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Abstrakt

V této práci navrhujeme algoritmus pro detekci a sledovánı́ objektů, které se v záběru kamery
pohybujı́ vysokou rychlostı́, nicméně mohou se i zpomalit. Objekt nazýváme rychle se pohy-
bujı́cı́m (vůči nějaké kameře), jestli jeho trajektorie po dobu jednoho snı́mku překročı́ jeho
velikost. Takové objekty jsou často špatně viditelné a vypadajı́ jako poloprůhledné pruhy.
Prvnı́, detekčnı́ část navrhovaného algoritmu je schopná nalézt rychle se pohybujı́cı́ objekty
bez předchozı́ch znalostı́. Druhá část algoritmu sloužı́ pro dlouhodobé sledovánı́, a zvládá
nepřetržité sledovánı́ i těch objektů, které zpomalı́ a již nejsou rychle se pohybujı́cı́.

Pro vyhodnocenı́ algoritmu jsme připravili datovou sadu FMOv2. Výsledky ukazujı́, že
navržená metoda překonává dosavadnı́ algoritmy sledovánı́, pokud jsou objekty rychle se pohy-
bujı́cı́. Také jsme předvedli několik aplikacı́ detekce a sledovánı́ rychle se pohybjı́cı́ch objektů,
napřı́klad zvýrazněnı́ sledovaného objektů, měřenı́ rychlosti, časové super rozlišenı́, a jiné.

Klı́čová slova: vizuálnı́ sledovánı́ objektů, rychle se pohybujı́cı́ objekty, časové super ro-
zlišenı́

Abstract

In this thesis we propose an algorithm which allows detection and tracking of objects that ap-
pear in videos as fast moving which can possibly slow down. Object is fast moving (with
respect to a camera) if its projected trajectory is larger than its size in one frame. In a single
frame, such objects are often barely visible and appear as semi-transparent streaks. The detec-
tion part of the algorithm can discover previously unseen fast moving objects. The long-term
tracking part is able to continuously track objects even when they are no longer fast moving.

For the method evaluation we introduce FMOv2 dataset. The results show that the proposed
method outperforms existing trackers when objects are fast moving. We demonstrate several
applications of fast moving object detection and long-term tracking, such as temporal super-
resolution, highlighting, speed estimation and other.

Keywords: visual object tracking, fast moving objects, temporal super-resolution
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1. Introduction

Visual object tracking (VOT) is an important problem in the computer vision field. It has
received an enormous attention of the research community. Methods for object tracking based
on various principles have been proposed and many surveys have been conducted [2, 3, 4]. For
example, around 100 trackers were tested only during the VOT 2016 challenge [5].

Visual object tracking is a broad term and it covers many different problems. In the basic
definition VOT tries to continuously establish point-to-point correspondences of the query ob-
ject in image frames. Alternatively, VOT can be formulated as a segmentation of the object in
image sequences.

Methods based on VOT have many applications, which are important in real-world situa-
tions, such as human computer interaction, augmented reality, management of video content
(indexing & search), film production and post-production, action and activity recognition, as-
sistance, surveillance, defence, robotics, autonomous car driving, medicine measurements and
others.

Recently, in [1] we proposed to study one of the sub-problems of VOT – phenomena that
appear in videos and images as fast moving objects (FMOs). We use the term FMO for objects
whose projected trajectory is larger than its size in a single frame. Consequently, FMO is a
property of a camera and an object. Figure 1.1 shows several examples of how FMOs can look
like.

Detection, tracking and appearance reconstruction of FMOs allow performing tasks with ap-
plications in diverse areas. In addition to many applications which are common for all tracking
methods, we show the ability to synthesise realistic videos with higher frame rates (tempo-
ral super-resolution), artificial object highlighting or deletion, visualisation of rotational axis
and measurement of speed and angular velocity. The extracted properties of FMOs, such as
trajectory, rotation angle and velocity have applications, e.g. in sports analytics. If the object
appearance model is of interest, the shape and deformations during the object motion, that
are otherwise invisible, can be recovered. FMOs are also essential in mechanics – blur gives us
information about fast vibrating objects; in scanning probe microscopy – blur encodes the mea-

Figure 1.1. Examples of fast moving objects that appear as semi-transparent streaks: (left-to-right,
top-to-bottom) table tennis, archery, volleyball, tennis, hailstorm and flying insects.
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1. Introduction

suring tip shape and scanning procedure; in ophthalmology – estimated blur in retinal images
carries information about pupil abnormalities; in forensic science – blur in consecutive video
frames provides hints, such as exposure fraction, for identification of the capturing sensor.

The problem of fast moving objects had not been addressed by the computer vision com-
munity and we have introduced it in [1] for the first time. We can speculate about the reasons
why FMOs have not been studied before, but for most people and researchers the following
is still true – if the image (video) is blurred, it is better to re-capture it. However, images and
videos of objects moving fast with respect to the camera always contain a significant amount of
blur. Blur is commonly considered a nuisance – it is a typical reason for computer vision algo-
rithms to fail – and yet it encodes important information about motions and the sensor. Large
blur complicates object tracking, which is arguably the reason why none of the current track-
ing techniques and benchmarks include objects that are moving so fast to appear as streaks.
This is a surprising omission considering the fact that such objects are common in real-world
situations, in which sports play a prominent role. We have shown that detection and tracking
of such objects in videos is feasible, at least in some restricted scenarios [1]. This makes the
investigation of FMOs realistic, while opening a range of related basic research problems.

1.1. Contributions

This thesis extends the Proof-of-Concept (PoC) algorithm [1] in many important ways. The
PoC algorithm has several assumptions which lead to a low precision rate. Additionally, it
completely fails on objects which are not moving fast enough to display significant blur. This
is unacceptable when the full analysis of the object and its trajectory is required. For example,
quite often FMOs slow down and become slow moving objects (SMOs) or vice versa. Tracking
of objects which alter their state of being FMO and SMO can be considered as long-term FMO
tracking. The main goal of this thesis is to develop such a method which is capable of long-
term FMO tracking. The reason why it is not considered as long-term tracking is because when
the object is temporarily lost, it can be re-localised again only as an FMO. The problem of
long-term FMO tracking is not easy, because FMO detection and tracking fail on slow moving
objects and standard tracking methods fail on FMOs. The thesis has 3 main contributions:
• A new method for continuous tracking of objects that are no longer FMOs is introduced. The

proposed method, names long-term FMO-SMO tracking, combines FMO detection with the
state-of-the-art CSR-DCF tracker [6].
• The FMO dataset has been extended. We also included videos with multiple FMOs or addi-

tionally provided annotations where the second, usually smaller FMO, was ignored. Ground
truth is now available even when FMOs slow down and do not contain enough blur, which
means that they are no longer FMOs. We denote this dataset FMOv2 and it can be considered
as a meeting point of traditional tracking and FMO tracking.
• As part of the proposed long-term tracker, we introduced a new very precise algorithm for

improved FMO detection which is based on the analysis of connected components in tem-
poral difference images. It has average precision near 93% compared to 55 .7% average
precision of PoC algorithm on the FMO dataset [1].

1.2. Thesis structure

Chapter 2 discusses the related work on the topic. The problem formulation is defined in
chapter 3. Robust FMO detection is introduced in chapter 4. Next, chapter 5 explains a method
for long-term FMO-SMO tracking. Evaluation is conducted in chapter 6. Finally, we conclude
the thesis in chapter 7.

2



2. Related work

Besides the Proof-of-Concept algorithm [1], there is no literature on fast moving objects. This
makes the investigation of related work difficult. The literature sometimes refer to fast moving
objects, but only the case with no significant blur is considered [7, 8, 9]. Thus, in this chapter
we will focus on standard ”slow” tracking methods.

Methods for object tracking based on various principles have been proposed and several
surveys have been compiled [2, 3, 4]. A range of methods has been proposed based on diverse
principles, such as correlation [10, 11, 12, 6], feature point tracking [13], mean-shift [14, 15],
and tracking-by-detection [16, 17]. As we show in the evaluation section, none of the methods
is able to handle a large amount of blur.

Visual object tracking has shown excellent performance of discriminative correlation fil-
ters [10, 11, 12, 6]. Recently, Lukežič et al. proposed a new correlation-based tracker – CSR-
DCF [6], which achieves state-of-the-art results on standard tracking datasets. We have chosen
this tracker and integrated it to the proposed long-term FMO-SMO tracking method. Apart
from the fact that CSR-DCF has state-of-the-art performance, it is fast, simple, easy to imple-
ment and has no GPU requirements.

Standard benchmarks, some comprising hundreds of videos, such as ALOV [18], VOT [19,
5] and OTB [20], are available. Yet none of them includes objects that are moving so fast that
they appear as streaks much larger than their size – with significant blur and large frame-to-
frame displacement. We have analysed them and compared to the FMOv2 dataset in terms of
the motion of the object of interest. For example, in the conventional datasets, the object frame-
to-frame displacement is below 10 pixels in 91% of cases, while in the FMOv2 dataset the
displacement is almost uniformly spread between 0 and 150 pixels. Similarly, the intersection
over union (IoU) of bounding boxes between adjacent frames is above 0.5 in 94% of times for
the conventional datasets, whereas the proposed dataset has zero intersection nearly every time.
Figure 2.1 summarises these findings.

0 50 100 150
0

0.2

0.4

0.6

0.8

1
ALOV
OTB
VOT
FMOv2

0 0.5 1
0

0.2

0.4

0.6

0.8
ALOV
OTB
VOT
FMOv2

object speed [pxl] intersection over union

Figure 2.1. The FMOv2 dataset includes motions that are an order of magnitude faster than three
standard datasets - ALOV, VOT, OTB [18, 19, 20]. The figure illustrates normalised histograms of
projected object speeds (left) and intersection over union IoU of bounding boxes (right) between
adjacent frames.
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3. Problem formulation

Definition 1. Fast Moving Object (FMO). Object is fast moving (with respect to a camera) if
its trajectory projected on the image plane is larger than its size in a single frame. FMO can
also rotate along an arbitrary axis with an unknown angular speed.

3.1. Camera exposure

Two parameters are relevant when capturing videos - frame rate and exposure time. Frame rate,
measured in frames-per-second (fps), is the frequency at which frames are captured. Current
video cameras usually have 25-30 fps frame rate, while 250-300 frame rates are also quite
common (e.g. iPhone). Though in some area, such as film producing, video cameras with
much larger rates are used – up to 21,500 fps (e.g. Chronos 1.4).

The second parameter – exposure time, or shutter speed, τ [in seconds] defines the duration
for which the camera sensor is open and captures the incoming light. This camera parameter
determines the amount of blur present in video frames. The exposure time must be shorter than
frame duration or equal to it, thus τ ≤ 1/fps. Frame duration plays the role of the upper bound
for the exposure time.

Frame rate and exposure time are global parameters for the camera and cannot be determined
only from the captured video, unless the real object size or speed is known. The common
solution is the information provided directly by the camera in the video file. If none of them
are available, we can define the exposure fraction ε = τ × fps which is the fraction of the time
when the sensor is open. As we further demonstrate, the proposed method can determine the
exposure fraction solely from the fast moving objects. Then, if the frame rate is known, the
exposure time can be calculated as τ = ε/fps seconds.

3.2. Image formation in the presence of FMO

For simplicity, we assume a single object F moving over a static background B; an extension
to multiple objects is relatively straightforward. To get close to the static background state,
camera motion is assumed to be compensated by video stabilisation, which will be discussed
in section 3.5.

Let a recorded video sequence consist of frames I1(x), . . . , In(x), where x ∈ R2 is a pixel
coordinate. Frame It is then formed as

It(x) =
(

1− [HtM ] (x)
)
Bt(x) + [HtF ](x) , (3.1)

where M is the indicator function of F . The indicator function, or also the characteristic
function, has the value 1 for all x which are members of F and 0 otherwise.

In general, the operator Ht models the blur caused by object motion and rotation, and per-
forms the 3D→2D projection of the object representation F onto the image plane. We assume
that speed of the object is nearly constant during the exposure time of a single frame (usually
less than 1/25 = 0.04 seconds). Then, this operator depends mainly on three parameters,
{Pt, at, φt}, which are the FMO trajectory (path), and the axis and angle of rotation, respec-
tively.

5



3. Problem formulation

The [HtM ](x) function corresponds to the object visibility map (alpha matte, relative dura-
tion of object presence during exposure) and appears in (3.1) to merge the blurred object and
the partially visible background. The [HtF ](x) function represents the blurred appearance of
the object.

The object trajectory Pt can be represented in the image plane as a path (set of pixels) along
which the object moves during the frame exposure. In the case of no rotation or when F is
homogeneous, i.e. the surface is uniform and thus rotation is not perceivable, Ht simplifies to
a convolution in the image plane:

[HtF ](x) =
1

|Pt|
[Pt ∗ F ](x), (3.2)

where |Pt| is the path length, F can then be viewed as a 2D image. Let us define a temporal
difference image as the L1 norm of every pixel differences:

∆t = ‖It −Bt‖1. (3.3)

Substituting It by its formation model (3.1) gives:

∆t =
∥∥∥(1− [HtM ]

)
Bt + [HtF ]−Bt

∥∥∥
1

=
∥∥∥[HtF ]− [HtM ]Bt

∥∥∥
1
. (3.4)

Thus, in the presence of FMO temporal difference image ∆t is non-zero when there is some
contrast between FMO and the background. Also, the response in ∆t is largely determined
by FMO speed – the faster object is, the more background dominates in the model formation
equation (3.1).

3.3. Background modelling

The formation model (3.1) is a complex equation and we need to simplify it in order to solve
the problem (i.e. find FMOs). The first step was to assume homogeneous sphere or no rotation
(equation (3.2)) and consider nearly constant speed during the exposure time of a single frame.
But everything becomes even simpler, if we have the background Bt. In some situations the
background can be considered as a previous frame, i.e. B̂t = It−1. However, the difference
image found using the previous frame will combine FMOs in frames It and It−1.

Based on the FMO property that it elapses distance exceeding its size within one frame, the
background can be also calculated by taking median of previous 3 or more frames:

B̂t = median{It, It−1, It−2, . . . }. (3.5)

This operation is computationally cheap and provides background approximation enough for
the temporal difference image in equation (3.3), giving ∆̂t = |It − B̂t|. In case of a full
exposure camera due to a small overlap of adjacent FMOs, background from the median of
3 frames will lead to small errors at this areas. However, the median of 5 frames will solve
this problem. Figure 3.1 illustrates an example of the found background from 5 frames on a
sequence with 5 table tennis balls. Clearly, the background approximation does not have any
FMOs.

Finding all the intrinsic and extrinsic properties of arbitrary FMOs means estimating both
F and Ht, which is, at this moment, a difficult task. To alleviate this problem, some prior
knowledge of F is necessary. In our case, the prior is in the form of object shape. Since in
most sport videos the FMOs are spheres (balls), we continue our theoretical analysis focusing
on spherical objects. Although, when an object moves very fast and rotates with a high an-
gular speed, which is common for FMOs, it can be approximated by a sphere. As we further
demonstrate, the proposed localisation method can successfully handle objects of significantly
different shapes.
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3.3. Background modelling

Figure 3.1. Example of the background estimation on a sequence with 5 table tennis balls that are
FMOs. Median of 5 consecutive frames (3 of them are in the top row) gives the background Bt (the
bottom image). The players are moving but their motion is not interpreted as FMO (see Algorithm 1).
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3. Problem formulation

3.4. FMO localisation

In classical object tracking, the initial position of the object of interest is given. However, in
the case of FMOs, the initial location can be established automatically. Thus, we propose a
method for efficient and reliable FMO localisation, i.e. detection and tracking. FMO detector
can explore new unseen fast moving objects and it requires only image frames as input. FMO
tracker additionally requires properties and location of the tracked fast moving objects.

If some FMO is localised at least twice in the consecutive frames, the exposure fraction ε
can be established by the ratio of the FMO length to the distance between the start points of the
trajectories of each FMO.

The FMO appearance, and the axis and angle of the object rotation, can be reconstructed
which requires the precise output of the method. The tracker output (trajectory Pt and radius
r) then can be used to initialise the precise estimation of appearance using the full model (3.1).

3.5. Camera stabilisation

The proposed FMO detection and tracking require a static background or a registration of con-
secutive frames. We assume that camera stabilisation is performed before the algorithms are
run. Camera stabilisation is a well-studied topic and many approaches are available. We need
a camera stabilisation method which is as fast as FMO detection and tracking, while providing
pixel-to-pixel accuracy. For this task, feature based methods are known to be robust [21].

The transformation between image frames is determined by a homography matrix which
models the isomorphic function between projective image spaces. We tried to calculate ho-
mography but because camera does not usually move that much, a rough estimate by an affine
matrix provides sufficient approximation with a sub-pixel accuracy.

In order to estimate a transformation between frames, local features are used to extract high-
level representations of the image. We use robust FAST corner features [22], which are known
to be invariant to translation, reflection and rotation. We expect small changes of the view and
these invariants are sufficient. More importantly, FAST features, as their name suggests, are
computationally efficient and their extraction is faster than many other image features.

To this end, we apply video stabilisation by estimating the affine transformation between
frames. FREAK descriptors [23] of FAST features [22] provide tentative matches. Then, the
model with the highest number of inliers is found using LO-RANSAC [24]. For example,
if we denote an affine transformation from the frame t − 1 to t as At, then the background
approximation with dynamic camera will be modified to:

B̂t
d

= median{It,At � It−1,At �At−1 � It−2, . . . }, (3.6)

whereAt�It−1 denotes applying affine transformationAt on image It−1. The FMO detection
and tracking is currently not robust to incorrect stabilisation.
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4. FMO detector

4.1. Initial observations

FMOs are present in temporal difference images. This observation is a consequence
of the equation (3.4), where ∆t = ‖[HtF ] − [HtM ]Bt‖1. It is clear that in most situations
fast moving objects will be present in temporal difference images. However, the equation will
be zero at pixels where the background is similar to FMO. Thus, we assume that FMOs have
enough contrast compared to the background in order to be detected.

FMOs are connected components (CC). Connected components are extracted from
binarised temporal difference images ∆b

t = ∆t > θ. Connected components are defined
as maximal sets of positive pixels which have paths between every pair of pixels in 8-pixel
neighbourhood (or each of the connected components has no connection with other components
in 8-pixel neighbourhood). The assumption that FMOs are CC simplifies the search space and
almost does not affect the performance. FMOs are not connected components only when there
is a low contrast between the background and FMO in some regions, which brakes FMO into
several parts.

FMOs are strokes. Strokes are regions for which the following applies: its boundary pixels
are equidistant from its main axis (or trajectory) and the axis is a curve (for simplicity we
assume a straight line). FMO formation model (3.1) guarantees that it is true when FMO is a
sphere. For different shapes it will hold in case when the trajectory is long enough. Another
example of strokes are text characters [25].

FMOs have different properties than other strokes. Based on preliminary exper-
iments we established that connected components in temporal difference images which are
strokes appear due to 4 different physical phenomena: lateral motion of an object with long
low-curvature edge, fast change of illumination on regions with stripe-like patterns, or on the
edge of shadows. The last phenomenon is FMO, which we are interested in. The gradient fields
of the current and the previous frame give enough discriminative information to distinguish be-
tween FMOs and 3 other types of strokes.

All the observations stated above are the grounds for an algorithm for FMO detection, which
will be explained in the following sections.

4.2. The detection algorithm

The detector is the only generic algorithm for FMO localisation that requires no input, except
for image frames. Thus, it has the ability to discover fast moving objects. Consequently, it
is the most important part in FMO localisation pipeline – if the object cannot be explored, it
cannot be tracked either. Needless to say, the detector should be very precise in exploring fast
moving objects.
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4. FMO detector

One of the drawbacks of the PoC (Proof-of-Concept) algorithm [1] is that it requires at least
three appearances of an FMO in order to find it. In consequence, objects that cross the field
of view in one or two frames, a common situation for very rapid movements, are not detected
and hence not tracked. The proposed algorithm is able to detect FMOs in a single frame. In
order to achieve this, we also provide two improvements for calculating temporal difference
images. First, the background is established by taking median of previous frames. Second, the
threshold for ∆t is adaptively estimated for different images.

Algorithm 1 shows pseudo-code which ignores some technical details and gives a high level
insight into FMO detector. Each step of the algorithm is pictorially visualised in Figure 4.2.
Further detailed descriptions are in the following sections.

Algorithm 1 FMO detector
1: Bt ← median{It, It−1, It−2}
2: Estimate θ∗ . see section 4.3
3: ∆b

t ← ‖It −Bt‖1 > θ∗

4: for CC ∈ connectedComponents(∆b
t) do . for every connected component in ∆b

t

5: if CC is a stroke . see section 4.4
6: & CC is not a shadow or illumination change . see section 4.5.2
7: & CC is not a lateral motion then . see section 4.5.1
8: CC is FMO
9: end if

10: end for

The ordering of operations at lines 5-7 in the Algorithm 1 has a crucial impact on the speed.
Nevertheless, the permutation of these operations would not change the performance. Based
on the preliminary experiments, we established that most of the connected components are
not strokes, while just some of them are shadows or illumination changes or lateral motion of
objects. The reason why shadow or illumination change test is performed before the lateral
motion test is because the latter is computationally more expensive (though still fast).

4.3. Threshold estimation

Image noise can seriously affect quality of temporal difference images ∆t. There are numerous
potential sources of noise, such as photon noise, readout noise, dark noise [26] or noise caused
by imperfect camera stabilisation. Thus, the parameter θ for binarised equation (3.3) must be
adaptive and be able to handle variate levels of image noise. Figure 4.1 shows how different
thresholds can change the temporal difference images and highlights the need for an adaptive
method for the threshold estimation. If the threshold is too small, then connected components
which are close to each other have a large probability to be connected by noise. Whereas, too
large threshold can entirely remove FMOs from the difference images.

Let us define the normalised image histogram of ∆t as P (∆t = θ) = P (θ), which is equal
to a relative likelihood that any randomly chosen value in ∆t is θ. In the case of a discrete
set of values in ∆t, which is in our case values from 0 to 255, the histogram can be calculated
by number of occurrences of the given θ divided by the number of pixels. Also, we define
the cumulative histograms as C(∆t = θ) = C(θ) =

∑
θi≤θ P (θi). Both histograms can be

seen as a probability function or a cumulative probability function, respectively. Figure 4.3
demonstrates how histograms for ∆t can look like. We estimate the threshold θ∗ by exploring
properties of the image histogram for every frame. The final threshold is equal to the maximum
of two following thresholds.

10



4.3. Threshold estimation

Figure 4.1. Selected frames from the FMOv2 dataset (top row) and binarised temporal difference im-
ages for thresholds (from second to bottom row) – 5, 25 and 50.

Figure 4.2. Connected component (CC) classification for binarised temporal difference images. Rows
from top to bottom illustrate steps of the proposed FMO detector: 1. difference images for the thresh-
olds estimated by Algorithm 2 (from left to right – 14, 31, 24, 26), 2. CC that are strokes, 3. strokes
which are not shadows nor illumination changes, 4. strokes which are neither lateral motion – or
FMOs.
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Figure 4.3. Normalised image histograms for temporal difference images. Circles denote the size
threshold (see equation 4.1) which removes the majority of values and leaves a small part (10 %).
Crosses indicate the derivative threshold (see equation 4.2) which sets a threshold, for which the
binarised temporal difference images are stable to small changes. The estimated threshold is then
the largest of 2 thresholds. The left histogram corresponds to the left image (tennis serve side) in
Figure 4.1 with the estimated threshold 14 and the right histogram corresponds to the right image
(hockey) in Figure 4.1 with the threshold 26.

Only small amount of values in ∆t arise due to FMOs. Thus, we define the size threshold θs
which leaves only s× 100% highest values in ∆t. Mathematically,

θs = max
θ
θ subject to C(θ) < 1− s. (4.1)

In evaluation section we set this threshold to 0.1 (10 %) based on the preliminary experiment
that FMOs are almost always among 5 % of highest values in temporal differential images.

Another observation is that ”the best” threshold should not be sensitive to small changes. In
other words, we are looking for the value where the cumulative histogram is close to ”flat” or
equivalently where the histogram is close to zero. The derivative threshold θf is defined as the
smallest value for which the derivative of the cumulative histogram is small. In the discrete
case (values 0-255) it means

θf = min
θ
θ subject to

|C(θf )− C(θf + i)|
C(θf )

< βf . (4.2)

In the evaluation we set i = 2 and βf = 0.15. The estimated threshold θ∗ is then set to
max(θs, θf ), which guarantees that values of ∆t at pixels affected by FMO are in a small part
of values in ∆b

t and small changes of the estimated threshold will not drastically change the
difference image.

Examples of the threshold estimation for 2 images from Figure 4.1 are shown in Figure 4.3.

4.4. Stroke detection

According to the definition, FMOs are elongated in their direction of motion and form stroke-
like regions. It can be seen as painting with a brush, where static FMO is a brush tail. In this
section we use a method for measuring how connected components are close to stroke regions,
which is similar to the text localisation method [25] – characters are also strokes.

4.4.1. Trajectory estimation

Every stroke is fully described by its trajectory and radius. We compute the distance transform
of a binary image, which is enough to estimate them. In a simpler formulation, the distance
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4.4. Stroke detection

Figure 4.4. Trajectory estimation of regions and their strokeness. Pixel darkness denotes the distance
transform (darker pixels mean larger values). Pixels with red/yellow dots indicate local maxima of the
distance transform. Yellow pixels are trajectory pixels and green line is a fitted curve. Even though
red pixels are local maxima, they are not considered trajectory (see Algorithm 2). The strokeness of
regions from left-to-right and from top-to-bottom are 0.6641, 0.266, 0.0578, 0.0097.

transform is an operator which computes the Euclidean distance for each non-zero pixel to the
closest zero pixel. The distance transform computation is a well-studied topic and can be done
in linear time [27].

Every pixel on the trajectory of any stroke is a local maximum of the distance transform.
Moreover, the value of the distance transform at any pixel on the trajectory is equal to the radius
of that stroke. Thus, we compute the stroke radius as median of all its pixels which are local
maxima. Next, pixels are considered to be part of the stroke trajectory if they are local maxima
and their distance transform value is larger than a pre-defined fraction of the radius (βr set to
0.8). The following algorithm 2 for trajectory estimation is based on these above-mentioned
observations.

Algorithm 2 Trajectory estimator
1: D = dist(∆b

t) . calculate the distance transform
2: LM = maxima(D) . find all local maxima
3: for CC ∈ connectedComponents(∆b

t) do . for every connected component in ∆t

4: rcc ← median(D[LM ∩ CC]) . calculate radius
5: Pcc ← {p ∈ LM ∩ CC

∣∣ D(p) > βrrcc} . find trajectory pixels
6: Lcc ← fit(Pcc) . fit a curve (e.g. straight line)
7: end for

The last step in the algorithm 2 estimates accurate trajectory by fitting a curve using LO-
RANSAC (Locally Optimised RANdom SAmple and Consensus) [24]. When there is no con-
tact, the curve can be restricted to a straight line. However, more advanced models (e.g. linear
spline, parabolas) should be used when there is a contact (e.g. a ball bounces off the wall).

4.4.2. Strokeness

Strokeness is ”the stroke area ratio feature which compares the actual area of a region with the
ideal stroke area” [25]. Every connected component CC for which abs( Acc

|CC| − 1) < βs (set to
0.4) is considered a stroke, where Acc is the ideal stroke area and |CC| is the real area of the
connected component. To compute th ideal stroke area we use the weighted sum of distance
transform values on the trajectory as in [25] with an extra term which adds semicircles on the
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4. FMO detector

edges of the stroke:

Acc = 2
∑
p∈Pcc

wpD(p) + πr2cc, wp =
3

Np
. (4.3)

In equation (4.3) Np denotes number of trajectory pixels within the 3× 3 neighbourhood of
pixel p. Weights wp are used to normalise the stroke length when it has an even width (then
there are two support pixel for one unit of stroke length) or when the trajectory has ”alone”
pixels (then some pixels are missing, and we have to compensate for it). Figure 4.4 includes
examples of different regions and their strokeness estimation.

4.5. Taxonomy of CC in difference images

After image stabilisation, the PoC algorithm assumes that elongated connected components
of the temporal difference image are caused by FMOs. This assumption leads to many false
positives, such regions arise due to diverse phenomena: lateral motion of an object with long
low-curvature edge, fast change of illumination on regions with stripe-like patterns, or on the
edge of shadows. The phenomena are characterised by the properties of the gradient fields in
the non-zero areas of the temporal difference image ∆t and the corresponding area in images It
and It−1. We propose an algorithm classifying connected components according to the cause
of the non-zero response.

We learned a binary (FMO/Not-FMO) SVM classifier based on Histogram-of-Gradients
(HoG) feature. The precision of the classifier was quite high (over 90%) considering the fact
that it was learned only on the small amount of data. However, after we established all possi-
ble classes of connected components in ∆t, it was shown that they can be classified based on
simple tests on the gradient field.

4.5.1. Lateral motion of objects

Lateral motion of large objects or long and narrow objects can lead to connected components in
∆b
t which have similar appearance as FMOs. However, if frame It−1 is taken into consideration,

they have totally different origin. Lateral motion is usually caused by small movements and thus
traditional tracking algorithms can be applied. If a tracker succeeds to “track“ a component,
i.e. find it in a previous frame, and the displacement vector is lateral to the fitted curve of the
component (as in Algorithm 2), then it is rejected.

The task of finding a connected component CC, given by a set of pixels, in a previous frame
It−1 can be described as a minimisation task:

h∗ = arg min
h

‖It(CC)− It−1(CC + h)‖. (4.4)

The best displacement h∗ can be found using the KLT tracking algorithm [28, 29], which is a
simple iterative technique based on the image gradients. Other tracking techniques can be also
used, but the main issue is speed of the algorithms. The test of being a ”lateral motion” must be
run a lot times for many connected components in every frame, thus it must be extremely fast.
KLT tracker is simple and has this property – it is fast.

After the tracker has found the best displacement, the error should be normalised:

err =
‖It(CC)− It−1(CC + h∗)‖
‖It(CC)− It−1(CC)‖

. (4.5)

Then, the displacement is considered as correct if it has err< 0.5. Figure 4.5 shows an example
of how the lateral motion can look like and how the KLT tracker solves it.
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4.5. Taxonomy of CC in difference images

It It−1

Figure 4.5. Displacements minimising the pre-defined loss (equation 4.4) are shown by red arrows.
Red points – connected components in the current frame It, blue points – the displaced connected
components in frame It−1 which minimise the predefined loss. For better visualisation, images in the
bottom row contain only a single component (either component in the current frame, or the displaced
one).

4.5.2. Shadows and illumination changes

Another source of connected components in ∆t are shadows and illumination changes. The
gradient orientations and magnitudes do not change a lot in this regions comparing to the same
regions in the previous frame. This is true only for CC which were caused by shadows or
illumination changes. It makes them distinguishable from other CC, more importantly from
FMOs.

Let Gt and Ot be gradient magnitude and orientation of the frame It. Then a connected
component CC is classified as “shadows or illumination changes“ if the following statements
are true:
• mean ‖Gt(CC)−Gt−1(CC)‖ < βg
• mean ‖Ot(CC)−Ot−1(CC)‖ < βo
Some examples of components classified as part of this class are shown in Figure 4.6.
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4. FMO detector

It−1 It

Figure 4.6. Examples of detected shadows and local illumination changes in images. Red bounding
boxes show the detected regions.
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5. Long-term FMO-SMO tracking

In many videos, objects are moving fast in some frames, then gradually or abruptly slow down
or vice versa. The only available algorithm for FMO detection and tracking, the Proof-of-
Concept algorithm [1], is “snake-like” – it fails on static and slow moving objects. In many
applications, where complete analysis of the trajectory is required, this is unacceptable. The
major advantage of continuous tracking of objects that are no longer in the FMO state is that
it allows us to eventually establish the FMO appearance which is not corrupted by blurring.
Figure 5.1 illustrates how integrated FMO-SMO tracking gives a full trajectory comparing
to only detection of fast moving objects. Figure 5.3 shows an example how the speed may
range for objects that were FMOs at least once – from 1 pixel length (static object, unblurred
appearance) up to 105 pixels length (very fast FMO, severely blurred appearance). This section
develops an algorithm which is able to handle the transition of fast to slow motion and vice
versa, and integrates it with standard trackers that can handle the slow motion well.

5.1. Algorithm

We propose Algorithm 3 which combines FMO detection and continuous tracking of objects
which have lost their FMO property – or slow moving objects (SMO). Additionally, this al-
gorithm may include FMO tracking as proposed here [1]. However, if the FMO detector is
accurate enough, this step is redundant. For better understanding how an object can change
its states of being FMO or SMO and how the transition is handled, the reader is referred to
Figure 5.2.

Quite often, videos contain multiple FMOs of the same or different object classes. Two
objects are considered as of the same class if their unblurred full appearances are the same
(e.g. ”white table tennis ball” class, ”yellow squash ball” class, etc). Thus, it is important to
distinguish them and be able to learn the object appearance. We define V as the set of all known
object classes, which are updated at every frame if some objects are localised. A single class
representation will be discussed in section 5.3. All objects found at frame t are denoted by Ot.

After all SMOs are tracked, we remove them from the current frame by replacing with the
background. This prohibits objects to be tracked and detected at the same time.

5.2. SMO tracking

When no information about the object is available a priori, we have to use some relative mea-
surement for object speed. One option is to consider radii per exposure [r/τ ]. From the FMO
definition follows that FMO speed must be more than 2 r/τ . However, the proposed FMO de-
tector can occasionally handle even slower movements, as well as standard trackers can some-
times handle some amount of blur. We observed that there is a performance overlap between
FMO detector and standard trackers at the speed of near 2 r/τ which can be seen as a meeting
point of FMO and SMO. Nevertheless, the deceleration (acceleration) of FMO can be large and
the meeting point can be missed. Thus, an object is considered slow if its speed is less than
3 r/τ – and then the standard tracking is applied.

For each FMO which is considered slow, we initialise the CSR-DCF tracker [6] and use
the output bounding box to create a temporal difference image at the region of interest. The
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5. Long-term FMO-SMO tracking

Figure 5.1. Examples of FMO and SMO tracking. Left images show FMO detections which missed
many slowed down FMOs. Right images show FMO detections together with long-term tracking
which give the full trajectory analysis. Green lines show object trajectories at multiple frames.

FMO

SMOLOST

START

Detector

Detector

Long-term

CSR-DCF

Detector

Fail

Figure 5.2. Long-term FMO-SMO tracking diagram.

SMO tracking is outlined in algorithm 4. Due to relatively small size of the bounding box,
the algorithm is fast and gives either correct answer or a region with zero response in ∆. Two
objects are considered similar if a newly found object corresponds to the class of the tracked
object (discussed in section 5.3).

5.3. Object class assignment

Each FMO is assigned to some object class in a set of V and additionally to some instance in
that class. For example, there can be 2 green balls and 3 red balls in one video – i.e. there are
2 object classes and they have 2 and 3 instances, respectively. An object class in represented
by a set of blurred occurrences of its instances with different radii and lengths (length gives the
amount of blur). However, in It we observe not only the blurred FMO but also some percentage
of background as in equations (3.1) and (3.2). We subtract the background and store only the
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5.3. Object class assignment

Algorithm 3 Long-term FMO-SMO tracking
1: t← 0
2: V ← ∅ . no known object classes
3: while hasNextFrame(video) do
4: It ← nextFrame(video)
5: Ot ← ∅
6: for o ∈ Ot−1 do
7: if slow(o) then
8: Ot ← Ot ∩ SMOtrack(It−1, It, o) . see section 5.2
9: end if

10: end for
11: remove(It, Ot) . remove all already detected objects
12: Ot = Ot ∩ detect(It) . FMO detection as in chapter 4
13: V ← update(V, Ot, Ot−1) . update obkect classes as in section 5.3
14: t← t+ 1
15: end while

Algorithm 4 SMO tracking
1: tracker← init(It−1, boundingBox(o)) . initialise tracker
2: bbx← track(tracker, It) . find next location
3: ∆← |It(bbx)−Bt(bbx)| > θ∗ . create difference image for the region of interest
4: CC∗← max(CC ∈ ∆)
5: if similar(CC∗,o) then
6: return CC∗

7: else
8: return ∅
9: end if
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1 8 12 14 18 51 85 105

Figure 5.3. Object class representation of table tennis ball for 6 pixel radius. The top row show blurred
appearances of the ball with different lengths (bottom row), which set the blurriness. The estimated
percentage of the background was subtracted and only blurred object appearance is stored. The
brightness of three longest blurred appearances was enhanced for better visualisation (producing some
artefacts).

blurred appearancesHtF :

HtF = It − (1− 1

|Pt|
[Pt ∗ F ])B (5.1)

Then, every object class stores a matrix of blurred appearances HtF with row indices in-
dicating radius and column indices indicating length. Rotation of every blurred appearance
is normalised by making its fitted trajectory line parallel to the X axis. Figure 5.3 shows an
example of a single row of such a matrix for an object class of a table tennis ball. Note, that
both the static appearance, with a unit length, and a severely blurred appearances are observed
and assigned to the same class. This makes several interesting applications possible, such as
further, more precise estimations of the trajectory by de-blurring where the object if known.

Next step is to assign some object class to an unknown localised object. The similarity to
some object class is defined as similarity to the closest stored appearance HtF in that object
class, or the blurred appearance which has the closest radius and length. Because some of the
stored appearances can be shifted due to imprecise trajectory and radius estimation, we compute
the normalised 2D cross-correlation [30] between the object and the closest appearance HtF .
Then, the object is considered an inlier if the maximal value of cross-correlation is above some
threshold βi (set to 0.8). If no object class can be assigned to the object, a new class in V is
created. At every update stage, we store all the blurred appearances to the object class.
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6.1. FMOv2 Dataset

FMOv2 dataset1 is an extended version of the FMO dataset [1] with more sequences, improved
ground truth, in particular ground truth for slowed down FMOs and sequences with multiple
objects. Moreover, it contains sequences with more challenging tasks, which do not involve
sports, but without ground truth annotations.

The dataset contains videos of various activities involving fast moving objects, such as table
tennis, tennis, frisbee, volleyball, squash, darts, arrows, softball, hockey. Besides sports activi-
ties, the dataset includes real-world situations which involve FMOs, such as falling fruits from
trees (cherries, olives, apples), sparks from a circular saw, hailstorm rain, fireworks, fast toy
cars (aka hot wheels) or flying insects.

Acquisition of the videos also differ: some are taken from a tripod with mostly static back-
grounds, some have severe camera motions and dynamic backgrounds, some FMOs are nearly
homogeneous, while some have coloured texture. Some of the videos were taken from YouTube

1Acquired together with Aleš Hrabalı́k as part of his Master thesis [31].

Figure 6.1. FMOv2 dataset – one example image per sequence. Comparing to FMO dataset, FMOv2
dataset has 3 more sequences (the bottom row). Red polygons delineate ground truth regions with
fast moving objects. For clearer visualisation five frames do not show annotations because their area
consists only of several pixels. The sequences are sorted from left to right and top to bottom as in
Table 6.2.
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Figure 6.2. FMO detection and tracking. Each blue region represents object trajectory and contour in
previous frames.

and all the links can be found in the Appendix. Most sequences are annotated with ground-truth
locations of the object (even in cases when the object of interest does not strictly satisfy the no-
tion of FMO).

An overview of the FMO dataset is in Figure 6.1, showing all included sequences which
contain the ground-truth annotations. The FMOv2 dataset and ground-truth annotations are
publicly available at http://cmp.felk.cvut.cz/fmo/.

6.2. Implementation

The proposed detector and long-term tracker were implemented in MATLAB. The code can be
found in the attached CD. In this work, the speed of the methods was not the priority, never-
theless it is fast and can be implemented in real-time. Aleš Hrabalı́k in his Master thesis [31]
focuses on real-time implementation of FMO detector in C++ and succeeds in this task.

6.3. Results

The proposed method was evaluated on both FMO and FMOv2 datasets. A true positive (TP)
detection has an intersection over union (IoU) with the ground truth polygon greater than 0.5.
All other detections are marked as false positives (FP). False negatives (FN) are FMOs in the
ground truth with no associated detection. For example, if there is one detection and one
ground-truth FMO and they do not intersect, both false positive count and false negative count
are increased. The performance criteria are precision and recall:

Precision =
TP

TP + FP
100%, Recall =

TP
TP + FN

100%. (6.1)

There are two extreme cases which should be considered – when the denominators are equal
to zero. If there are no detections at all (e.g. TP + FP = 0), the precision is defined as 100%.
If there are no ground-truth FMOs (e.g. TP + FN = 0), the recall is defined as 100%. Another
measure is the harmonic mean of precision and recall – F-score:

F-score =
2

1
Precision + 1

Recall
100% =

2TP
2TP + FN + FP

100%. (6.2)

Quantitative results for individual video sequences are listed in Table 6.1. All results were
achieved for the same set of parameters as discussed in chapters 4 and 5. Both detector and
long-term tracker are very precise – near 93%. It is a big improvement over the PoC algo-
rithm [1], which is about 40% less precise. On the other hand, recall varies widely, ranging
from 0% (no ground-truth FMOs were detected) for darts, volleyball and blue ball to 86% for
the ping pong sequences. The sequences with the best results contain objects with prominent
FMO characteristics, i.e. a large motion of almost spherical objects against a contrasting back-
ground.
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6.4. Limitations and failure cases

PoC alg. [1] Detector Long-term
n Sequence name # Prec. Recall Prec. Recall Prec. Recall
1 volleyball 50 100.0 45.5 100.0 40.0 100.0 30.8
2 volleyball passing 66 21.8 10.4 100.0 0.0 100.0 0.0
3 darts 75 100.0 26.5 100.0 0.0 100.0 0.0
4 darts window 50 25.0 50.0 100.0 0.0 100.0 0.0
5 softball 96 66.7 15.4 84.6 39.3 84.6 39.3
6 archery 119 0.0 0.0 100.0 3.1 100.0 12.5
7 tennis serve side 68 100.0 58.8 91.0 55.6 92.9 72.2
8 tennis serve back 156 28.6 5.9 84.2 41.0 86.7 84.8
9 tennis court 128 0.0 0.0 95.8 41.1 83.9 50.0

10 hockey 350 100.0 16.1 100.0 7.7 100.0 1.6
11 squash 250 0.0 0.0 31.8 20.9 34.3 27.6
12 frisbee 100 100.0 100.0 100.0 75.0 100.0 80.0
13 blue ball 53 100.0 52.4 100.0 0.0 100.0 0.0
14 ping pong tampere 120 100.0 88.7 100.0 67.1 100.0 65.8
15 ping pong side 445 12.1 7.3 99.4 45.8 99.5 48.9
16 ping pong top 350 92.6 87.8 98.7 74.4 98.7 86.1

Average – 59.2 35.5 92.9 31.9 92.5 34.0

Table 6.1. Performance comparison between the proposed method and the Proof-of-Concept (PoC)
algorithm [1]. Precision and recall on the FMO dataset is reported. For long-term FMO-SMO tracker
the augmented ground-truth was used, i.e. with annotations for slowed down FMOs. Precision has
increased by a wide margin with a minor loss in recall.

Next, we compare the results of the proposed detector to those of several standard state-of-
the-art trackers, namely ASMS [15], DSST [11], SRDCF [12], MEEM [16], and STRUCK [17].
The results are presented in Table 6.3 in terms of the percentage of frames with a successful
detection, which is equivalent to recall of the detector. Some of the standard trackers performed
reasonably well on sequences, where the motions are relatively slow (e.g. volleyball, frisbee),
but overall results are poor. The proposed method performs significantly better. This is under-
standable because the compared methods were not designed for scenarios involving FMOs, but
it highlights the need for a specialised FMO detector and tracker.

Videos with detection results are included in the attached CD or can be found online at
http://cmp.felk.cvut.cz/fmo/demo/. Several examples are shown in Figure 6.2,
where the reader can see the detected trajectory and boundary at consequent frames.

6.4. Limitations and failure cases

In this section we discuss limitations of the proposed method and other failure cases. False
negatives, or not localised FMOs, occur in these types of situations:
• The object motion is too small (e.g. archery, volleyball, hockey) and it cannot be initially

detected, because the FMO definition is not satisfied. This happens because the FMOv2
dataset contains ground-truth annotations of objects which do not always satisfy the notion
of FMO. Thus, the dataset is too challenging for the proposed method. We consider this fact
as positive and the one which motivates researchers to work on this problem.
• The object itself is considerably different from a sphere (e.g. darts, archery). This is a lim-

itation of the proposed method because it assumes a spherical object. However, a method
which could detect and track any type of FMOs will be likely based on deconvolution which
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Sequence name # TP TN FP FN Prec. Recall F-score
1 volleyball 50 4 37 0 9 100.0 30.8 47.1
2 volleyball passing 66 0 0 0 66 100.0 0.0 0.0
3 darts 75 0 39 0 36 100.0 0.0 0.0
4 darts window 50 0 45 0 5 100.0 0.0 0.0
5 softball 96 11 68 2 17 84.6 39.3 53.7
6 archery 119 4 87 0 28 100.0 12.5 22.2
7 tennis serve side 68 13 50 1 5 92.9 72.2 81.3
8 tennis serve back 156 26 97 4 33 86.7 44.1 58.4
9 tennis court 128 26 61 5 38 83.9 40.6 54.7

10 hockey 350 1 293 0 61 100.0 1.6 3.2
11 squash 250 36 140 69 98 34.3 26.9 30.1
12 frisbee 100 16 80 0 4 100.0 80.0 88.9
13 blue ball 53 0 32 0 21 100.0 0.0 0.0
14 ping pong tampere 120 46 44 0 30 100.0 60.5 75.4
15 ping pong side 445 219 29 1 217 99.5 50.2 66.8
16 ping pong top 350 385 16 5 67 98.7 85.2 91.4
17 more balls 300 1013 13 61 227 94.3 78.5 85.7
18 tennis court 2 278 72 59 6 147 92.3 32.8 48.5
19 atp serve 655 313 192 111 150 73.8 67.6 70.6

Average – 115 72.7 13.9 68.9 91.6 38.1 46.2

Table 6.2. Performance of the long-term FMO-SMO tracker on FMOv2 dataset which extends FMO
dataset. We report number of True Positives (TP), True Negatives (TN), False Positives (FP), False
Negatives (FN), Precision, Recall and the F-score. Number of frames is shown in the column with #.

is a difficult task so far because of the computational complexity.
• The background is too similar to the object colour (e.g. table tennis net, white edge of the

table), obstacles or other moving objects near FMO (e.g. hand, tennis rocket). It is another
failure case of the proposed method.

False positives sometimes appear when local movements of larger objects, such as stripes on
clothes or dots on rockets, which move in the direction of their longer axis, can be partially
explained by the FMO model, or due to imprecise camera stabilisation.

6.5. Applications

6.5.1. FMO localisation

The direct output of the proposed method is the position of localised fast moving objects, e.g.
all pixels affected by the FMO, trajectory, radius, etc. Besides many obvious applications
important for sports analytics, FMO localisation can be used for real-world situations. We
observed that FMOs appear during hailstorm rains, fireworks or other types of explosions,
sparks (e.g. from a circular saw), or any other falling or shooting objects. Figure 6.4 contains
examples of localised fast moving objects in the above-mentioned situations. Note, that it is
not important to detect all present FMOs. In such situations, usually only FMO presence is of
interest.

FMO localisation can also operate as a detector of explosions (middle and bottom rows in
Figure 6.4). Imagine a camera in front of a dangerously explosive element which can immedi-
ately observe the explosion and turn on the defence system or alarm. Automotive vehicles can
make use of FMO localisation to detect flying objects in front of them (e.g. stones, insects).
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6.5. Applications

Sequence name ASMS DSST MEEM SRDCF STRUCK Detector
volleyball 80 0 50 0 10 40
volleyball passing 12 6 95 88 8 0
darts 3 0 6 0 0 0
darts window 0 0 0 0 0 0
softball 0 0 0 0 0 39
archery 5 5 5 5 0 3
tennis serve side 7 0 0 0 6 56
tennis serve back 5 0 0 0 3 41
tennis court 0 0 3 3 0 41
hockey 0 0 0 0 0 7
squash 0 0 0 0 0 21
frisbee 65 0 6 6 0 75
blue ball 30 0 0 0 25 0
ping pong tampere 0 0 0 0 0 67
ping pong side 1 0 0 0 0 46
ping pong top 0 0 0 0 1 74
Average 17 1 1 1 3 32

Table 6.3. Performance of baseline methods (ASMS[15], DSST[11], MEEM[16], SRDCF[12],
STRUCK[17]) on FMO dataset. We report percentage of presented FMOs where tracking was suc-
cessful (IoU > 0.5), which is equivalent to recall of the detector.

6.5.2. Temporal Super-Resolution

Another possible application of the proposed method is the task of temporal super-resolution,
which increases the video frame-rate by filling out the gap between existing frames and artifi-
cially decreases the exposure period of existing frames. Let define the temporal n-fold super-
resolution as an operation which replaces every frame It by a set of frames {I0t , . . . , In−1t }.

The naive approach for this task is the plain interpolation of adjacent frames, which is inad-
equate for videos containing FMOs. This operation is equivalent to the convex combination of
adjacent frames:

Iit = (1− i

n
)It +

i

n
It+1 (6.3)

This produces natural slow-motion for slow objects, but makes FMOs longer and more trans-
parent, which has a negative visual effect (see Figure 6.5).

A more precise approach requires moving objects to be localised, de-blurred (by deconvolu-
tion [1]), and their motions modelled, which the proposed method accomplishes, so that new
frames can be synthesised at the desired frame-rate. Any frame-rate can be achieved using the
FMO formation model in equation (3.1). All other parts of image frames, which do not contain
FMOs, can be synthesised using the plain interpolation. Figures 6.3, 6.5 show example results
of the temporal super-resolution and compare the proposed method with plain interpolation.

In Figure 6.6 we illustrate the result of FMO de-blurring in the form of temporal super-
resolution. The top image shows a frame captured by a conventional video camera (25fps),
which contains a volleyball that is severely motion blurred. Frames in red boxes show frames
captured by a high-speed video camera (250fps) spanning approximately the same time frame –
the volleyball flies from left to right while rotating clockwise. Frames in blue boxes show
the result of FMO de-blurring, computed solely from the single frame (the top image), at
times corresponding to the high-speed frames above. The restoration is on par with the high-
speed ground-truth; it significantly enhances the video information content merely by post-
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Figure 6.3. Temporal super-resolution using plain interpolation (left images) and the appearance es-
timation model (right images). Videos with temporal super-resolutions can be found online at
http://cmp.felk.cvut.cz/fmo/demo/super-resolution/ or in the attached CD.
Two sequences shown here are frisbee tsr.avi and ping pong top tsr.avi.

processing. For comparison, we also display the calculated rotation axis and the one estimated
from the high-speed video. Both are close to each other; compare the blue cross and red circle
in the Figure 6.6. Note that for a human observer it is impossible to determine the ball rotation
from blurred images while the proposed algorithm with the temporal super-resolution output
provides this insight. Another appearance estimation example is in Figure 6.3, where we use
the simplified model of pure translation motion.

6.5.3. FMO highlighting

Another popular use case is highlighting FMO in sport videos. Due to the extreme blur and
small size, FMOs are often hard to localise, even for humans, despite having the context
provided by perfect semantic scene understanding. Simple highlighting, like recolouring or
scaling, enhances the viewer’s experience. The bottom row in Figure 6.5 demonstrates FMO
highlighting by rescaling, recolouring or increasing the exposure fraction.

6.5.4. FMO removal

Next logical application is FMO removal. It may be useful especially for clearing videos from
unwanted FMOs, such as hailstorm or other flying objects (the top row in Figure 6.4). If all
the parameters of an FMO would be perfectly estimated, and its speed is faster than 2 radii per
exposure (i.e. the background is partially visible), it would be possible to remove the blurred
appearance of the FMO, which can be calculated by deconvolution. But in general the estimated
properties of an FMO are not perfect, and it cannot be entirely removed. Then, another way to
remove all FMOs from a video frame is replacing it with the background. The bottom row in
Figure 6.5 also illustrates FMO removal. Video with illustration of FMO removal can be found
either online or in the attached CD as ping pong top remove.avi.
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6.5. Applications

Figure 6.4. FMO localisation by the proposed method on non-sports videos. All localised FMOs in
the current frame are marked by red colour. Videos with FMO localisation can be found online at
http://cmp.felk.cvut.cz/fmo/demo/localisation/ or in the attached CD. Images
contain from left to right and from top to bottom: 1. hailstorm rain, 2. falling apples and leafs, 3.
sparks from a circular saw, 4. sparks from a circular saw, 5-6. fireworks. The displayed frames
comprise up to 50 localised fast moving objects. The bottom row with fireworks does not contain
many detections because the FMO formation model is not satisfied for fireworks – they additionally
emit light and change their shape.
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Figure 6.5. Top and middle rows: comparison of temporal super-resolution by 8x using plain interpo-
lation (top row) and using interpolation with FMOs (middle row). Bottom row: example of different
application, from left to right – original FMO, removed FMO, replaced by the FMO formation model
(i.e. expected perfect FMO), FMO with full exposure time (exposure fraction equals 1), increased
radius, decreased radius, changed colour, changed colour and increased radius.

6.5.5. Speed estimation

Object speed is already estimated in radii per exposure during the detection step. If the camera
frame rate is known in advance (which is commonly a case), it is easy to convert speed to
radii per second. Then, such a simple information as the real radius of FMO will make a
speed conversion to real world units (e.g. km/h, mph) possible. Speed estimation has many
applications for sports analysis. For instance, many professional tennis players are interested
in their serve speed. FMO detection and tracking can replace radar guns, which are used to
measure the serve speed nowadays.

6.5.6. Exposure time and fraction estimation

Blur in consecutive video frames provides important information about the sensor, such as
exposure fraction or shutter type. This gives many hints for sensor identification. The exposure
fraction can be easily calculated if the same FMO has been localised in consecutive frames.

6.5.7. Other applications

The proposed method can also find its applications in different areas, e.g. in mechanics – blur
gives us information about fast vibrating objects; in scanning probe microscopy – blur encodes
the measuring tip shape and scanning procedure; in ophthalmology - estimated blur in retinal
images caries information about pupil abnormalities.

28



6.5. Applications

Figure 6.6. Reconstruction of a volleyball blurred by motion and rotation. Top image: input video
frame. Frames in red boxes: actual frames from a high-speed camera (250fps). Frames in blue boxes:
frames at corresponding times reconstructed from a single frame of a regular camera (25fps), i.e. 10x
temporal super-resolution. The first frame from a high-speed camera shows the rotation axis position
estimated from the blurred frame (blue cross) and from the highspeed video (red circle). The video
can be found online or in the attached CD as volleyball tsr 1frame.avi. Courtesy of Jan Kotera and
Filip Šroubek.
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7. Conclusions

We covered the problem of continuous tracking of objects which can be fast moving (FMO).
The FMO detector has been proposed which can discover previously unseen object but only as
FMOs. It is robust and generic method, i.e. not requiring prior knowledge of appearance. The
FMO detector is part of the proposed long-term FMO-SMO tracker, which combines it with
the state-of-the-art tracker CSR-DCF [6]. It was shown that in many cases object that were fast
moving can abruptly slow down or vice versa. Experimentally we observed that the proposed
integrated algorithm can successfully handle this transition.

FMOv2 dataset consisting of 19 sports videos with ground-truth annotations is introduced,
which extends the FMO dataset [1]. In addition to sports activities with annotations, the dataset
includes real-world situations which involve FMOs, such as falling fruits from trees (cherries,
olives, apples), sparks from a circular saw, hailstorm rain, fireworks, hot wheels toy cars or
flying insects.

Tracking FMOs is considerably different from standard object tracking targeted by state-of-
the-art algorithms and thus requires a specialised approach. The proposed method outperforms
baseline methods by a wide margin on FMO and FMOv2 datasets. One of the main advantages
is that the proposed long-term tracker is very precise in discovering and tracking objects that
alter their state of being fast moving and slow moving. Among the discusses applications, the
most important are applications in sports analytics, such as realistic increase of video frame-
rate (temporal super-resolution), artificial object highlighting, visualisation of rotational axis
and measurement of speed and angular velocity.
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A. Video sources

Sequence name Origin / Recorded by

volleyball Filip Šroubek team
volleyball passing Filip Šroubek team
darts Filip Šroubek team
darts window Filip Šroubek team
softball Jana Nosková
archery https://youtu.be/eCtb_ylVDvU
tennis serve side Filip Šroubek team
tennis serve back Filip Šroubek team
tennis court https://youtu.be/uy1ULXjkM-E
hockey https://youtu.be/lsxYCuu-DUY
squash https://youtu.be/OcYC4bjElZs
frisbee Filip Šroubek team
blue ball Denys Rozumnyi
ping pong tampere Denys Rozumnyi
ping pong side Filip Šroubek team
ping pong top Filip Šroubek team
tennis court 2 https://youtu.be/uy1ULXjkM-E

hailstorm https://youtu.be/l748t-r7VmQ
falling cherries https://youtu.be/ykGuOIMGbLI
falling apples https://youtu.be/kKCHEFxNkmM
falling olives https://youtu.be/HxHOkQ1VilM
falling walnuts https://youtu.be/uFcDzjHxM5E
hot wheels toy cars https://youtu.be/YfWU_uIZBtc
sparks https://youtu.be/jTlzcDJqcWU
ping pong 5 balls https://youtu.be/Y1EOHFhmHYs

Table A.1. The table with origins of video sequences. The bottom part of the table contains videos
without ground-truth annotations.
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B. CD content

/
thesis.......................LATEX source code for the thesis, including thesis.pdf
dataset.......................................................FMOv2 dataset

seq
with gt...Sports sequences, for which ground truth annotations are available
no gt.........Various real-world sequences without ground truth annotations

qt...............................................The ground truth annotations
src.................................MATLAB source code used for the evaluation

go.m................................The main file for testing, usage go(<url>)
..............Other source files, dependency on CSR-DCF (contact Tomáš Vojı́ř)

demo
localisation...............................Examples of FMO localisation
super-resolution...................Examples of temporal super-resolution
removal.........................................Examples of FMO removal
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C. Used parameters

Parameter Value
βs 0.4
βf 0.15
βg 0.025
βo 0.2
βi 0.8
βr 0.8
i 2
s 10 %

Table C.1. Values of parameters used for the evaluation.

37


	Introduction
	Contributions
	Thesis structure

	Related work
	Problem formulation
	Camera exposure
	Image formation in the presence of FMO
	Background modelling
	FMO localisation
	Camera stabilisation

	FMO detector
	Initial observations
	The detection algorithm
	Threshold estimation
	Stroke detection
	Trajectory estimation
	Strokeness

	Taxonomy of CC in difference images
	Lateral motion of objects
	Shadows and illumination changes


	Long-term FMO-SMO tracking
	Algorithm
	SMO tracking
	Object class assignment

	Evaluation
	FMOv2 Dataset
	Implementation
	Results
	Limitations and failure cases
	Applications
	FMO localisation
	Temporal Super-Resolution
	FMO highlighting
	FMO removal
	Speed estimation
	Exposure time and fraction estimation
	Other applications


	Conclusions
	Bibliography
	Video sources
	CD content
	Used parameters

