

b. If │ QCHE,CC - QCHE,HC │ < 10, the desired accuracy has been achieved and the calculation 

loop is terminated. 
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4.1.4.6. Cascade Heat Exchanger UA 

This sub-calculation serves the only purpose – to determine the total UA of the cascade heat exchanger. 

Therefore, it is to be carried out after the CHE balance has been found. The CHE is the most complex in 

terms of individual sections count – there is four of them, depending on heat transfer modes combination 

on both sides.  

 

Figure 26: Cascade heat exchanger sections 

Thanks to the fact that both heat flow rates are equal (convergence has been reached in previous sub-

calculation), the result does not depend on which side (hot or cold) is chosen for the calculation: 

1. CC refrigerant vapor cooling + HC refrigerant vapor superheating section (first section) 

heat transferred in the 1st section:  QCHE,1 = mHC (i2,HC – i1,HC)  (4.43) 

temp. difference at the 1st section cold side: ΔTCHE,cs,1 = t7,CC – t1,HC  (4.44) 

temp. difference at the 1st section hot side:  ΔTCHE,hs,1 = t6,CC – t2,HC  (4.45) 

LMTD 1st section:6LMTDCHE,1 = (ΔTCHE,hs,1-ΔTCHE,cs,1) / [ln(ΔTCHE,hs,1 /ΔTCHE,cs,1)] (4.46) 

UA of the 1st section:   UACHE,1 = QCHE,1 / LMTDCHE,1  (4.47) 

 

2. CC refrigerant vapor cooling + HC refrigerant evaporation (second section) 

heat transferred in the 2nd section:  QCHE,2 = mCC (i7,CC – i8,CC)  (4.48) 

enthalpy at point 1’ of the HC:  i1’,HC = i1,HC – (QCHE,2 / mHC)  (4.49) 

pressure at point 1’ of the HC:  p1’,HC = p1,HC    (4.50) 

                                                      
6 for ΔTCHE,hs,1 > ΔTCHE,cs,1 
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temperature at point 1’ of the HC:  t1’,HC = f (p1’,HC, i1’,HC)   (4.51) 

temp. difference at the 2nd section cold side: ΔTCHE,cs,2 = t8,CC – t1’,HC (4.52) 

temp. difference at the 2nd section hot side:  ΔTCHE,hs,2 = t7,CC – t1,HC  (4.53) 

LMTD 2nd section:LMTDCHE,2 = (ΔTCHE,hs,2-ΔTCHE,cs,2) / [ln(ΔTCHE,hs,2 /ΔTCHE,cs,2)] (4.54) 

UA of the 2nd section:   UACHE,2 = QCHE,2 / LMTDCHE,2  (4.55) 

 

3. CC refrigerant condensation + HC refrigerant evaporation (third section) 

heat transferred in the 3rd section:  QCHE,3 = mCC (i8,CC – i9,CC)  (4.56) 

enthalpy at point 8’ of the HC:  i8’,HC = i1’,HC – (QCHE,3 / mHC)  (4.57) 

pressure at point 8’ of the HC:   p8’,HC = p1’,HC   (4.58) 

temperature at point 8’ of the HC:   t8’,HC = f (p8’,HC, i8’,HC)  (4.59) 

temp. difference at the 3rd section cold side: ΔTCHE,cs,3 = t9,CC – t8’,HC (4.60) 

temp. difference at the 3rd section hot side:  ΔTCHE,hs,3 = t8,CC – t1’,HC (4.61) 

LMTD 3rd section: 7LMTDCHE,3 = (ΔTCHE,hs,3-ΔTCHE,cs,3) / [ln(ΔTCHE,hs,3 /ΔTCHE,cs,3)] (4.62) 

UA of the 3rd section:   UACHE,3 = QCHE,3 / LMTDCHE,3  (4.63) 

 

4. CC refrigerant subcooling + HC refrigerant evaporation (fourth section) 

heat transferred in the 4th section:  QCHE,4 = mCC (i9,CC – i10,CC)  (4.64) 

temp. difference at the 4th section cold side: ΔTCHE,cs,4 = t10,CC – t8,HC (4.65) 

temp. difference at the 4th section hot side:  ΔTCHE,hs,4 = t9,CC – t8’,HC (4.66) 

LMTD 4th section: 8LMTDCHE,4 = (ΔTCHE,hs,4-ΔTCHE,cs,4) / [ln(ΔTCHE,hs,4 /ΔTCHE,cs,4)] (4.67) 

UA of the 4th section:   UACHE,4 = QCHE,4 / LMTDCHE,4  (4.68) 

The partial UACHE,i are then summed up to obtain the total cascade heat exchanger UA: 

UACHE,calc = UACHE,1 + UACHE,2 + UACHE,3 + UACHE,4 (4.69) 

                                                      
7 In case of no temperature glide on either side of the CHE, LMTDCHE,3 = ΔTCHE,cs,3 = ΔTCHE,hs,3 
8 In case of no temperature glide on either side of the CHE, LMTDCHE,3 = ΔTCHE,cs,3 = ΔTCHE,hs,3 
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4.1.4.7. Cascade HE Balance 

As with the condenser or the evaporator, also the size of the CHE is to be given in terms of overall heat 

transfer coefficient U and heat transfer area A. Also in this case, the calculated UA is to be compared 

with the input value to ensure that they are equal. 

The Cascade HE Balance sub-calculation is divided into two parts: 

1. Initial estimate of all four saturation temperatures: 

a. tevap,CC = tair,e – ΔTevap,CC – 5   (4.70) 

b. tcond,HC = tair,C + ΔTcond,HC + 5   (4.71) 

c. tcond,CC = ((tcond,HC + tevap,CC) / 2) + 2  (4.72) 

d. ΔTCHE = 10 K => tevap,HC = tcond,CC - ΔTCHE (4.73) 

2. Calculation cycle consisting of several steps: 

a. The previously defined sub-calculations Heat Flows Balance and Cascade Heat Exchanger UA 

are performed to obtain all four saturation temperatures 

b. The total UACHE,calc is compared with the UACHE,input  

c. If │UACHE,calc - UACHE,input│ > 10, the ΔTCHE is adjusted in accordance with the bisection method 

and the calculation cycle is performed again. 

d. If │UACHE,calc - UACHE,input│ < 10, the desired accuracy has been achieved and the calculation 

loop is terminated. 

4.2. Cascade heat exchanger 

When all the calculations described in the previous chapter are performed, it is time to analyze the CHE 

in more detail. Some of the refrigeration cycle calculation outputs are taken as input values for the 

SEWTLE procedure applied on the CHE. 

4.2.1. Input values 

The vital input values are: 

1. Low temperature cycle refrigerant properties at the CHE inlet 

 pressure p6,CC 

 temperature t6,CC 

 enthalpy i6,CC 

2. High temperature cycle refrigerant properties at the CHE inlet 

 pressure p8,HC 

 temperature t8,HC 

 enthalpy i8,CC 

3. Mass flow rates mHC and mCC 
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Apart from these parameters, more of them are needed to successfully carry out the SEWTLE calculations 

as well as heat transfer correlations. The desired values for both refrigerants/HE sides are: 

 density ρl and ρg at both saturated liquid and saturated vapor lines for given pressure 

 enthalpy il and ig at both saturated liquid and saturated vapor lines for given pressure 

 thermal conductivity λl and λg at both saturated liquid and sat. vapor lines for given pressure 

 dynamic viscosity μl and μg at both saturated liquid and vapor saturated lines for given pressure 

 surface tension σl and σg at both saturated liquid and saturated vapor lines for given pressure 

 PHE channels geometry 

o channel spacing b 

o plate width w 

o plate height h 

o number of channels n 

 number of elementary cells along a fluid path ncells 

4.2.2. Calculation procedure 

The general calculation approach is described in chapter regarding the theory of the SEWTLE procedure. 

The heat exchanger is no longer considered as a whole – a reduction has been made for simplification 

purposes. The HE is therefore represented by only one of its plates with one fluid from each side in these 

calculations. The calculated intensive properties (e.g., temperatures, specific enthalpies) are then the same 

for the simplified case as well as for the whole HE. Extensive properties (e.g., total heat loads, mass flow 

rates), on the other hand, are to be adjusted adequately.  

4.2.2.1. Preliminary calculations 

Before determining the thermodynamic properties evolution along a fluid path, two steps are necessary 

to be made: 

1. Initial wall temperature distribution estimate 

In accordance with the SEWTLE procedure authors’ recommendation, the initial wall temperature 

evolution is chosen to be linear as the initial estimate has only negligible influence on the result [72]. 

Therefore, two points of the line are to be defined: 

 HC inlet: tw,est,1 = t8,HC + 0.1  (4.74) 

 HC outlet:  tw,est,2 = t1,HC + ΔTevap,HC + 0.1 (4.75) 

The linear evolution of the wall temperature goes through these points. 

2. Mass flow rate per channel, heat transfer area per one wall cell 

m1ch = mtotal / n  (4.76) 

A1cell = w h / ncells (4.77) 
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4.2.2.2. Properties evolution along a fluid path 

Generally, the evolution of three thermodynamic properties is of major interest – pressure, temperature 

and enthalpy. In addition to this, the heat transfer coefficient and the heat load are necessary to perform 

the desired calculations. This equals a total of eight variables to be computed for each fluid cell: 

1. Inlet pressure pinlet 

2. Outlet pressure poutlet 

3. Inlet temperature tinlet 

4. Outlet temperature toutlet 

5. Inlet enthalpy iinlet 

6. Outlet enthalpy ioutlet 

7. Heat flow rate Qcell 

8. Heat transfer coefficient α 

In our case of negligible pressure losses, the pressure along a fluid path remains constant. The ith cell 

outlet values are concurrently the ith+1 inlet values. For a random HC cell (e.g., evaporation side of a 

CHE), the calculation sequence can look as follows: 

 pinlet and poutlet are known as pressure is constant 

 iinlet and tinlet are known from the previous cell calculation 

 heat transfer coefficient α is to be determined 

 heat load Qcell can be determined now as: 

Qcell = α Acell (tw − tinlet)               (4.78) 

 outlet enthalpy ioutlet can be determined now as: 

ioutlet = iinlet +
Qcell

m1ch
               (4.79) 

 outlet temperature toutlet can be determined now as a function of ioutlet and poutlet 

4.2.2.3. Wall temperature recalculation 

The previous calculation sequence is carried out for every cell of both hot and cold fluid path. After this, 

it is time to recalculate the wall temperature distribution using the previously stated expression: 

tw =
αhotthot + αcoldtcold

αhot + αcold
               (4.80) 

where thot and tcold are average temperatures between respective cell inlet and outlet. When temperature at 

every wall cell is recalculated, the fluid paths calculations can be initiated once again.  
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4.2.2.4. Heat loads comparison 

At the end of every calculation cycle, it is necessary to compare the heat loads released (condensation 

side) and absorbed (evaporation side). Heat load is calculated from the total mass flow rate on one side 

and the enthalpy differential between inlet and outlet of a channel: 

 heat load released:  QCC = mCC (iCC,CHE,inlet – iCC,CHE,outlet) (4.81) 

 heat load absorbed:  QHC = mHC (IHC,CHE,outlet – iHC,CHE,inlet) (4.82) 

The │QCC – QHC│ value should decrease over the course of wall temperature iterations. Once this 

difference is low enough (depends on desired calculation accuracy), the iteration cycle is terminated – 

the cascade heat exchanger balance has been found. 

 

4.3. Calculations interconnection 

In course of the calculation process the refrigeration cycle is set to its balanced state and the cascade heat 

exchanger is thoroughly analyzed. The one final adjustment need to be carried out – one of the inputs is 

the CHE size (in terms of UA). While the heat transfer area A can be determined quite accurately for 

given heat exchanger, the input value of the overall heat transfer coefficient U is only an initial estimate. 

The searched system balance is a state, when HC refrigerant superheating after evaporation ΔTevap is 

equal in both calculation sub-systems. 

To achieve this, a major calculation was created to interconnect the two calculation sub-systems, adjust 

the input value of cascade heat exchanger UA and ensure the balance of the whole refrigeration system. 

Again, it is an iteration procedure – the calculation cycle keeps repeating until the convergence is reached. 

This major calculation incorporates all previously described sub-calculations. The calculation cycle is 

constructed followingly: 

1. The sub-calculation called Cascade HE Balance is executed. 

2. The SEWTLE procedure for the CHE is carried out. 

3. The HC refrigerant superheating after evaporation ΔTevap,CHE is compared with the ΔTevap,SEWTLE. 

4. If ΔTevap,CHE ≠ ΔTevap,SEWTLE, the UCHE is adjusted in accordance with the bisection method and the 

calculation cycle is performed again. 

5. If ΔTevap,CHE = ΔTevap,SEWTLE, the desired accuracy has been achieved and the calculation loop is 

terminated. 
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5. Cascade heat exchanger calculation 

In this final part of the thesis, an example of the cascade refrigeration system calculation, including the 

thorough analysis of given cascade heat exchanger, is provided. Before the selection of calculation input 

values, it is necessary to introduce several simplifying assumptions adopted for the SEWTLE procedure. 

This was necessary due to the high complexity level of previously described calculation process and 

related equations. 

 

5.1. Simplifying assumptions 

The key SEWTLE-related simplifying assumptions were: 

1. Pressure losses inside the entire refrigeration system are neglected (the only pressure 

differences are caused by compressors and expansion valves). 

2. The potential positional energy term in Equation (3.11) is neglected. 

3. The Equation (3.11) used for calculation of outlet enthalpy works with outlet temperature. This 

value, however, is not known beforehand and should be determined using an iterative process. 

This step was eliminated by discretizing the cascade heat exchanger into large number of cells. 

Thanks to this, the inlet temperature, instead of average temperature across a cell, can be used 

while maintaining acceptable calculation accuracy. The accuracy loss does not apply to 

azeotropic substance phase changes, where the temperature during this process remains 

constant. 

4. The longitudinal conduction inside the heat exchanger plates is neglected. 

5.  Corberán et al. offer the possibility of dividing the cells where the heat transfer mechanism 

switch occurs (e.g., end of vapor cooling, start of condensation) into two parts in order to use 

the correct heat transfer coefficients in respective cell sections. This was omitted with respect to 

substantial increase in difficulty of thermodynamic calculations conditioning. As well as for 

point 3 of this list - the number of cells is high enough to sufficiently reduce the impact of this 

inaccuracy. 
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5.2. Calculation inputs 

The following input values were used for the demonstration purposes of the refrigeration cycle 

calculation capabilities: 

 refrigerants 

o low temperature cycle – R744 

o high temperature cycle – R404A9 

 compressors 

o low temperature cycle – Frascold S10-10TK 

 displacement – Vn = 9.64 m3. h-1 

 isentropic efficiency coefficients – C1 = 0.6857; C2 = C3 = C4 = 0 

 volumetric efficiency coefficients – C1 = 0.8847; C2 = C3 = C4 = 0 

o high temperature cycle – Copeland ZFD18KVE-TFD EVI 

 displacement – Vn = 17.1 m3. h-1 

 isentropic efficiency coefficients – C1 = 0.6315; C2 = -0.0214; C3 = C4 = 0 

 volumetric effic. coefficients – C1 = 1.1059; C2 = -0.0509; C3 = 0.0022; C4 = 0 

 high temperature cycle condenser 

o ambient air temperature – tair,c = 30°C 

o ambient air mass flow – mair,c = 3 kg. s-1 

o ambient air specific heat – cp,air,c = 1,010 J. kg-1. K-1 

o effective heat transfer surface – Ac = 1 m2 

o overall heat transfer coefficient – Uc = 1,500 W. m2. K 

 low temperature cycle evaporator 

o freezer air temperature – tair,e = -20°C 

o freezer air mass flow – mair,e = 3 kg. s-1 

o freezer air specific heat – cp,air,e = 1,010 J. kg-1. K-1 

o effective heat transfer surface – Ae = 1 m2 

o overall heat transfer coefficient – Ue = 1,500 W. m2. K 

 cascade heat exchanger 

o effective heat transfer surface – ACHE = 0.901 m2 

o initial overall heat transfer coefficient estimate – UCHE,est = 1,000 W. m2. K 

 internal heat exchange effectiveness – εIHE = 0.8 

                                                      
9 CoolProp does not contain some of the necessary R452A thermodynamic properties 
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 gas cooler cold side temperature difference – ΔTcooler = 0.7 K 

 refrigeration cycle settings 

o low temperature cycle evaporator superheat – ΔTevap = 5 K 

o high temperature cycle condenser subcooling – ΔTcond = 0.01 K 

o cascade heat exchanger superheat – ΔTevap,CHE = 10 K 

o cascade heat exchanger subcooling – ΔTcond,CHE = 1 K 

For the SEWTLE procedure calculations, following heat transfer correlations were selected based upon 

thorough analysis: 

 R744 condensation – correlation by Han (see Chapter 3.4.2.3.3.) 

 R404A evaporation – correlation by Han (see Chapter 3.4.2.4.1.) 

 single-phase heat transfer – correlation by Thonon (see Chapter 3.4.2.2.1.) 

Number of cells for heat exchanger discretization – 94 

The plate geometry of the heat exchanger used as a cascade HE can be found in Figure 27. A brazed plate 

heat exchanger SWEP B17 has been chosen for the calculation purposes. It is a compact heat exchanger 

particularly suitable for cold chain applications, heat pumps and mobile air-conditioning [111]. The plates 

are made of steel with copper brazing. 

 

Figure 27: Plate geometry of the cascade heat exchanger [111] 
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5.3. Low temperature cycle 

The carbon dioxide properties in every significant point of the refrigeration cycle are summarized in 

Table 6. The cycle operates at evaporating temperature -32.56°C and condensing temperature 17.93°C, 

which makes the pressure ratio 4.169. A fact worth highlighting is the compressor discharge temperature 

exceeding 150°C, which is partly caused by the low isentropic efficiency of the compressor (see Tab. 7).  

Table 6: Low temperature cycle properties 

Designation Point t [°C] p [kPa] i [kJ/kg] 

End of evaporation 1 -32.56 1,308.71 436.56 

Evaporator outlet 2 -27.56 1,308.71 442.02 

Compressor intake (after IHE) 4 7.70 1,308.71 477.44 

Compressor discharge 5 151.19 5,456.65 595.70 

Gas cooler outlet 6 30.70 5,456.65 444.22 

Cascade HE 1st section outlet 7 22.69 5,456.65 426.61 

Start of condensation 8 17.93 5,456.65 411.88 

End of condensation 9 17.93 5,456.65 249.05 

Cascade HE outlet 10 16.93 5,456.65 245.34 

IHE outlet (liquid) 11 4.79 5,456.65 209.92 

Evaporator inlet 12 -32.56 1,308.71 209.92 

 

Table 7: Low temperature cycle compressor 

Power input 7,569 W 

R744 mass flow 0.064 kg/s 

Pressure ratio 4.169 - 

Volumetric efficiency 0.8847 - 

Isentropic efficiency 0.6857 - 

 

The CC evaporator working conditions can be seen in Table 8. The freezer air entering the heat exchanger 

at -20°C is cooled to nearly -25°C, while majority of the heat load is transferred in the evaporating section. 

Table 8: Low temperature cycle evaporator 

Section Superheating Evaporation Unit 

Heat load Q 348.33 14,464.86 W 

Total heat load Q 14,813.18 W 

R744 temperature 
outlet -27.563 -32.563 °C 

inlet -32.563 -32.563 °C 

air temperature 
inlet -20.000 -20.115 °C 

outlet -20.115 -24.889 °C 

LMTD 9.803 9.869 K 

UA 35.533 1,465.700 W/K 

UA_total 1,501.232 W/K 

Difference -1.232 W/K 
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The R744 properties evolution along the cycle is depicted in Figure 28. The curve shape is quite non-

traditional due to the high compressor discharge temperature. Because of this, heat load of nearly 10 kW 

of is to be released into the ambient air via the gas cooler. Due to the internal heat exchange, a refrigerant 

subcooling of nearly 15 K is achieved before throttling. 

 
Figure 28: Low temperature cycle, actual T-i diagram 

 

5.4. High temperature cycle 

The R404A properties in every significant point of the refrigeration cycle are summarized in Table 10. 

The cycle operates at evaporating temperature -1.32°C (saturated vapor line) and condensing 

temperature 42.82°C (saturated vapor line), which makes the pressure ratio 3.375. A temperature glide 

of approximately 0.3 K can be observed during both phase changes. The mass flow of the refrigerant is 

almost twice as high as in the low temperature cycle (see Table 9).  

Table 9: High temperature cycle compressor 

Power input 4,269 W 

R404A mass flow 0.115 kg/s 

Pressure ratio 3.375 - 

Volumetric efficiency 0.8847 - 

Isentropic efficiency 0.6857 - 
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Table 10: High temperature cycle properties 

Designation Point t [°C] p [kPa] i [kJ/kg] 

End of evaporation 1 -1.32 575.51 365.16 

Compressor intake 3 8.68 575.51 374.95 

Compressor discharge 4 66.27 1,942.09 412.14 

Start of condensation 5 42.82 1,942.09 380.83 

End of condensation 6 42.50 1,942.09 264.37 

Condenser outlet 7 42.49 1,942.09 264.35 

Cascade HE inlet 8 -1.63 575.51 264.35 

Cascade HE section break 3/4 8' -1.62 575.51 266.42 

Cascade HE section break 2/3 1' -1.34 575.51 356.97 

 

The R404A properties evolution along the cycle is depicted in Figure 29. The refrigerant discharge 

temperature is not as extreme as in the previous case. A temperature glide can be observed with a closer 

look on the phase change sections of the cycle curve. 

 

Figure 29: High temperature cycle, actual T-i diagram 
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The HC condenser working conditions can be seen in Table 11. The ambient air entering the heat 

exchanger at 30°C is heated to 35.6°C, while majority of the heat load is transferred in the condensing 

section. The heat load transferred during vapor cooling present around 20 per cent of the total. The 

difference between the input value of UA and the calculated value is only 4.1 W/K, i.e., 0.3 %. This 

indicates the successful outcome of the iteration process. 

Table 11: High temperature cycle condenser 

Section Vapor cooling Condensation Subcooling Unit 

Heat load Q 3,593.81 13,366.83 2.03 W 

Total heat load Q 16,962.66 W 

R404A 

temperature 

inlet 66.266 42.823 42.504 °C 

outlet 42.823 42.504 42.494 °C 

air temperature 
outlet 35.598 34.412 30.001 °C 

inlet 34.412 30.001 30.000 °C 

LMTD 17.204 10.322 12.498 K 

UA 208.896 1,295.013 0.162 W/K 

UA_total 1,504.071 W/K 

Difference -4.071 W/K 

 

5.5. Cascade heat exchanger 

The cascade heat exchanger working conditions can be seen in Table 12. The total heat load transferred 

in the cascade heat exchanger is approximately 12,693 W. As in the previous heat exchanger cases, 

majority of the heat is transferred inside the phase-change section (R404A evaporation and R744 

condensation simultaneously). R744 is cooled by 13 K before the condensation starts. R404A on the other 

side of the heat exchanger is superheated by 10 K as stated in the input value. 

Table 12: Cascade heat exchanger 

Section 1st 2nd 3rd 4th Unit 

Heat load R744 Q 1,123.96 940.03 10,392.20 237.21 W 

Total heat load R744 Q 12,693.40 W 

Heat load R404A Q 1,123.96 940.03 10,392.20 237.88 W 

Total heat load R404A Q 12,694.08 W 

R744 temperature 
inlet 30.700 22.687 17.935 17.935 °C 

outlet 22.687 17.935 17.935 16.935 °C 

R404A temperature 
outlet 8.685 -1.315 -1.341 -1.623 °C 

inlet -1.315 -1.341 -1.623 -1.630 °C 

LMTD 22.994 21.552 19.416 19.057 K 

UA 48.880 43.616 535.229 12.447 W/K 

UA_total 640.173 W/K 

Difference -0.410 W/K 
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The detailed view of the CHE processes presents Fig.30. The temperature evolution offers better 

understanding of how much heat transfer area is needed for different heat transfer mechanisms. E.g., it 

takes over one third of the heat transfer surface to cool the R744 to condensing temperature. The R404A 

superheating requires only 25 % of the surface. The discontinuous wall temperature evolution is caused 

by its dependency on the heat transfer coefficient evolution, which is also not continuous (see Fig.31). 

 
Figure 30: Cascade heat exchanger - temperature evolution 

 
Figure 31: Cascade heat exchanger - heat transfer coefficient evolution 
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The heat transfer coefficient evolution shows several trends: 

 phase-change HTC is much larger than the single-phase HTC, 

 single-phase HTC generally increases as the vapor gets closer to the saturated vapor line, 

 phase-change HTC increases with increasing vapor quality. 

Interesting is the comparison of superheated vapor HTC evolution of both refrigerants. In case of R744 

cooling, it follows the previously mentioned trend. On the other hand, the R404A superheating exhibits 

very slight increase in HTC as it gets farther from the saturated vapor line. 

5.6. SEWTLE procedure convergence speed 

As the authors claim in their study [72], the SEWTLE procedure offers an excellent convergence speed. 

This was verified during the cascade heat exchanger calculation. The convergence is observed in terms 

of total heat load difference on both sides of the CHE. As can be seen in Figure 32, the convergence 

(determined in this case by the 2% line) for given conditions was reached in the sixth iteration. The tenth 

iteration exhibited the heat load discrepancy of 0.18 % with ongoing trend of reduction, reaching the zero 

difference after iteration #15. 

 

Figure 32: SEWTLE procedure convergence speed 
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5.6. Heat loads 

Heat load comparison can serve as a practical verification if there was any major mistake made during 

the calculation process. Basically, the energy absorbed by/inserted into the refrigeration cycle must be 

equal to the heat released from the cycle.  

In the low temperature cycle, this balance contains four components:10 

 heat absorbed in the evaporator (+), 

 power input of the compressor (+), 

 heat rejected in the gas cooler (-), 

 heat rejected in the condenser, i.e., cascade heat exchanger (-). 

The internal heat exchange is excluded from this balance calculation as the energy flow stays within the 

system – therefore not having any impact on the global balance.  

In the high temperature cycle, the balance contains three components as there is no gas cooler present: 

 heat absorbed in the evaporator, i.e., cascade heat exchanger (+), 

 power input of the compressor (+), 

 heat rejected in the condenser (-). 

Evaporator Qe 14 813 W 

CC Compressor PCC 7 569 W 

Gas Cooler Qgc 9 694 W 

Cascade HE QCHE 12 693 W 

HC Compressor PHC 4 269 W 

Condenser QC 16 962 W 

The comparison of given values proves the calculation to be correct in terms of heat balances across the 

whole refrigeration system. For instance, the balance excluding the cascade heat exchanger – the heat 

absorbed by the cycle must be equal to the heat released by the cycle: 

          Qe + PCC + PHC = Qgc + QC (5.1) 

26 651 ≈ 26 656 

As can be seen from the balance equation, the difference between the calculated heat load values differs 

by less than 0.02 per cent. 

                                                      
10 + designates absorbed energy, - designates released energy 
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6. Conclusion 

The originally set target of performing a thermodynamic calculation of a cascade refrigeration cycle with 

special emphasis on the cascade heat exchanger was achieved. It proved itself convenient to split the 

whole calculation process into a series of smaller steps, when equilibrium of partial elements was found 

one after another to reach the global equilibrium of the entire refrigeration system.  

The calculation process was carried out using MS Excel, which was chosen for its user-friendliness and 

particularly for its suitability for given circumstances – the need to perform a large series of iteration 

calculations of beforehand unknown extent. This was achieved using the integrated programming 

language Visual Basic, which makes the calculation cycling quite accessible. 

To better understand the processes taking place inside a cascade heat exchanger, a special computational 

procedure called SEWTLE was employed to provide the detailed calculation of thermodynamic 

properties evolution of the fluids inside the brazed plate heat exchanger channels. Thanks to the 

discretization of the wall and fluid paths, it was possible to observe the development of numerous 

characteristics along the fluid paths, e.g., the evolution of a heat transfer coefficient in course of a phase 

change as well as during single-phase processes. 

As a result of various heat transfer correlations analysis, one of them for every heat transfer regime 

(single-phase heat transfer, evaporation and condensation). In order to maintain the cascade heat 

exchanger calculation integrity, the heat transfer correlations for both evaporation and condensation were 

selected from the same group of authors – Han, Lee and Kim. The single-phase correlations were selected 

with a regard to the range of their possible use (Reynolds number). Pressure drop correlations were 

neglected as the verification of calculated data in given case would be complicated. 

The heat transfer coefficient evolution also showed certain imperfections regarding its calculation using 

empirical heat transfer correlations. Its evolution along a fluid path is most likely continuous without 

sudden high drops and local differences. However, the use of correlations for this purpose provides 

unsatisfactory results in this regard – the observed heat transfer coefficient development is not continuous 

at all.  

As a result of this, the cascade heat exchanger wall temperature evolution is also discontinuous, which 

cannot happen in the real world. This issue could be partially overcome if the influence of longitudinal 

conduction inside the wall was considered. This task, however, exceeds the scope of the current thesis 

and is left for future work, as well as potential future improvement of the heat transfer and pressure drop 

correlations. 

The SEWTLE cascade heat exchanger calculation methodology turned out to be suitable for given task, 

providing satisfactory accuracy and excellent calculation convergence speed. On the top of that, its 

potential is not limited only to plate heat exchangers, but can be used for basically every heat exchanger 
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type and configuration if defined properly. Another advantage is the fact that it can work with heat 

transfer as well as pressure drop correlations, providing very thorough and elaborate heat exchanger 

analysis if necessary. 

However, whether the SEWTLE procedure would find a final solution can strongly depend on desired 

accuracy. The iteration process can fall into a never-ending loop under certain unfavorable circumstances 

(inappropriately chosen input values, too narrow accuracy range etc.). To conclude, the SEWTLE 

procedure offers a convenient method of heat exchanger analysis under condition, that the input 

parameters and procedure accuracy settings are reasonable. It proved itself useful for the purpose of this 

thesis, was successfully verified and can be recommended for further work. 
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