CzECH TECHNICAL UNIVERSITY IN PRAGUE /
FACULTY OF INFORMATION TECHNOLOGY

ASSIGNMENT OF BACHELOR'’S THESIS

Title: Code Completion for Pharo System
Student: Luké&$ Koméarek

Supervisor: Ing. Robert Pergl, Ph.D.

Study Programme: Informatics

Study Branch: Software Engineering

Department: Department of Software Engineering
Validity: Until the end of summer semester 2017/18

Instructions

- Acquaint yourself with the current state of code completion in the Pharo environment.

- Perform a review of the current state-of-the-art of the topic.

- Formulate a proposal of a better code completer for Pharo focused on flexibility, openness and suitable
ratio of effectiveness/accuracy.

- Implement a solution prototype and test it.

- Document your solution.

References

Will be provided by the supervisor.

Ing. Michal Valenta, Ph.D. prof. Ing. Pavel Tvrdik, CSc.
Head of Department Dean

Prague November 7, 2016

CZzECH TECHNICAL UNIVERSITY IN PRAGUE

FacuLTy OF INFORMATION TECHNOLOGY

DEPARTMENT OF SOFTWARE ENGINEERING

Bachelor’s thesis

Code Completion for Pharo System

Lukas Komarek

Supervisor: Ing. Robert Pergl, Ph.D.

May 15, 2017

f

Acknowledgements

Many thanks to everyone who has supported me while creating this thesis.
Many thanks especially to Robert Pergl, who was always there ready to help
with any problem and to support me while writing this thesis. I also appreciate
Peter Uhnék for his time he spent consulting me and trying to help me figure
out some of the problems I faced. I would also like to thank everyone in the
Pharo community who has shared their knowledge and experience about code
completion in my survey.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on May 15, 2017 .

Czech Technical University in Prague

Faculty of Information Technology

(© 2017 Lukéas Komarek. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Komaérek, Lukas. Code Completion for Pharo System. Bachelor’s thesis.
Czech Technical University in Prague, Faculty of Information Technology,
2017.

Abstrakt

Automatické doplnovani kédu je funkce, v ramci které se program snazi pied-
povédét, co uzivatel chce napsat, a poskytuje tomuto uzivateli schopnost
nechat program doplnit ¢asti kédu za néj. Automatické dopliovani kédu je
jednou z téch funkci ve Pharu, které potiebuji zasadnim zpusobem vylepsit.
Soucasna implementace automatického dopliovani kédu je velice naivni a z
tohoto duvodu neni moc napomocna uzivateli.

V této praci bych chtél zanalyzovat jak automatické dopliovani kédu
funguje obecné a jak vypadd a funguje v jinych integrovanych vyvojovych
prostiedi. Dalsim krokem bude zjistit, jak Pharo pracuje s automatickym
doplnovanim kédu a pokusit se tuto funkci néjak vylepsit, coz by mohlo vést
ke tvoreni kompromistu mezi rychlosti a pfesnosti ndvrhu, které funkce bude
nabizet na libovolny vstup.

Resent, ke kterému jsem se dopracoval je napsat nové automatické dopliiovan{
kédu ve Pharu. Bohuzel jsem nemél dostatek ¢asu k implementaci vice nez
velice ofezaného zdkladu ¢i kostry toho, jak si pfedstavuji, ze by mélo auto-
matické dopliovani kédu ve Pharu fungovat. Vynasnazil jsem se napsat tuto
praci takovym zpusobem, aby kazdy s alespon zdkladnimi dovednostmi v pro-
gramovani mohl pokracovat v tomto projektu i bez hlubsich znalosti o tom
jak funguje Pharo.

Klicova slova Dopliovani kédu, Pharo, Smalltalk

X

Abstract

Code completion is a feature in which a program tries to predict what a
user wants to type and gives this user the ability to let the program complete
some parts of that code for him. Code completion is one of the features in
Pharo that need improving very badly. The current implementation of code
completion is very naive and therefore is not very helpful to the user.

In this thesis I am to analyze how code completion works in general and
how it looks like and works in other integrated development environments
(IDE). The next step is to get an idea about how Pharo deals with code
completion and try to figure out a way to make it better, which could lead
to compromising between speed and precision of proposals that the feature is
going to offer on any input.

The solution I found was to rewrite code completion in Pharo from scratch.
Unfortunately, I didn’t have enough time to implement more than a very
trimmed scaffolding of how I believe code completion in Pharo should work.
I tried to write this thesis in a detailed way, so that after reading basically
anyone with at least minor coding skills can continue this project even without
deep knowledge of how Pharo works.

Keywords Code completion, Pharo, Smalltalk

Contents

Introduction

Goal and Methodology|

[2

About Pharo and Code Completion|

2.2 About Syntax|. L oo
2.3 What is Code Completion|
2.4 FEvaluating Code Completion|
[2.5 State of the Art of Code Completion|

Analysis and Designl

[3.1 Current Implementation of Code Completion|
[3.2 Survey for the Pharo Community|
3.3 Problems With the Current Implementation|.

Conclusion

IBibliography|

A Pl Vi [Machine M 1

IB _Contents of enclosed CDI

xi

15
15
17
25

31
31
35
35

37

39

41

43

Introduction

Code completion is a feature in which a program tries to predict what a user
wants to type and gives this user the ability to let the program complete some
parts of what he wants to type. When I was presented the option to write
about code completion for Pharo system, I was at first focusing on the little
window that offers you names of classes or methods that you may want to
write when you start to type. But text expansion for example could also be
recognized as a form of code completion since you only need to write some
keyword and tell the program you are using to expand it into some larger piece
of text. These text expanding keywords are also often referred to as snippets.
In this thesis I will take a look at code completion algorithms, which are
algorithms that decide which predictions and in what order to offer to the
user, but this won’t take much of my time because as I will explain then they
didn’t really serve any purpose or hold much value for my thesis.

Now what is Pharo? At the official Pharo web site, you’ll read that “Pharo
s a pure object-oriented programming language and a powerful environment,
focused on simplicity and immediate feedback (think IDE and OS rolled into
one). ’E] At the web site pharoByExample.org you’ll read “Pharo is a modern
open-source development environment for the classic Smalltalk-80 program-
ming language. Despite being the first purely object-oriented language and
environment, Smalltalk is in many ways still far ahead of its successors in
promoting a vision of an environment where everything is an object, and any-
thing can changed at run-time. ’ﬂ I believe these explanations are sufficient
to at least understand the most basic concept of Pharo. When I first heard
everything in Pharo is an object I didn’t know what to expect. Or better yet
I always expected something, but it has surprised me again and again in its
simplicity. More to what Pharo is and a little bit of how it works follows in

'[5] PHARO COMMUNITY. Homepage. Pharo.org [online]. [cit. 2016-11-25]. Accessi-
ble at: http://pharo.org

2[4 PHARO COMMUNITY. About this book. PharoByEzample.org [online]. [cit. 2016-
11-25]. Accessible at: http://pharobyexample.org

INTRODUCTION

the second chapter.

Code completion is one of those features in Pharo that need to be improved
very badly, because the current implementation is known to be naive and is
therefore not very helpful to the user. In fact it is even worse than naive. The
current implementation does not even work correctly with the way Smalltalk
syntax works.

In this thesis I am going to analyze how code completion works in gen-
eral and how it is implemented in other integrated development environments
(IDEs). I will also need to get an idea about how Pharo deals with code
completion and try to figure out a way to make it better or to find out that it
would be best to write it all from scratch. This is not going to lead to com-
promising between speed and precision of proposals that the feature is going
to offer to the user on any given input because this need for compromising
usually occurs because when we try to make an algorithm more precise, we
give it more information and more information causes the algorithm to take
more time to process it. But as I have already mentioned code completion in
Pharo is a broken system and finding improvement in this case would mean
proposing a solution that would work, hence no comparison is necessary.

CHAPTER 1

Goal and Methodology

The main goal of this thesis is to find out how to improve code completion
in Pharo. That includes acquainting myself with how the current code com-
pletion is implemented, what the state of the art of code completion is and
formulating a proposal of what and how to implement the new code comple-
tion system by either improving the current one or building one from scratch.
Another part of the goal will be to try to get as much implemented as possible.
Documenting the solution should be a huge part of it so that everyone could
understand how to continue the project. Testing should be an important part
of the project. Because Pharo is the only environment this work is going to
take place in, there is no need for to use any other technologies or languages.
Any inspiration from other environments is welcome though.

Unit tests should be made through out the whole system. Integration and
component interface tests should be done whereever it would be possible. The
reason is that there is no efficient way to implement system tests. If there
will be all of the lower level tests though it won’t matter much. The system
tests will eventually be done by users as they will want to try the new code
completion system. The Pharo community is so active that the feedback will
only take a few days.

After creating the functional system, UML diagrams should be created
and stored somewhere so that it will be possible for anyone to get acquainted
with the system. However, it is not possible to finish the project in the given
time, which means this is merely a suggestion on what should be done should
someone continue this project.

CHAPTER 2

About Pharo and Code
Completion

To start writing about improving code completion in Pharo, I should first
clarify a few things. I should explain what Pharo actually is and how does
code completion fit into all of it. This chapter focuses on getting the reader to
understand the basic concept of all the parts of this thesis so that hopefully
even a reader (writing reader, I actually mean programmer) with no previous
knowledge about Pharo or Smalltalk will be able to undestand what I will be
writing about in the following chapters.

2.1 What is Pharo

First I would like to present the definition of Pharo offered by pharobyex-
ample.org. “Pharo is a modern open-source development environment for
the classic Smalltalk-80 programming language. Despite being the first purely
object-oriented language and environment, Smalltalk is in many ways still far
ahead of its successors in promoting a vision of an environment where every-
thing is an object, and anything can change at run—tz'me.’ﬁ

I highly recommend to read about the history of Smalltalk as many pro-
gramming languages and concepts were influenced by Smalltalk. I would like
to mention at least that if someone talks about Smalltalk the understand-
ing usually is that she/he means Smalltalk-80, which is the first version of
Smalltalk made publicly available. The first versions were named after the
year they were created in, so I guess I don’t have to say more than that the
first version was called Smalltalk-71, the second version Smalltalk-72 etc. As
time went by, a few implementations of Smalltalk programming language and
environment emerged and created small but loyal and dedicated communities

3[4 PHARO fCOMMUNITY. About this book. PharoByEzample.org [online]. [cit.
2016-11-25]. Accessible at: http://pharobyexample.org

5

2. ABouT PHARO AND CODE COMPLETION

around themselves. Sqeak is one of the Smalltalk environment implementa-
tions created by the Smalltalk-80 creators Dan Ingalls and Alan Kay. Pharo
was created in 2008 as a fork of the Sqeak implementation and got its first
version (Pharo 1.0) released in 2010. Smalltalk-80, Sqeak and Pharo are all
open source implementations.

I would characterize Pharo as an untyped programming language and a
powerfull IDE combined with a just-in-time interpreting virtual machine where
everything is an object. Let’s take this sentence apart to understand it better.

You could probably guess that Pharo is developed in Pharo. But the part
where it gets really exciting is, that every pice of code in Pharo is open for you
to view and even to edit. In other words the IDE is running some of the code
there is and at the same time you can be rewriting it. The way this happens
is that your code gets interpreted into byte code either when you execute it
manualy or save it in the image as a method for example. If you for instance
decide to change some method, that the core of Pharo uses often - like a few
times a second, you can. If you cause an error in this method though, you
pretty much just cause the whole virtual machine to freeze because it will
call an error apon an error apon an error etc. and you will have to restart it
without the ability to save all the code you wrote from last time you saved the
image. Fortunately the image saves temporary changes as well, which you can
later in case of such a breakdown reload. So just thinking about it gets you to
a realization that the IDE is a big debugger where you write code, run it and
are able to debug everything in the process. You can easily change anything
you want about your image.

Now to the part where I said everything is an object. The basic idea is
that everything you see and do is an object. You have the most basic one
called ProtoObject. Of this object all the other objects should be a subclass
of. The basic object that everyone derives from is called Object which is also
a subclass of ProtoObject. All the GUI elements, all the windows, every class
there is, is an object in this little world of Pharo. Because the language is
untyped (not strongly typed) you cannot tell what you are going to hold in
a variable unless you initialize it yourself. You cannot be certain of what
other programmers might send to your class in parameters. Everything will
interpret even if no method with a given name exists and you are calling it.
Everything might seem to work until you execute such piece of code and you
get an error.

There are tuns of great packages (or libraries if you will), which help you to
code way quicker. There is also an enormous amount of features you can use
like the Spotter or the Finder which again can make your life so much easier.
While the Spotter lets you look up any class or method, the Finder lets you
do a lot of stuff like write an example of what you would like to have as input
and what you would like to have as output. The Finder then looks through
some methods for a solution to this problem you presented and proposes what
method you could use.

6

2.2. About Syntax

The best part of Pharo as a programming language is yet to be said. The
whole syntax can be explained on the back side of a postcard. It is really
amazing how little you have to know about a programming language like
Smalltalk to get started right away. The more of a shock it was to me to find
out how the current implementation of code completion was designed. But I

will get back to that later.

2.2 About Syntax

The following table copied from [I] explains what there is to know about

syntax of this language.

Syntax What it represents
startPoint a variable name
Transcript a global variable name
self pseudo-variable
1 decimal integer
2r101 binary integer
1.5 floating point number
2.4e7 exponential notation
$a the character ‘a’
'Hello’ the string “Hello”
#Hello the symbol #Hello
#(123) a literal array
{1.2.1+2} a dynamic array
"a comment" a comment
[xy] declaration of variables x and y
X =1 assign 1 to x
[x+vy] a block that evaluates to x+y
<primitive: 1> virtual machine primitive or annotation
3 factorial unary message
3+4 binary messages
2 raisedTo: 6 modulo: 10 keyword message
1 true return the value true

Transcript show: 'hello’. Transcript cr
Transcript show: 'hello’; cr

expression separator (.)
message cascade (;)

Figure 2.1: Syntax in a table.

What would become the biggest struggle of my work is the method section
(the fifth section). More specifically unary and keyword messages. The way
the syntax works is that you can write:

Dictionary new at: keys first put: values last.

2. ABouT PHARO AND CODE COMPLETION

After writing “keys”, I can either write a unary or a binary message. I cannot
start writing a keyword message that I would like to sent to the “keys” receiver
without adding parenthesis first. If I decide to write a part of a keyword
message it has to be one continuing after the “at:” keyword message (in our
case “at:put:” in deed is a keyword message) otherwise you won’t get the code
you wanted. It will still be syntactically correct, which is actually sometimes
the worst part of writing code in Pharo, but it simply won’t work as desired.

2.3 What is Code Completion

Code completion in a more general point of view is a feature in a text editor
that let’s the user complete certain pieces of text quicker. In IDEs code
completion is usually implemented because letting the user complete some
piece of code for him/her saves keystrokes the user would have to do, which
saves time. It also saves time because it lets you write without unnecessary
typos and as you don’t have to think too hard about if you have written the
name of some method correctly or not. This causes you to be able to think
more ahead about what you are trying to express instead of what you are
typing. While I understand that there are a few programmers, who are typing
so fast, that they basically have little use for code completion in this sence, I
also know that there is a majority of programmers, who don’t type this fast
and therefore are used to a feedback from code completion in their IDEs.

Programmers also use code completion to see what methods of a class they
could use. This helps especially if the language is strongly typed. In the case
of Pharo it tends to get more complicated because as I already mentioned it
is a very complex problem to see which method parameters are used in which
way. To track all of that could lead to a very time and space consuming and
therefore inefficient solution. So what would be sufficient for a programmer
to see when he looks for methods to use without knowing the name of this
method or even if there is such a method? He would for example have to be
able to see the implementation of such a method. But there might be more
methods with the same name in different classes. In such a case, should the
user be able to look at every one of these implementations or would one be
enough?

In Pharo you can set up code completion to show you details of any sugges-
tion. If there are multiple methods that could be applied in the programmers
context, the suggestion menu will offer to let you browse all those methods. If
there is only one it will let you see the implementation of that method. Have
a look at pictures [2.2] and [2.3] to better understand how this works.

This far most of what I have said was more or less optimistic. What can
code completion offer, how it can save time and so on. However, if the imple-
mentation is naive, code completion can get more and more time consuming
and even in some cases loose its purpose. If this is the case in Pharo I will

8

2.3. What is Code Completion

initializeUntypedSelectorsFor: tring iskeyWord:
n e

e] B vedor Y method o
NECSyml reset (Im, entors)

resetClip
resetCurr

isKeyWord: a

S del

resetSelectors

T ifFalse:

Figure 2.3: Method implementation in suggestions menu.

discuss later. Now I would like to concentrate on the general ideas behind it.
Imagine you have implemented a code completion algorithm focusing on char-
acters (meaning class and method names) instead of classes and methods. If
you do that, you are very likely to ignore the syntax and you cannot prioritize
between the suggestions good enough. You are very likely to prioritize alpha-
betically, because that is always the easiest way to order a list of strings. But
is this a good thing? If you are looking for some method, you want to use, you
sometimes have to stop coding for a while and switch to thinking about where
to look for this method in the suggestions list. Though this little switch of
thoughts might seem meaningless and quick it might break the programmers
train of thoughts whitch can be very sensitive to this kind of thougt switching.
I believe this is the problem one should face and always keep in mind when

9

2. ABouT PHARO AND CODE COMPLETION

designing or in my case redesigning code completion.

Other than simply completing a word you started or even completing open
parenthesis with closed ones, there sometimes are code snippets that let you
write some keyword and replace it with some larger prepared piece of code.
In Pharo for example this could be that

itf
would be expandable to
ifTrue: [] ifFalse: []

with the cursor set between the first pair of parenthesis. These kinds of code
completions should be customizable for the programmer. Every programmer
writes code in a little different way and that means that every programmer
would prefer other code snippets or even other formatting of these inserted
pieces of code. So in my opinion it is essential to a good code completion to
grant the programmer this kind of freedom.

In this chapter I have focused on getting together everything I’ve read and
learnd about code completion and a little about how it looks like in Pharo. I
have especially been inspired by the articles [2], [7] and [8]. T highly recommend
to read these if you’re interested in how to implement a good code completion
into an IDE.

2.4 Evaluating Code Completion

In order to get an idea about the improvement of code completion, one would
have to set a benchmark which would be able to compare them. But how
would one calculate a value of an algorithm?

The answer I found is very practical because it seems quite easy to set
up. Romain Robbes presented it in his doctoral disertation [7] as he wrote
about change and software and dedicated a chapter to the topic of evaluating
recommendations for code completion.

He presented that a good way to evaluate a code completion (in this case
I mean code completion algorithm) is to write a program that would simulate
a programmer writing code. Then it would look at the suggestions presented
and calculate on which index in the suggestions list the desired suggestion is.
With the following equation he shows how he would calculate the precision of
one entry.

The higher the rank of this evaluation would be, the better. “For each pre-
fix length we compute a grade G;, where i is the prefix length, in the following
way:

10 result(i,5)
Gi = D (2.1)
attempts(i)

10

2.5. State of the Art of Code Completion

Where resul ts(i, j) represents the number of correct matches at index j for
prefix length i, and a t temp ts(i) the number of time the benchmark was run
for prefiz length i. Hence the grade improves when the indices of the correct
match improves. A hypothetical algorithm having an accuracy of 100% for a
given prefix length would have a grade of 1 for that prefix length. Based on
this grade we compute the total score of the completion algorithm, using the
following formula which gives greater weight to shorter prefizes:

7 Git
S ===t %100 (2.2)
k=1%

The numerator is the sum of the actual grades for prefives 2 to 8, with
weights, while the denominator in the formula corresponds to a perfect score
(1) for each prefixz. Thus a hypothetical algorithm always placing the correct
match in the first position, for any prefix length, would get a score of 1. The
score is then multiplied by 100 to ease reading. ’ﬁ

I believe this is a great way to evaluate code completion especially for
its simplicity. The problem though is that it takes some time to acquire a
sufficiently large code base to compute this rank of code completion algorithm
on. In the case of this thesis I have decided to evoid building such a code base
because it would shorten the time I would like to spend focusing on other
chapters of this thesis. I believe though that it doesn’t really matter that
much because if my task is to figure out how to improve code completion, I
only have to figure out a way to change the current implementation to make
it work accordingly to the way the syntax of this language works. More to
this later.

2.5 State of the Art of Code Completion

I already quoted the doctoral dissertation [7], talking about evaluating code
completion algorithms. This paper offers much more than just that. Ro-
main Robbes also tests several code completion algorithms using large code
bases from one huge project consisting of almost 200,000 method calls which
means this got him almost 200,000 tests for each code completion algorithm
and multiple smaller code bases he got from other students and used for this
purpose.

The best part of this is that he also tests against the code completion
algorithms written in Sqeak, not only in Eclipse for Java. This is really great
for me because as I already mentioned Pharo emerged as a fork of Sqeak and is
also a Smalltalk-80 language and environment implementation. He mentions

“[7] ROBBES, Romain. Of Change and Software. Lugano: 2008. Doctoral dissertation.
University of Lugano, Faculty of Informatics.

11

2. ABouT PHARO AND CODE COMPLETION

that in Sqeak there are about 3000 classes, 57,000 methods and 33,000 unique
method names.

The problem with Smalltalk is that it is an untyped language, so you
can almost never be sure what classes are going to be the possible receivers
of some method the code completion is just trying to guess from the prefix
you're typing. Thanks to this dissertation I don’t have to guess too hard which
approach would be better than some other.

Of all the code completion algorithms presented, one struck me as unusu-
ally well suited for this purpose. It is the algorithm he called “Per-Session
Vocabulary”. The intuition behind this idea he defines as follows: “Program-
mers have an evolving vocabulary representing their working set. However it
changes quickly when they change tasks. In that case they reuse and modify
an older vocabulary. It is possible to find that vocabulary when considering the
class which is currently changed. ’ﬁ

He describes the algorithm the following way: “This algorithm fully uses
the change information we provide. In this algorithm, a vocabulary (i.e., a set
of dated entries) is maintained for each development session in the history.
A session is a sequence of dated changes separated by at most an hour. If a
new change occurs with a delay superior to an hour, a new session is started.
In addition to a vocabulary, each session contains a list of classes which were
changed (or had methods changed) during it.

When looking for a completion, the class of the current method is looked
up. The vocabulary most relevant to that class is the sum of the vocabularies of
all the sessions in which the class was modified. These sessions are prioritized
over the other.”Bl

I believe the one hour session could be arguable. I mean, shouldn’t it de-
pend on how quickly one is coding (perhaps saying one session should be every
n keystrokes or every m modified methods), or maybe simply left completely
to ones preferences? I believe it shouldn’t just be some hidden value. Other-
wise according to the results this algorithm was one of the best valued ones.
If the author would implement even more known code completion algorithms,
there would be some pretty complex ones at the top of the list (sorted by how
they scored using this evaluation). Let’s have a look at them.

The next algorithm I am going to mention will be an algorithm based on
the emph “k nearest neighbors algorithm” [3]. This algorithm is presented in
the article “Learning from Ezxamples to Improve Code Completion Systems”
[2]. The authors have implemented three code completion algorithms and
compared them to each other. The first one is a “frequency based code com-
pletion”, the second one is an “association rule based code completion” and
the third one is the “best matching neighbors code completion”. They have
implemented this in Eclipse for java and tested how the algorithms would per-

°[7] ROBBES, Romain. Of Change and Software. Lugano: 2008. Doctoral dissertation.
University of Lugano, Faculty of Informatics.

12

2.5. State of the Art of Code Completion

form compared to each other. They have found that the “association rule base
code completion” better than the “frequency based code completion” and the
“best matching neighbors code completion” did best. So it got implemented
in Eclipse and was used until a better alternative should occure.

Another improvement came a few years later when Sebastian Proksch,
Johannes Lerch and Mira Mezini found this code completion insufficient for
several reasons and come up with yet another code completion system that
they tested in comparison to the “best matching neighbors code completion”.
The results they have gotten were very plausible. They have contributed to
advancing the state-of-the-art in the following way:

“(1) We extended the static analysis of the best-matching neighbor ap-
proach (BMN) and extracted more context information. We show that this
indeed improves prediction quality by up to 3% at the cost of significantly in-
creased model sizes by factor 2 and more.

(2) We introduced a new approach for intelligent code completion called
pattern-based bayesian network (PBN), a new technique to infer intelligent
code completions that enables to reduce model sizes via clustering. We intro-
duced a clustering approach for PBN that enables to trade-off model size for
prediction quality.

(3) We extended the state-of-the-art methodology for evaluating code com-
pletion systems. We perform comprehensive experiments to investigate the
correlation between prediction quality and different model sizes. We show that
clustering can decrease the model size by as much as 90% with only minor
decrease of prediction quality. We also perform a comprehensive analysis of
the effect of input data size on prediction quality, speed and model size. Our
experiments show that prediction quality increases with increased input data
and that both the model size and prediction speed scales better with the input
data size for PBN compared to BMN. ’ﬁ

In my opinion these are very interesting ideas on how to implement a
code copmletion system. What I want to demonstrate though is not which
algorithm is at the moment the best to use for untyped programming languages
or which should be tried to be applied to an untyped programming language.
I don’t even want to explain how they work. All this was to demonstrate one
thing: an implementation of code completion in Pharo that would be easily
customizable is required. It is essential to have one part that would store all
the necessary configuration about code completion, one part with the context
about the code it is working with and so on and of course one part that covers
the algorithm and the way entries for the code completion are looked for and
prioritized. This way it becomes way easier to replace some functionality.

5[6] PROKSCH Sebastian, Johannes LERCH and Mira MEZINI. Intelligent Code Com-
pletion with Bayesian Networks [article]. 2015. ACM Trans. Softw. Eng. Methodol. 25, 1,
Article 3.

13

CHAPTER 3

Analysis and Design

In this chapter I will first present the current implementation of code com-
pletion in Pharo. I am going to focus on the objective side of it and try to
keep my toughts to myself. The reason for this is, that the other two sections
I should describe what members of the Pharo community think about it and
what point of view I am taking on this. In the second section I will show how
members of the Pharo community feel about the code completion and I will
do that by showing results of a survey I've made. I'll show questions I have
asked and explain why I asked them. I will also try to explain why it could
be that respondents answered the way they did. At this time I really want
to stress out that the reader should keep an open mind about the answers.
There are certainly more ways to interpret the answers than just one. In the
third section I will finally explain what I think about the code completion,
more specifically what problems I found while I was analyzing it.

3.1 Current Implementation of Code Completion

In this section I am going to explain how code completion is implemented in
Pharo. I hope that after reading this, the reader will be able to orient much
easier in the Pharo NECompletion package containing all the code completion
classes. Though there are two code completion systems implemented, NECom-
pletion and NOCompletion, the NOCompletion reuses the same model I am
going to explain, only modifies a few classes. For example in NOCompletion
there is the NOCController that is a subclass of NECController but it only
overrides a few methods.

3.1.1 NECSymbol

The NECSymbol class, that has only static methods implemented, serves as
an entry getter. With this methods you can get a list of strings that are
names of either classes or methods in your Pharo image. The NECSymbol

15

3. ANALYSIS AND DESIGN

class communicates with the Symbol class that has these getter methods im-
plemented that communicate either with the Smalltalklmage class that stores
all the global variables and a class is in fact a global variable in the image,
or gets all the methods iterating through all the CompiledMethod instances
that are in the image and saves the names into a collection. There are a lot
of interesting methods in the CompiledMethod that never get used this way.
There are methods that get you the source code of the CompiledMethod that
you can analyze and try to get an idea about what it returns. Even better
there is a method that checks whether it returns “self” or not and many more
methods could get implemented here as well that could later be used by the
new or improved code completion system.

3.1.2 NECPreferences

This class stores all the configuration of code completion in the image. The
information about which controller is at the center of code completion is stored
in a dictionary in the Smalltalk tools.

3.1.3 NECController

The NECController gets called when code completion starts. It is essential to
how code completion works. It controls which methods get executed in what
order. There are three essential methods:

The first is the “codeCompletionAround:textMorph:keyStroke:” method.
This static method gets called when code completion starts. That means if
“#codeCompletion” as a Symbol (which is kind of like a string in Pharo) is
found in a dictionary in Smalltalk tools.

The second one is the “handleKeystrokeBefore:editor:” method. This in-
stance method serves as a handler for keystrokes that are ment for the sug-
gestions menu window such as pressing the down-arrow key or the escape key
and so on.

The third one is the “handleKeystrokeAfter:editor:” method. This in-
stance method does the following. If the cursor is at a completion position, it
sends the NECContext instance method a message ‘narrowWith:” with the
parameter being the word at the cursor. After the context gets updated this
way the controller calls the suggestions menu to update it self as well. At
last it checks if there are any suggestions and if not, the controller closes the
menu.

3.1.4 NECContext

This is a class of which an instance is representing the context when running
code completion. The instance takes care of parsing the edited code, comput-
ing the receiver, creating the model of code completion suggestions and so on.

16

3.2. Survey for the Pharo Community

Even though when writing Smalltalk code and writing a method name there
can be in some cases two receivers depending on whether the programmer is
continuing a keyword method or writing the name of a unary method, the
NECContext instance cannot compute more than one receiver and is in gen-
eral focussed on that it does not care whether or not there are any previous
keyword messages already. The thing is writing code using this sort of code
completion generates red colored code which signals in case of methods that
those methods don’t exist. This happens a lot and having to contain code in
parenthesis before continuing to write another keyword would not only help
the code completion algorithm to find the correct receiver but would as well
help the programmer to keep track of his/her code.

3.1.5 NECModel

The NECModel instance serves as a container for entries. The NECModel
is an abstract class and its subclasses are only a few. There is an empty
model which serves as a model that gets created when there is nothing to
complete, there is a typed model that gets created when the context found
out what the receiver is and finally an untyped model that gets created in all
the unmentioned cases. The NECModel is the most important one for the
context and for the suggestions menu of Pharo code completion.

3.1.6 NECEntry

At last I am going to present NECEntry. It is an abstract class and the
instance of any of its subclasses serves as a suggestion in the suggestions menu.
There are several subclasses which are pretty reasonably named. There is a
“NECClassVarEntry”, a “NECGlobalEntry”, a “NECInstVarEntry” and four
other ones which are named analogously to those I have just named.

3.2 Survey for the Pharo Community

On the current state of code completion in Pharo I made a survey for mem-
bers of the Pharo community. I didn’t quite expect how quickly everyone re-
sponded. As I was writing about Pharo in the “What is Pharo” section of the
second chapter, I mentioned loyal and dedicated communities that emerged
around the Smalltalk language and environment implementations. This is ex-
actly the way you can see very clearly how dedicated Smalltalk communities
are. I’'m personally not that engaged into Pharo, so for me it is not possible to
keep pace with the speed at which new issues emerge and at which old issues
develop. But this certainly is something to admire.

In total I got 33 responds.

17

3. ANALYSIS AND DESIGN

3.2.1 “Do you think the current code completion in Pharo
needs to be improved?”

The first question I focussed on what would probably determine whether Pharo
developers even feel the need to improve code completion in Pharo.
List of options and responses:

Yes, it is necessary 20 | 60.6%
It would be nice 12 | 36.4%
I don’t care 1| 3.0%
No, I don’t 0| 0.0%

I believe that it is clear how developers feel about code completion in
Pharo. I believe that a huge part in this lies with the problem that it doesn’t
work accordingly to the syntax of the language. It is sometimes difficult to
evaluate something if you’re not sure if there is a problem or if you’re just
not using it right. This as you can see just from looking at the responses is
certainly not the case.

3.2.2 “Did it happen to you, that a method name or class
name that you were looking for was missing among the
suggested?”

The second question is focussed on how the current code completion selects
entries, especially methods. Of course this is too precise of a question and I
wanted to eliminate the probability of getting a “I don’t understand the ques-
tion” answer, so I decided to formulate it so that every developer could answer
even without any knowledge about the implementation of code completion in
Pharo or terminology of the syntax.

List of options and responses:

Yes, it happens often 6 | 18.2%
Yes, it did 19 | 57.6%
No, this never happend to me 5| 15.2%
Other 31 9.0%

The three “Other” responses were:

e “I do not know”

e “don’t remember; maybe”

e “there is old (deleted already) methods in completion”

The majority of Pharo developers responded that they feel like there is
a problem with the entries selection in code completion in Pharo. What it
meant to me at this point was that there would be a model that should be
changed, that there is probably something else wrong with it than maybe some
bad condition that ruins the finale selection of entries.

18

3.2. Survey for the Pharo Community

3.2.3 “Do you think it would be helpful to be able to
customize the list of suggestions while it is suggesting?”

This and the following questions were meant to give me an idea about how
Pharo developers feel about some “how should code completion work” details.
With this question I was trying to find out if it would be helpful to for example
select a receiver class of the method I am looking for. Looking at this question
I realize now that I could have formulated it better.

List of options and responses:

Yes, it certainly would 71 21.2%
It would be nice 13 | 39.4%
I don’t care 4| 12.1%
It might be confusing 41 12.1%
I don’t want that 2| 6.1%
Other 31 9.1%

The three “Other” responses were:
e “Only if it helps me to go faster”

e “not clear for me what it means to customize the list of suggestions while
it is suggesting”

e “I used to be able to examine the source code of the offered options
easily to understand which were appropriate. I can’t do that now. This
is a major loss.”

I believe that some of the Pharo developers were afraid to say that they
would like that because one doesn’t know if it will be helpfull unless one knows
exactly how it would work or better yet unless one tries to use it. Still more
than half of the participants said that they would like this option.

3.2.4 “Would you welcome the ability to use code expansion
with often repeated code? (like “itf” — “ifTrue: []
ifFalse: []”)”

The fourth and fifth question were focussed on trying to get an idea from the
users about using code expansion also known as code snippets.
List of options and responses:

Yes, I certainly would 9| 27.3%
It would be nice 10 | 30.3%
I don’t care 71 21.2%
No, I would not 51 15.2%
Other 2| 6.0%

The three “Other” responses were:

e “Discoverability will determine how useful this is. Pharo is still a night-
mare of hidden features for new users.”

19

3. ANALYSIS AND DESIGN

e “This would be nice. In addition, be able to tab to next fields.”

We can see now that more than half of Pharo developers would like to have
the possibility to work with code snippets. The main feature that would have
to be implemented as well would have to be customizability of these snippets.

There is also a great idea in the second “Other” answer. The programmer
poposes that the programmer should have the possibility to simply tab through
all the places where he should edit some code inside of this expanded code.
This should in my opinion also be implemented when selecting a keyword in
code completion. Parameters are separated by parts of the keyword method
name and it always takes more time getting over those pieces of text than
simply pressing tab or some key used for this purpose. This feature is fully
working in the Visual Studio 2015 versions and in the newer ones when using
a code snippet in C# code.

3.2.5 “Could you write some examples of these code
expanding snippets you would consider useful if they
were in Pharo?”

This question I wrote to demonstrate the importance of making such a feature
as customizable as it could get. It is also important to let the user choose the
formatting of his expanded code as the automated formatter is in most cases
suboptimal and renders the code unreadable.

List of responses:

o “itf
— ifTrue: ifFalse:
it
— it
ifTrue:
but the list should be built with the community.”

e “A very cool heuristic we use in our dev environment is the following:
suppose I type ’oc’ then lookup classes having an O and C in caps, for
example OrderedCollection and expand using this information.”

e “adding elements to collections; calling super initialize; printing to tran-
script; ”

e “Should be configurable (like Templates in Eclipse)”
e “do:, at:put:,”

e “Can’t think of any right now - but important would be an interface
for people to define their own. I may want *my* ”itf” to be formatted
over two lines, and someone else another way. Provide a central location

20

3.2. Survey for the Pharo Community

to upload definitions for the community to browse (and maybe vote) to
determine what is popular for defaults inclusion in Pharo. It doesn’t
need a web interface. All interface could be in Pharo.”

e “do:, at:put:, ”

e ‘“iter — .. do: [:each | <CURSOR> |
ts — Transcript show: ’<CURSOR>’
fori — 1 to: <CURSOR> do: [:i..]”

e “d: — do: [: each | . |
wt — [.] whileTrue: []
wf — [.] whileFalse: []
super — super xxx. (where xxx is the current method with the given
arguments)
in the first 3, ’.” shows where the cursor should be left”

o “Write a default "self fail” when saving an empty test method in a test
class, logging shortcuts, breakpoint shortcuts, ...”

The first response I got to this question was a suggestion that the list
could be a static one and it should be built with the Pharo community. But
with the second response you could already see that the ways you could use
code completion are too many. One could even argue they are changing as
you code depending on what you’re coding at the moment, but let’s focus
on the customizability for the moment. While the third proposition is still a
list of propositions what contributers in the Pharo community would come up
with the fourth one presents a solution that I had in mind while writing this
question. As I have never used Eclipse, I was very glad to be able to see how
this could look like and be admired by the users of this feature.

In the sixth answer came the proposition to vote for defaults inclusions in
Pharo. These would be some most often used code expansion snippets and
as such I would call them the most usefull ones. In the other responses you
can notice the need for being able to place the cursor, so you can assume this
wouldn’t be as simple as placing code, but could get very complex very fast.
The only way to avoid this complexity boom would be to perhaps take into
concideration one problem at a time. In simpler terms: don’t try to solve all
problems at once.

3.2.6 “Do you think method names implemented in
doesNotUnderstand: method should be recognized by
the new code completion?”

To understand how I thought of the sixth question is actually not that diffi-
cult. As I was studying how Pharo works and maybe more importantly how it
is used by members of the Pharo community, I noticed that a method called

21

3. ANALYSIS AND DESIGN

“doesNotUnderstand”, which is a method that is called when you send a mes-
sage to a receiver that is not implemented, gets sometimes used in a completely
different way. Imagine you wrote a class and you want to store many variables
in this instance. Or even better you want to automatically generate variables
and their getters and setters as well and use them in the way you are used to if
you would really implement those methods. And there it is this method that
get’s called every time you send a message to this class. A simple solution to
your problem would be to have a dictionary in your instance and to look for
this variable in this dictionary inside of this “doesNotUnderstand” method. I
mean it works, right?.. The thing is that if you decide this should be a legiti-
mate solution for this kind of problems you make code completion for this kind
of methods very very difficult. Even reading code of these classes becomes a
nightmare and believe me that for a newcomer it is already hard enough to
read code of a complex project even without this unnecessary behaviour. So
at this point I just reminded myself that I am doing this primarily to help
the Pharo community and therefore I decided to at least figure out how many
of the Pharo community members know about this and how many of them
would say an ideal code completion should investigate these methods.
List of options and responses:

Yes, they certainly should 31 9.1%
It would be nice 13 | 39.4%
I don’t care 9| 27.3%
No, they should not 41 12.1%
Other 41 12.1%

The three “Other” responses were:

e “We do not care they represent 0.001 of the cases it is much more im-
portant to have a solid completion first”

e “Do you mean recognising symbols that look like method names e.g.
#ifTrue:ifFalse: 7 If so, YES!”

e “sounds really hard to do well, but would be nice”
e “I don’t understand the question”

The answers were just about as I expected them to be. 13 people said it
would be nice to have the code completion analyze these methods as well, but
I have got the impression that most people don’t really care about it or even if
they use it, they believe this is not the way to write clean code. Don’t get me
wrong. I am the last person to preach about clean code, but even I see this is
not ideal to have getters implemented in the “doesNotUnderstand” method.

I also believe that they realise that analyzing these methods for code copm-
letion is not something that could be done quickly. The way this would have
to work then would be to analyze the code already saved to the image first
and then change these data accordingly with every other change made to the

22

3.2. Survey for the Pharo Community

image. Often these getters though are implemented using dictionaries which
you usually have the chance to inspect at runtime but while writing code.
One of the answers mentions using code completion in the way that it would
recognize symbols and save them. This would be one way to do that but I
believe that this would as well be a suboptimal solution.

3.2.7

“If you have any advice, recommendations or anything
you would like to share, please do so here.”

The last question was aiming at getting any last advice that I could use trying
to figure out a way to do this right.
List of responses:

“focus on the main cases and make it strong.”
“Good luck and thank you for wanting to improve Pharo.”

“Another idea is to be able to complete keywords.

Example:

If I wrote ¢ aDictionary at: 'key’

then I write an ‘i‘, I would like to see ’at:ifPrensent’, ’at:ifAbsent:’,
‘at:ifAbsentPut:’, ’at:ifPresent:ifAbsent:’

And if T press enter it would complete the #at: message instead of
writing the whole method.”

“Make it faster. Like 10x or more. Especially on large images. Also,
make the Finder faster when looking in source code. There used to be a
reverse index implementation by Camillo Bruni a few years back. This
will also improve the user experience a lot.”

“Certainly there’s a lot of work to do in the heuristic of what to show
first in the code completion suggestions.”

“I’'m more concerned about usability of the code completion, i.e., does
the overlay disappear fast enough; can I read enough of long similar
selectors (width of overlay); could the cursor jump to the first argument
position after insertion; I don’t want to have to press escape every time
I want to navigate the code with the keyboard (not hitting escape will
make the code completion capture the key strokes).”

“Templates like in Eclipse with cursor and argument positioning would
be nice https://www.youtube.com/watch?v=zqm4CB1BX6Y”

“Think about change management: don’t change how things work until
you have considered how this might affect existing users. Ensure that
changes and new features are DISCOVERABLE, and that you create a
rich set of help pages in the image. Explain there, or in a clearly linked

23

3. ANALYSIS AND DESIGN

page, the philosophy behind your code, how it works, and how a user
could easily add their own extensions.

This is an important area of the UX for Pharo, so good luck with your
work, and do continue to consult with the community to ensure that
your hard work finds a large and pleased audience!”

e “Method name completion should very precise inside the debugger, in-
spector or playground where the exact type of the receiver is known.
If T have an instance of Foo in the debugger the system should offer me
the methods in Foo (and methods from its superclasses).”

o “First it should be nice that the code completion is triggered in each
ST code editor (playground, debugger, nautilus,...), because sometimes,
there is even no suggestion...”

e “In order to improve accuracy, low cost type inference for dynamic-type
language needs to be studied”

e “Mostly works fine, but misses some cases, and the shortcuts would be
convenient. One thing that doesn’t happen at all is where you have ‘oog
foo: bar bl‘ should look for completions for ‘bar‘ that start with ‘bl* and
also completions for ‘oog‘ that start with ‘foo:bl*”

e “About the does not understand, I understand you may want to auto-
complete not understood messages to make DSLs. However, this would
introduce a lot of noise I think for non-DSL methods, besides the com-
plexity of recognizing valid messages in DNUs. For DSLs what I think
would make sense is to have a declarative way to declare the syntax,
and be able to plug-in in the auto-completion mechanism to change the
suggestions depending on the context.”

The suggestions are various, so let’s go through the not already mentioned
ideas.

The suggestion to make it faster was mentioned. The thing is that making
it faster should come after thinking of a heurestic for the code completion al-
gorithm. Focusing on making it faster now could result in a huge waste of time
as I'll have to work on changing code completion probably from the ground.
As there are so many issues with the current code completion implementation,
this is impossible for me to deal with right now. Never the less this should
not at all be forgotten - the aspect of time efficiency.

Then there is the aspect of usability of code completion as one of the
respondents mentions in the other response. I think this is an important issue
to pursue, but these are things that should be changing accordingly to the
way we use code completion in the editors. Every user expects something of
the menu and of the completion process so someone in the Pharo community
should monitor these needs and think of a way this should change in time. 1

24

3.3. Problems With the Current Implementation

believe that even if I would make the window larger or “improve” it in another
way only a few programmers would really be satisfied.

It is indeed very important to think about change management and about
the end users. Making the features easily discoverable and configurable is also
very important. Even if you’d make the greatest feature and no one would
know about it, no one could use it which would mean it would have once again
been a tremendous waste of time.

The following answer has a great point. The completion should change
according to the context and even to the editor you’re writing in. In the
debugger, you already have all the information about types you need to make
the method completion as precise as it gets.

Not working code completion in some of the editors should be reported to
the pharo developer mailing list and again there should be someone responsible
for this area in my opinion. Even if this someone would only take notes of
these troubles with code completion and leave the improvements to someone
else. That would make corrections to this area much easier and the study and
analysis of this field much less complex and time consuming.

For the unexpected complexity of studying code completion in Pharo fur-
ther study of the automatic deduction of data type (type inference) is required
that I will not have the time to follow up on in this thesis. At this point I
realized that this thesis cannot represent the ultimate fix of code completion
in Pharo but will have to be merely a guide for Pharo developers, who’ll want
to improve it in the future.

3.3 Problems With the Current Implementation

I believe I have actually already mentioned all the problems I see with the cur-
rent implementation of code completion that I could think of. But it is always
a great idea to conclude what has been said and thought of before proceding
to the next step. I am also going to introduce some great features that are
missing, that should be implemented in the new improved code completion
system.

3.3.1 Not Supporting the Syntax

The most serious problem of all is to me that the current implementation does
not support the syntax of the language. When writing

Dictionary new at: #key if

you should get two sorts of suggestions. There should be suggestions that
pop up in the current code completion bound to the #key symbol but these
suggestions should be only unary messages. Keyword messages pop up as well
but these are suggestions bound again to the receiver #key and not to the in-
stance of Dictionary. The correct way, the way this should work, would be that

25

3. ANALYSIS AND DESIGN

the code completion would offer you keyword suggestions like “at:ifAbsent:”,
“at:ifAbsentPut:”, “at:ifPresent:” and “at:ifPresent:ifAbsent:”. Though the
code completion system offers you “at:ifAbsent:” it only does so because it
is implemented in “SequenceableCollection” which is a superclass of the class
“Symbol”. So not only the desired suggestion is missing but even if it was in
the suggestion menu it would complete the whole keyword interrupting the
workflow of the programmer.

3.3.2 Bad Design

After reading the section about current implementation you are probably
thinking that the previous problem could be easily fixed. That might not
be true. Maybe it is my lack of experience with Pharo, maybe it is my lack
of experience as a programmer, but I found the whole design of how it is
implemented very confusing.

One thing is that there is no way to clearly see which instance of which
class holds what attributes. That the controller holds an instance of the model,
of the suggestions menu, of the editor and of the context made sence to me at
first. But the more I was thinking about it and going through all the methods
exploring which method of which instance is getting called in which order it
quickly became a very complex problem. For example if the context holds
the instance of the model, why does the controller has to hold it too? Is it
really necessary? And why is it that the receiver gets stored twice, once in
the context and then again in the model? And most importantly if I decide
to change the model where do I have to make the changes? The answer to the
last question would be: pretty much everywhere. Again if you would like to
implement a new code completion algorithm, you would have to study which
methods do you have to override and which can you keep to get called in the
already implemented NEC superclass.

The way this should have been avoided in the first place would be to keep
in mind the separation of units so that the units would have only limited
knowledge about other units and how they work. This is known as Law of
Demeter. The way this could work would for example be if there were abstract
classes implemented which would work as a guideline to help you understand
the basic responsibilities of that class. I will get back to this in the next
chapter where I'll focus on proposing such a design.

Another big mistake was to implement the essential getter for the user
favoured controller into the Smalltalk tools. This is a minor problem though
and gets fixed very easily as I have done it in the image enclosed on the CD.

3.3.3 Inability to Test Functionality

The worst thing that could happen is when you work on a project and imple-
ment or alter some piece of code only to find out that there is no easy way to

26

3.3. Problems With the Current Implementation

test this functionality. The coder basically has only some feedback or none at
all to know if what she/he has written even works or in what cases it should
work. This is a nightmare for any programmer and the way tests are written
for the current code completion in Pharo only prove that they in most cases
even have little purpose or no purpose other than to check for some variable
and if it’s “nil” or not. Sometimes I felt like I am loosing my mind because I
couldn’t understand how to use some methods or what they do because there
were no comments and even the test methods if there even were any were
written this way.

3.3.4 Speed of using Keyword Messages

There should be a way to skip over parameters of a keyword. This should
probably work using spans of text areas through which you should be able
to iterate and implement them one at a time. For this purpose there could
be the tabulator key dedicated as a way to iterate through these spans and
to signal that the coder has finished writing the keyword there could be the
enter key to close these spans up and to push the cursor behind the last span.

3.3.5 Lack of Customizability in the Suggestions Menu

This might be in a wrong section in the thesis, however I am going to present
this point here anyway. In my opinion there should be customizable options
built in the suggestions menu. What I mean by that is the ability to add a
receiver in order to quickly look for a possible method to call or for a possible
class to choose and so on. However this is such a minor feature request that
not so many Pharo users would welcome as I would, which means I am only
adding this as a code completion problem to this section because I believe
it would save much time not having to look around in other Pharo tools for
basics like this. In the current suggestions menu there is already the possibility
to take a look at the source code while you are looking through suggestions.
This would be only one step further to the powerful code completion system.

3.3.6 Lack of Code Expanding Keywords

Code expanding keywords have nothing to do with keyword methods. What
I mean by code expanding keywords is a set of words that would get included
in the suggestions menu for the coder to expand in a predefined piece of
code. Understand that predefined would not only mean the text but also the
formatting of the text and even where the cursor would be or better yet to
which places would the cursor get after for example hitting tabulator or some
for this purpose dedicated key. I believe that this would be the greatest boost
to the speed of coding especially because of it would eliminate interrupting
the programmer’s workflow.

27

3. ANALYSIS AND DESIGN

3.3.7 Too Slow for Fast Coders

The amount of programmers who write too fast for the code completion to
catch up is getting greater and greater. However, to say that code completion
is of little or no use to these programmers would be a mistake. Even these
programmers could use code completion even on a slow machine, for instance
if they could rely on completing certain often used pieces of code without
having to check with the suggestions menu first. This would speed up the
progress they are making now and could eliminate typos they might not catch
at first without the code completion.

3.3.8 Order of Suggestions

Another problem is that in case of NECompletion the suggestions are ordered
alphabetically except of those suggestions that directly start with the string
that is getting completed. This is always a very suboptimal solution as all of
the studies in the articles I have mentioned clearly show.

3.3.9 Getters Implemented via doesNotUnderstand Methods

I believe this is not an issue code completion should focus on in Pharo. If
a programmer wants to implement getters this way, and I believe that in
rare cases it could even be justifiable, he shouldn’t be encouraged by code
completion to do this more often than necessary. This being said it certainly
would be nice to implement but one must be carefull and beware of overuse
of this possibility.

3.3.10 Searching with Capital Letters

Another big relief for the programmer which is not present in the current
code completion is the ability to get to the right suggestion using letters
which are capital letters in the suggestion string the programmer is looking
for. For example if the programmer would be looking for “DummySystemPro-
gressltem”, it should be enough to write “dspi” or “Dummyltem” or perhaps
“dumsysprog” to get this suggestion somewhere to the top of the list. If there
were many more suggestions with the same or similar long prefix, this could
be the way a programmer could get the desired suggestion to the top of the
suggestion list a lot faster. This might take longer to compute and so fast
coders could prefer not using this feature. For this reason this feature should
be configurable in the configuration class and for that matter of course in the
Pharo settings as well.

28

3.3. Problems With the Current Implementation

3.3.11 Width of the Suggestions Menu

Last but not least there is one more thing I need to mention. The fixed width
of the window with the suggestion menu is very enoying. Especially if I am
looking for some methods with similar names that have the same or similar
and very long prefix. Then the only thing you can do if you really want to
see the whole names of the suggestions is to select the morph (the graphical
object - the actual window) and widen it this way. As you can probably guess
this is not an easy fix and certainly not a sufficient solution.

29

CHAPTER 4

Realisation

I have presented Pharo and tried to show the basics of how it works. I have
described how the current code completion is designed and implemented and
done some research in the field of code completing systems and algorithms.
Already during this process I have found out that this is not going to be
relevant for this thesis because of more troubling issues with the design and the
inability to navigate through the current code, which causes great problems
when trying to fix it. Finally I have made a summery of what is wrong
with the current design and implementation. Through this process I myself
have actually been focussed on what I am going to do to make the new code
completion system better.

I have slowly came to realize that there is much more work to be done
than I can manage in the time I can possibly spend on one Bachelor’s thesis
and that this is going to be more of a summary of the main ideas that I came
to think of during the process of creating it, so that the ones who will come
later to finally implement it won’t have to go through the same painful process
again. For this reason is this chapter going to be almost entirely about the
concept instead of the implementation.

Most of what I have done can be seen in the smalltalkhub repository. Using
the Monticello Browser you can download the code by inserting the following
Monticello registration:

MCHttpRepository
location:

‘hitp://smalltalkhub.com/me/lukaskomarek/CodeCompletion_ FIT_CTU/main’

user: ”

password: ”

4.1 What Have I Done

I have spent a long time thinking about what could be done to keep as much as
possible of the current implementation. After a lot of struggle I came to realize

31

4. REALISATION

that this is the wrong approach in this particular case. I first need to think of
the right way to build it and after I would have done that I need to think of a
way to keep as much as possible of the old code without compromising the new
system and its readability or functionality. Because I couldn’t come up with
a solution to almost any of my problems, I have decided to start from scratch
and at least implement the scaffolding of the new code completion system.
The idea behind this is that after reading what I have implemented anyone
could understand the concept behind the design and continue in a similar way
I would have if there was more time to spend on this thesis.

After reading the “Problems with the Current Code Completion” section
of the previous chapter it quickly becomes clear that the models of the new
system can be various and that each other code completion system might be
supporting different models with different criteria. There are many difficulties
I have had with changing the current implementation that I certainly wouldn’t
have had, if there would be an abstract model behind it that someone could
alter to get different results and as a whole a different code completion sys-
tem. You might think that the NECModel is an abstract class, which is true
actually. However, what I am trying to say is that it is only abstract in the
sence that it limits you way too much in what it can and cannot represent.
To demonstrate this I am once again going to mention the unary and keyword
messages. How would you add another receiver, another text that the user
is expanding in case of the keyword message and how would you create and
name the new model that would have to represent two types of models - a
typed and an untyped one. To implement this with all the attributes currently
present in the “abstract” NECModel would have been terribly painful.

I hope I have sufficiently explained what I am criticizing in the design of
the current code completion system. The menu on the other hand does not
need much correction to solve most of the problems I have presented earlier
and that is why I have just copied it to the code completion scaffolding. Don’t
get me wrong, I believe that the menu should be reimplemented as well, it
just isn’t so important at the moment.

I believe that the design I have tried to describe in my project would also
offer much more opportunities in the testing area of code completion. One of
the biggest problems with code completion lies in the tests of code completion.
Because this thesis is not about testing software I am going to assume that
the reader knows how important it is. Even more so the larger the software
gets.

4.1.1 CCConfiguration

This class is actually the same as the NECPreferences class. Nothing should
change about the way that user preferences should be saved in some place.

32

4.1. What Have I Done

4.1.2 CCContext and CCModel
The CCContext should be different from the NECContext though. This

classes responsibility should be to collect all information about the where,
what and how of the code completion. It should also (based on what it finds
out) create its models that would represent some possible sets of suggestions.
These models also hold information like what the possible receiver could be
or how to find the suggestions in the current Pharo world. Methods creating
the individual entries should be implemented in the CCAlgorithm though.

4.1.3 CCAlgorithm and CCEntry

The CCAlgorithm is a class that was not present in the NEC design of code
completion system. The responsibilities of an instance of this class would
be to analyze the context and most importantly its models and according to
these models create a set of suggestions. This class is abstract because there
are countless ways to impelement such an algorithm and it shouldn’t really
matter to the rest of the code completion classes which algorithm class is being
used. It would though matter which models or which context is given to this
algorithm. The algorithms responsibility is also to order the list of suggestions
in a way that the probably most relevant entries would be at the top of the
list. These entries would be instances of unabstract subclasses of CCEntry.
These instances should have all the necessary information about what to show
to the user, about the way it would complete what the programmer wants to
have implemented or completed and so on. These classes and the CCContext
with the CCModel classes would be the most interesting ones in the whole
code completion system. If you wanted to implement a new code completion
algorithm you would only have to override some of these classes to get what
you want and then tell the CCConfiguration which classes to use.

4.1.4 CCMenuMorph and CCDetailMorph

The CCAlgorithm instance, after it analyzes the context and creates its en-
tries, is passed to the suggestions menu to present these suggestions to the
user. The CCMenuMorph and the CCDetailMorph as I have already men-
tioned are at the moment copies of the NEC classes. The reason is that it
is going to help a lot to change these a little bit and get started right away,
not having to implement a whole morph from scratch. Of course even these
classes need a lot of work and focus to get some serious improvements.

4.1.5 CCController

The CCController class is the most essential class to the whole system. This
class implements and controls the code completion processes. This class should
be implemented in a way so that changing almost any part of the system could

33

4. REALISATION

be done without having to implement a new controller as well. This would
mean that even changing the code completion in a way that you add or modify
an entry class would not cause the controller to throw any errors or to behave
unexpectedly.

4.1.6 SpanCompletion

The SpanCompletion tag holds two classes, the SCCollection and the SC-
Span. The collection class holds spans and the information about what span
is currently being edited. This part of code completion should be managed by
the controller as well but the part where changes should be made should be
implemented in methods of the collection class. To give an example: the pro-
grammer would insert a keyword message and write the first parameter and
would want to jump to the next one using a tabulator. He would press the
tabulator and the controller would look for an instance of SCCollection and if
there was one it would pass the tabulator with the editor to this instance. The
instance would calculate where to jump with the cursor in the text editor and
what code to select for the user to overwrite. So many optimizations come
to mind when writing about these span completions. For example in case of
completing a particular keyword the spans could be completed as symbols. In
case of completing the

ifTrue:ifFalse:
keyword method, it would create spans resulting in having
ifTrue: #blockl ifFalse: #block2

inserted into the editor, where #blockl and #block2 would be the spans for
the programmer to overwrite. The greatest advantage with this would be
that the user would have a better idea about what to write. In case of the
old implementation I have often thought some method takes other parameters
than it actually takes. This slows down the progress of implementing the
intended software and interrupts the workflow of the programmer so finding
simple solutions like this one to problems like this is essential.

4.1.7 CodeSnippets

The CodeSnippet tag holds one class at the moment, the CSSnippet. This
class represents a snippet that holds the name of the snippet and the content.
I have not yet implemented the SCSpans and thought of a way to work with
the position of the cursor. For more information look at the implementation
and at the class comments. The same goes for all the other classes I have
implemented. My efforts were to explain in all the comments as much as
possible about the idea behind the concept.

34

4.2. What Now

4.2 What Now

The next logical step would be to start implementing classes of the Code-
Completion package. First the CCController, CCContext, CCModel, CCAl-
gorithm, CCEntry along with the CCConfiguration. Then adding and im-
plementing the SpanCompletion classes and afterwards the CSSnippet class
should come next. After this has been accomplished the last step should be
to focus on the morph classes and on optimizing the way they interact with
the user.

Because of realizing how difficult the testing of code completion system is
it should be implemented tests first or at least with testing all the features of
the implementation on the programmers mind. Separation of functionalities
and class responsibilities should make testing those functionalities way easier.

4.3 Testing

I have in this project created one unit test to show how these should be
implemented in the project. This test tests if the SCCollection calculates
correctly the absolute value of the offset of a SCSpan in some text.

More unit tests should get implemented the more the project will grow.
As the classes will start to interact with each other integration as well as
component interface tests should get implemented also.

35

Conclusion

I have started this thesis with the intent to build a greater code completion in
Pharo to satisfy the needs of members of the Pharo community. At first I spent
a month analyzing the code and trying to figure out how and why everything
works as it does. After this research I have concluded that it will be much
easier to implement a new code completion. I have also started to read about
different code completion algorithms. As I have proceeded with my research
in how to replace the whole code completion system with another one I have
found that it is not hard at all. The next logical step for me was to find out
what problems did members of the Pharo community see in the current code
completion system and what struggles have they had with it. I have decided
to make a survey and send it to the pharo community mailing list. I would
like to thank everyone in the Pharo community who has participated. In just
a week or so I have gotten 33 responds which helped me a lot to see which
problems were the most afflicting for the majority of Pharo developers.

As T have started to write about what I have accomplished to this point I
have started to realize that implementing the new code completion system that
would meet all the requirements that I have thought of would take too much
time. That is why I have decided to focus on creating such a scaffolding that
anyone could understand and continue this code completion system I would
like to have implemented. This included creating comments for as much of
the scaffolding as possible. I believe that I have achieved the last desired goal
I have set for myself.

I have presented Pharo and the basics about how the syntax and the
environment work. I have also proposed a way to evaluate code completion
and presented a few code copmletion algorithms that would be great to have
implemented and compared in Pharo. Then I have explained a bit about how
code completion is implemented in Pharo. Then I have presented what I have
learned about code completion in Pharo from the community members and
after that I have made a summary of what is wrong with the implementation.
There is a lot that came up in this section, which is great because that gave

37

CONCLUSION

me a lot of requirements to take in account while creating the design for the
new code completion system.

The realisation is what I have described next. In this chapter I have
described what I have implemented and after that I have described what
would be the next step for anyone who would continue the project.

I believe that I have done everything I could with the knowledge, resources
and time I had. I regret that I probably will not be able to continue working
on this project because other students in the Pharo community will take over
the topic of improving code completion in Pharo and I will not have enough
time to work with them on this.

38

[1]

Bibliography

BLACK, Andrew P., Stphane DUCASSE, Oscar NIERSTRASZ and
Damien POLLET. Pharo by erxample. Switzerland: Square Bracket As-
sociates, 2009. ISBN 978-3-9523341-4-0.

BURCH Marcel, Martin MONPERRUS and Mira MEZINI. Learning from
Ezxamples to Improve Code Completion Systems [online article]. 2009 [cit.
2016-11-25]. Accessible at:

http://www.monperrus.net /martin/Learning-from-Examples-to-Improve-
Code-Completion-Systems.pdf

COVER T. and P. HART. Nearest neighbor pattern classification. [article].
1967. IEEE Transactions on Information Theory.

PHARO COMMUNITY. About this book. PharoByEzample.org [online].
[cit. 2016-11-25]. Accessible at: http://pharobyexample.org

PHARO COMMUNITY. Homepage. Pharo.org [online]. [cit. 2016-11-25].
Accessible at: http://pharo.org

PROKSCH Sebastian, Johannes LERCH and Mira MEZINI. Intelligent
Code Completion with Bayesian Networks [article]. 2015. ACM Trans.
Softw. Eng. Methodol. 25, 1, Article 3.

ROBBES, Romain. Of Change and Software. Lugano: 2008. Doctoral dis-
sertation. University of Lugano, Faculty of Informatics.

SPASOJEVI Boris, Mircea LUNGU and Oscar NIERSTRASZ. Overthrow-
ing the Tyranny of Alphabetical Ordering in Documentation Systems [on-
line article]. 2015 [cit. 2016-10-25]. Accessible at:
http://scg.unibe.ch/archive/papers/Spas14b.pdf

39

APPENDIX A

Pharo Virtual Machine Manual

To run the virtual machine you have to do this on a PC with Windows installed
or you have to download the virtual machine for Mac OSX or GNU/Linux.
To do that go to pharo.org/download.

When you open the content of the enclosed CD you find the readme file
and the “CodeCompletion” folder. After you enter the folder you will see a lot
of files but the only ones you will need are the CodeCompletion.image and the
Pharo.exe files. You just drag the image file and drop in onto the executable
and the virtual machine will start running this image all by itself. I highly
recommend doing this after you copy this folder onto your machine you are
want to run it on to eliminate unexpected behaviour.

41

APPENDIX B

Contents of enclosed CD

readme.tXtoviiiiiiii i the file with CD contents description
CodeCompletion.............. the directory with the VM and the image
Pharo.exe........covvviuiinnnann.. virtual machine executable (VM)
CodeCompletion.image . ..o v veuurnmnneeeeeeeeeeeeeeeennnn image file

other less important files

	Introduction
	Goal and Methodology
	About Pharo and Code Completion
	What is Pharo
	About Syntax
	What is Code Completion
	Evaluating Code Completion
	State of the Art of Code Completion

	Analysis and Design
	Current Implementation of Code Completion
	Survey for the Pharo Community
	Problems With the Current Implementation

	Realisation
	What Have I Done
	What Now
	Testing

	Conclusion
	Bibliography
	Pharo Virtual Machine Manual
	Contents of enclosed CD

