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Abstrakt

Diplomová práce se zabývá lokalizaćı pre-arytmogenńıch marker̊u, které jsou
př́ıtomny v elektrokardiogramech (EKG) dlouho před t́ım, až jednu hodinu,
než nastouṕı život ohrožuj́ıćı arytmie. Jsou použita EKG data ze zv́ı̌rećıho
modelu (kráĺık). Informace skryté v EKG neviditelné pouhým okem ( a
to i kardiologem) mohou být odhaleny použit́ım speciálńıch matematických
metod, které měř́ı informačńı obsah a jsou často použ́ıvány v komplexńıch
systémech. Různé algoritmy a techniky strojového učeńı jako třeba Sup-
port Vector Machine, k-nejblizš́ıch soused̊u, Random Forest, logistická re-
grese, v́ıcevrstvý perceptron, Group Method of Data Handling a ensemble
učeńı budou testovány a výsledky diskutovány. Výstup této práce může silně
ovlivnit klinický výzkum, a pokud bude práce úspěšná, pak může pomoci
zachránit mnoho život̊u.

Kĺıčová slova EKG, časové řady, arytmie, zv́ı̌rećı model, predikce, klasi-
fikace, strojové učeńı, Random Forest, Support Vector Machine, logistická
regrese, k-nejblizš́ıch soused̊u, v́ıcevrstvý perceptron, group method of data
handling, ensemble učeńı
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Abstract

The thesis is focused on localization of pre-arrhythmogenic features that are
present in electrocardiograms (ECGs) a long time, up to one hour, before the
life-threatening arrhythmias occur. ECG data from an animal model (rabbits)
are used. Information hidden in ECGs, which is not visible by a naked eye
(even by cardiologists), can be revealed using special mathematical techniques
that are measuring information content and that are often used within com-
plex systems. Different machine learning algorithms and approaches such as
Support Vector Machine, k-nearest neighbors, Random Forest, logistic regres-
sion, Multilayer Perceptron, Group Method of Data Handling and ensemble
learning will be tested and the results will be discussed. The outcome of this
work can have a great impact on clinical research, and if successful, it can
help to save many lives.

Keywords ECG, time series, arrhythmia, animal model, prediction, classi-
fication, machine learning, Random Forest, Support Vector Machine, logistic
regression, k-nearest neighbors, multilayer perceptron, group method of data
handling, ensemble learning
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Chapter 1
Introduction

This section describes history of data analysis resulted in machine learning,
presents available input data and formulates goals of this work. For the ad-
vanced readers, there is a subsection 1.4 with direct links to the experiments.

This work is an integral part of research project on arrhythmia prediction
using Entropy Curves (ECs). Detailed description and reasoning for deriving
ECs was beyond this scope of this work. This work provides more accurate
predictions in data analysis using machine learning algorithms compared to
using ordinary statistical tools. The forthcoming project paper would include
theoretical base for ECs computation and would rely on this work for the
first-of-the-kind of ECs using machine learning algorithms.

1.1 History of data analysis and machine learning

People started analyzing relationships between input and output data (res-
ults) long time ago. To represent such relationships, a linear function and
later non-linear functions were used. Following the development of math-
ematical apparatus, researchers started using available tools to analyze data
by approximating into some function, which reflected the data characteristics
in the best way. This approach was called regression analysis and further
facilitated the progress in data analytics, which ultimately resulted in the ad-
vanced statistic methods with the subsequent creation of machine learning
algorithms. However, even with the establishment of the relevant theoretical
base, application of such algorithms to real data was impossible due to limited
capacity of human mind to process such complex data. The golden era of ma-
chine learning started with the progress in computer technology development,
which allowed using machine learning algorithms for real data analysis.

Nowadays machine learning algorithms are widely implemented in many
research spheres, including health care (e.g. analysis of ECGs).

1



1. Introduction

1.2 Overview of input data

The input data are entropy curves (ECs) (about 16) computed for each ECG
curve using different parameters. The most important of these parameters is L
parameter with 16 different values. There are 37 different ECG curves in total:
13 ECGs of the non-arrhythmogenic rabbits and 24 ECGs of the arrhythmo-
genic rabbits. The rabbits had anesthesia. All these data are real measure-
ments of the real rabbits. However, due to the abnormally high amount of
data obtained from ECGs, the original values of ECs computed for the ECGs
were averaged within five seconds. Figure 1.1 provides an example of several
ECs of arrhythmogenic and non-arrhythmogenic rabbits. Black vertical lines
indicate the starting moment when the rabbits receive drug infusions (further
referred to as Drug Infusion Initiation or DII). The used drug induces emer-
gence of arrhythmia in later times. Obviously, there are no more infusions
after rabbit’s death (in case of Figure with arrhythmogenic rabbit, the rabbit
became dead after the third DII).

Figure 1.1: Example of ECs with parameters 10, 30, 50 and 100 of (Top)
the arrhythmogenic rabbit (Bottom) the non-arrhythmogenic rabbit. Black
vertical lines indicate DII.

Different number of DIIs was used to induce arrhythmia as some rabbits

2



1.3. Goals

got arrhythmia and others didn’t. It is important to mention that all rabbits
had DIIs, even non-arrhythmogenic rabbits. However, those rabbits without
arrhythmia could survive. Further in the text, dead and alive rabbits are equi-
valent to arrhythmogenic and non-arrhythmogenic rabbits, i.e. those rabbits
which suffered from deadly arrhythmias and those which did not.

Each rabbit had so-called control interval before the first DII was applied.
These control intervals have different lengths, but approximately equal to ten
minutes (600 seconds). During the period of the control interval, all rabbits
were at rest and calm.

1.3 Goals

The goal of the work is to localize early markers on curves (or their combina-
tions) enabling to discriminate Entropy Curves (ECs) of rabbits that will have
arrhythmia from those without it. The intention is to test a whole range of
ML techniques against those data and find the most effective discriminating
technique(s). All measurements were performed on the real rabbits.

1.4 Advanced readers

The readers not interested in the provided theoretical background can pro-
ceed to the description of the conducted experiments 5, achieved results 6,
discussion of the achieved results 7 and the conclusion of this work 7.
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Chapter 2
Theoretical background

This chapter introduces and describes common terms of time series analysis
and machine learning which are important for this work. Then a review of
the used machine learning algorithms and approaches are provided.

2.1 Basic concepts of time series analysis

2.1.1 Stationarity of time series

The times series is stationary if its statistical properties (variance, mean etc.)
do not change with time. A good explanation of the time series stationarity
may be found in [10][1]. Figure below provides the examples of stationary and
non-stationary time series.

Figure 2.1: Stationary and non-stationary time series [1].
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2. Theoretical background

2.1.2 Differencing of time series

In general, differencing of time series is used to stabilize the mean and is often
used with log transformation that stabilizes the variance of time series.

y′t = yt − yt−1

The differenced time series is the change between consecutive values in the
original time series, and is expressed as:

y′′t = y′t − y′t−1 = (yt − yt−1)− (yt−1 − yt−2) = yt − 2yt−1 − yt−2

This expression defines first order differencing. Sometimes, the first order
difference is not enough and thus, the second order differencing is introduced
as follows:

In practice, it is almost never necessary to use higher level differences.
The main reason why transformations like differencing and log are com-

monly used is the fact that the majority of statistical forecasting methods are
based on the assumption that the time series is approximately stationary (real
data may almost never be transformed to completely stationary time series).

2.1.3 Energy of time series

Energy of time series is expressed as the sum of the squares of each element
in this time series:

Energy(X) = ||x||2 =
N∑

i=1
x2

i

where x is time series (x1, x2. . . , xN )

2.2 Basic concepts of machine learning

Machine learning and artificial intelligence solutions may be classified into two
categories: “supervised” and “unsupervised” learning to analyze data. It is
clear in our case we are dealing with supervised method as there are already
classified ECGs either as arrhythmogenic or non-arrhythmogenic.

2.2.1 Supervised and unsupervised methods of data analysis

2.2.1.1 Supervised methods

In supervised learning, a random sub-sample of all records is taken and is
manually classified. Relatively rare events may need to be over sampled to
get a large enough sample size. The manually classified records are then
used to train a supervised data analysis algorithm. After a model based on
the training data is developed, the algorithm should be able to classify new
records using the given trained labels.

6



2.2. Basic concepts of machine learning

2.2.1.2 Unsupervised methods

In contrast, unsupervised methods help to analyze data that has not been
classified previously (there is no error or reward signal), namely, the data
or actions are novel and are recognized as potentially satisfying some new
category or another already identified category during the analysis. These
methods simply seek those samples which are most dissimilar from the norm
and then can be examined more closely. Outliers are a basic form of non-
standard observation. Tools used for checking data quality can be used for
the detection of accidental errors.

2.2.2 Features

Feature in machine learning is a measurable (nominal or categorical) charac-
teristic of the observed phenomenon (e.g. subject, event etc.). Fox example,
any human has the following features: age (nominal), salary (nominal), nation-
ality (categorical) and many more others. Several features may be considered
as a feature vector.

2.2.2.1 Standardization and normalization of features

In many cases, the input data contain nominal features at different scales,
e.g. salary (10000-45000$), size of family (1-10) and age (0-140). Without
preprocessing, a feature with wide distributions of values (salary) will domin-
ate and an algorithm will be unable to learn properly from the features with
compact distributions of values (family size, age) despite of the fact that these
features may be the most discriminative. Some machine learning algorithms
such as Decision Tree, Random Forest or Extra-Trees 2.3.7 do not depend on
the feature scales and work correctly without feature rescaling, however, many
others machine learning algorithms such as SVM 2.3.5, k-NN 2.3.4, logistic
regression 2.3.1 and neural networks 2.3.2 are unable to handle features at
different scales properly.

Standardization and normalization are common techniques for feature res-
caling. Normalization is a process of scaling individual samples to have unit
norm and is expressed as:

normalize(V ) = V

|V |

where V is a vector (v1, v2, . . . , vn), |V | is the vector norm (also known as
L2 norm) of V and is expressed as

|V | =
√
v2

1 + v2
2 + ...+ v2

n

Standardization refers to the following approaches:

• scaling features to a range

7



2. Theoretical background

• scaling features to zero mean and unit variance (similar to Gaussian
distribution)

The second case will be described in detail: considering feature m, std(m)
as standard deviation of feature m, mean(m) as mean value of feature m, n
data samples X = (x1, x2, . . . , xn) and xi(m) as value of feature m in sample
xi, scaling m to zero mean and unit variance may be performed as follows:

scale(xi) = xi(m)−mean(m)
std(m)

2.2.3 Classifier

In supervised machine learning, a classifier is an output of a learning algorithm
that was trained using the training samples. In other words, a classifier is a
model that describes relationships between the training samples and, given
new samples, returns output based on the learnt relationships.

In mathematical terms, a classifier is a hypothesis about the true (often
unknown) function f :

Y = f(X)

where X is a set of input variables and Y is a set of the appropriate true
outputs for X.

There are two phases of classifier’s life cycle:

• Learning phase

• Evaluation phase

During the learning phase, the selected learning algorithm is trained on
the input data and classifier is constructed as a result. During the evaluation
phase, the already constructed classifier is used to predict output of new data.

2.2.4 Objective function

During the learning phase, a classifier optimizes so-called objective function.
This function may be minimized or maximized depending on the researcher’s
goals. In case of supervised learning and minimization, the objective function
is called cost function (also known as loss function or error function) and
may be defined as the difference (e.g. absolute value of difference or squared
difference etc.) between the computed classifier’s output and the true output
of the input samples. Another example of the objective function is a fitness
function in evolutionary algorithms.

8



2.2. Basic concepts of machine learning

2.2.5 Cross validation

Cross validation is a technique for estimating generalization accuracy on the
independent data set. This technique divides data into the determined number
of the unique subsets (so-called folds) with subsequent testing performance of
a machine learning algorithm on each fold while the algorithm is training on
the data in the remaining folds. The final performance of the algorithm is the
average performance across all cross validation iterations. Figure 2.2 1 illus-
trates the process. The abovementioned case refers to k-fold cross validation
where k is a number of folds, however, there are other modifications of cross
validation technique such as:

• Leave-p-out cross validation use p observations for testing and use re-
maining observations for training until all observations were used for
testing

• Leave-one-out cross validation is an extreme case of leave-p-out cross
validation where p = 1

Figure 2.2: Example of 4-fold cross validation

2.2.6 Regularization

Regularization introduces additional information to the objective function (op-
timization of this objective function is the main goal of machine learning al-
gorithm) in order to improve generalization accuracy and to prevent overfitting
of the machine learning algorithms. Regularization in terms of this work was
denoted as C: the smaller is C, the strongest is regularization. The value of
C parameter is a trade-off between classifier performance on the training data

1https://en.wikipedia.org
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2. Theoretical background

and the simplicity of the objective function. Figure 2.3 illustrates the case
where two functions model the data with zero loss, however, the regularized
green function is simpler and provides better generalization accuracy on the
given data.

Figure 2.3: Regularization example: green function is regularized and blue
one is not [2].

2.3 Overview of the used machine learning
algorithms

This section contains descriptions of used machine learning algorithms. De-
scription of each algorithm consists of basic and important features and prop-
erties of the described algorithm with regard to binary classification.

2.3.1 Logistic regression

Logistic regression, or logit regression, or logit model [11][12], is a regression
model where the dependent variable is categorical and is determined by fea-
tures. Similar to other types of regression analysis, logistic regression is a
method of predictive analysis. Logistic regression is used to describe data
and to explain the relationship between a dependent variable and one or more
input (explanatory) variables (nominal, ordinal etc.). Logistic regression is
mainly divided into the following two groups: binary (binomial) in case of two
dependent variables (pass/fail, win/lose etc.) and multinomial in case of more
than two dependent variables. The first type (binary) will be discussed be-
low as it completely satisfies our goal of detecting arrhythmogenic ECG from
non-arrhythmogenic one.

The binary logistic model is used to estimate the probability of a binary
response based on one or more predictor (or independent) features using a lo-
gistic function, which is the cumulative logistic distribution. Binary responses
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(cases) are assumed to be independently distributed, i.e. independent. Lo-
gistic regression assumes that the dependent variable (binary response) is a
stochastic event.

Logistic regression is named so because it uses standard logistic function
δ(t), which refers to sigmoid function type defined as follows for any real input
t:

δ(t) = 1
(1 + e−t)

where δ(t) lies in interval (0, 1). A graph of the logistic function within interval
[−6, 6] is shown on Figure 2.4.

Figure 2.4: The standard logistic function

Let us assume that t is a linear function of two input variables (features)
x1 and x2. Then t may be expressed as:

t = B0 +B1x1 +B2x2

where B is a regression coefficient. Thus, the logistic function may now be
written as:

X = (x1, x2)

F (X) = 1
1 + e−(B0+B1x1+B2x2)

F (X) is the probability that the dependent variable equals a case (“suc-
cess”), given some linear combination of the predictors. The formula for F (X)
illustrates that the probability that the dependent variable equals a case (“suc-
cess”) is equal to the value of the logistic function of the linear regression
expression. This is important as it shows that the value of the linear re-
gression expression may vary from negative to positive infinity and yet, after
transformation, the resulting expression for the probability F (X) takes values
between 0 and 1.

For example, if we analyze a pesticide’s kill rate, the outcome event is
either killed or alive. Since even the most resistant bug can only exist in one
of these two states, logistic regression defines a likelihood of the bug getting
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killed. If the likelihood of killing the bug is > 0.5 it is assumed dead, if it is
< 0.5 it is assumed alive.

The regression coefficients are usually estimated using maximum likelihood
estimation (MLE) rather than ordinary least squares (OLS) method. In gen-
eral, for a fixed set of data and underlying statistical model, the method of
MLE selects the set of values of the model parameters that maximizes the
likelihood function. Intuitively, this maximizes the “agreement” of the selec-
ted model with the observed data, and for discrete random variables it indeed
maximizes the probability that the resulting distribution properly reflects the
observed data.

2.3.2 Neural networks

Artificial Neural Networks (ANNs, or simply Neural Networks as NNs) are
inspired by the structure and functional aspects of biological neural networks.
NNs are a computational approach used in computer science and other re-
search disciplines, which is based on a large collection of neural units (artificial
neurons) loosely mimicking the way a biological brain solves problems. ANN is
an adaptive system that is able to learn by adapting its connectivity patterns
during the learning phase. In biological neural systems, neurons of similar
functionality are usually organized in separate areas (or layers). Often, there
is a hierarchy of interconnected layers with the lowest layer receiving sens-
ory input and neurons in higher layers computing more complex functions
[13][14][15]. Figure 2.3.2 illustrates the point clearly. A short summary of
neural networks follows.

Hierarchical ANN contains the following layers:
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• Input

• Hidden (this layer may consist of many layers of hidden neurons rather
than just one layer, or even does not exist at all)

• Output

Figure 2.5 provides an example of ANN.

Figure 2.5: A hierarchical Artificial Neural Network [3]

ANN is typically defined by three types of parameters:

• The interconnection pattern between the different layers of neurons or
neurons themselves.

• The weights of the interconnections, which are updated as part of the
learning process (and thus, represent memory of ANN).

• The activation function that converts a neuron’s weighted input into its
output.

2.3.2.1 How ANNs works

Artificial Neural Networks basically have two operation phases:

• Adaptive (learning/training phase), where a network learns from data.

• Active (evaluation phase), where a network evaluates data.

ANNs are built from artificial neurons (also named as neurons, units, nodes).
Basically, each neuron receives input from one (many) other neuron(s). Then
this neuron changes its internal state (activation) using the appropriate ac-
tivation function based on the current input and then sends the same output
signal to one (many) other neuron(s).

In most cases, an activation function is a non-linear function such as Heav-
iside step function or a sigmoid function. It is important to keep in mind that
different neurons may have different activation functions.
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The strength of a connection, whether it is excitatory or inhibitory, de-
pends on the state of synapses (i.e. on the weights) of the receiving neuron.
NN achieves learning by adapting the states of its synapses (weights of the
connections). Figure 2.6 shows a typical artificial neuron. A neuron input

Figure 2.6: An artificial neuron

signal is expressed as follows:

neuroni(t) =
n∑

j=0
wi,j(t)xj(t)

And output signal is expressed as:

yi = fi(neuroni(t))

where fi is an activation function of neuron i.
As soon as network output signal has been defined, it is necessary to

estimate an error using a loss function 2.2.4.

2.3.2.2 Backpropagation

The backward propagation of errors or backpropagation [13][16] is a common
method of training artificial neural networks and is used in conjunction with
an optimization method such as gradient descent. The algorithm repeats a
two phase cycle, propagation and weight update. When an input vector is
presented to the network, it is propagated forward through the network, layer
by layer (see Figure 2.7), until it reaches the output layer. The output of the
network is then compared to the desired output, using a loss function, and
an error value is calculated for each of the neurons in the output layer (see
Figure 2.8). The error values are then propagated backwards, starting from
the output (see Figure 2.9), until each neuron has an associated error value
which roughly represents its contribution to the original output.
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Figure 2.7: Backpropagation: input propagation [4]

Figure 2.8: Backpropagation: final error computation, where y is a network
output and z is a true output [4].

Backpropagation uses these error values to calculate the gradient of the
loss function with respect to the weights in the network. During the second
phase, this gradient is used as part of the optimization method, which in turn
uses this gradient to update the weights (see Figure 2.10), in an attempt to
minimize the loss function.

There are three methods of updating network weights:

• On-line training

• Batch training

• Mini-batch training

The abovementioned text and Figures in this section illustrate the case of
on-line training where weights are updated after propagation of each training
sample. During the batch training, weight changes are accumulated over all
training samples (so-called epoch, i.e. all samples were propagated through the
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Figure 2.9: Backpropagation: backward error propagation [4]

network) and only then weight updating is performed. The mini-bath training
defines some number n, which is the number of training samples for epoch,
and then the same strategy as in the batch training is performed. The mini-
batch training with n = 1 is actually the on-line training. It is important to
note that Wilson and Martinez in their paper [17] in 2003 demystified widely
spread delusion that batch training is faster than on-line training in terms of
convergence speed, moreover, they proved the opposite.

Coefficient η affects network’s teaching speed (step size or learning rate).
In other words, the coefficient affects readiness of the network to accept
changes: if it is low, then the neural network changes its internal state slowly
and more epochs (forward and backward passes of all training samples, i.e.
backpropagation cycles) are required to achieve the optimum, and if it is high,
then the network changes its internal state so fast that it begins to straggle
around the optimum without confidence in achieving it.

The importance of the backpropagation process is that, as the network is
trained, the neurons in the intermediate layers organize themselves in such
a way that the different neurons learn to recognize different characteristics
of the total input space. After training, when an arbitrary input pattern is
present and contains noise or is incomplete, neurons in the hidden layer of
the network will respond with an active output if the new input contains a
pattern that resembles a feature that the individual neurons have learned to
recognize during their training.

Backpropagation requires a known, desired output for each input value in
order to calculate the loss function gradient – therefore, the method is usu-
ally viewed as a supervised learning method; nonetheless, it is also used in
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Figure 2.10: Backpropagation: Updating weights [4]

some unsupervised networks such as autoencoders in deep learning. Back-
propagation requires the activation function used by the artificial neurons to
be differentiable. Sigmoid functions completely satisfy this condition.

2.3.2.3 Multi-Layer Perceptron (MLP)

MLP uses supervised learning that means it can be applied to our problem
of distinguishing arrhythmogenic ECG from non-arrhythmogenic one without
any additional actions as we have already labeled data. It also means that
backpropagation may be used for minimizing the loss function.

MLP consists of multiple layers of nodes (neurons) in a directed graph
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with each layer fully connected to the next one (see Figure 2.11). Each neuron
has an activation function according to differentiation condition of activation
function in backpropagation. MLP may distinguish data that is not linearly
separable.

Figure 2.11: Multilayer perceptron [5]

2.3.2.4 Group Method of Data Handling (GMDH)

Group method of data handling (GMDH) was proposed in 1968 by Prof.
Alexey G. Ivakhnenko in the Institute of Cybernetics in Kiev. GMDH rep-
resents a set of inductive algorithms for computer-based mathematical model-
ing of multi-parametric datasets that features fully automatic structural and
parametric optimization of models. These algorithms are characterized by
inductive procedure that performs sorting-out of gradually complicated poly-
nomial models and selects the best solution by means of the so-called external
criterion. A good overview of GMDH development process and algorithms
may be found in [18]. Modifications of GMDH may be effectively used in the
variety of problem domains such as the time series forecasting [19] and EEG
signal classification [20]. A short summary of GMDH approach is provided
further in the text.

The main difference between GMDH neural network and other NNs is
that it is constructed by induction (sometimes called self-organization) and
has only one output: optimal polynomial that approximates input data. That
is the reason why GMDH NN is also called polynomial neural network and
why it belongs to parametric neural networks. GMDH NN is a feedforward
neural network and it uses supervised learning.

The main properties of GMDH neural network are:

• It is constructed from the minimal form to the final one step by step.

• Each neuron has exactly two input values.
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• Each layer consists of all possible pairwise combinations of values of the
previous layer, but we select only limited amount of these combinations
(neurons) based on the external criterion (for example, k best neurons).

• Its parameters are set during learning phase.

• Perspective neurons survive.

• External criterion indicates when network construction must be stopped.

General relationship between input and output variables of neuron may be
expressed by Volterra functional series, discrete analogue of which is Kolmogorov-
Gabor polynomial:

Y (x1, .., xn) = a0 +
n∑

i=1
aixi +

n∑
i=1

n∑
j=i

aijxixj +
n∑

i=1

n∑
j=i

n∑
k=j

aijkxixjxk + ...

where X(x1, x2, . . . , xn) is vector of input variables and A(a1, a2, . . . , an) is
vector of coefficients or weights. It may also be expressed by Ivakhnenko
polynomial for an individual neuron (see Figure 2.12) in layer k:

yk = ak(ik−1)2 + bk(ik−1)(jk−1) + ck(jk−1)2 + dkik−1 + ekjk−1 + fk)

Figure 2.12: An individual neuron in GMDH

Figure 2.13 shows an example of GMDH NN with survived/dead neurons,
where an approximation function g is expressed as:

g : Rn → R

where n is a number of input variables (in case of Figure 2.13 it is 4).
External criterion is one of the key features of GMDH. The criterion de-

scribes requirements for the model (a subset of the connected neurons, so-
called partial model), for example minimization of least squares. The criterion
is always calculated using a subsample of data that has not been used for es-
timation of coefficients (training data set), i.e. so-called validation data set.
Criterion of Regularity (CR) is the most popular criterion. CR is expressed
as least squares of a model on the validation data set:

CR = argmin
1
NB

NB∑
i=1

(yi − ŷi(A))2
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Figure 2.13: (Top) An example of GMDH NN with survived/dead neurons [6]
(Bottom) GMDH Optimal complexity [3]

where where NB is a number of samples in validation data set B, yi is the
true output, ŷi is the model output for samples in B and the model is trained
on the train data set A.

The best model during the training phase (i.e. partial model) is indicated
by the minimum of the external criterion characteristic. This minimum CR
is used as stop criterion in the following way: if CR of the best model in the
next layer is greater than the current best one, it is time to stop network
construction in the current layer (see Figure 2.13). Complexity of model is
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defined as a number of layers.

2.3.3 Dynamic Time Warping (DTW)

Dynamic Time Warping (DTW) is a well-known algorithm for measuring sim-
ilarity (or dissimilarity from another point of view) of two time dependent
sequences, which may also vary in speed. DTW is based on the Levenshtein
distance (also known as edit distance) and was originally introduced for speech
recognition [21] as Euclidean distance could not help in case of time depend-
ent sequences. Euclidean distance does not take into account the shape of
compared sequences, but only distance between their points at the same time.
On the other side, DTW algorithm computes an optimal match between two
given sequences by aligning them to each other and thus, the algorithm con-
centrates on the shape similarity of the sequences. Figure 2.14 illustrates such
alignment of two sequences by DTW.

Figure 2.14: Alignment in Dynamic Time Warping [3]

The following text describes in more details how DTW works [21][22].
Suppose there are two sequences C = (c1, . . . cn) and Q = (q1, . . . qm), where
c and q are so-called features, n and m are lengths of C and Q respectively.

In order to align sequences C and Q, it is necessary to compute a cost
matrix of size n ∗ m. This matrix is computed using Levenshtein distance
approach as follows:

• First row

cost matrix(1, j) =
j∑

k=1
d(c1, qk)

• First column

cost matrix(i, 1) =
i∑

k=1
d(ck, q1)
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• All other elements

cost matrix(i, j) = min

{ cost matrix(i− 1, j) + d(ci, qj)
cost matrix(i, j − 1) + d(ci, qj)

cost matrix(i− 1, j − 1) + d(ci, qj)

A distance d(ci, qj) between two points ci and qj was originally defined
as d(ci, qj) = |ci − qj |[21], but it may also be Euclidean distance d(ci, qj) =
(ci − qj)2 or another distance metric. A distance measure is also called local
cost measure or local distance measure and may be different (e.g. Manhattan,
Euclidean) as was mentioned previously. A selected distance measure must
be a function

d : F × F → R(≥0)

where F represents the space of features, R is the space of positive real num-
bers (including 0).

Typically, a distance between two points is small, when they are similar;
otherwise, the distance is greater. Example of the computed cost matrix is
shown on Figure 2.15.

Figure 2.15: Computed cost matrix with colored optimal warping path [7].

Some match P , so-called warping path, between two sequences is expressed
as a set of contiguous cost matrix elements (see Figure 2.15, red squares):

P = (p1, . . . , pk)

Warping path must satisfy several conditions:

• Boundary condition: p1 = (1, 1) and pk = (n,m), which means warping
path must be started in the beginning of both two sequences and must
be finished in the end of these both sequences.
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• Monotonicity: n1 ≤ n2 ≤ ... ≤ nk and m1 ≤ m2 ≤ ... ≤ mk, which
means no steps backward are made.

• Continuity: only adjacent cells are permitted (diagonal included).

Total cost of warping path is expressed as:

C(P ) =
k∑

i=1
pi

in case of Figure 2.15 with d(ci, qj) = |ci − qj | or

C(P ) =

√√√√ k∑
i=1

pi

in case of Euclidean distance, or other total cost function which reflects the
selected distance measure.

And optimal warping path is path with the minimum cost (see Figure 2.15).
Each element of the cost matrix corresponds to the alignment between two

appropriate points. If the sequences are equal or are very similar, the appro-
priate warping path coincides with diagonal. Otherwise, the path deviates
from diagonal. The following Figure 2.16 it clearly.

Figure 2.16: (Top-Left) Image contains two original sequences C and Q.
(Bottom-Left) An alignment between sequences C and Q. (Right) Cost matrix
for sequences C and Q [8].

DTW is a very powerful and accurate algorithm for comparing time de-
pendent sequences. However, the main disadvantage of this algorithm is its
poor O(n2) time complexity. Many modifications of the original DTW have
been developed in order to speed up this algorithm.

23



2. Theoretical background

2.3.3.1 Modifications of DTW

There are modifications of DTW [22] such as:

• Step size condition (continuity) determines which elements are considered
as adjacent so that only such elements are permitted.

• Local weights for multiplying the distance measures in order to favor
some direction (vertical, horizontal or diagonal). It is important to men-
tion that diagonal direction consists of vertical and horizontal directions
and thus, all their corresponding weights must be taken into account.

• Global constraints that determine a set of admissible warping paths and
thus, speed up the algorithm.

• Approximation (e.g. Piecewise DTW [23]), following the idea to divide
original time series into some parts (so-called frames) and afterwards
compute their mean. The vector of computed means is now a reduced
time series representation.

• Multilevel approach (FastDTW [24]), which works by:

– converting the time series into the lower resolution by grouping the
original elements into larger ones

– finding the minimum distance at this level
– subsequently restoring the original resolution of the grouped ele-

ments based on the identified warp path
– identifying minimum warp path locally within each group of ele-

ments

• Subsequence DTW [22] finds a subsequence within a longer sequence
that optimally fits the shorter sequence.

A modification of DTW with global constraints will be discussed below
as the most common and widely used variation. This variation is used to
impose constraints on the admissible warping paths. This approach speeds up
DTW and, moreover, prevents pathological alignments by globally controlling
the route of warping path. A warping window (or global constraint region)
specifies region with admissible warping paths (denoted as r and represented
as two parallel straight lines in Figure 2.16). Warping window may be specified
as percentage of the length of the longer sequence. It is interesting to mention
that the Euclidean distance between two sequences may be interpreted as a
special case where r = 0%. Two well-known types of constraint regions are
Sakoe-Chiba band and Itakura parallelogram (See Figure 2.17). It is necessary
to mention that an optimal warping path may not be a part of the used
constraint region.
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Figure 2.17: Constraint regions (warping windows) in DTW [9].

2.3.3.2 Three myths about DTW

In 2005, Ratanamahatana and Keogh in paper [25] have demystified three
widely spread delusions about DTW. A short summary of their work is provided
below:

• Comparison of sequences of the different lengths and reinterpolating
them to equal length produces no statistically significant difference in
accuracy or precision/recall.

• Larger constraints on the used warping window do not improve accuracy
or precision/recall. Actually, 10% constraint on warping window is too
large for real world data processing.

• No improvements in the DTW speed are required as it is O(n) with a
simple lower bounding technique (4S, see the abovementioned paper for
more details).

2.3.4 k-Nearest Neighbors (k-NN)

k-Nearest Neighbors (k-NN) algorithm is a supervised machine learning al-
gorithm. It is popular among researchers and is commonly used for classifica-
tion tasks; thus, it may help us in classification of ECGs. This algorithm may
be also used for regression tasks, but due to its specifics, it is more natural
to use the algorithm in classification. Simplicity, accuracy and only one para-
meter k make this algorithm a great choice for many cases. The description
of the algorithm’s behavior in accordance with classification tasks is given
further in the text.

The idea of k-NN algorithm is to find k nearest neighbors of a given new
sample using some measure of the distance (e.g. Euclidean). Then the pre-
dicted class is determined by majority vote of these neighbors. The contribu-
tion of each neighbor to the prediction may also be weighted in such a way
that the closest neighbors take bigger weights. In case of Euclidean distance,
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the weights may be computed as

wi = 1
d(i, a)

where a is a new given sample, and d(i, a) is Euclidean distance between a
and i-th element in the training data set.

Training phase of k-NN algorithm consists of storing given training data
set with the appropriate true outputs for each sample in this data set. During
the evaluation phase, the algorithm uses k nearest neighbors for prediction as
was described above. The following Figure 2.18 2 illustrates k-NN algorithm.

Figure 2.18: k-NN algorithm with data of the two features x1 and x2. (k = 3)
A new sample (star) is predicted as class B. (k = 6) A new sample is predicted
as class A.

However, there are two main disadvantages of this algorithm:

• Its sensitivity to noise in given training data: with growing noise, larger
quantities of nearest neighbors are required for the accurate prediction.
However, it still cannot guarantee accuracy, if the nearest neighbors are
noisy.

• Its dependency on the size of the training data: time for finding the
defined amount of nearest neighbors grows with the increasing size of
the training set (which is unacceptable in case of millions and more
training samples).

Many modifications of k-NN have been made in order to get rid of these
weaknesses. Some of them are:

2http://bdewilde.github.io/blog/blogger/2012/10/26/classification-of-hand-
written-digits-3/
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• SMART-TV [26] for dealing with high-dimensional datasets (high amount
of features).

• k-NN ensemble classifiers exploiting algorithm’s instability on a set of
input features [27]

• DB-kNN, V-kNN, W-kNN, CB-kNN [28]

Dynamic Time Warping (DTW) similarity measure, which was described
in this work earlier, may be used as a distance measure for k-NN algorithm.
Surprisingly, k-NN with DTW is a very robust classifier for time dependent
sequences and, it is extremely hard to beat this combination as was shown in
[8]

There is also an advantageous approach for measuring similarity of mul-
tivariate time series using k-NN algorithm [29]. It uses a similarity measure
Eros (extended frobenius norm), an index structure Muse (multilevel distance-
based index structure for Eros) and a feature subset selection technique Ropes
(recursive feature elimination on common principal components for Eros). Re-
search conducted in this paper shows that this approach outperforms k-NN
with DTW in precision/recall by a minimum of 6.5% and also takes less time.

2.3.5 Support Vector Machine (SVM)

Support Vector Machine (SVM) is a supervised machine learning algorithm
for both classification and regression tasks. The main idea of SVM is to map
the input vectors into some high dimensional feature space through predefined
non-linear mapping. In case of classification in this created high dimensional
space, a linear decision surface (so-called hyperplane) is constructed with spe-
cial properties that ensure a high generalization ability of SVM [30]. A short
summary of the concept follows.

SVM algorithm is based on constructing an optimal hyperplane with the
maximal margin between so-called support vectors. Support vectors are se-
lected from the training samples in the boundary region of the two classes.
Another important thing is that the number of the used support vectors is
small in comparison to the size of training data set. Figure 2.19 3 illustrates
the optimal hyperplane and support vectors (they are colored).

If the input data are linear separable, then SVM algorithm (so-called linear
SVM ) searches for the optimal hyperplane in the unchanged feature space of
the input data. However, in the case the input data are linear non-separable,
SVM maps the input data using so-called kernel function to the higher dimen-
sional feature space. The used kernel function must satisfy Mercer’s theorem
[31] and correspond to some type of inner product in the constructed high
dimensional feature space. One of the advantages of SVM is its universality

3http://docs.opencv.org/2.4/doc/tutorials/ml/introduction_to_svm/
introduction_to_svm.html
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Figure 2.19: The optimal hyperplane of SVM

as the algorithm allows using different kernel functions, which depend on the
researcher’s assumptions and problem domain.

Another advantage of SVM algorithm is its effectiveness in the high dimen-
sional feature spaces. Cortes and Vapnik in their paper [30] used a 7-degree
polynomial as kernel function (which resulted in the new constructed high
dimensional feature space with dimensionality approximately equal to 1016)
with SVM that was trained on the 7,300 samples. The number of the used
support vectors was 190 and the error rate was equal to 4.3%. This experi-
ment indicated no overfitting problems. However, it is important to note that
leave-one-out cross validation, which provides the basis for computationally
efficient model selection strategies, is prone to overfitting. Fortunately, Caw-
ley and Talbot in their paper [32] proposed regularization approach for dealing
with this problem.

SVM is widely used in many problem domains (e.g. ECG [33][34][35][36][37]
and EEG [38] classifications) and often outperforms other machine learning
algorithms.

Support Vector Machine is a powerful algorithm, but its computing and
storage requirements increase rapidly with the number of training vectors. The
core of SVM is a quadratic programming problem (QP), separating support
vectors from the rest of the training data. The time complexity of SVM is
O(max(n, d)∗min(n, d)2) according to [39] where n is number of samples and
d is number of features.

2.3.6 Ensemble Learning

Ensemble learning is an approach that allows constructing a set of classifiers of
learning algorithms and then classifying new samples by some kind of voting
of predictions of these classifiers.
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Dietterich [40] discovered that ensembles of classifiers are generally much
more accurate than the individual classifiers themselves. However, some as-
sumptions must be taken into account to make this statement possible, i.e.
individual classifiers of ensemble must satisfy the following two requirements
(from [40]):

• be accurate and

• be divers

An accurate classifier is the one that has an error rate better than just ran-
dom guessing on the new samples (i.e. error rate < 50%). The two classifiers
are diverse if they make different errors on the new samples.

The importance of diversity and accuracy will be described using the fol-
lowing example. Assume there are three classifiers with the same error on
some sample x and thus, the outputs of these classifiers are the same, i.e. the
classifiers are identical (not diverse). It is clear that the ensemble approach
is useless in this case as all classifiers always vote for the same output. On
the other hand, if the classifiers make different errors on some sample x, the
outputs may vary and thus, the output with most votes wins (majority vote).
Now let us consider account accuracy of the used classifiers in addition to
their amount. If classifiers have accuracy less than random guessing (< 50%),
the voting result tends to converge to the wrong outputs with the increas-
ing number of classifiers. Otherwise, the voting result converges to the right
outputs.

The following Figure 2.20 [40] reflects the probability of wrong voting with
the increasing number of classifiers (21 in totals) with their error rate equal
to 0.3. Each classifier makes its errors independently of the others.

Figure 2.20: The number of used classifiers in ensemble vs the probability of
error
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Moreover, in practice, there are three fundamental reasons why construc-
tion of the good ensembles is possible [40]. These reasons are:

• Statistical

• Computational

• Representational

These three reasons will be shortly described in the text below. The follow-
ing Figure 2.21 [40] illustrates the abovementioned reasons. The inner curve
defines a set of classifiers with a good enough accuracy based on the training
data. The point labeled f is the true classifier.

Figure 2.21: Three fundamental reasons why an ensemble may work better
than a single classifier

2.3.6.0.1 Statistical reason Learning algorithms may be viewed as search-
ing a space H of classifiers in order to identify the best classifier in this space.
The statistical problem arises in case of a too small training set as the data is
not enough to construct a strong classifier and thus, many different classifiers
with the same accuracy may be found. The risk of selecting the wrong clas-
sifier will be reduced by constructing an ensemble of classifiers out of these
identified classifiers of the same accuracy and “averaging” votes (or majority
vote) of classifiers in this ensemble.
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2.3.6.0.2 Computational reason Assume there is enough training data
so that the statistical problem is absent. In this case, finding the best classifier
may still be a problem as many learning algorithms work by performing some
form of local search and thus, they may get stuck in local optima (e.g. gradient
descent in neural networks, greedy splitting rule in decision trees). Optimal
training is impossible in case of neural networks and decision trees as it is
NP-Complete problem [41] [42]. Thus, an ensemble constructed by classifiers
that run the local search from many different starting points may provide a
better approximation to the true function than any individual classifier.

2.3.6.0.3 Representational reason The representational problem arises
when a learning algorithm is unable to represent the true function by any
classifier in H, what frequently occurs in case of real data. It is possible
to expand a space of representable functions by forming weighted sums of
classifiers from the space H. However, the main assumption in this case is
that H is an effective space of all possible classifiers of a learning algorithm for
a given training data. This assumption must be taken into account primarily
for learning algorithms that have possibility to represent any true function,
given enough training data (e.g. neural networks, decision trees).

2.3.6.1 Methods for constructing ensembles

In this subsection general methods [40] for constructing ensembles that may be
applied to different learning algorithms for classification task will be discussed.

2.3.6.1.1 Manipulating the input features
This general technique for generating multiple classifiers assumes a manipu-
lation of the input features of the available data. In 1996, Cherkauer [43] in
his work describes identification of volcanoes by ensemble of neural networks
with grouping features, which were based on different image processing oper-
ations. The resulting ensemble classifier was as good as the prediction made
by human experts.

However, it is obvious that this technique works only in case of highly
redundant input features, because some features typically will not be used
when grouping occurs.

2.3.6.1.2 Manipulating the output targets
This technique is used for constructing good ensembles by manipulating the
true outputs of the input data. The main assumption is that the number
of classes K is large. Then new learning problems can be constructed by
randomly partitioning the K classes into two subsets A and B. The input data
can then be relabeled so that any of the original classes in set A are given the
derived label 0 and the original classes in set B are given the derived label 1.
This relabeled data is then given to the learning algorithm, which constructs
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a classifier. By repeating this process L times (generating different subsets A
and B) an ensemble of L classifiers is obtained [40].

Now given a new data point x, each classifier predicts its class. If a pre-
diction is 0, then each class in A receives a vote. If a prediction is 1 then each
class in B receives a vote. After each of the L classifiers has voted, the class
with the highest number of votes is selected as the prediction of the ensemble.

2.3.6.1.3 Manipulating the training examples
There are three main approaches how an ensemble of classifiers may be con-
structed in this case:

• Bagging (Bootstrap Aggregating)

• Boosting

• Stacking

These methods work especially well for unstable learning algorithms. Un-
stable learning algorithms are those whose output is significantly changing due
to small changes of their input. Such algorithms are neural networks, decision
trees and other rule-based learning algorithms.

2.3.6.1.3.1 Bagging
Bagging method is based on the independent classifiers learnt on the ran-
dom subset selection with repetition from the training set (so-called bootstrap
replicate) with subsequent voting of their outputs in order to get the best
probable output (majority vote). This method may be easily parallelized due
to independent nature of learning algorithms. Experiments by Dietterich [40]
have proved that Bagging outperforms AdaBoost in case of noise in data. The
following Figure 2.22 4 illustrates Bagging approach.

2.3.6.1.3.2 Boosting
Boosting method (e.g. AdaBoost) has a consecutive nature. The idea is that
the training samples with bigger error on the previous classifiers have more
chance to be selected as training data for the next classifier by modifying
samples’ weights. The ensemble output is a weighted (based on classifier
performance) average of the individual classifiers in ensemble. Figure 2.23 5

illustrates Boosting approach clearly.

4https://www.packtpub.com/mapt/book/big_data_and_business_intelligence/
9781783555130/7/ch07lvl1sec46/Bagging++building+an+ensemble+of+classifiers+
from+bootstrap+samples

5http://vinsol.com/blog/2016/06/28/computer-vision-face-detection/
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Figure 2.22: Ensemble methods: Bagging

Figure 2.23: Ensemble methods: Boosting

2.3.6.1.3.3 Stacking
The main idea of stacking method [44][45] is to use predictions of different
classifiers as the input to another meta-classifier which determines the final
output.

After conducting research, the following two ways of interpreting this idea
were revealed:

• The original way proposed by Wolpert[44]

• The original idea by Wolpert interpreted differently, which was tested in
Kaggle 6 data science competition by Wille 7, and described by Faron 8.

The original approach [44] suggests, given some sample x, using a com-
bination of classifiers’ outputs for this sample (i.e. their predictions) as input

6https://www.kaggle.com/
7https://dnc1994.com/, https://dnc1994.com/2016/05/rank-10-percent-in-first-

kaggle-competition-en/
8https://www.kaggle.com/getting-started/18153#103381
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to meta-classifier. The output of this meta-classifier is viewed as the final
one. First, each learning algorithm constructs a classifier learnt from the
training data using k-cross-validation and, as a result, a vector of outputs of
these classifiers for each sample is identified from the training data. Second,
a meta-classifier is learnt based on these output vectors and the true out-
puts of the appropriate samples. As a result, the classifiers evaluate a new
sample and form a vector of their predictions, which is processed as input to
meta-classifier, and the output of meta-classifier is the desired final one.

The following is intriguing: Kai Ming Ting and Ian H. Witten reveal in
their work [45], that for successful stacking it is necessary to use output class
probabilities rather than class predictions and, moreover, only multi-response
linear regression algorithm (MLR) is suitable for the level-1 generalizer (meta-
classifier in our case).

A different interpretation of Wolpert’s idea focuses on using classifiers’
predictions (made for the appropriate validation samples (indicated in orange
color on Figure 2.24 9) in the same way as k-fold cross-validation, 5-fold CV in
the case of Figure 2.24) as an additional feature for the original training data.
Then an additional new learning algorithm uses the training data extended
with this new feature to construct a meta-classifier. Similar to the original
training data, the original test data must also be extended taking into account
a new feature in one of the following two ways:

• Variant A: A value to the new feature is assigned by the averaged voting
of classifiers (Model 1-5 on Figure 2.24).

• Variant B: A new classifier based on the original training data is con-
structed by a learning algorithm and then is applied to the original test
data in order to compute their predicted outputs. These outputs are
mapped to the appropriate original test data as new features.

Figure 2.24: Ensemble methods: Stacking

Then the meta-classifier constructed from the extended training data is
applied to the extended test data in order to estimate its accuracy.

9https://www.kaggle.com/getting-started/18153#103381
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2.3.6.1.4 Injecting randomness
This method of ensemble construction is the most common one. The idea of
this method is to inject randomness into a learning algorithm. As an example,
training neural network with backpropagation and setting its initial weights
to random values may result in quite different outputs.

However, a research conducted by Parmanto, Munro and Doyle [46] reveals
that cross-validated committees (which is simplification of stacking method)
and Bagging outperform injection of randomness in case of neural networks
represented by random initial weights.

2.3.7 Decision trees

Decision trees are a common and widely used tool of data analysis. Simple
decision trees have been used for a long time as they may be easily and rapidly
created by a researcher and, moreover, have strong explanatory power and are
easily interpreted by other people. Decision trees refer to supervised learning,
however, further research for unsupervised learning appear nowadays such as
in 2005 by Karakos, Khudanpur and Eisner[47].

As the advantages of decision trees are clear (well interpreted, requires
little data preparations, robust etc), it is time to explicitly mention their
disadvantages:

• Trees tend to be less accurate than other approaches.

• They are unstable (small changes in input may cause a big change in
the tree).

• They tend to be overfitting.

• Training an optimal decision tree is NP-Complete problem[42].

• Trees may be very large.

Decision trees are classified into various types such as CART (Classification
and Regression Trees)[48], C4.5[49], CHAID[50], CRUISE[51][52], GUIDE[53]
and QUEST[54]. The abovementioned types of decision trees differ from each
other in the methods of performing branching. All of these types may be used
for classification and therefore, fulfill the goal of this work.

However, the search of the publicly available sources did not reveal source
code for most of these algorithms.

The most widely implemented types of decision trees are CART and C4.5:

• CART algorithm is used for both classification and regression that uses
binary split with Gini impurity criterion (also known as Gini index).

• C4.5 algorithm is used for classification that uses binary or multiway
split with information gain.
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Nevertheless, despite using different splitting rules, these algorithms are
very similar as they repeatedly divide data set into parts with the maximum
homogeneity. Moreover, in fact, multiway split is used much more rarely than
binary split as tree complexity grows much more rapidly in case of multiway
split. Due to this fact, the following text refers mainly to classification trees
with binary split.

These decisions trees are constructed by repeatedly answering to simple
questions (so-called attribute value tests), which are determined by features
(also known as attributes, explanatory variables and so-called splitters) of in-
put data, with the input data partition into the smaller parts in each question.
Thus, nodes of a tree are represented by questions, its leaves represent a final
output as a single case or only cases with the same output and its branches
represent conjunctions of questions (and so features) that lead to those out-
puts. The following Figure 2.25[3] shows a simple example with input data of
three features: sex, age and the number of spouses or siblings aboard.

Figure 2.25: A tree showing survival of passengers on the Titanic (“sibsp” is
the number of spouses or siblings aboard). The figures under the leaves show
the probability of outcome and the percentage of observations in the leaf.

2.3.7.1 Classification and Regression Trees (CART)

Classification and Regression Trees (CART) is an algorithm that refers to both
types of decision trees: classification and regression trees. It was introduced
in 1984 by Breiman, Freidman, Olshen, Stone [48]. CART decision trees are
constructed by repeating binary split (simple answering yes/no).
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CART algorithm searches for all possible features and their values in order
to find the best binary split of data. The best split is defined as partition of
data into two groups based on Gini impurity measure also known as Gini
index. In case of the classification tree with training samples, the Gini index
impurity criterion of a node with some input samples is expressed as follows:

Gini Impurity = 1−
J∑

i=1
f2

i

where there is a set of samples with J classes, and fi is a fraction of samples
labeled with class I in the set.

This criterion defines the node splits, where each split maximizes the de-
crease in impurity. Reducing error, whether using classification or regression,
is a goal behind CART[55].

This process is repeated in each node (question) on increasingly smaller
sets until maximum defined depth of tree is achieved or the data set contains
only one element and can no longer be divided. The following Figure 2.26
illustrates this process for data with two input features X1 and X2.

Figure 2.26: CART Recursive splitting. (Left) Data partitioning in 2D space
specified by features X1 and X2 (Right) Top-down CART.

Due to the nature of CART approach (splitting a data set by variable
resulting in two groups with maximum homogeneity), it is clear that CART
automatically selects the most important features and thus, it may be used also
for important feature detection (which is also one of the goals of this work).

2.3.7.2 C4.5

C4.5 algorithm for classification trees was developed by Ross Quinlan[49].
C4.5 is an extension of Quinlan’s earlier ID3 algorithm. R. Quinlan in his
work[49] shows that C4.5 produces small and accurate trees for many real-life
problems.
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C4.5 and its predecessor ID3 create trees using a concept of information
gain to evaluate a “goodness” of a test used for split. In particular, they
choose a test that extracts the maximum amount of information from a set
of cases with the constraint that only one feature (attribute) will be tested at
once. Entropy and information gain are expressed as follows:

Shannon entropy = H(X) = −
n∑

i=1
P (xi) logb P (xi)

where X is a discrete random variable (classes in case of classification) with
possible values (x1, . . . , xn) and P (x) is the probability of class x.

Information gain = IG(X, a) = H(X)−H(X|a)

where H(X) is Shannon entropy, a is a feature (attribute), and the split is
performed by this feature a.

Quinlan[49] also adds that information gain has a significant weakness in
case of feature with unique values, namely a strong bias, as partitioning a
training set by this feature leads to a large number of subsets containing just
one value. Thus, such subsets contain value corresponding to a single class
and so H(X|a) = 0 and information gain using this feature for partitioning
is maximal. It is clear that such partition is useless as it leads to extreme
overfitting. That is why Quinlan [49] considers information gain ratio as a re-
placement of information gain. Consider the information content of a message
pertaining to a case that indicates not the class to which the case belongs,
but the outcome of the test (subset of samples). The formula represents the
potential information generated by dividing X into n subsets and is similar
to entropy formula mentioned above:

split info(X, a) = −
n∑

i=1

|Xi|
|X|

log2
|Xi|
|X|

where a is a feature by which the partition into subsets was performed, |X| is
the number of node input samples, |Xi| is a number of samples in subset i.

On the other side, the information gain measures the information relevant
to classification that arises from the same division, and then the information
gain ratio is expressed as follows

information gain ratio(X) = IG(X, a)
split info(X, a)

and expresses the proportion of information generated by the split that ap-
pears helpful for classification. The split that maximizes information gain
ratio criterion is selected.

C4.5 handles some common issues that arise in decision tree construction.
First, this algorithm deals with cases where some feature values are unknown
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(just ignore these samples). This straightforward approach was used as Quin-
lan’s research [56] revealed the following issue: no single approach is uniformly
superior. Thus, Quinlan uses the approach that is satisfactory for him, without
making any stronger claims about it. Second, C4.5 uses a pruning approach in
order to avoid overfitting. C4.5’s pruning method is based on estimating the
error rate of every subtree and then replacing the subtree with a leaf node, if
the estimated error rate of the leaf (computed in the same way as during the
tree construction phase) is lower.

In addition, recently conducted research [57] shows that, in case of C4.5,
increasing a number of non-representative training samples is useless as C4.5
algorithm constructs the same decision tree in all such cases.

2.3.7.3 Ensemble of trees

2.3.7.3.1 Random forest
An idea of Random Forests (RFs) was presented in 2001 by Breiman [58].
Breiman defines RF as a classifier consisting of a collection of tree-structured
classifiers unlike CART and C4.5 mentioned above:

h(x, θk) for k = 1, . . . ;

where x is a an input sample for its output prediction, k is the number of clas-
sifiers and θk are independent identically distributed random vectors which
define properties of trees (e.g. number of examples in a training set in bag-
ging). The nature and dimensionality of θk depend on its use within the
process of tree construction. After the training phase is performed, each tree
casts a unit vote for the most popular class at input x. Thus, the RF pre-
diction is made by majority vote of classifiers in case of classification and
by averaging classifiers’ predictions in case of regression. All mathematical
assumptions and definitions may be found in [58].

Each tree in RF is constructed in the following way[59]:

• If the number of cases (samples) in the training set is N , the researcher
should select N cases at random - but with replacement, from the ori-
ginal data. About a third of cases are left out of the selected cases
(so-called oob to refer to out-of-bag and used for the same goal as test
data set, i.e. for error rate estimation) and are used to get a running
unbiased estimate of the classification error as trees are added to the
forest. It is also used to get estimates of importance of features. The
selected cases will be the training set for growing the tree.

• If there are M input features, a number m << M (m is much lesser
than M) is specified such that at each node, m features are randomly
selected out of the M , and the best split on these m is used to split the
node. The value of m is constant during the forest growing.
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• Each tree is grown to the largest extent possible. There is no pruning.

Breiman[58] shows in his paper that the forest error rate depends on:

• The correlation between any two trees in the forest. Increasing the
correlation increases the forest error rate.

• The strength of each individual tree in the forest. A tree with a low
error rate is a strong classifier. Increasing the strength of the individual
trees decreases the forest error rate

Reducing m (randomly selected features out of the M for subsequent using
in splitting) reduces both the correlation and the strength, whereas increasing
m increases both. Somewhere in between is an “optimal” range for m, which
is usually quite wide. A value of m in the range can quickly be found using
the oob error rate. This is the only adjustable parameter to which random
forests are somewhat sensitive.

One of the very useful things that RF performs is feature importance es-
timation. In every tree in the forest, use the oob cases (used as test data
set) and count the number of votes cast for the correct class. Now randomly
permute the values of some feature f in the oob cases and again use these
cases as input for the tree. Subtract the number of votes for the correct class
in the feature-f-permuted oob data from the number of votes for the correct
class in the untouched oob data. The average of this number over all trees in
the forest is the raw importance score for the feature f .

Another very important character of RF is handling missing data, which is
done by proximity measure. It is defined as frequency of unique pairs of train-
ing samples (in and out of bag) that end up in the same terminal node (leaf)
and are normalized by dividing by the number of trees in the forest. Then
this proximity measure is used as weights in missing value replacement[59].

Thus, the advantages of RF are:

• It is unexcelled in accuracy among current algorithms.

• It runs efficiently on large data bases.

• It can handle thousands of input variables without variable deletion.

• It has methods for balancing error in class population unbalanced data
sets.

• Accuracy and feature importance are generated automatically.

• It handles overfitting.

• It is not very sensitive to outliers in the training data.

• No need for pruning.
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• It has a few parameters, easy to set.

• It has an effective method for estimating missing data and maintains
accuracy when a large proportion of the data are missing.

The main limitation of RF refers to regression problems as predictions
cannot be done beyond the training data range, and extreme values often
cannot be predicted accurately due to the nature of decision trees.

Recently conducted research[57] confirms that C4.5 and Random Forest
outperform other algorithms of decision trees, and Random Forest outperforms
C4.5.

2.3.7.3.2 Time Series Forest (TSF)
Time series are nowadays widely introduced in our lives within the spheres
of medicine, geology, physics, finance etc. Classifying the time series was
viewed as a necessary thing, and a new tree-ensemble method was proposed
in 2013[60].

The method is named Time Series Forest (TSF) and uses the idea of Ran-
dom Forests[58] with regard to constructing multiple decision trees with a
majority vote of these trees as a final prediction, random sampling of training
data set for each tree, random sampling of features (that makes the computa-
tional complexity linear in the time series length) and independently growing
trees, which makes parallelization possible .

TSF also introduces a new splitting rule as a combination of entropy gain
and a distance measure, referred to as Entrance gain, in order to evaluate
high quality splits. TSF captures simple temporal features over time series
intervals (so-called interval features) such as mean, standard deviation and
slope and then uses them for distinguishing time series from one another. The
following Figure 2.27 [60] provides an example of time series, which may be
distinguished by this method.

Though TSF uses simple summary statistical features, it may also use
more complex features such as wavelets.

Experimental results[60] show that implementing Time Series Forest is
comparable to widely used alternatives such as 1-Nearest Neighbor with Dy-
namic Time Warping (DTW) and Random Forest, moreover, TSF often out-
performs them despite the fact that 1-NN with DTW is one of the best clas-
sifiers for time series and it is extremely hard to beat[61].

2.4 Features

The main goal of any classification/regression task is to produce some kind of
output based on the input data. Each sample in this input data is described
by one or many so-called features (sometimes called attributes or dimensions).
Features may be represented by nominal, numerical values or even by more
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Figure 2.27: The time series from class 2 have sudden changes between time
201 and time 400. An interval feature such as the standard deviation between
time 201 and time 400 can distinguish the time series from the two classes.

complex structures such as vectors, matrices etc. Sometimes features cannot
be used in data mining directly and must be preprocessed in some way. How-
ever, even in case of nominal or numerical features, it may not be possible
to produce accurate enough outputs without data preprocessing. Inaccurate
outputs may be often a result of very high dimensional feature space (also
known as curse of dimensionality), lack of good enough (i.e. representative)
features or, less often, occur due to the lack of features themselves. Two tech-
niques, feature extraction and feature selection, are widely used to deal with
the abovementioned problems.

2.4.1 Feature Extraction

Feature extraction process is used in case of the lack of features: new features
are extracted from the data in some way in order to construct feature space
that will be used for building a quality classifier. Examples of simple statistic
features, which may be extracted from time series, include mean, standard
deviation, min and max values etc.

Some advanced feature extraction algorithms have been proposed for time
series such as Discrete Fourier Transform (DFT), Discrete Wavelet Transform
(DWT) and Singular Value Decomposition (SVD). The main disadvantage of
SVD algorithm is its poor time complexity O(m+ n3), where m is a number
of time series in the data set, n is a length of these time series and m >> n.

On the other side, DFT and DWT both are computationally efficient: Fast
Fourier Transform (FFT) algorithm for DFT has time complexity O(n log2 n)
and DWT has even better time complexity O(n)[62][63]. Thus, the only reas-
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onable algorithms for time series feature extraction from those mentioned are
FFT and DWT.

2.4.1.1 Discrete Fourier Transform (DFT)

In 1822, Joseph Fourier invented Fourier analysis and showed that periodic
functions may be represented as a sum of harmonics (periodic functions),
sines and cosines. The approach has been developing since that time, and
many follow-up researches have been performed, including extension of the
original idea for the non-periodic functions. This extension is known as Fourier
Transform.

Nowadays, Discrete Fourier Transform (DFT) is the most common method
of Fourier analysis. DFT converts a finite sequence of equally time spaced
samples (time series) into a sequence of equally time spaced samples of the
Discrete-Time Fourier Transform (DTFT) of the same length as the original
sequence), which is a continuous complex function of frequency. In this case,
complex function means function that operates with complex values consist-
ing of real and imaginary parts. Both Fourier analysis and Fourier Transform
works with functions (i.e. with continuous variables and thus, they are com-
putationally expensive), whilst any signal can be measured only in a finite
number of points, which are observed in discrete time. Thus, it is a reason
why DFT was developed. The short summary is provided below (see the
complete mathematical background in [62]).

One of the important features of DFT is the fact that DFT preserves
energy (defined in section 2.1.3) of time series as in Rayleigh Energy theorem
(Parseval’s theorem). The useful consequence of this theorem is that DFT
preserves Euclidean distance between two time series.

A new computed sequence of complex values, known as DFT coefficients, is
sufficient for the reconstruction of the original sequence. Moreover, k-th DFT
coefficient from the beginning is a conjugate of k-th DFT coefficient from the
end, which means only half of all coefficients should necessarily be stored and,
therefore, this property may be used for simple data reduction by half of the
original sequence length. It is also necessary to mention that often only first
few coefficients are significant and, thus, useful[64][65]. This also follows from
the terms of energy of the time series as the first few DFT coefficients (and the
last few due to their symmetry) contain, in general, most of energy and so the
coefficients are expected to capture the raw shape of time series. The following
Figure 2.28 shows DFT on the EC curve of an arrhythmogenic rabbit.

Based on what was said before, time series may be approximated by only
first few coefficients while preserving the basic trends of the time series. And
better approximations up to the identity may be constructed using larger
quantities of DFT coefficients.

The disadvantage of DFT algorithm is its poor time complexity O(n2),
where n is the length of time series. Fortunately, Fast Fourier Transform
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Figure 2.28: The example of DWT coefficients and of EC reconstruction us-
ing DFT coefficients. From top to bottom: original EC, real part and then
imaginary part of DFT coefficients, EC reconstruction with the first 10 and
the first 50 DFT coefficients.

(FFT) algorithm for DFT was developed in 1965 by Cooley and Tukey[66]. It
is an efficient algorithm with good time complexity O(n).

2.4.1.2 Wavelet Transform (WT)

The weakness of Fourier analysis is in extracting meaningful and sufficient
information from time series, which are non-periodic (time-varying) and/or
non-stationary. The classical Fourier Transform (and DFT as well) oper-
ates within harmonic (i.e. periodic) functions such as sines and cosines and,
thus, it is clear that compression of a non-periodic time series, moreover,
non-stationary time series, using this method is complicated and cannot be
performed efficiently[67]. Figure 2.29[68] below illustrates the problem clearly:
two different time-varying signals have the same power distribution into their
frequency components, from which the original signals are composed. Obvi-
ously, the periodograms of the time-varying signals cannot capture differences
in time domain where these signals have the different behavior.

In other words, it was necessary to develop some method that would ana-
lyze not only frequency domain, but would also take into account time do-
main of the inspected time series. The problem was resolved in 1946 in time-
frequency analysis with Short Time Fourier Transform (STFT)[69]. The idea
of STFT is based on using sliding windows of the fixed size on an inspec-
ted time series with subsequent computation of Fourier Transform for each of
those windows. The disadvantages of this method are:
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Figure 2.29: Two different signals with exactly the same periodograms

• precision of the obtained information depends on the size of the used
window

• size of the used window is the same for all frequencies and, thus, the
method may not provide enough information (i.e. some frequencies may
require more detailed research)

The theory of Wavelet analysis was developed based on the Fourier ana-
lysis, and Wavelet Transform (WT) is the logical sequel of STFT. Wavelet
Transform introduces sliding windows of variable size and replaces harmonic
functions with family of functions called wavelets (“wavelet” is interpreted as
“small wave”). Wavelet must be oscillatory and must have limited duration.
The term “wavelet function” is used to refer to either orthogonal or non-
orthogonal wavelets. The term “wavelet basis” refers only to an orthogonal
set of functions. The use of wavelet basis implies the use of Discrete Wavelet
Transform (DWT), while a non-orthogonal wavelet function may be used in
either DWT or Continuous Wavelet Transform (CWT)[70].

Unlike the original idea of the time-frequency approach, WT uses time-
scale domain analysis, where lower scales (i.e. shorter windows) correspond to
the higher frequencies, which capture local trend, and higher scales (i.e. longer
windows) correspond to the lower frequencies, which capture more general
trend of the time series. Thus, Wavelet analysis is based on splitting a signal
into shifted and scaled versions of the selected wavelet. Figure 2.30 illustrates
the whole idea.
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Figure 2.30: (Top-left) Wavelet at scale 1,2 and 4 (Top-right) Illustration of
relationships between time, frequency and scale (denoted as ”a”) (Bottom)
Example of signal approximation with wavelets at low/high scale

Theory of wavelets is based on the multi-resolution analysis (MRA)[71]
and the fact that a function may be approximated by multilevel resolution
approach. In return, MRA is based on the relationship between the scaling
filter H and the wavelet filter G. Mathematical details for theory of wavelets,
including CWT and DWT, may be found in several papers[72][73][62][74].

2.4.1.2.1 Discrete Wavelet Transform (DWT)
CWT is highly redundant, because it analyzes a signal at all possible scales
and translations, which also requires an infinite number of wavelets for the un-
derlying analysis. Thus, especially at the large scales, the wavelet spectrum
at adjacent times is highly correlated and so there is a redundancy. Moreover,
CWT is computationally expensive and for that reason is practically unusable
despite being very stable in terms of shift invariance and offering a very de-
tailed view on the inspected signal. DWT was developed as a faster and more
efficient algorithm. DWT is based on using the appropriate scale and transla-
tion sampling strategy (in powers of two: 21, 22 etc.), called dyadic sampling,
while reducing the number of wavelets used for decomposition. In other words,
DWT decomposes a signal into mutually orthogonal set of wavelets; it is the
main difference from CWT, which decomposes a signal into non-orthogonal
set of wavelets containing redundant information. However, due to the used
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sampling strategy for scales and translations, DWT is not shift-invariant in
contrast to CWT, and a simple shift in a signal can cause a significant realign-
ment of signal energy in the DWT coefficients. It is important to mention that
DWT captures all essential details of the signal despite the applied sampling
strategy.

DWT also preserves energy of time series just like DFT does, but DWT
differs from DFT in spreading this energy among its coefficients. In general,
the first few DFT coefficients accumulate the majority of energy and, there-
fore, selecting them is enough for reconstructing the raw shape of the original
time series. Spread of energy in DWT coefficients is quite different as only
the few most significant (in absolute value) coefficients allow reconstructing
the original time series with enough precision. In other words, by removing
the insignificant coefficients and then reconstructing the signal using these
truncated coefficients, it is possible to smooth the signal without smoothing
over all of the interesting peaks the way it happens with a moving average.
Figure 2.31 below shows differences in approximation depending on whether
most significant coefficients or the first few coefficients are used.

Figure 2.31: Example of EC reconstruction by DWT: (center) by the first 10
coefficients (bottom) by 10 most significant coefficients. The original EC is at
the top.

DTW coefficients are calculated by passing a signal through a filter bank[74]
consisting of high-pass filter (wavelet function, also called mother wavelet) and
low-pass filter (scaling function, also called father wavelet). In order to clarify
roles of the abovementioned elements and their relationships, it may be useful
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to read a paper by Guido[75], as there is often misunderstanding. On each
pass through the filter bank, the scaling function captures the low frequency
data (they concentrate most of the energy) from the previous approximation.
Low frequency components are reduced in each subsequent approximation due
to the effect of dyadic sampling (i.e. the length is reduced by 2 at each level).
Figure 2.32 10 below illustrates the process.

Figure 2.32: DWT decomposition. LP is low-pass and HP is high-pass filters.
cA3, cD3, cD2, cD1 are the result DWT coefficients, where cA is approxima-
tion coefficients and cD∗ are details coefficients.

Techniques based on Wavelet Transform are used nowadays in many areas
such as medicine, audio, image processing etc. Many problems in these areas
have not been solved, but nowadays there is a significant progress. For ex-
ample, in 2004, Martinez, Almeida and Olmos et al.[76] proposed and eval-
uated a robust ECG delineation system based on DWT outperforming other
algorithms. Zhang and Ho[77] proposed unsupervised feature extraction al-
gorithm for automatic selection of feature dimensionality.

Discussion on time series analysis and mining, based on DWT, may be
found in [78].

DWT has good time complexity O(n)[62].

2.4.1.2.2 Discrete Wavelet Transform: wavelet selection
There are many different wavelet families like Haar, Daubechies, Symlets,
Coiflets, Biorthogonal etc. Each wavelet family is represented by one or many
wavelets: Haar for Haar; “db1”, “db2”, . . . , “db20” for Daubechies; “sym2”,
. . . , “sym20” for Symlets etc., where the numbers indicate length of the used
filter (note that Haar wavelet is identical to “db1”).

10https://www.slideshare.net/dineshkumarc1/tl-50801785
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Recent research on the resting-state fMRI data for detecting schizophrenia[79]
showed that the selected filter length had a great effect on the classification
results, while wavelet family had an insignificant effect.

Chan and Fu[80] proposed and studied the use of Haar Wavelet Transform
technique for dimensionality reduction with the subsequent similarity search
within the inspected set of time series with no false dismissals competitive to
DFT, and they also studied the effect of Haar wavelet-based approximation
function for time warping distance, called Low Resolution Time Warping.

Popivanov and Miller[81] showed that any bi-orthonormal wavelet (Symlet,
Daubechies, Coiflets) may be used in similarity search with no false dismissals.
Moreover, they also detected a filter length impact on the result precision and
considered the fact that filter length reflects the length of patterns in the
inspected time series.

Dond, Sun and Xu[82] studied DWT based feature extraction in tissue
classification problem. They showed that the used wavelet family has great
impact on the classification results, and that the detail signals D (derived from
details coefficients) as features outperform approximation signal (derived from
approximation coefficients), moreover, the first level detail signal D1 as feature
had the greatest classification accuracy.

Tumari, Sudirman and Ahmad[83] in selecting a suitable wavelet for cog-
nitive memory using EEG signal detected an impact of the selected wavelet
family on the results.

2.4.2 Feature Selection

The feature selection is another important process of data preprocessing. The
number of the available features can greatly increase in case different feature
extraction techniques are used. However, not all of them are actually useful
and help in classification, moreover, high amount of the used features lead
to overfitting as the feature vector of each sample becomes unique. Differ-
ent techniques for selecting the important features have been proposed such
as recursive feature elimination for recursive considering smaller subsets of
features and feature importance estimation using embedded capabilities of
machine learning algorithms (e.g. Random Forest 2.3.7.3.1).
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Chapter 3
Technologies

The following software was used in this work:

• Python 3.5

• Jupyter Notebook 11

• Scikit-learn (also known as sklearn) for machine learning 12

• Anaconda3 for many useful scientific packages 13

• Trial version of GMDH Shell 14 for GMDH Neural Network

– GMDH Shell was used as no good tested and verified implementa-
tions of GMDH approach were found.

11http://jupyter.org/
12http://scikit-learn.org/
13https://www.continuum.io/
14https://www.gmdhshell.com/time-series-forecasting
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Chapter 4
Data preparation

In data analysis and data mining, the original data almost always require
some preprocessing before making further assumptions and applying machine
learning algorithms. In our case, it also matters.

Due to the fact that the rabbits are subject to different number of DIIs (as
was mentioned in section 1.2), it is necessary to select the minimum number
of DIIs for all rabbits in order to perform further research properly (it is
obvious that comparison of ECs must be performed for all rabbits after the
first DII, the second one, etc.). Moreover, a time interval between DIIs can
also vary. This fact implies the following restriction: it is necessary to find the
minimum of maximum time ranges (so-called Min-max theorem) after each
DII in order to compare ECs not only after the same DII, but also within
the common minimum time range. The following Figure 4.1 illustrates the
abovementioned statements.

After performing the abovementioned data transformations, it was identi-
fied that the minimum number of DIIs for all rabbits is equal to one (i.e. some
rabbits died between second and third DIIs). As each rabbit has control in-
terval, and these control intervals differ in length, it is necessary to follow the
same logic as in case of intervals between DIIs: to find the minimum length of
control interval and truncate each control interval to that identified minimum
length.

Thus, the two intervals will be used in experiments: control interval and
the first interval (after the first DII).

The following notation will be introduced in order to clarify two types of
ECs:

• Original EC : no preprocessing

• Truncated EC : the original ECs were truncated to the minimum number
of DIIs with the appropriate minimum time range after each DII. The
truncated ECs also contain the truncated control interval.
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Figure 4.1: Min-max theorem: selecting minimum time range from the max-
imum time ranges.
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Chapter 5
Experiments

This section contains complete information about the conducted experiments
and their settings. Important metrics for performance evaluation are also
described in detail.

5.1 Performance evaluation

Once classifier has been constructed and exists, it is necessary to estimate
its performance. There are different approaches on how to do that in case of
classification and in case of regression.

5.1.1 Performance metrics for classification

The following metrics exist in case of classification:

• Accuracy

• Precision (Positive Predictive Value)

• Recall (sensitivity)

• Specificity

• F1 score

• ROC AUC

The most common metric for performance estimation is accuracy. It is the
proportion of correctly classified samples to all samples.

However, accuracy is not enough in case of binary classification such as de-
tection of diseased/healthy people as accuracy tells only the probability that a
patient is classified as diseased or healthy. However, the classification accuracy
in real world is rarely equal to 100% and, thus, misclassified cases are present.
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In such cases, accuracy is insufficient metric itself and the more valuable met-
ric is required as the primary thing to know is “what is the probability that a
patient classified as diseased is indeed diseased?”. Precision, recall, specificity,
F1 score and ROC AUC were introduced in order to answer this and similar
questions.

It is necessary to provide some definitions in order to specify five above-
mentioned metrics. In context of disease detection, positive class (“1”) means
the classifier predicts that the disease is present and negative class (“0”) means
the classifier predicts that the disease is not present. The following notations
are made based on the abovementioned assumptions:

• True positives (TP): diseased patients classified as diseased

• False positives (FP): healthy patients classified as diseased

• True negatives (TN): healthy patients classified as healthy

• False negatives (FN): diseased patients classified as healthy

The most common instrument to capture the abovementioned notations is
confusion matrix (see Figure 5.1 15. The notation is the following: “Target”
as actual value and “Model” as the predicted value.

Figure 5.1: Confusion matrix

The following Figure 5.2 16 illustrates the notations and their relationships
in the different way.

Now, accuracy, precision, recall and specificity can be expressed as:

accuracy = TP + TN

TP + FP + TN + FN

precision = TP

TP + FP

recall = TP

TP + FN
15https://www.analyticsvidhya.com/blog/2016/02/7-important-model-evaluation-

error-metrics/)
16https://en.wikipedia.org/wiki/Precision_and_recall
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Figure 5.2: Another view on the TP, FP, TN, FN

specificity = TN

TN + FP

ROC (Receiver Operating Characteristic) curve is a graphical represent-
ation of relationship between recall and (1 – specificity), indicated as y-axes
and x-axes, and illustrates the performance of a binary classifier (see Figure
5.3 17). The maximum performance is achieved at point [0, 1] and diagonal
represents the case of random guessing. ROC AUC (Area Under the Curve)
is a numerical estimation of classifier’s quality in case of using ROC curve.
ROC AUC is equal to 0.5 in case of random guessing.

The last metric of interest is F1 score. F1 score is the harmonic mean of
precision and recall and is expressed as:

F1 = 2 ∗ precision ∗ recall
precision+ recall

Multiplication by 2 is used for scaling purposes in case precision and recall
are both equal to 1.

5.1.2 Performance metrics for regression

The following performance metrics are used in case of regression:
17https://stats.stackexchange.com/questions/132777/what-does-auc-stand-for-

and-what-is-it
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Figure 5.3: ROC AUC

• Mean Absolute Error (MAE)

• Mean Squared Error (MSE)

• R2 score

MAE and MSE are expressed as follows:

MAE = 1
N

N∑
i=1
|fi − yi|

MSE = 1
N

N∑
i=1

(fi − yi)2

where N is a number of samples, fi is the classifier output for sample i and
yi is true output of sample i.

R2 score requires extra definitions:

ȳ =
N∑

i=1
yi

where ȳ is a mean of the observed data, yi is true output of sample i.

total sum of squares = SStot =
N∑

i=1
(ȳ − yi)2

residual sum of squares = SSres =
N∑

i=1
(fi − yi)2
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where N is a number of samples, fi is the classifier output for sample i and
yi is true output of sample i.

Finally R2 score is expressed as:

R2 = 1− SSres

SStot

5.2 Settings of experiments

In the conducted experiments, arrhythmogenic rabbits were marked as positive
(“1”) class and non-arrhythmogenic rabbits were marked as negative (“0”)
class.

The following approaches were used in the conducted experiments:

• ECs were grouped by value of L parameter (1, 5, 10 etc.) and classific-
ation results were computed for each group

• F1 score (mean of the computed metrics, precision and recall, for each
class, positive and negative) for parameter optimization and for general
evaluation of classification results

– accuracy, ROC AUC, recall (sensitivity) and specificity for more
detail view of results

– average of accuracy, ROC AUC, recall and specificity (further re-
ferred to as ARARS score) was used for indication of classification
quality

• 10-fold cross validation x 10 times

– Each cross validation divided data into folds and each fold preserved
the initial ratio of samples between classes (so-called stratified k-
fold cross validation)

– All cross validations were performed with different shuffling of the
input data (i.e. they had different data partitions into folds)

– Cross validation results were averaged for each fold in order to
compute final results

– Average of all folds for the appropriate group of ECs was the final
result for such group

The input data set is slightly unbalanced with proportion 1:2 (13 negative
and 24 positive samples) and it may result in overfitting of the used algorithms
on the positive samples. However, use of average results of ten different strat-
ified 10-fold cross validations and parameter optimization of algorithms based
on F1 score mentioned above may fix this issue of unbalanced class distribu-
tions. Moreover, other metrics such as recall, specificity and ROC AUC were
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used for verification of quality of the achieved results. Despite of the above-
mentioned steps, it may still be not enough for handling imbalance in the
input data and thus, the used algorithms were tested in normal unbalanced
mode and in so-called balanced mode based on the weights for balancing con-
tributions of class samples to classification.

Optimization of algorithm parameters was performed using exhaustive
search 18 over the specified parameter values, i.e. all possible combinations of
the specified values were tested.

5.3 Used machine learning algorithms

The experiments were conducted using the following machine learning al-
gorithms:

• Random Forest (RF)

• Support Vector Machine (SVM)

• Logistic regression (LR)

• k-nearest neighbors (k-NN)

Ensemble learning, namely AdaBoost, was performed with slightly different
set of algorithms as SVM, k-NN and Logistic regression algorithms are very
sensitive on their parameters and the input data. This sensitivity results in
classification performance less than 50% and, therefore, these algorithms could
not be used in AdaBoost algorithm. The used algorithms were:

• Extremely Randomized Trees (ExtraTrees)

• Decision tree (CART)

• Random Forest

5.4 Feature extraction

This section describes features, which were extracted from the input data and
used for further analysis. In case of univariate features, box-and-whisker plots
of arrhythmogenic (dead) and non-arrhythmogenic (alive) rabbits were used
in order to make an assumption that the inspected feature can discriminate
between two abovementioned classification groups. Evaluating usefulness of
multivariate features (e.g. subintervals in this context due to the fact the whole
time series is represented as several values, each of the values is computed for a
single subinterval) is impossible and, thus, they always will be used for further
analysis by machine learning algorithms.

18GridSearchCV http://scikit-learn.org/stable/modules/generated/
sklearn.model_selection.GridSearchCV.html)

60

http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
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5.4.1 Statistic features

There are simple and advanced statistic features. Simple statistic features are
commonly used for every numerical data and were the first choice, however,
these statistic features didn’t provide sufficient classification results. Advanced
statistic features are less common and were introduced in order to reach better
classification results.

The following statistic features were used:

• Simple

– Mean
– Standard deviation
– Variance
– Min and Max
– 25th, 50th and 75th percentiles

• Advanced

– Integral
– Skewness
– Kurtosis
– Slope
– (Max−Min)/length of time series
– Energy of time series
– Sum of values of time series
– Trend (uptrending, downtrending or without trend)

Some of the abovementioned statistic features will be described below.

5.4.1.1 Integral

In order to integrate ECs given by discrete values, the composite Simpson’s
rule19 was used.

5.4.1.2 Skewness

Skewness is a measure of the asymmetry of the probability distribution of
a real-valued random variable about its mean. The skewness value can be
positive or negative. Negative skew indicates that the tail on the left side
of the probability density function is longer or fatter than on the right side.
Positive skew indicates that the tail on the right side is longer or fatter than
on the left side. Skewness is 0 in case of the symmetric distribution. Skewness
was computed for all values of EC.

19https://en.wikipedia.org/wiki/Simpson%27s_rule#Composite_Simpson.27s_rule
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5.4.1.3 Kurtosis

Kurtosis is similar conceptually to skewness, because kurtosis describes shape
of the probability distribution. Kurtosis is the fourth central moment divided
by the square of the variance. Normal distribution has kurtosis equal to 0.

5.4.1.4 Slope

A slope (also called gradient) was computed for each EC curve and is expressed
as

slope = M y

M x
= y(xlast)− y(xfirst)

xlast − xfirst

where y(x) is value of time series (EC) in time x. Actually x denotes i-th
element of time series rather than time from the original measures. Thus,
xlast is equal to the length of EC and xfirst is equal to 1.

If a slope

• > 0: time series is increasing, i.e. it goes up.

• < 0: time series is decreasing, i.e. it goes down.

• = 0: time series is constant

5.4.1.5 Sum and Cumulative sum

Sum was used on the following data:

• On the whole EC data

• On each drug interval in truncated EC data

• On truncated EC data with concatenated intervals

Cumulative sum was used on the following data:

• On the computed gradients of the truncated EC for indication of down-
trending (-1), uptrending (1) and no trending (0)

5.4.1.6 Variance

Inspection of variance of EC values revealed some dependencies in the par-
ticular intervals and in the concatenated intervals. They are especially good
for EC #60 in control interval, EC #500 in the first interval, EC #5 in the
concatenated intervals (see Figures 5.4 below). Thus, this feature was used in
further classification.
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Figure 5.4: Variance: distribution of values for dead (left) and alive (right)
rabbits. From the top: EC #60 in control interval, EC #500 in the first
interval and EC #5 in the concatenated intervals.

5.4.1.7 Standard deviation

Standard deviation is a square root of variance, and the same behavior is
expected. However, standard deviation sometimes has outliers that differ
from those for variance (see Figure 5.5 below for example of such difference)
and for that reason may be useful.

5.4.1.8 Maximum and minimum values

Difference of maximum and minimum values of time series (divided by the
length of time series) demonstrates interesting dependencies in some cases
(Figures 5.6 below show examples) and so it was used in further data analysis.
Also due to the same reason simple maximum and minimum values were used.
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Figure 5.5: Standard deviation: distribution of values for dead (left) and alive
(right) rabbits for EC #60 in control interval.

Figure 5.6: max−min/length: distribution of values for dead (left) and alive
(right) rabbits. From the top: EC #60 in control interval and EC #1 in the
concatenated intervals.

5.4.1.9 Energy of time series

The cumulative sum of energy 2.1.3 in each interval and in the concaten-
ated intervals was inspected. The perspective results were revealed in the
transitional (non-final) cumulative sums and in the energy of the whole ECs
(Figures 5.7 below show examples) and, thus, the energy of ECs was used as
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feature in machine learning algorithms. In order to take transitional cumulat-
ive sums into account, values of EC time series were divided into one minute
subintervals consisting of 12 EC values (as EC values were measured in a five
seconds interval).

Figure 5.7: Cumulative sum progress for dead (green) and alive (red) rabbits.
From the top: EC #1 in control interval and EC #20 in the concatenated
intervals.

5.4.1.10 Features in subintervals

In the case of one minute subintervals, it is impossible to evaluate usefulness
manually as there are too many dimensions (subintervals) with their own
values of the same feature, which results in very complicated behavior. Thus,
all subinterval features were used in further data analysis by machine learning
algorithms. These features are listed below:

• Difference between max and min EC values in subinterval

– (max - min)/(length of subinterval) as the final subinterval may
have different length than previous ones.
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• Maximum value in subinterval

• Minimum value in subinterval

• Mean of values in subinterval

• Energy of time series in the subinterval 2.1.3

• Continuous cumulative sum of energy in subinterval

– (sum of energy in current subinterval) + (sum of energy in the
previous subinterval)

• Sum of values of time series in subinterval

• Continuous sum of values in subinterval

– (sum of values in current subinterval) + (sum of values in the pre-
vious subinterval)

• Slope of subinterval

slope = M y

M x
= last y − first y
last x− first x

where y are time series values and x are indices of these values

• Variance of subinterval

• Standard deviation of subinterval

• Integral of a curve defined by values in subinterval

• Skewness of a curve defined by values in subinterval

• Kurtosis of a curve defined by values in subinterval

• Trend of the subinterval

5.4.2 Discrete Fourier Transform

The truncated ECs were used as input for DFT algorithm and the first 15
complex (with real and imaginary parts) DFT coefficients were computed for
each EC. Then the important real and imaginary coefficients were identified
using Random Forest for each value of L parameter. In the final step, five most
important coefficients (from real and imaginary parts considered together)
were selected and used as features.

The second used approach consisted in classification of ECs reconstructed
by the first ten DFT coefficients. The five most important time moments
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were identified for the reconstructed ECs using Random Forest and used as
features.

The achieved classification performance for these two approaches may be
found for SVM in 6.0.2.1, for Random Forest in 6.0.1.1, for logistic regression
in 6.0.3.1 and for k-NN in 6.0.4.1.

5.4.3 Discrete Wavelet Transform

The first approach consisted in using DWT algorithm for computation of DWT
coefficients for each EC at the maximum level of signal decomposition. How-
ever, unlike DFT algorithm, in order to perform DWT algorithm properly,
it is necessary to find the most suitable wavelet 2.4.1.2.2. The most suitable
wavelet for each value of L parameter was found based on ECs reconstruc-
ted by ten most significant in absolute value coefficients (the same number of
coefficients were used later on as features due to the fact that the identified
suitable wavelet for different number of the DWT coefficients may be differ-
ent). The quality of DWT approximations of ECs was estimated by Mean
Squared Error (MSE) 5.1.2. The tested wavelet families were:

• Daubechies (db1-db20)

• Symlets (sym2-sym20)

• Coiflets (coif1-coif17)

Haar wavelet (or “db1” as they are identical) was identified as the most
suitable wavelet for ECs of each value of L parameter. After that, ten most
significant DWT coefficients computed for each EC using Haar wavelet and
sorted in descending order by their values were used as features for subsequent
classification.

The second approach consisted in using important time moments of ECs
reconstructed by ten most significant in absolute value DWT coefficients. The
five most important coefficients identified by Random Forest were used as
features.

The results of the conducted experiments for each of these two approaches
may be found for SVM in 6.0.2.1, for Random Forest in 6.0.1.1, for logistic
regression in 6.0.3.1 and for k-NN in 6.0.4.1.

5.4.4 Standardization of features

The extracted features such as statistic features, DFT and DWT coefficients
or combinations of these features with other features are measured by dif-
ferent scales and thus, these extracted features must be rescaled. Scikit-learn
provides instruments 20 for both standardization and normalization 2.2.2.1 and

20http://scikit-learn.org/stable/modules/preprocessing.html
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was used for standardization purposes. The extracted features were standard-
ized to zero mean and unit variance.

5.5 Feature selection

The ability of Random Forest to estimate feature importance was used on
different feature sets in order to reveal the most useful features. The settings
of Random Forest algorithm 21 were the following:

• Number of trees: 300

• All features were considered when the algorithm was searching for the
best split

• 10-fold cross validation for estimating average feature importance across
different data partitions into folds

• Two split criterions were used: Gini impurity measure 2.3.7.1 and in-
formation gain 2.3.7.2. The union of the top five important features
for each criterion was used as a final estimation in order to get a more
complete set of important features (note that it results sometimes in the
number of the selected important features greater than five).

Other not mentioned parameters had their default values.
Results of this approach in application to different feature sets will be

described below.

5.5.1 Selection of statistic features

The number of all extracted statistic features is 16 and some of these features
are definitely not useful. Feature importance estimated by Random Forest was
used in order to identify the most important statistic features. Figure 5.8 be-
low illustrates the estimated importance of statistic features computed for the
original EC #10. Blue lines represent standard deviation of the appropriate
feature.

5.5.2 Subsampling of the important time moments

The truncated ECs are quite long (approximately 100 values) and thus, sev-
eral strategies of subsampling had been performed and tested by SVM (with
parameter optimization) in order to identify important time moments of ECs.
The following subsampling strategies were used:

• Every 10-th element of EC (including the first element)
21http://scikit-learn.org/stable/modules/generated/

sklearn.ensemble.RandomForestClassifier.html
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5.5. Feature selection

Figure 5.8: Computed feature importance of statistic features for EC #10.
The best five in descending order: (max −min)/length, variance, standard
deviation, skewness and slope.

• Every 15-th element of EC (including the first element)

• Random subsampling

No one of these subsampling strategies succeeded. Random subsampling
strategy was performed several times with no success. However, subsampling
each 15-th element of EC results in ARARS score of 80% in one case.

Then Random Forest was used for the whole time series (Entropy Curve
of a rabbit) in order to find good time moments for classification (see Fig-
ure 5.9 below). This approach was successful with achieved ARARS score
approximately equal to 90%.

Figure 5.9: Computed feature importance of important time moments for EC
#1 and control interval. The best six are 96, 97, 66, 38, 18, 54.
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The importance of the identified time moments (indices 96, 97, 66, 38, 18,
54 in the case of Figure 5.9) may be easily seen and verified using Box-and-
Whisker plot. Figure 5.10 shows an example of distribution of EC values in
the important time moment identified by Random Forest for verification of
importance of this time moment.

Figure 5.10: Important time moment #96: distribution of values for dead
(left) and alive (right) rabbits.

5.5.3 Selection of the most discriminative values of L
parameter

The final approach applies Random Forest algorithm to the set of multidi-
mensional points (constructed from all ECs of the appropriate rabbit and
repeating this step for each rabbit) for determining ECs, which are the most
discriminative. Figure 5.11 shows an example of such multidimensional point
construction.

5.6 Used features and their combinations

This subsection describes features and their combinations used as input for
machine learning algorithms.

All created features may be divided into four groups:

• Statistic features

• Time moments of ECs

• Combinations of features

• DFT and DWT approaches
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5.6. Used features and their combinations

Figure 5.11: Example of a multidimensional point construction

Statistic features are common choice of features for almost any data. Mean,
minimum, maximum, percentiles – these statistics are simple and describe any
type of numerical data and thus, they were initially used as features. Unfor-
tunately, the performance of machine learning algorithms on these simple
features was poor with ARARS score less than 75% in almost all cases. Then
more specific statistic features reflecting shape of ECs, distributions of EC
values and time series specific information were introduced and added to the
simple statistic features in order to improve results. This approach resulted in
additional winners (values of L parameter of ECs) and in the slightly improved
overall performance.

The next used approach consisted in reducing the length of the original ECs
using different subsampling strategies 5.5.2 in order to reveal hidden patterns.
Subsampling using Random Forest succeeded in location of the important
time moments of ECs and machine learning algorithms, trained on these time
moments, achieved high results even with ARARS score greater than 90% in
rare cases.

Though the already achieved results were quite good, their combination
could achieve better results. Thus, the different combinations of the import-
ant time moments and statistic features including concatenation of the drug
intervals together were tested and the classification performance had achieved
overall improvements (more cases with ARARS score in the range of 85-90

The last approach, namely usage of DFT and DWT algorithms, was real-
ized due to the fact that the input data (i.e. ECs) are time series and may
be interpreted as signals. DFT and DWT algorithms are widely used in sig-
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nal processing due to their robustness and compression capabilities and thus,
they may also be used in prediction of arrhythmia. DFT and DWT coeffi-
cients computed for each EC were used as features in the first step. Then the
important time moments of ECs reconstructed by several DFT (and DWT)
coefficients were identified by Random Forest and used further as features.

The list below contains used features and their combinations as well as
short abbreviations:

• imp time: top five important time moments of the truncated ECs re-
vealed by Random Forest

• imp time rollmean: top five important time moments of the trun-
cated ECs with rolling mean revealed by Random Forest

• original: all values of truncated ECs

• original rollmean: all values of the truncated ECs with rolling mean

• osimple stats: simple statistic features of the original ECs

• oadvanced stats: simple + advanced statistic features of the original
ECs

• tsimple stats: simple statistic features of the truncated ECs

• tadvanced stats: simple + advanced statistic features of the truncated
ECs

• oimp stats: top five important statistic features (simple + advanced)
of the original ECs revealed by Random Forest

• timp stats: top five important statistic features (simple + advanced)
of the truncated ECs revealed by Random Forest

• best truncated: top five important truncated ECs revealed by Ran-
dom Forest

• best imp time: top five important time moments of top five important
truncated ECs revealed by Random Forest

• best imp ostats: top five important statistic features (simple + ad-
vanced) of top five important truncated ECs revealed by Random Forest

• concat: concatenation of values of control and first intervals of the
truncated ECs

• concat imp time: concatenation of the top five important time mo-
ments of control and first intervals of the truncated ECs
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• concat imp time ostats: concatenation of top five important time
moments of control and first intervals of the truncated ECs with the
subsequent concatenation with all statistic features (simple + advanced)
computed for the original ECs (i.e. control imp time + first imp time
+ ostats)

• concat imp time inter ostats: concatenation of top five important
time moments of each interval of the truncated ECs with all statistic
features (simple + advanced) computed for the original ECs (i.e. con-
trol imp time + ostats, first imp time + ostats)

• concat imp time cstats: concatenation of top five important time
moments of control and first intervals of the truncated ECs with the
subsequent concatenation with all statistic features (simple + advanced)
computed for this concatenated important time moments (i.e. con-
trol imp time + first imp time + cstats)

• concat imp time inter tstats: concatenation of top five important
time moments of each interval (control and first) of the truncated ECs
with all statistic features computed for the appropriate interval (i.e.
control imp time + tstats, first imp time + tstats)

• concat imp time inter imp tstats: concatenation of top five import-
ant time moments of each interval (control and first) of the truncated
ECs with important statistic features computed for the appropriate in-
terval (i.e. control imp time + imp tstats, first imp time + imp tstats)

• imp dft coeffs: top five important DFT coefficients (concatenation of
15 real and 15 imaginary parts together and top five from them all) com-
puted for the truncated ECs. Important time moments were identified
by Random Forest.

• imp dft: top five important time moments (identified by Random Forest)
of ECs reconstructed by the first ten DFT coefficients

• dwt coeffs: ten most significant in absolute value DWT coefficients for
each EC. Coefficients were sorted in descending order.

• imp dwt: top five important time moments (identified by Random
Forest) of ECs reconstructed by ten most significant (in absolute value)
DWT coefficients

• imp time cstats: all statistic features computed for the concatenated
important time moments of ECs of each drug interval
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Chapter 6
Experiment results

This section contains selected results of the conducted experiments for SVM,
Random Forest, Logistic Regression, k-NN, MLP, GMDH and ensemble learn-
ing. All results may be found in Appendix ??. At the end of the section, the
best achieved results for each performance metric and the most effective values
of L parameter of ECs are presented.

Due to the high amount of the obtained results and the fact that many of
these results were very poor, unsatisfying results were not part of this work.

6.0.1 Random Forest

Two of the significant advantages of Random Forest algorithm, especially in
case of small data sets, are its resistance to overfitting and handling the outliers
2.3.7.3.1. These advantages are very important in case of the input data of
this work as there are only 37 different samples for each value of L parameter
of ECs, which indicates very small data set.

Algorithm of Random Forest may be optimized in several ways such as
choosing size of the selected subset of subsamples, maximum admissible depth
of tree classifiers, amount of features for splitting etc. Scikit-learn implement-
ation of Random Forest 22 supports many parameters, however, only some
of them are important for algorithm optimization and must be set explicitly.
These parameters are:

• n estimators: the number of tree classifiers in Random Forest

• max features: the number of features to consider when looking for the
best split

• criterion: criterion for measure quality of a split

• max depth: the maximum depth of the trees in forest
22http://scikit-learn.org/stable/modules/generated/

sklearn.ensemble.RandomForestClassifier.html
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6. Experiment results

• min samples leaf : the minimum number of samples in a leaf node

• oob score: whether to use out-of-bag samples to estimate the general-
ization accuracy or not

Inclusion of oob score may seem a weird decision at first, but it is actu-
ally not. Using oob score in Random Forest 2.3.7.3.1 has the same goal as
using cross validation, i.e. for estimating generalization accuracy on data set
independent from the training data set. However, in this work, the generaliz-
ation accuracy was estimated by ten different cross validations, which results
in more reliable final results than oob score may provide and thus, use of
oob test samples is not required in this case.

The set of values for each other parameter must be tested in order to find
and then construct effective Random Forest classifier.

The criterions for measuring quality of split, namely Gini index and in-
formation gain, are tree specific parameters and thus, they must be tested.

Optimization of max features parameter is very important as the per-
formance of Random Forest algorithm is very sensitive to this parameter which
was mentioned in section (Random Forest). In case of the available input
data, where amount of features is approximately 5 (in case of the import-
ant time moments) up to 16 (in case of all statistic features), some values
of max features parameter become very similar and may be omitted. For
example, two of the available options of this parameter are

√
all features and

log2(all features). However, these two values of parameter are very close to
each other or even identical in case of 5-16 features as the computed max-
imum number of features is either

√
5 = 2 and log2 5 = 2 or

√
16 = 4 and

log2 16 = 4. Thus, one of the abovementioned values may be omitted without
losing any important information. Even in case they are slightly different,
these two computed values used together do not result in effective search of
the parameter space and thus, one of the values may be omitted.

Random Forest trains each of its decision tree classifiers on the various
subsamples (with replacement) of the original input data set with size 37.
The tested values of max depth parameter must reflect the size of the input
data set and the fact that the maximum possible depth of tree equals to
log2 37 = 6 (note that scikit-learn implements Random Forest with binary
split). The computed maximum tree depth parameter is too small and the
only viable option of this parameter is tree depth equal to 3 or 4. Thus, the
following two values of maximum depth were tested: 3 and None as the case
where nodes are expanded until all leaves are pure in terms of classes or until
all leaves contain less than two samples.

The last parameter to consider is min samples leaf. It is obvious that
the tested values of this parameter must be less than 13 due to the fact that
there are 13 non-arrhythmogenic rabbits and 24 arrhythmogenic rabbits. It is
also important to mention that this parameter is connected to the maximum
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depth of trees in Random Forest. Even more, the tree depth may be controlled
in some way by this parameter as the construction of each tree is stopped
when there are no more nodes with number of samples greater than value of
min samples leaf. Thus, due to the small size of the input data and the
fact that testing of maximum tree depth parameter will be performed, it is
not necessary to test min samples leaf parameter.

The table 6.1 below contains summary of the tested values of Random
Forest parameters.

Parameter Tested values
n estimators 10, 25, 40, 80, 130
max features all features, log2, 50%, 70%

criterion Gini index, information gain
max depth 3, None

Table 6.1: Optimized parameters of Random Forest algorithm

6.0.1.1 Achieved results

Table 6.2 contains achieved results.

Feature combination EC recall specificity ROC AUC accuracy Interval

imp time
400 0.89 0.76 0.82 0.84 control
100 0.88 0.77 0.83 0.84 first

concat imp time
100 0.97 0.67 0.82 0.86 -
500 0.9 0.73 0.81 0.84 -

concat imp time cstats 500 0.96 0.74 0.84 0.88 -
concat imp time inter tstats 100 0.9 0.71 0.8 0.83 first

Table 6.2: Achieved results for Random Forest

6.0.2 SVM

Scikit-learn implementation of SVM 23 was used for the experiments and the
following parameters were optimized:

• C regularization 2.2.6 parameter
23http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
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• gamma: kernel coefficient

• kernel: type of the kernel function for using in the algorithm

Different kernel functions must be tested in order to find the most adequate
one for the given data set and problem domain. The used implementation sup-
ports several types of kernel functions such as Radial Basis Function (RBF),
sigmoid, polynomial and linear kernels. The gamma parameter relates to
RBF, polynomial and sigmoid kernels and defines an influence area of a single
training sample selected as support vector. Let consider RBF kernel and
gamma: If gamma is high, the influence area is small up to the selected
support vectors themselves and it leads to overfitting. On the other side,
with low values of gamma, the selected support vectors have large influence
areas containing all training samples, which again leads to wrong classifica-
tion. In other words, SVM cannot capture the shape of data distribution in
both abovementioned cases, which leads to wrong results.

The table 6.3 below contains summary of the tested values of SVM para-
meters.

Parameter Tested values
C 2−10, 2−9, . . . , 1, . . . , 29, 210

gamma 2−10, 2−9, . . . , 1, . . . , 29, 210 and 1/n features 24

kernel rbf, sigmoid, linear
Table 6.3: Optimized parameters of SVM algorithm

6.0.2.1 Achieved results

Table 6.4 contains achieved results.

6.0.3 Logistic Regression

Scikit-learn implements regularized logistic regression 25. The regularization
2.2.6 may be performed with one of the two methods: L1 [84] (least absolute
shrinkage and selection operator or LASSO) and L2 (also known as Tikhonov
regularization 26. The comparison of L1 and L2 regularization methods with
focusing on logistic regression in case of many irrelevant features was per-
formed in 2004 by Andrew Y. Ng [85] and showed that logistic regression with
L1 regularization is effective even in case of the number of irrelevant features
exponentially higher than the amount of the training data. It is important

25http://scikit-learn.org/stable/modules/generated/sklearn.linear_
model.LogisticRegression.html

26https://en.wikipedia.org/wiki/Tikhonov_regularization
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Feature combination EC recall specificity ROC AUC accuracy Interval

imp time

30 0.82 0.85 0.84 0.83
control

300 0.91 0.93 0.92 0.92
300 0.79 0.90 0.85 0.83

first500 0.86 0.99 0.92 0.90
10 0.88 0.79 0.84 0.86

imp time rollmean 60 0.86 0.82 0.84 0.84 first
oadvanced stats 10 0.78 0.92 0.85 0.83 -

oimp stats 20 0.71 0.90 0.80 0.77 -

concat imp time
10 0.96 0.75 0.85 0.89

-300 0.85 0.95 0.90 0.89
500 0.92 0.88 0.90 0.90

concat imp time ostats

10 0.91 0.85 0.88 0.89

-
5 0.76 0.94 0.85 0.82

500 0.84 0.84 0.84 0.84
90 0.89 0.84 0.86 0.87

concat imp time inter ostats

10 0.795000 0.995 0.895000 0.864500 control
10 0.86 0.85 0.85 0.86

first
20 0.83 0.87 0.85 0.85
400 0.89 0.86 0.87 0.87
500 0.83 0.91 0.87 0.85

Table 6.4: Achieved results for SVM

as the input data set for this work is small (37 different ECGs in total) and
though the number of the used features does not exceed the size of this data
set, the number of features can achieve approximately half of the data set size
in case of feature combinations.

Let w is a vector of regression coefficients, n is a number of input samples,
X is a matrix of input samples, y is a vector of true outputs, c is an error term
or noise and C is the inverse of regularization strength (the smaller is C the
strongest is regularization), then L1 regularized logistic regression minimizes
the following cost function 27

Figure 6.1: Logistic regression with L1 (top) and L2 (bottom)

Scikit-learn implementation of logistic regression also supports different
27http://scikit-learn.org/stable/modules/linear_model.html#logistic-

regression
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so-called solvers: approaches which are used to optimize objective function
during the training. The available solvers are:

• “liblinear” (coordinate descent algorithm)

• “newton-cg” (newton conjugate descent)

• “lbfgs” (limited memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS)
algorithm)

• “sag” (Stochastic Average Gradient descent).

Thus the parameters for optimization are solver type, C (the inverse of
regularization strength) and regularization method (L1 or L2) (link to section
Regularization). The table 6.5 below summarizes the tested values of these
parameters.

Parameter Tested values
C ten evenly spaced samples in the interval [0.1, 1] and 50 evenly spaced samples in the interval [2, 5000]

solver liblinear, newton-cg, lbfgs, sag
regularization method L1, L2

Table 6.5: Optimized parameters of Logistic regression algorithm

6.0.3.1 Achieved results

Table 6.6 contains the achieved results.

Feature combination EC recall specificity ROC AUC accuracy Interval
imp time 500 0.89 0.82 0.85 0.86 first

oadvanced stats 10 0.74 0.97 0.85 0.82 -
concat imp time 300 0.89 0.81 0.85 0.86 -

concat imp time ostats

10 0.91 0.87 0.89 0.90

-
400 0.86 0.84 0.85 0.86
50 0.96 0.74 0.85 0.88
90 0.95 0.78 0.86 0.89

concat imp time inter ostats 50 0.99 0.84 0.91 0.94 first

concat imp time cstats
10 0.90 0.94 0.92 0.92

-300 0.91 0.81 0.86 0.88
500 0.96 0.75 0.85 0.89

concat imp time inter tstats 500 0.91 0.80 0.85 0.87 first

Table 6.6: Achieved results for Random Forest
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6.0.4 k-NN

k-nearest neighbors algorithm is quite simple and must be optimized primarily
in number of the nearest neighbors. Scikit-learn implementation of k-NN 28

supports some additional parameters. The following parameters were optim-
ized:

• n neighbors: amount of neighbors to use

• weights: how the contribution of the neighbors is weighted (e.g. by
inverse of their distance)

• p: power parameter for the Minkowski distance

The common used types of weights parameter are uniform (all neighbors
are weighted equally) and distance (neighbors are weighted by the inverse of
their distance, i.e. the closest neighbors contribute to the classification the
most).

In order to clarify the meaning of p parameter, it is necessary to define
Minkowski distance. Minkowski distance of order p between two points X =
(x1, x2, .., xn) and Y = (y1, y2, . . . , yn) ∈ Rn is expressed as 29:

dist(X,Y, p) = (
n∑

i=1
|xi − yi|p)

1
p

where |. . . | means absolute value.
Thus, Minkowski distance of order 1 is Manhattan distance and of order 2

is Euclidean distance. Amount of the considered nearest neighbors cannot be
obviously greater than the amount of available samples of negative class (i.e.
greater than 13) and thus, the values of 1-10 were tested.

The table 6.7 below contains the tested values of parameters.
The optimized parameters of k-NN with DTW are slightly different from

the standard k-NN. First, Minkowski distance was replaced with DTW dis-
tance. Second, computation of DTW distances between time series is compu-
tationally expensive and thus, the amount of the nearest neighbors for testing
was reduced to only three values. The tested values of weights parameter are
the same as in case of standard k-NN algorithm. k-NN with DTW approach
was applied to the reduced number of the feature sets as it was very compu-
tationally demanding (approximately 30 hours for each feature set) and due
the fact that k-NN with DTW indicated worse results then standard k-NN.

The table 6.8 summarizes information about tested parameters in case of
k-NN with DTW.

28http://scikit-learn.org/stable/modules/generated/
sklearn.neighbors.KNeighborsClassifier.html

29https://en.wikipedia.org/wiki/Minkowski_distance
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Parameter Tested values
n neighbors 1-10

weights uniform, distance
p 1,2,3

Table 6.7: Optimized parameters of k-NN algorithm

Parameter Tested values
n neighbors 1, 3, 5

weights uniform, distance
Table 6.8: Optimized parameters of k-NN with DTW

6.0.4.1 Achieved results

6.0.4.1.1 k-NN
Table 6.9 contains achieved results.

6.0.4.1.2 k-NN with DTW
Table 6.10 contains achieved results.

6.0.5 Neural Networks

Neural networks require a large enough training data set in order to reveal
hidden patterns and relationships. 37 different ECGs were available and this
likely indicates a very small data set for neural networks. This assumption
was confirmed by training MLP and GMDH on the input data (it resulted
in prediction of one class either positive or negative in all cases). In order to
deal with this problem, ECs of different values of L parameter were grouped
together for each drug interval which constructed new data sets of size 592.
Then the neural networks were trained on these new data sets and provided
meaningful results. However, the amount of tested feature sets was reduced
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Feature combination EC recall specificity ROC AUC accuracy Interval

imp time

500 1.00 0.69 0.84 0.89 control
20 0.71 0.99 0.85 0.81

first500 0.90 0.92 0.91 0.91
90 0.93 0.70 0.81 0.84

imp time rollmean 60 0.79 0.91 0.85 0.83 control

oimp stats
50 0.72 1.00 0.86 0.81

-10 0.62 0.96 0.79 0.74
5 0.69 0.90 0.79 0.76

concat imp time

10 0.79 0.91 0.85 0.83

-
100 0.78 0.99 0.88 0.85
500 0.94 0.77 0.85 0.88
300 0.96 0.70 0.83 0.87

concat imp time cstats
10 0.90 0.84 0.87 0.88

-500 0.81 0.94 0.88 0.85
400 0.76 0.94 0.85 0.82

concat imp time inter imp tstats 500 0.87 0.86 0.86 0.86 first
imp dft coeffs 40 0.84 0.83 0.84 0.83 control

imp dwt 90 0.93 0.91 0.92 0.92 first

Table 6.9: Achieved results for k-NN

Feature combination EC recall specificity ROC AUC accuracy Interval
imp time 500 0.95 0.75 0.85 0.88 first

Table 6.10: Achieved results for k-NN

due to the fact that concatenation of ECs of different L parameters in case of
important features identified by Random Forest produces data set of samples
with different and inconsistent features (e.g. ECs with L = 30 may have
important statistic features different from important statistic features of ECs
with L = 5 and thus, these groups of ECs cannot be considered together).
Though the important features could be estimated for the new data sets with
grouped ECs of different value of L parameter, the goal of this work is to pro-
duce meaningful and well-interpreted results, including identifying the most
perspective values of L parameter, which is impossible in the abovementioned
case. Thus, the neural networks were used rather for illustration purposes
than for the serious research.

6.0.5.1 GMDH

The important advantage of GMDH neural network is its self-organization.
The used application GMDH Shell 30 performs effective construction of GMDH
NN and the only parameters to set by user are:

30https://www.gmdhshell.com/time-series-forecasting
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• Complexity of neuron function in terms of polynomial order and other
related settings

• Maximum number of layers

• The initial layer width, which defines how many neurons are added to
the set of inputs at each new layer

• Loss function

The custom polynomial was used as the neuron function with the following
properties:

• Maximum power of variable: 2

• Minimum power of variable: 0

• Maximum total power (as sum of powers) in a polynomial term: 4

• Maximum number of variables in a polynomial term: 3

Due to the fact that GMDH Shell cannot run several cross validations,
leave-one-out cross validation was used. The following table 6.11 summarizes
information about the tested values of parameters.

Parameter Tested values
maximum number of layers 33

initial layer width 50, 200, 400
loss function Root Mean Squared Error (RMSE)

Table 6.11: Optimized parameters of GMDH

6.0.5.1.1 Achieved results The table 6.12 contains selected achieved res-
ults.

Feature combination recall specificity ROC AUC accuracy
oadvanced stats 0.8 0.74 0.88 0.78

Table 6.12: Achieved results for GMDH

84



6.0.6 Ensemble learning

6.0.6.1 Combining different algorithms together

ECs of particular L parameters with the best results were selected for each
used algorithm. Best results in this section mean results with ARARS score
greater than or equal to 75%. Then the combination of SVM, Random Forest,
k-NN and Logistic regression algorithms in the following two ways was used:

• Algorithms were combined together by L parameter of ECs

• Combination of algorithms across all drug intervals with ECs of any L
parameter, i.e. combination of all available good enough values of L
parameter in any drug interval together

In both cases, majority voting was used as final prediction.

6.0.6.1.1 Combination of different algorithms for each value of L
parameter This approach combined together predictions of machine learn-
ing algorithms for each value of L parameter and for each drug interval (if
it existed) with subsequent majority voting. Table 6.13 contains the selected
results.

Feature combination EC recall specificity ROC AUC accuracy Interval
imp time 500 0.870000 0.985 0.927500 0.909667 first

oadvanced stats 10 0.730000 0.985 0.857500 0.818333 -
oimp stats 50 0.788333 0.950 0.869167 0.843000 -

concat imp time
300 0.898333 0.895 0.896667 0.896000

-
500 0.943333 0.820 0.881667 0.900000

concat imp time ostats
10 0.876667 0.905 0.890833 0.887833

-
90 0.921667 0.860 0.890833 0.900667

concat imp time cstats
10 0.908333 0.995 0.951667 0.938500

-300 0.860000 0.895 0.877500 0.871833
500 0.946667 0.850 0.898333 0.913167

Table 6.13: Achieved results for combination of different algorithms by value
of L parameter

6.0.6.1.2 Combination of classifiers for all values of L parameter
at once This ensemble approach used combination of machine learning al-
gorithms and all available information (i.e. ECs from different drug intervals
and of different values of L parameter) in order to make a final prediction
by majority voting. Moreover, each algorithm used only those values of L
parameter, which achieved ARARS score of at least 75% for the appropriate
algorithm.
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The table 6.14 below illustrates achieved results. The values of L para-
meter, which were used for prediction, may be found in another table 6.15.

Feature combination Used algorithms recall specificity ROC AUC accuracy

imp time

SVM 1.0 1.0 1.0 1.0
RF 0.99 0.88 0.93 0.95

k-NN 0.99 1.0 0.99 0.99
LR 0.96 0.87 0.91 0.93

oadvanced stats SVM 0.83 0.86 0.84 0.84

oimp stats
SVM 0.83 0.97 0.9 0.88

SVM, RF, k-NN, LR 0.8 0.99 0.9 0.87
timp stats SVM 0.93 0.93 0.93 0.93

concat imp time inter imp tstats SVM, RF, k-NN, LR 1.0 1.0 1.0 1.0
imp dft coeffs SVM 0.99 0.99 0.99 0.99

dwt coeffs SVM 0.95 0.85 0.9 0.9

Table 6.14: Achieved results with combination of different algorithms and
using different values of L parameter at once

Feature combination Used algorithms Used ECs

imp time

SVM Control: 1, 100, 30, 300, 40, 500, 60 First: 10, 100, 20, 200, 30, 300, 40, 5, 50, 500, 60, 70, 90
RF Control: 300, 400, 500, 90 First: 100, 5, 500

k-NN Control: 100, 30, 500, 60 First: 10, 100, 20, 300, 40, 400, 5, 50, 500, 90
LR Control: 100 First: 10, 200, 300, 5, 500, 90

oadvanced stats SVM 10, 40, 50

oimp stats
SVM 10, 20, 300, 40, 5, 50, 500, 90

SVM, RF, k-NN, LR RF: 40 LR: 10, 40 k-NN: 10, 300, 5, 50, 90 SVM: 10, 20, 300, 40, 5, 50, 500, 90
timp stats SVM Control: 20, 300 First: 40, 60

imp dft coeffs SVM Control: 40, 400, 5, 90 First: 1, 20, 200, 30, 80
dwt coeffs SVM First: 10, 40, 60

Table 6.15: The used values of L parameter for combination of different al-
gorithms with using different values of L parameter at once

6.0.7 Best results

This section contains ten best achieved scores 6.16 for each of the used per-
formance metrics (recall, specificity, ROC AUC and accuracy) in the cases
with ARARS score greater than 80% and regardless of the used algorithm or
approach.

6.0.8 Best values of L parameter

This section contains summary (see table 6.17) of the most useful values of
L parameter with ARARS score greater than 80%. In case of values of L
parameter with ARARS score greater than 90%, their highest ARARS scores
are explicitly stated. As it can be seen from the table, the most useful values
of L parameter are 10, 90 and 500.
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Position Recall Specificity ROC AUC Accuracy
1 1.0 1.0 1.0 1.0
2 1.0 1.0 0.99 1.0
3 1.0 1.0 0.99 0.99
4 1.0 1.0 0.95 0.99
5 1.0 0.99 0.93 0.95
6 0.99 0.99 0.93 0.94
7 0.99 0.99 0.93 0.94
8 0.99 0.99 0.93 0.93
9 0.99 0.99 0.92 0.93
10 0.98 0.99 0.92 0.93

Table 6.16: Top 10 achieved results regardless of the used approach

As it was mentioned in section 5.5.3, the most discriminative values of
L parameter were revealed by constructing a multidimensional set of points
with particular values of L parameter as dimensions. The following values of
L parameter were identified as important for each drug interval:

• Control interval: 1, 10, 20, 40, 70

• The first interval (after the first DII): 1, 5, 20, 40, 80

Taking into account the table 6.17 below with the real observations, it is
obvious that the used approach showed neither outstanding nor poor perform-
ance. Most of the identified values of L (5, 10, 20, 40 and 80) were confirmed
by real observations (though only value of 10 belongs to the best observed val-
ues). However, the remaining two identified values (1 and 70) were completely
wrong.

L
1 5 10 20 30 40 50 60 70 80 90 100 200 300 400 500

RF x x x
SVM x x x x x x x 0.92 x 0.92 x 0.93
k-NN x x x x x x 0.92 x x x 0.91
LR 0.92 0.92 x x x x

Ensemble 0.95 x x x 0.92 x x 0.93

Table 6.17: The most useful values of L parameter with ARARS score of at
least 80%
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6. Experiment results

6.0.9 Outlier detection

There are two different approaches in distinguishing abnormal observations
from the regular ones depending on the training data set. Novelty detection
is applied where the training data set does not contain any outliers. Thus,
the goal of the novelty detection is detection of abnormal observations in the
new observations. Outlier detection is applied in case there are abnormal
observations in the training data set and it is necessary to take into account
the regular observations ignoring anomalies [86].

Due to the small input data set (37 different ECGs in total), outlier de-
tection and novelty detection are useless and, moreover, may lead to serious
misunderstanding of the problem domain as the identified outliers (in case
of outlier detection) and assumptions about the true distribution of regular
observations (in case of novelty detection) may not be correct. Thus, these
approaches must be used with caution.

An example of using outlier detection in order to improve classification
performance will be provided further. An algorithm of Isolation Forest or
iForest proposed by Fei Tony Liu and Kai Ming Ting [87] was used for outlier
detection. The basic approach of anomaly detection consists in identifying
profile of regular observations and marking observations, which do not conform
to this profile as anomalies. The disadvantage of this approach is concentration
on the regular observations rather than abnormal observations. iForest works
differently: it constructs ensemble of trees (iTrees in context of iForest) for the
data and then the observations with short average path lengths in the iTrees
are viewed as anomalies. In other words, the anomalies are those observations,
which can be isolated as soon as possible. The Figure 6.2 below shows an
example of outlier detection by iForest for non-arrhythmogenic rabbit and EC
#30 in the control interval.

Figure 6.2: Outlier detection on the non-arrhythmogenic rabbits.
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6.0.9.1 SVM

6.0.9.2 Random Forest

6.0.9.3 Logistic regression

6.0.9.4 k-NN
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Chapter 7
Real time prediction on the one

minute subintervals

This section provides experiment results in case of real time prediction on the
increasing number of continuous one minute subintervals.

First, the control and the first drug intervals were divided into one minute
subintervals. Then, the prediction was initiated for each drug interval on
the first one minute subinterval, later on the concatenated first and second
subintervals etc. In other words, prediction was performed on the increasing
number of continuous subintervals, i.e. the prediction was real time. SVM
with subinterval statistic features (described in section 5.4.1) was used for the
prediction purposes.

The final score of the real time prediction was computed for recall, spe-
cificity, ROC AUC and accuracy by averaging ten different 10-fold cross valida-
tion results. The following two Figures 7.1 illustrate the progress of maximum
value for each abovementioned metric for the control and the first drug inter-
vals. The highest scores were achieved on the first five minutes in the control
interval and on the first three minutes after the first DII.

Figure 7.1: Progress of results in case of real time prediction on the one minute
subintervals.
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Discussion

This work has achieved good results (even with approximately 99% ARARS
score in case of ensemble learning with SVM) in the prediction of arrhythmia
on the animal model with rabbits. However, it is necessary to take into ac-
count the small size of the analyzed input data: there were only 37 different
ECGs. The main problem in this case could be overfitting of machine learning
algorithms. However, this weakness was rectified by:

• penalizing the contribution of more frequent class samples

• using reliable performance metrics 5.1.1 (F1, recall, specificity, ROC
AUC)

• using ten different cross validation runs with different data partitioning
into the cross validation folds with subsequent averaging the computed
results.

Despite of the conducted improvements, the computed results must be
considered with caution as such small data set may not provide enough gen-
eralization of the considered problem domain. For example, important time
moments 5.5.2 revealed by Random Forest and verified by Box-and-Whisker
plot may not exist in case of increased size of the input data under consider-
ation. Figure 7.2 below provides a clear illustration of this case.

However, the high classification performance was also achieved with more
reliable features such as statistic features 5.4.1 and coefficients of DFT 5.4.2
and DWT 5.4.3 transformations.

Outlier detection has the same problem as was mentioned in the text
above, i.e. the small input data set. Though the classification performance
for the data set without outliers is generally higher than the one with outliers,
the achieved results primarily illustrate the possible case of outlier detection
and potential improvements. The results must be considered with caution
as due to the small input data set, the currently detected outliers may not
be outliers identified in the larger data set. Moreover, it is unsafe to delete
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Figure 7.2: Example of the wrong time moment. (Left) The time moment
exists (Right) There are more samples to disposition and the time moment is
not now valid.

outliers without understanding their properties and causes of why they behave
like outliers.
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Conclusion

In this work, different machine learning algorithms and approaches such as
Random Forest, SVM, logistic regression, k-NN, GMDH and ensemble learn-
ing were tested in order to predict arrhythmias. Different features were ex-
tracted from the provided input data such as classical statistic features and
time series specific features. Discrete Fourier Transform and Discrete Wavelet
Transform were used for compressing input time series with subsequent usage
of the computed coefficients in prediction. Subsampling of time series data
was performed in order to identify the most discriminative time moments.
Finally, different features were combined together in different ways and their
classification performance was evaluated.

This work presents good results in prediction of arrhythmias on the an-
imal model up to one hour before life-threatening situation occurs. The max-
imum achieved scores in recall and specificity were as high as 99% in the case
of ensemble learning (link to selected results). SVM 6.0.2.1, logistic regres-
sion 6.0.3.1 and k-NN 6.0.4.1 algorithms competed against one another in the
highest achieved results with ARARS score around 90%. Taking into account
the achieved results, the most useful values of L parameter were identified
6.0.8.

Outlier detection approach 6.0.9 was also tested and classification perform-
ance achieved overall improvements. However, deletion of outliers in case of
the small input data set is unsafe and the achieved results must be viewed
with caution (link to Discussion).

Finally, the real time prediction on the one minute subintervals was per-
formed 7. It was revealed that the highest scores were achieved on the first
five minutes in the control interval and the first three minutes in the interval
after the first DII.

The conducted experiments completely fulfil the goals of this work in pre-
diction of arrhythmias, identification of the useful values of L parameter and
the early markers before occurrence of the life-threatening situation. The res-
ults demonstrated in this work illustrate the potential of arrhythmia prediction
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with the given type of input data.
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Appendix A
Acronyms

EC Entropy Curve

ECG Electrocardiogram

MLE Maximum Likelihood Estimation

OLS Ordinary Least Squares

ANN Artificial Neural Network

NN Neural Network

DTW Dynamic Time Warping

MLP Multilayer perceptron

CR Criterion of Regularity

MLR Multi-response Linear Regression algorithm

SVM Support Vector Machine

RF Random Forest

LR Logistic regression

k-NN k-nearest neighbors

GMDH Group Method of Data Handling

CART Classification and Regression Trees

DFT Discrete Fourier Transform

DWT Discrete Wavelet Transform

WT Wavelet Transform
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A. Acronyms

ARARS Accuracy, ROC AUC, recall, specificity

TSF Time Series Forest

FFT Fast Fourier Transform

CWT Continuous Wavelet Transform

MRA Multi-resolution analysis
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Appendix B
Contents of enclosed CD

readme.txt ....................... the file with CD contents description
src.......................................the directory of source codes

thesis..............the directory of LATEX source codes of the thesis
text..........................................the thesis text directory

thesis.pdf...........................the thesis text in PDF format
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