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Mach, Vojtěch. Automated solver of image based CAPTCHA. Bachelor’s
thesis. Czech Technical University in Prague, Faculty of Information Techno-
logy, 2017.



Abstrakt

Práce se zaměřuje na strojové rozpoznáváńı moderńıch obrázkových CAPTCHA
systémů pomoćı technik umělé inteligence. Ćılem bylo poukázat na nedostatky
tohoto zabezpečeńı jeho prolomeńım a otestovat vhodnost r̊uzných př́ıstup̊u
k problému. Pro tento účel byl navržen software, jenž shromažďuje v́ıce pos-
tup̊u rozpoznáváńı a klasifikace obrázk̊u pro vybrané druhy vstupńıch úloh.
Dle povahy úlohy jsou uživateli k výběru nab́ınuty r̊uzné řeš́ıćı algoritmy.
Mezi využ́ıvané techniky řešeńı patř́ı předtrénované neuronové śıtě komerčńıch
webových služeb a algoritmus KNN. Srovnáńı úspěšnosti každého z algoritmů
je uživateli přehledně zobrazena po dokončeńı výpočt̊u. Součást́ı práce je
rovněž rešerše, zhodnoceńı pr̊uměrné přesnosti vybraných technik a doku-
mentace projektu.

Kĺıčová slova CAPTCHA, poč́ıtačové viděńı, strojové učeńı, rozpoznáváńı
obrazu, neuronové śıtě, KNN algoritmus

Abstract

This thesis focuses on machine recognition of modern image-based CAPTCHA
security systems using techniques of artificial intelligence. The goal was to
show weaknesses of these systems by breaking through it and to test suitability
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of various approaches. For this purpose a software was designed which collects
a few procedures of image classification and pattern recognition for different
input tasks. According to the nature of the input task, applicable algorithms
are presented to the user. The techniques utilized to solve this matter are
commercial services using pretrained neural nets and KNN algorithm. An
accuracy of each algorithm is presented to user after computations are finished.
A research of this topic, precision evaluation of selected solutions and project
documentation are also included in the thesis.

Keywords CAPTCHA, computer vision, machine learning, pattern recog-
nition, neural nets, KNN algorithm
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Introduction

CAPTCHA is a security mechanism which is widely used in computing to
recognize human users from computers by various challenges. It falls into
category of reverse Turing tests, which is a subcategory of regular Turing
tests. Reverse Turing tests unlike regular Turing tests have a computer judge,
which means that the testing system must be able to decide righteously on
its own whether the tested subject is a human or a computer. CAPTCHA
performs the test by presenting a user with any challenge of such properties
that it should be easy to solve by a human but difficult to solve by a computer.

Motivation

There are many CAPTCHA schemes and new ones are still being created.
Growing computing power and improving abilities of AI both carry a threat
of breaking the challenges which stimulates a continuous development of more
secure schemes. Older schemes have already been proven vulnerable to attacks
of this matter and thus found unsafe. For this reason they were replaced by
modern image-based schemes which provide better resistance against attacks
while maintaining convenience of handling. A subset of chosen image-based
challenges will be the focus of my work.

Goal of the thesis

The goal of the thesis is to create a prototype of an automated image-based
CAPTCHA solver in a form of desktop application which will incorporate
different computer vision techniques in order to break a given challenge. The
application should serve as a benchmark for testing different approaches to
the problem and will also provide a framework allowing addition of new ones.
I will implement selected existing on line image classifiers as well as my own
implementation of a classifier to demonstrate abilities of the framework and
finally carry out a comparison of their accuracy in experiment.

1





Chapter 1

Analysis

This chapter analysis the thesis from both theoretical and practical point of
view. In the first section I summarize the most commonly used CAPTCHA
schemes and introduce the problem and its possible solutions. The second part
focuses on my approach to the solution, analyses utilized tools and techniques
and reviews selected solutions in detail. It also describes a creative process
and explains the main structure of the application prototype.

1.1 CAPTCHA schemes

Many different CAPTCHA schemes were developed through the time. We can
ultimately divide them to four groups described in following subsections:

• Visual - most common scheme, challenge presented in mostly static
visual form

– Text-based

– Image-based

– Mixed

• Auditory - targeting visually impaired people (see 1.1.2)

• Logical - a simple task requiring some intellectual process

– Mathematical

– General knowledge

• Other - infrequently used, minigames etc.

The most used schemes are reviewed closely in the next sections.
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1. Analysis

1.1.1 Visual scheme

In the world of CAPTCHA security, visual challenges surely have been the
most used type since they are easy to generate while being relatively diffi-
cult to break until recently. Google is probably making the greatest progress
in this area, they continuously improve their own CAPTCHA system called
ReCaptcha which evolved from being a simple text-oriented challenge mech-
anism to present day sophisticated complex security system as described in
the following subsections.

1.1.1.1 Older version of ReCaptcha

Challenges of ReCaptcha v1 were mostly text-based and generally used a
short randomly generated sequences of characters and numbers transformed
into an image with some sort of distorting features such as noisy background,
twisted, deformed or even crossed out figures, random lines etc. (figure 1.1).
These features are crucial for the security of this scheme, because it greatly
complicates its exploitation by hackers. A common OCR software is unable
to recognize deformed figures, human however is very successful at this. A
reasonable explanation for this is that people learn handwriting since their
youth so throughout their lives they already have seen many interpretations of
the same character so a letter deformed by a computer will still be recognizable
for them.

This scheme’s biggest disadvantage is that there is only the set of char-
acters and numbers is limited. Once a classifier that is able to recognize all
symbols and numbers is developed, this security system becomes extremely
vulnerable. This situation actually happened in 2014 when Google announced
that their AI, originally purposed to read house numbers in Street View [1],
managed to get astonishing accuracy of 99.8% when solving these types of
challenges [2]. This was the impulse which lead to development of Google’s
newest version of ReCaptcha system implementing image-based challenges in
combination with NoCaptcha security method as described further.

Figure 1.1: An old version of a ReCaptcha challenge

Mixed challenges (partly text, partly image) were introduced in late 2000’s
by Google which has brought an interesting new purpose to the world of
CAPTCHAs. They effectively turned people into very advanced OCR ma-
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1.1. CAPTCHA schemes

chines. As seen on fig. 1.2, a user was presented with a text-based challenge
and with an actual image of something, possibly a distorted word from a
physical book which was being digitized by Google at the moment or a pho-
tography of a house number. If majority of users recognized the generated
text challenge correctly there was a great chance they recognized both things
correctly thus performing a reliable image recognition.

Figure 1.2: Newer ReCaptcha version.

This version of ReCaptcha has been deprecated since May 2016 and fully
replaced by modern ReCaptcha v2.

1.1.1.2 Modern ReCaptcha

Current ReCaptcha v2 introduces a completely different approach to CAPTCHA
security in a form of challenges based on real-world images. A user has to
manually select a subset of presented images which are somehow related to
the task of the challenge.

There are two basic variations of this challenge at the moment depending
on specification of the task:

• specified by keyword (fig. 1.3)

• specified by reference image (fig. 1.4)

These two variations will be the focus of the practical part of this thesis..
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1. Analysis

Figure 1.3: Example of Re-
Captcha v2 challenge spe-
cified by a keyword.

Figure 1.4: Example of Re-
Captcha v2 challenge spe-
cified by a reference image.

There is currently one more variation, which is a little different from the
previous ones. It prompts user with a single image of some object divided in a
few parts resembling square puzzle pieces and asks user to select those pieces
that have the object on them. For better understanding see fig. 1.5.

Figure 1.5: Example of third type of ReCaptcha v2 challenge

6



1.1. CAPTCHA schemes

1.1.1.3 NoCaptcha technology

An important part of Google’s ReCaptcha v2 is the NoCaptcha technology
which adds another layer of security to the system. It uses browser cookies
to perform a behavioral analysis and studies user’s actions on a website. The
API provided by Google contains a single check box with I’m not a robot
prompt text 1.6. After clicking the check box, the user is presented with a
CAPTCHA challenge only if he is found suspicious or if no relevant cookies
are available yet. In practice, this actually works very well, there is an official
website which demonstrates the system’s functionality [3].

Figure 1.6: Google’s NoCaptcha ReCaptcha system

Recently this year Google started advertising a newer version of NoCaptcha
called Invisible ReCaptcha where the whole authorization is done in back-
ground [4]. This means that ideally every human visitor of a website protected
with this system will have to complete the CAPTCHA challenge just once and
not again until he erases the browser cookies.

1.1.2 Auditory scheme

Auditory challenges were created for people suffering from vision disorder and
are usually bundled with the other schemes as an alternative for authorization.
They usually contain a sequence of letters and numbers which are read to the
user. The sound must be clear enough for the content to be recognizable
by a human but noisy as well to be resistant to exploitation by bots. They
are practically irreplaceable at the moment and that is the problem because
simpler implementations show serious weakness against attacks as proven for
instance by a bachelor’s thesis from last year [5]. There were many attempts to
bypass them using existing publicly available speech recognition technologies,
which were so successful they initiated an improvement in this area [6, 7].
Despite that, audio challenges still remain the weakest point of CAPTCHA
security system.

1.1.3 Logical and other schemes

Logical challenges often consist of a simple mathematical task or a general
knowledge question and are typically found on Internet forums, blogs and
smaller websites where top-level security is not needed. As stated in [8], these
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1. Analysis

challenges are less resistant to hacks plus they may be language specific and
therefore not universally applicable. There are other schemes that may contain
an interactive challenge, e.g. a minigame. Interactive challenges are resistant
to AI attacks but may be broken a script. These are relatively least popular
of mentioned schemes.

1.2 Problem overview

In this thesis we tried to point out weaknesses of mentioned types of image-
based CAPTCHA, by breaking it with artificial intelligence. This task eventu-
ally reduces to a problem of image recognition, i.e. passing unlabeled image to
an image classifying software and obtaining labels of all objects in the image.
Image recognition is a discipline of machine learning using computer vision al-
gorithms to detect real-world objects in images. It is sometimes referred to as
image classification, labeling or tagging, because it returns a set of labels (also
tags or classes) corresponding to objects found in the image. An illustration
of this process is shown in the following figure, where every circle represents
one label returned for the input image in the middle. Note that the hierarchy
of classes in the figure goes from right to left from general to more concrete
ones.

Figure 1.7: A simplified example of possible class hierarchy of larger image
classification model

8



1.3. Examined algorithms

1.3 Examined algorithms

Many algorithms were invented for this purpose, however a rapid growth of
computational power has put some models and methods in favor, especially
deep learning, a class of algorithms which extract features from inputs on many
levels by using multiple layers of functional units. In following subsections I
review some of today’s best performing models used for image recognition.
The last subsection describes a general idea of KNN algorithm, which I have
implemented in a custom classifier.

1.3.1 Artificial neural nets

Artificial neural network (ANN) is a general computational model used in
machine learning to solve problems where ordinary programming techniques
cannot be applied. Its structure resembles structure of a biological brain and
simulates cooperation of brain neurons.
Artificial neurons are ordered in multiple cascaded interconnected layers where
front layer takes inputs in any form (e.g. an image) and end layer deliver
outputs. Every neuron combines its inputs in linear combination and applies
a mathematical function known as activation function which determines the
output value of the neuron as seen on fig.1.8. A list of examples of the most
common activation functions is in fig.1.9

Figure 1.8: A symbolic schema of an artificial neuron

Since ANN is a classification and regression model, its purpose is to classify
the input as one of previously defined classes. Each output neuron represents
one class and delivers a decimal number from interval (0,1) measuring the
model’s confidence with the input belonging to that class. The output layer
of neurons is finite which implies that the set of defined classes needs to be
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1. Analysis

finite as well and previously defined. Large commercial models implement
hierarchy of classes, similar those in 1.7, in order to produce correct guesses
even for ambiguous or unclear inputs.

Figure 1.9: Common activation functions used in various machine learning
models

A powerful property of this model is that it does not require any explicitly
defined rules to evaluate inputs, it rather modifies its structure to generate
as accurate outputs as possible. This is done by learning by trial and error
from input data where desired output is known and penalization is applied if
a different output is returned. This process is called training of the net. The
evaluation of outputs is not binary, it uses a special dedicated function called
cost function to measure the progress of the training and applies penalization
depending on the difference of accuracy between real output and desired out-
put. The goal of the training is to modify the network’s structure in such a
way that its produced outputs are as accurate as possible on the set of train-
ing data and maintain more or less similar accuracy for completely new input
data.
For the sake of example of the network’s function in practice, consider a net-
work trained to labeling images. Its output neurons then produce scores rep-
resenting network’s confidence in each label. An illustrative example of the
network’s outputs is shown on fig.1.10.
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1.3. Examined algorithms

Figure 1.10: Typical output of an image labeling model

Advantages

If trained properly some variations of neural networks designed specifically to
image recognition perform remarkably well and are therefore currently viewed
as a state-of-art approach the area. They gained their popularity in last
decade when accelerated training of the nets using powerful GPUs became
possible, especially when run in parallel. This turned out to be a big step for-
ward in this area since the training of the net is the key feature determining
the model’s accuracy[9]. Also the basic model definition is very general and
allowed creation of many various implementations featuring different activa-
tion functions, cost functions, neuron connections and even special training
methods. Some of the models that achieved especially good results in image
recognition, like convolutional neural networks and deep belief networks are
described further in this subsection.

Disadvantages

Probably the main issue with models of machine learning in general is gather-
ing enormous quantities of data for the training of the model. Also the training
itself must be done carefully in order to keep the structure sufficiently general.
Theoretically it is possible for the network, if trained long enough, to achieve
near 100% accuracy on a particular training set. This phenomenon is called
overfitting and is highly unwanted, because it means that the net became an
expert in distinguishing unimportant details of concrete inputs of the training
set but disregards defining features of inputs as general concepts. Overfitted
networks are often characterized by excellent results for training inputs and
poor results for new unknown inputs.
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1. Analysis

Convolutional neural networks (CNN)

Convolutional neural nets are a modification of multilayer ANN performing
especially well in areas of natural language processing and image recognition. I
will describe a CNN’s functionality in case of image classification, i.e. assigning
a labels to unlabeled image. Following is a list of the network’s layers and their
function.
A common CNN consists of these four types of layers:

1. Convolutional layer
Neurons in this layer are responsible for finding a certain pattern in
specified region of an input image. They use mathematical operation of
convolution to approximate their responses. Every pattern creates a so
called feature map which represents a presence of the feature on each
position in the input. That means the dimensions of the input grows
with each pass through this layer as seen on fig. 1.14. This issue is
solved by incorporating pooling layers.

2. Pooling layer
This layer performs downsampling of the input from previous layer. Dif-
ferent functions may be applied, a typical example of is a maxpooling
function. This function divides input in non-overlapping rectangles and
the selects the maximal value from each of them. The process is shown
in fig. 1.11.

3. Normalization (ReLU) layer
ReLU, which stands for rectified linear units, is a layer of neurons that
apply an activation function defined as f(x) = max(0, x) to normalize
the input feature map. This function is called rectifier and replaces all
negative values of input with zeros as shown in fig. 1.12. According to
[10], ReLU is the most popular activation function since 2015, despite
its simplicity. Common alternative functions are sigmoid and hyperbolic
tangent (fig. 1.9).
Some models omit this layer as it has shown little contribution to net-
work’s overall accuracy in certain cases.

4. Fully connected layer
A sequence of common ANN layers performing classification of the in-
puts into predefined categories

Layers 1., 2. and 3. are responsible for feature extraction and are often
inserted in the network multiple times in chain behind each other as shown
in fig. 1.13. The fully connected layers are always present at the end of the
network and perform the actual classification and delivery of output labels
with their respective scores. Figure 1.14 presents a simplified schema of the
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1.3. Examined algorithms

Figure 1.11: Maxpooling function applied on a feature map

Figure 1.12: ReLU function applied on a feature map

network as a whole. The advantage of CNNs, if properly trained, is very ac-
curate outputs (be it a pattern recognition or another use case). On the other
hand its complicated structure may be viewed as a disadvantage apart from
already mentioned issues of machine learning.

Figure 1.13: A symbolic image of layer chaining in CNN

Google’s implementation of a CNN called GoogLeNet is currently one of
the best performing image recognition model in the world. In 2015 it contained

13



1. Analysis

Figure 1.14: A simplified schema of convolutional neural network

22 layers [11] and it is still being developed. For illustration of a real-world
functional network, a schematic picture of GoogLeNet’s layers is shown on
figure 1.15.
GoogLeNet is the winning model of ILSVRC1 2014 [12, 13] and also a found-
ation of the famous computer program DeepDream[14, 15].

Figure 1.15: A structure of GoogLeNet

Deep belief neural networks (DBN)

A decent alternative to convolutional neural networks could be a deep belief
networks. These networks consists of stack of autoencoders such as restricted
Boltzmann machines (RBM). Autoencoder is a neural network model used
in feature extractions and input encoding. A restricted Boltzmann machine
is two-layer autoencoder where every neuron from one layer is connected to
every neuron of next layer but no two neurons of the same layer are connected.

1ImageNet Large Scale Visual Recognition Competition
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1.3. Examined algorithms

The training of RBM is done in several iterations by passing the input through
the net and encoding it in a set of numbers, then passing the numbers back
and reconstructing the input as accurately as possible. An important aspect
of RBM is that the data do not need to be labeled manually, the auto-encoder
rather extracts the important features of the input and stores them in its own
structure. This way it can automatically sort unlabeled data in categories.
In deep belief network, a hidden layer of each RBM acts as an input layer of
next RBM.
Deep belief network’s biggest advantage lies in its ability to be trained with
relatively smaller amount of data compared to the case of CNN, which also
implies a shorter training time.

1.3.2 K nearest neighbors (KNN)

K nearest neighbors is one of the simplest machine learning classification al-
gorithms. The general idea of the algorithm is that every element of data has
a set of defining features distinct from other elements. We wish to extract
those features from each element to so called feature vectors, elements of n-
dimensional vector space, and measure the distances between them using a
distance function. A form of the features as well as the measurement tech-
nique are arbitrary and implementation dependent.
The classification of an input element, or precisely its feature vector, is done
by finding its K (already classified) nearest neighboring vectors and determ-
ining their majority class. If majority of the neighbor vectors share the same
class, this class is then assigned to the input vector as well, as illustrated in
fig. 1.16. In the opposite case a different distance function may be selected
and a new set of neighbors is found, or some specifying technique is used, for
example weighted voting. Weighted voting takes into consideration the actual
distances between the input vector and its neighbors, which helps determine
the closest of the neighbors and also its class.
Changing the parameter K may have impact on the result as seen on fig. 1.16
where Class 2 is the majority class for K = 3 but for K = 5 it is Class 1.

From the previous text is clear that unlike pretrained models, for example
artificial neural nets (1.3.1), the KNN algorithm has no fixed inner structure
and it needs a classified set of data to operate on.

Advantages

An advantage of KNN algorithm is its simplicity as it basically only states
that an element is defined by its surroundings. It is then upon consideration,
if provided data are likely to fulfill this rule or not. In a positive case (e.g.
a highly clustered data), this method will yield fairly accurate results. Its
generality also allows for the basic idea to be widely modified to fit a variety
of tasks.
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1. Analysis

Figure 1.16: An illustration of KNN algorithm

Finally it is very easy to implement in its basic form and provides a good in-
troduction to machine learning. This was one of the reasons I have chosen to
incorporate its implementation to the prototype. It also acts as a counterpart
to other selected solutions which are described in 1.3.3 since, my implement-
ation of KNN as a classification model, is fundamentally different from them.

Disadvantages

The algorithm is rather useful in other disciplines of machine learning using
rather low-dimensional vector spaces, for example some areas data mining. As
stated it is very simple and does not define which input features to compare
and how to extract them, that is an issue of individual implementations.
Another already mentioned disadvantage is that this model needs to access
classified data, stored either locally or remotely. Either way at some point of
the process the data must be loaded to memory, which in consequence means
that the amount of time needed for the computation is dependent on the size
of the dataset and speed of the storage medium it is saved on (providing no
optimization techniques are used).
Tested implementation of this algorithm is closely described in section 2.5.

1.3.3 On line services

There are many commercial on line services performing various machine learn-
ing tasks including image analysis. They differ from each other in minor de-
tails, but all of them are developed by large research teams and fine-tuned
to achieve as high precision as possible. By using state-of-art technologies,
these services provide the most accurate solutions for tasks requiring machine
learning algorithms and certainly represent the best choice for any business
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1.4. Tools and technologies

case.
Following is the list of image labeling services used in this project:

• Google Vision[16] - provided by the Google Cloud Platform

• Watson Visual Recognition[17] - a part of IBM’s cognitive system

• Microsoft Computer Vision[18] - Microsoft’s computer vision service

• Clarifai[19] - an AI company focused on visual recognition and related
machine learning services

• Imagga[20] - a company providing image operations requiring AI (tag-
ging, auto-cropping, colorization etc.)

All of these services use computational models based on deep neural nets
and deep learning which is currently the most successful approach in the area
of pattern recognition and yields very accurate results.

The services offer registration of paid accounts as well as free trial accounts.
Trial accounts restrict usage of their service with a limited number of requests
a day and set period of the account validity. The most strict of them provides
a maximum of one hundred requests a day, which is sufficient for the purpose
of demonstration of the project. Also, an expired validity of the trial account
will result in malfunction of provided service and therefore classification of
images in the prototype application. For these reasons I recommend creating
paid accounts if increased or prolonged usage of the services is required.

1.4 Tools and technologies

Technologies used in creation of the project’s practical part are described in
this section.

Python

Python 2.7 scripting language was chosen for implementation of the core al-
gorithms and for communication with the on line image classifiers. Python
API libraries provided by the respective on line services are used to commu-
nicate with their servers, sending requests and receiving responses. Responses
are encoded in JSON2 file format and their decoding is performed using func-
tions from built-in Python library json[21].
The implementation of KNN algorithm uses numpy library[22] providing vari-
ous mathematical operations on arrays and matrices. Lastly, sys library[23]
was used to process command line arguments.

2JavaScript object notation
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1. Analysis

An authorization of on line image recognition services is done by their API
developer keys, identification strings, which are included in the code in order
to make it portable and user independent. This also allows a simple change
of the API keys, should any of the used service’s account be replaced.

Java

JavaSE 3 is used in the application for managing user inputs, loading data,
executing the scripts and processing results. The presentation layer is cre-
ated with JavaFX (a part of JavaSE 8 SDK4) which is a set of Java libraries
providing a platform independent GUI development. I have chosen JavaFX
over older alternatives for the sake of effectiveness, modern graphical appear-
ance and convenient handling.
My initial intention was to encode and save generated CAPTCHA challenges
in HTML5 files. However this file format turned out to be unfitting since the
HTML files are only displayable in JavaFX by loading them to a WebView

container, which is purposed to display a real-world Internet webpages. Dis-
playing the HTML files by this container’s methods seemed to be very slow, so
I decided to use ImageView instead, a JavaFX image container fully optimized
for these purposes.

Other tools

The whole project was developed in NetBeans IDE6 and versioned with Git
VCS7. Its current version is stored in GitHub repository.

3Java Standart Edition
4Software Development Kit
5HyperText Markup Language
6Integrated development environment
7Version control system
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Chapter 2

Implementation

This chapter mentions steps taken in creation of the practical part of this thesis
such as collecting sample data and defining image classes for the challenge.
It then explains the project’s modular structure along with responsibilities of
each component and also the project’s extendability options in latter sections.
Last section is dedicated to description of my custom implementation of image
classifier based on previously introduced KNN algorithm.

2.1 Obtaining input data

The initial intention was to gather real world CAPTCHA challenges and run
selected scripts on them. This turned out to be difficult to accomplish because
firstly there is no truly reliable source of challenges, secondly the challenges
could not be acquired by automation easily and lastly the modern NoCaptcha
system (mentioned in 1.1.1.3) greatly complicates the automation as well.
Therefore we decided to generate our own custom image-based challenges of
predefined classes. The process is described in detail in 1.

In order to reach a certain level of quality and variance of our custom chal-
lenges, we had to collect a large dataset of sample images. As a primary
source of categorized images I selected the ImageNet[24] on line database.
Downloading of the images was automated by a custom Python script which
can be found on the attached CD and its code is shown in the end of this
section.
Every category of images in the ImageNet database carries is assigned a unique
identification string called wnid. The website, upon request, displays a list of
URLs8 of all images from a certain category specified by its wnid in the re-
quest. I used this functionality to automate the downloading and sorting the
images to appropriate folders.

8Uniform Resource Locater
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2. Implementation

Over 10000 images of ten classes were downloaded and stored in the dataset
using this process. It can be, however, extended at will as described in 2.4.1.

The download script:

1 import u r l l i b
2 import u r l l i b 2
3

4 count = 0
5

6 #an html page d i s p l ay i ng URLs o f images from category de f ined by
wnid

7 root = ”http ://www. image−net . org / api / text / imagenet . synse t . g e t u r l s ?
wnid=”

8

9 #a wnid s t r i n g r ep r e s en t i ng category ” t r e e ”
10 wnid = ”n11621547”
11

12 #s p e c i f i e s name o f the f o l d e r in the datase t to saved images to
13 imagec la s s = ” t r e e ”
14

15 s t r imagec l a s suppe r = imagec la s s . upper ( )
16 data=u r l l i b 2 . ur lopen ( root + wnid )
17

18 #every l i n e in l i s t o f URLs r ep r e s en t s one image
19 f o r l i n e in data :
20 pr in t ”Downloading : ” + s t r ( l i n e )
21 t ry :
22 u r l l i b 2 . ur lopen ( l i n e )
23 f i l ename = imagec la s s + ” ” + s t r ( count )+ ” . jpg ”
24 u r l l i b . u r l r e t r i e v e ( l i n e , ”D:\BAP\DATASET\\” +

st r imagec l a s suppe r + ”\\” + f i l ename )
25 except :
26 pr in t ( ”Exception occured ” )
27 count=count+1
28 cont inue
29 e l s e :
30 pr in t ”Saved to : ” + s t r ( ”D:\BAP\DATASET\\” +

st r imagec l a s suppe r + ”\\” + f i l ename )
31 count=count+1

2.2 Definition of image classes

As seen in figures 1.3 and 1.4, CAPTCHA challenges of both types have a
task of a certain class. We therefore decided to define a set of image classes
used for generation of our custom challenges. At first we selected ten image
classes to be used in the prototype. This idea had to be reconsidered though,
when minor complication was introduced by combining outputs of different
on line classifiers. Each of the classifiers return a different set of labels for the
same input image. The hierarchy of these labels also differ, some classifiers
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2.3. Project structure

tend to return more general labels with high scores whilst others are more
concrete possibly sacrificing some score points. The goal is not to underscore
a classifier for returning labels which may be correct but were not defined in
the program. This requirement lead to an idea of introducing synonymous
classes for already defined classes.
The current set of image classes with their respective synonyms is as follows:

• CAT

• DOG

• HORSE

• BIRD

• BUILDING : HOUSE

• CAR

• BOAT : SHIP

• FACE : PORTRAIT, PERSON

• TREE

• FLOWER

For example, if two classifiers are given an image of a building, one may
assign it with a label house while the other one with a label building. Both
answers are viewed as correct.
This set of image classes and their synonyms is not fixed and can be edited as
described in section 2.4.1.

2.3 Project structure

The application provides a certain level of modularity by being divided in three
mutually independent modules. Following list summarizes these modules and
their roles:

• Locally stored structured dataset of images

• Python scripts providing image classification

• Java application handling user interactions and executions of scripts.

The dataset is a locally stored directory containing sample images that
are organized in subdirectories. Every subdirectory contains all images of a
specific class which are used in a generation of challenges. This process is
explained in 1.
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2. Implementation

A configuration text file containing a list of all image classes used in the pro-
gram is located in the root folder of the dataset. The structure rules of both
the dataset and the configuration file are described in detail in 2.4.1.

The Python scripts are executed from the Java application and provide image
classification by an arbitrary computational model. The image is passed to
the script by its absolute path and a list of labels with their respective scores
is then collected from the standard output of the script. More information
about the mandatory structure of the scripts are listed in 2.4.2.

Operations performed by the Java application itself as well as its design and
graphical interface are subjects of the next chapter.

2.4 Extendability

The application is prepared for extension of its capabilities in a number of
ways. Both the dataset of sample images and the set of image classes with
their synonyms may be extended if certain rules are followed. In this section
I discuss these rules for expansion in two separated subsections.

2.4.1 Extending the inputs

All image classes and their respective synonyms are defined in a resource file
which is located in the root of DATASET/ directory. Following lists define
rules for the resource file and the dataset.

Structure of the image class resource file:

• Name of the resource file must match the string constant CONFIG_IMAGE_CLASSES
in the project’s src/resources/Constants.java file. A value of the con-
stant is editable.

• Every image class name is defined by exactly one word

• Every line contains a name of an image class. A list of its synonymous
classes separated by commas may follow and should be separated from
the image class by a colon. A symbolic notation of the format is:

{name of the class}[:synonym1[,synonym2[,synonym3]...]]
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2.4. Extendability

Structure of the dataset:

• Every class of images has its own folder in the DATASET/ directory,
named after the class of images it contains (e.g. horse/ ). Letter case is
arbitrary as well as the file format of sample images and their naming
conventions are arbitrary.

• Creating a dedicated folder with at least one sample image for every
image class in the resource file is mandatory and can result in unstable
behavior if disregarded.

2.4.2 Extending the outputs

If addition of a new solving method is required, one can do this by providing
the solver script written in Python scripting language, saving it to the /sr-
c/scripts folder of the project and creating its respective Java wrapper class in
/src/utility/solvers package. An instance of this wrapper class must be then
added to the array of available solvers in Java class of whichever challenge it
solves.

The script must obey following rules:

• The script outputs several tags (labels) and their respective scores for a
given image in this format:

{label}:{score}

• Each label and score pair is printed on a single line with no upper limit
for number of the lines printed

• The script uses standard output to print its output

• The score of the label must be a decimal number in a range (0, 1)

Note that these rules are required by a general implementation of solve
method performing script execution. This method is a member of Solver

abstract Java class and can be overriden in the application’s code to perform
the script execution differently. My implementation of KNN algorithm, for
instance, overrides this method in order to take more command line paramet-
ers. Refer to program documentation located on the attached CD for more
details on implementation.
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2. Implementation

2.5 Custom image classifier

In this project I tried to implement KNN algorithm to provide an image
classification of real-world images. Unlike models with inner structure, like
mentioned neural nets, which can extract input features automatically by
training, I had to define input features manually in order to be able to compare
feature vectors. This is a difficult task with no simple yet satisfactory solution,
which was the reason I have chosen to represent a feature vector of an input
image as a matrix of its pixel values in all three RGB9 color channels. Even
though raw pixel values of an image presumably bare little connection to
actual objects in the image, I wanted to present a different approach to image
recognition and examine its precision on various categories of inputs.
This approach should be hypothetically fairly accurate on category of images
that share similar color distribution. For instance photos of boats and planes
often include a dominating blue color (of a sky or a sea). That means a
new image of a plane in the sky is very likely to be classified as one of these
two classes. Currently an application of this algorithm in the prototype is
restricted to just those CAPTCHA challenges specified by a reference image
in order to show the program’s ability of containing different sets of solvers
for different challenge types. This restriction is not fixed and may be removed
with a small edition of a source code. The whole procedure is described in
chapter 2.4 mentioning all other options of extendability of the program.

Implementation specifics

To measure distances between feature matrices, I included two commonly used
functions, Euclidean distance (2.1) and Manhattan distance (2.2).

de(V1, V2) =

√
(V1 − V2)

2 (2.1)

dm(V1, V2) = |V1 − V2| (2.2)

An observation revealed a bottleneck of this implementation being the
speed of storage medium of the images. Every image must be loaded to
memory at some point of the process which drastically slows down the whole
procedure. I tried to optimize this issue in two ways. Firstly, for the sake
of space and speed efficiency the input images are scaled down in run time.
Secondly, the loading of the dataset images is done just once as it stores fea-
ture matrices of all images in a binary file. Every other execution of the
implementation script checks whether this file exists, and in a positive case
proceeds directly to comparing the feature matrices.
The prototype is currently unable to detect changes in the dataset or in the
image classes resource file as it would require creating a database to keep track

9Red, Green, Blue
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2.5. Custom image classifier

of these information. This means the binary file is valid until for a certain
state of dataset and image class resource file. If any of those are edited by
external action, the binary file should be removed manually.

The scaling factor and the distance function, as well as the parameter K, can
all be adjusted by user in the application dialog before execution of the KNN
classifier script. Refer to subsection 3.3.3 for more information on parameter
setting.
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Chapter 3

Software design

This chapter introduces all features of the application. Functional features
provide the application’s functionality, usability and outputs and are a sub-
ject of first section. Nonfunctional features define its user interface and its
connection to mentioned functionality and are described in second part of the
chapter.

3.1 Functional features

This section outlines features that define the functionality of the application in
an enumeration list. Every element of the list mentions one key functionality.

1. CAPTCHA challenge generation
As mentioned before, this project focuses on two types of image chal-
lenges - specified by keyword and specified by image. Both types are
generated quite similarly, either a keyword or a reference image is se-
lected and assigned to the task of the challenge. Then 4 to 6 random
images of the class in task are loaded and put on random coordinates in
the payload grid. These are further referred to as the correct images.
Rest of the grid is then filled with images of other random classes.
Provided that the size of the dataset is large enough, this mechanism
ensures uniqueness of every generated challenge and therefore variety
of obtained results. This functionality is controlled from the challenge
edition window of the application described in 3.3.2.

2. Selection of solvers
Both types of CAPTCHA present their sets of available solvers for se-
lection to the user. These sets may be extended by new solvers, as
explained in 2.4.2. Some solvers support passing additional paramet-
ers. More information on this functionality is given in 3.3.3, which also
describes a controller window of this functionality.
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3. Results comparison
All selected classifiers exhibit their results when the classifications are
finished. An accuracy of every result is rated in percent by following
formula:

accuracy = |SELECTED ∩ CORRECT | ÷ |CORRECT |,

where

SELECTED = set of the challenge images selected by a solver as
equivalent to the challenge task

CORRECT = set of the actually correct images in the challenge.

A dedicated window responsible for presenting the results is described in
3.3.4.

3.2 Nonfunctional features

A review of the application’s nonfunctional properties, in particular a graph-
ical user interface, design and hierarchy of Java classes is offered in this section.
It also characterizes the main Java classes and explain their functionality in
the code.

3.3 GUI

The application consists of four main windows. Their respective descriptions
are found in the following subsections. Each window contains buttons allowing
navigation back and forth through the application and is dedicated to some
functionality described in 3.1.

3.3.1 Challenge type selection window

The two selected variants of the image CAPTCHA are displayed in this win-
dow. The user selects one of them by clicking the respective radio button.
There is also a possibility to specify and fix the keyword of the challenge or
the class of the reference image explicitly by typing it to the newly appeared
text box bellow the radio button. The typed string specifying the class must
match one of the defined image classes (not synonyms), in arbitrary letter
case. If a nonexistent class is specified it is ignored. Fig. 3.1 shows this
window.
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3.3. GUI

Figure 3.1: Challenge type selection window

3.3.2 Challenge edition window

The user is able to edit the task by clicking the button in upper right corner of
the window. The button is dynamically generated depending on user’s actions
in previous window. A completely new challenge is generated if he did not
specify and fix the challenge class earlier, otherwise only a new payload is gen-
erated. In both cases the newly generated payload is completely independent
from the old one, it has a new random number of correct images with new po-
sitioning. The randomness is, of coarse, determined by Java’s pseudorandom
number generator and the size of a dataset. Following figures shows edition
windows of both challenge types. Note the different button labels in upper
right corner indicating its functionality according to fixation of the class.
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Figure 3.2: Keyword-specified
challenge edition window

Figure 3.3: Reference image-
specified challenge edition window

3.3.3 Solvers window

Every challenge holds its set of applicable solvers which is now presented to
the user in a check box tree view hierarchy. Figures 3.4 and 3.5 show the
difference between the two types of challenges and their available solvers.
After clicking the Proceed button a computation is initiated and a dialog win-
dow appears showing a time estimation and a progress bar. When the process
is done the results are displayed automatically in the results window.
One should bare in mind that selecting many solvers results in a long com-
putation time, user is therefore presented with a dialog informing about the
progress to avoid it being mistaken for a computer lag. There is also a pos-
sibility to stop the computation anytime with a button. In that case the
application cancels the computation and returns to the selection of solvers.
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3.3. GUI

Figure 3.4: Keyword-specified
solvers window

Figure 3.5: Reference image-
specified solvers window

If a solver supports additional parameters, they may be edited by righ-
clicking the row of the solver in the list. This action opens a dialog window
allowing setting values to offered parameters as seen in fig. 3.6.
This functionality rather serves as a demonstration though and is currently
only available for my custom implementation of KNN classifier.

Figure 3.6: Dialog allowing parameters setting for included KNN classifier

3.3.4 Results window

Results are graphically displayed in a scrollable window along with their re-
spective information and an accuracy mark. This may serve as a good com-
parison of different models or as a benchmark for newly added one.
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Besides that, every item shows the generated CAPTCHA with a graphical
interpretation of the result. Images highlighted by a green filter are those
selected by the solver as equivalent to the challenge task. Images in green
frames represent actual correct solution of the challenge. Figure 3.7 shows an
example of a populated result window.

Figure 3.7: Populated result window of a solved keyword-specified challenge

Evaluation of accuracy of challenges specified by a reference image is
tightened by an additional condition. If the solver classifies the reference
image in the challenge incorrectly, its accuracy is automatically set to 0% and
the program proceeds to next solver. Incorrectly classified reference image is
then highlighted with red filter in the results window.
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Chapter 4

Experiments

Selected classifiers were tested in iterations on challenges of all image classes
in order to determine which performs best and would be therefore suitable for
breaking real-world challenges. Results of this experiment are carried out in
this chapter.

4.1 Testing process

Every classifier was executed in ten iterations for each of currently defined
image classes. This process was applied only on challenges specified by a
reference image. The reason for this is explained later in the chapter. An
arithmetical averages of their individual rounded accuracies in percents for
both challenge types combined were then calculated. Results are presented
in following table (names of services are written in shortened form for space
efficiency).

The results showed that the best average result across all image classes
was achieved simultaneously by Google’s and Clarifai’s models which both
reached approximately 93% precision.

The KNN classifier is in the current version of the prototype only applic-
able on challenges specified by a reference image. This restriction was created
on purpose for reasons explained in 2.5. Tests of all other classifiers were
performed only against this type as well, because otherwise those classifiers
would have a clear advantage. Failing to classify a reference image correctly is
followed by setting 0% accuracy mark to the solver and canceling its further
solving process. This mechanism was already mentioned in 3.3.4.
Slightly better results were achieved using setting the parameter K to values
higher than 20. The improvement was not significant enough to be mentioned
in more detail though. Applying different distance function to the measure-
ments did not result in a notable improvement either.
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4. Experiments

Google Watson Microsoft Clarifai Imagga KNN

CAT 97 91 86 96 92 2

CAR 89 83 79 90 85 3

DOG 96 93 85 96 93 2

BIRD 95 89 84 94 92 5

BOAT 93 92 82 92 89 6

BUILDING 90 84 80 91 87 0

FACE 92 85 78 92 89 0

FLOWER 94 85 80 95 93 4

HORSE 93 83 84 93 92 3

TREE 87 86 82 90 90 7

overall precision 93 87 82 93 90 18

Table 4.1: Precisions achieved solving keyword-specified challenges

4.2 Evaluations

This experiment proved, according to initial hypothesis, that an image clas-
sifying method based on the image’s color features is not suitable for image
recognition and unusable in practice. The poor results of the KNN classifier
clearly imply that extraction of the defining features from inputs is one of
the key factors determining accuracy of the method. It, however, served as
a counterpart to the other methods and provided some insight to basics of
machine learning.
The results received upon testing are slightly biased by simplified testing con-
ditions, since the image classes defined in this project are more easily re-
cognizable than those currently used in real-world CAPTCHA challenges. In
practice, real challenges are intentionally designed to contain classes of images
that are difficult to recognize by even the most advanced models of today.
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Conclusion

The goal of this theses was to point out weaknesses of image-based CAPTCHA
system by breaking them with algorithms of artificial intelligence. A research
of the topic was provided and possible solutions were examined. The most
successful algorithms, revealed in an experiment, may pose a thread for cur-
rent image-based challenges. A desktop application, designed as a framework
allowing addition and comparison of image recognition algorithms, was suc-
cessfully developed and tested. Also, for purposes of generation of CAPTCHA
challenges, a large dataset of images was collected and incorporated to the pro-
ject in a way allowing its further expansion. A creative process of this thesis
also contributed to author’s knowledge in areas of machine learning which will
become useful in later studies.

Future work

I envision this project to become a benchmark for testing various image clas-
sifiers against currently used types of CAPTCHA challenges. It provides a
foundation which might be further extended, possibly in a master’s thesis, to
encompass future types of CAPTCHA.
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Appendix A

Acronyms

API Application programming interface

CAPTCHA Completely automated public Turing test to tell computers and
humans apart

GUI Graphical user interface

GPU Graphics processing unit

KNN K nearest neighbors

ANN Artificial neural network

CNN Convolutional neural network

DBN Deep belief network

RBM Restricted Boltzmann machine

ReLU Rectified linear units

JSON JavaScript object notation

URL Uniform resource locater
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Appendix B

Contents of enclosed CD

readme.txt ....................... the file with CD contents description
javadoc.........................documentation of the application code
DATASET ..................................... the directory of a dataset
src....................................the directory of all source codes

project....................the directory of application source codes
script ............................... the directory of helper scripts
thesis..............the directory of LATEX source codes of the thesis

text..........................................the thesis text directory
thesis.pdf...........................the thesis text in PDF format
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