

Czech

Technical

University

in Prague

Faculty of Electrical Engineering

Department of Computer Science

Master’s thesis

File verification and validation
C# library

Bc. Jan Vrátńık

May 2017

Thesis supervisor: Ing. Jan Kubr

Prohlášeńı

Prohlašuji, že jsem předloženou práci vypracoval samostatně a že jsem
uvedl veškeré použité informačńı zdroje v souladu s Metodickým pokynem
o dodržováńı etických princip̊u při př́ıpravě vysokoškolských závěrečných
praćı.

V Praze dne 1. 5. 2017

i

Poděkováńı

Rád bych poděkoval Ing. Janu Kubrovi za odborné vedeńı této práce a za
poskytnut́ı cenných rad. Velké d́ıky patř́ı také Jirkovi za nepostradatelné
tipy kolem .NET a Tanje za korekturu. Dále samozřejmě nemohu zapome-
nout ani na svoji rodinu a přátele, bez kterých bych tuto práci dokončil
dř́ıve.

ii

Abstrakt

Validace soubor̊u mnohdy konč́ı kontrolou jeho velikosti a př́ıpony. I když
něco takového ve většině př́ıpad̊u naprosto stač́ı, najdou se i situace, kde
je potřeba j́ıt mnohem v́ıce do hloubky. Bohužel, existuje jen málo volně
dostupných knihoven, které se zabývaj́ı velmi detailńı validaćı soubor̊u, se
kterými běžně pracujeme na našich stroj́ıch. Ćılem této práce je vytvořit
knihovnu v jazyce C#, která bude schopna zkontrolovat soubory podle
požadovaných parametr̊u - velikosti, př́ıpony, kontrolńıho součtu apod.
Zároveň bude schopna pro vybranou množinu formát̊u zjistit, zda se jedná
o poškozené soubory, které neńı možné za pomoci běžných nástroj̊u otevř́ıt.
Součást́ı této kontroly bude i integrace existuj́ıćıch antivirových programů.
Výsledná práce by měla poskytnout volně dostupnou alternativu pro pro-
gramátory, kteř́ı se ve svých projektech potýkaj́ı s problematikou detailńı
kontroly vstupńıch soubor̊u a potřebuj́ı řešeńı, které je zdarma, které se
dá snadno rozš́ı̌rit o daľśı funkcionalitu a které má uživatelsky př́ıvětivé
rozhrańı.

Abstract

The validation of a file often begins and ends with checking its size and
extension. While this is often sufficient, there are some cases where a
much more thorough validation is needed. Unfortunately, there are only
a few open source libraries that focus on validating files we work with on
a daily basis. The aim of this thesis is to create a library in C# that can
check files based on specified parameters such as size, extension, checksum,
etc. Furthermore, it will also be able to detect damaged files which can’t
be opened by any standard software. This process will also know how
anti-virus engines can be integrated should such software be installed on
a user’s system. The result of this thesis should provide an open source
alternative for programmers who are dealing with detailed file validation
in their projects and are looking for a solution that is free, user-friendly
and easily extensible with new functionality.

iii

Contents

1 Introduction 1

1.1 Thesis outline 2

2 Analysis 3

2.1 Specification of requirements 3
2.1.1 Requirements for library’s core functions 3
2.1.2 Requirements for generic validations 4
2.1.3 Requirements for integrity verifications 4

2.2 Similar existing libraries 4
2.2.1 Respect/Validation 5
2.2.2 JeremySkinner/FluentValidation 5

2.3 File characteristics 6
2.3.1 Format . 6
2.3.1.1 Text file formats 7
2.3.1.2 Binary file formats 7
2.3.2 Filename . 7
2.3.3 Extensions . 8
2.3.4 Signatures . 9
2.3.5 Size . 10
2.3.6 Checksum . 10
2.3.7 Other meta-data . 11

2.4 Common office file formats 12
2.4.1 Microsoft Office family 12
2.4.1.1 Discrepancy between versions 12
2.4.1.2 Verifying the integrity of Microsoft Office files . . . 13
2.4.2 OpenOffice family 13
2.4.3 Portable Document Format 14

2.5 Popular Anti-Virus engines 14
2.5.1 Avast . 15
2.5.2 AVG . 16
2.5.3 Eset . 16
2.5.4 ClamAV . 17
2.5.5 Windows Defender 18
2.5.6 Evaluation of Anti-Virus engine integration options . 19

2.6 Open source license - Apache License 2.0 19
2.6.1 Popular software under Apache License 2.0 20

2.7 Logging 20

3 Library implementation 21

3.1 Fluent interface 21

iv

3.1.1 Disadvantages of Fluent API 23

3.2 Structure of the library 23
3.2.1 Validation steps . 24
3.2.2 Inspector . 27
3.2.2.1 Inspector’s interface 27
3.2.3 Optional library loader 30
3.2.4 Result object . 30

3.3 External dependencies 30
3.3.1 VirusTotal.NET . 31
3.3.2 NLog . 31

4 Testing 33

4.1 Unit Testing in Visual Studio for C# 33

4.2 Generating a set of test files 35
4.2.1 Infected files . 35
4.2.2 Corrupted files . 35

4.3 Summary of implemented unit tests 36

4.4 Performance tests 36
4.4.1 Preparation . 36
4.4.2 Results . 39

5 Conclusion 42

5.1 Future of the library 42

5.2 Summary 43

Bibliography 44

Appendices 46
A List of CD contents 46
B List of used abbreviations 47
C Links to GitHub repositories 48
D Links to NuGet repositories 48

v

List of Figures

1 Dependency of library modules 24
2 General overview of the library’s scan process 26
3 Plot of average time per file 41

vi

List of Tables

1 Popular image file formats and their signatures 9
2 Difference between office file formats extensions 13
3 Summary of analyzed AV engines 19
4 Overview of implemented unit tests 37
5 Result of the generic validations test 40
6 Result of the format specific validations test 40
7 Result of the bonus test with AV (Anti-Virus) scan 41

vii

Part 1

Introduction

When it comes to files and validation, most of us probably do not think about
it too much. We work with files every day. They are a necessary part of the data
we store. Without files, all the information would be just a pile of ones and zeroes
without order and meaning. We keep our accounting information in XLS (Microsoft
Excel Spreadsheet) files, invoices from our last online transactions in PDF (Portable
Document Format), pictures from family vacation in JPEG (Joint Photographic Experts
Group) files, backup of our company’s database in some special file stashed somewhere
safe and backed up ten times over.

We exchange files with others on a daily basis for many different reasons, be it a
draft of our first book for the publisher, documentation of the application we’ve worked
on for months which we want to share with the world or literally anything else.

More often than not, we do not put too much emphasis on checking whether these
files are what we want them to be. What does it matter if the picture is one megabyte
or two? What does it matter if it is in JPEG or PNG format? What does it matter if
I cannot open one of the hundred pictures I took that day? And it is true. Most of the
time, it does not matter at all.

The problem presents itself when it matters. Let us say we have received a request
from our client with data attached to it in a particular set of files. Let us say we are
a modern company that strives to handle these requests automatically (a thing that
is not as common as you might think) via some online form and let us assume these
attached files are critical for a correct evaluation of the request. One of the many steps
we must take is to make sure these files are not corrupted or invalid in any other way.
If that is the case, we want to notify the user immediately, so he or she can fix the
problem and send the request again. This sounds like an issue many companies may
encounter and solve by using one of many available form validation tools and libraries.
Indeed, there are plenty of them.

However, form input validation is science in its own right and files are only a fraction
of what might be sent inside an online form. Most of the libraries check only very generic
meta-data like extension and file size. Granted, fairly often we do not need more. But
what if we do?

There are plenty of frameworks, libraries and other tools that help with form vali-
dations. A quick internet search would yield dozens of results. But when we narrow it
down to detailed file validations compatible with C# language, we are left with hardly
anything. This is where we come in.

The primary goal of this thesis is to create a library which can provide us with a
means of file validation and verification, be it from an online form or any other source.
It should provide options to filter unsupported files using many various techniques that

1/48

1.1 THESIS OUTLINE

are beyond the capabilities of most standard form validation frameworks. The interface
of this library should be simple, easy to pick up and should provide tools which can
enable us or anyone else to easily extend the core functionality provided by this library.

For a truly thorough inspection of files, an anti-virus engine should also be included.
This thesis will, therefore, include an analysis of a few popular engines, specifically their
business model, usage and how they can be integrated into the library. The library
should be able to work with most, if not all, anti-virus programs, but looking at the few
most renowned, it could provide an important insight into how this can be achieved.

Another goal of this thesis is to analyze how office formats such as spreadsheets,
text documents, and presentations can be thoroughly validated, whether the format in
questions is a Microsoft Word document, LibreOffice Calc spreadsheet, Microsoft Access
database or a PDF file. Such formats are very frequent in the business environment
and should be a subject of more thorough validation in the library we will be working
on.

1.1 Thesis outline

First we will analyze the requirements and functions our library should support
by looking both at generic file characteristics as well as the characteristics of common
office file formats. We will also look at how other similar existing libraries deal with
the validation of files. We will then inspect a couple of popular anti-virus engines as
they are essential for our library to do its job properly. This will be done in part two
of this thesis. In the third part, we look at how the library is implemented and what
steps were taken to make it easy to use. Next, in part four, we look at how our library’s
functionality is tested to ensure it works as intended. This chapter will also include the
information and results of the performance tests that will be conducted as a part of this
thesis. Lastly, in part five we will discuss the future of the final product, its possible
enhancements; and we will also summarize what we have achieved in this thesis.

2/48

Part 2

Analysis

In this chapter we will first look at what is required of our software. Afterward, we
will look whether there are some other libraries dealing with file validation and try to
improve on them. The next part will cover all the things we can validate on a file’s
meta-data and how we can check the integrity of its data. In another section of this
chapter, we will also review a few popular AV engines, how they can be used, what
their business model is and how they can be integrated in our library.

Since the result of this thesis is to be made public under an open source license, it
is also crucial that the library provides a simple interface and can easily be customized
and extended as users see fit. We will explore our options in the last section of this
chapter, where we will consider our selection of open source license.

2.1 Specification of requirements

We will first talk about the choice of the programming language. The library will
be written in C# as that was one of the main requirements given by the submitter
for the subject of this thesis.

The library will be divided into three distinct parts. The first part will be taking
care of generic validations which can be used for any type of files. The second part will
take care of verifying the integrity of common file types. We will primarily be looking
at common document types such as .doc, .xls or .pdf. The third part will contain all the
necessary functions which the other two parts can use and provide an interface which
will allow users to work with the library. As such, we have written down requirements
for all three of these sections.

2.1.1 Requirements for library’s core functions

(C1) Library will be able to integrate user’s anti-virus software as part of the validation
scans. This integration should be independent of the particular AV software used.
Should such a software be set up, it must be run before any other validations are
started to prevent any damage being done by infected files.

(C2) Library will be extensible with additional validations.

(C3) Library will expose Fluent interface which will provide options to set up the
library’s filter parameters.

3/48

2.2 SIMILAR EXISTING LIBRARIES

(C4) Library will be able to list all loaded validation modules.

(C5) Library will log its actions via a logging library.

2.1.2 Requirements for generic validations

(G1) Library will be able to filter through files based on their extension.

(G2) Library will be able to filter through files based on their size. Setting both the
minimum and maximum allowed size will be possible.

(G3) Library will be able to check whether a file’s extension matches its file signature
(magic number). The library will not require an external database and will have
its own list of known file signatures which can be easily edited.

(G4) Library will be able to filter through files based on their file checksum.

2.1.3 Requirements for integrity verifications

(I1) Library will be able to scan common file types and decide whether the file is
corrupted and cannot be opened.

(I2) Library will be written in a way that will make implementing support for addi-
tional file types as simple as possible.

2.2 Similar existing libraries

To find libraries dealing with file validations, we start by looking for libraries dealing
with form validations. Uploading files is very often a part of such forms, so this might
be a good way to start.

We quickly learn, however, that there are not too many standalone libraries, as many
frameworks have form validations integrated within them. There are libraries which
help to validate text inputs, checking whether a string is an email, phone, address, etc.
This is not quite what we are looking for, but the few examples we can find can serve as
an inspiration. We will inspect them, see what they find relevant and expand on that.
Many of their functions may not be relevant to us, but we can learn from the interface
they provide and look at how we can improve on that.

One way or another, the libraries we discovered are either not very flexible (e.g.
being fixed to web forms) or they do not provide the functionality we need. This
further proves that our library can bring new options to the table.

4/48

2.2 SIMILAR EXISTING LIBRARIES

2.2.1 Respect/Validation

Respect/Validation is a PHP (Hypertext Preprocessor) form validation library that
offers many tools, most of which are not important to us. It does, however, provide us
with a few essential tools for validating files. According to their GitHub documentation,
the library offers the following rules.[1]

• Executable - Returns true if file is an executable.

• Exists - Returns true if file exists.

• Extension - Returns true if file has requested extension (’.jpg’ for example).

• Mimetype - Returns true if file has requested mimetype (’text/plain’ for example).

• Readable - Returns true if file exists and can be read from.

• Size - Returns true if file’s size is within set limits.

– First argument sets the minimum allowed size.

– Second argument sets the maximum allowed size (optional).

– Units can be set by appending number with ’KB’, ’MB’, ’GB’ etc.

• SymbolicLink - Returns true if given file is a symbolic link.

• Uploaded - Returns true if file was uploaded via HTTP POST method.

• Writable - Returns true if file exists and can be written to.

We can see that some of the validated metadata like extension and size, while
extremely basic, are too important to be omitted from any library. It is also obvious
that some functions are made specifically with online forms in mind, namely Mimetype
and Uploaded. Exists is a function that I believe should always be used before every
validation, it should not exist as a mere function we can use at random. The idea is
to make sure files passed by the user to our library always exist before we attempt to
start the validation process.

2.2.2 JeremySkinner/FluentValidation

JeremySkinner/FluentValidation is a C# validation library, which offers methods
for validating entities and their parameters. The library is not important to us be-
cause of the functions it provides, but because it implements them via Fluent interface
(thoroughly described in chapter Fluent interface on page 21). From the library’s
GitHub documentation and a short code excerpt below we can see how the user can
chain conditions placed upon each of validated parameters.[2]

5/48

2.3 FILE CHARACTERISTICS

1 using FluentValidation;

2

3 public class CustomerValidator: AbstractValidator<Customer> {

4 public CustomerValidator() {

5 RuleFor(customer => customer.Surname).NotEmpty();

6 RuleFor(customer =>

customer.Forename).NotEmpty().WithMessage("Please specify a

first name");

7 RuleFor(customer => customer.Discount).NotEqual(0).When(customer =>

customer.HasDiscount);

8 RuleFor(customer => customer.Address).Length(20, 250);

9 RuleFor(customer =>

customer.Postcode).Must(BeAValidPostcode).WithMessage("Please

specify a valid postcode");

10 }

11 }

Code preview 1: Example of FluentValidation methods

The library does not seem to support any validation functions related to files, but we
can see how this can easily be transformed into our library. For example, our library’s
interface could support something like this:

Validate(file).MaxSize(100).Extension(”.jpg”);

We do not even have to explain what it does, and it is quite obvious what it
validates. The fluent interface looks like the perfect choice for us.

2.3 File characteristics

A file is a medium that allows us to store data on our computers discretely. Aside from
the data it contains, it also comes with many other metadata that enables us to tell a
lot about the file’s purpose without even opening it - the date of creation, name, size,
format as well as many other details. This can be useful to quickly filter out files we
do not want to work with.

2.3.1 Format

The file format defines how to encode data into a file which we can later store on a hard
drive. Most file formats have a very particular usage, while some may act as archive
formats that can encapsulate other files within themselves.

6/48

2.3 FILE CHARACTERISTICS

2.3.1.1 Text file formats

Every file is saved on a drive as a sequence of ones and zeros, which can hardly come as
a surprise. Some files, however, contain data in a way that allows it to be decoded into
characters readable by humans using ASCII (American Standard Code for Information
Interchange), UTF-8 (UCS/Unicode Transformation Format) or some other character
encoding method. Such data can be easily read and edited for further use via any text
editor.
While there are many formats, they can all mostly be rendered using the same text
editors. The specific format identified by the file’s extension or signature can serve as
a hint for the text editor to parse contents of the file in a particular manner, should
it be useful. With correct information, text editors may assist with highlighting the
text - for example, .java files can be highlighted as Java source code or .csv files can
be transformed into a plain table. Simply put, text files contain human-readable text,
but with the right information about particular format we have many options when it
comes to interpreting it.

2.3.1.2 Binary file formats

Binary files are files that are not meant to be interpreted as text files (very often this
is not even possible). Some parts may contain plain text that can be read, but it is
mostly a sequence of bytes that serve another purpose. Binary files also often consist of
headers and other blocks of metadata to assist programs in reading these files correctly.
The problem with binary files is that they are a sequence of bytes which could represent
almost anything. A byte could substitute for a pixel, a number, a sound or any other
information. Only after we try to interpret the sequence of bytes using an algorithm
can we tell what kind of information and format the file represents.
For operating systems to quickly suggest correct program to open the file with (and
a correct algorithm), a file extension can be used as a hint. More on file extensions
can be found in section Extensions (page 8). For a program to quickly determine the
file format, a file signature (also known as magic number) can be used. More on file
signatures can be found in section Signatures (page 9).

2.3.2 Filename

Filenames allow us to identify files on a computer’s file system. We can understand
the name as the name of the file within a given directory (e.g., ’invoice.pdf’) or as an
absolute path on a given file system (e.g., ’C:\Users\Documents\invoice.pdf’). There
are restrictions set in place to avoid issues that may occur when storing it, usually
limiting the length of the name or characters it can contain.

7/48

2.3 FILE CHARACTERISTICS

Reserved characters may differ across systems. Focusing on those used by Windows
and UNIX systems, we can find the reserved characters listed below.[3]

• / (forward slash) - Separates components in the path name.

• \ (backslash) - Similar to previous point.

• * (asterisk) - Used as a wildcard

• ? (question mark) - Used as a wildcard replacing a single character.

• < (less than) - Used to redirect input. Allowed in UNIX systems.

• > (greater than) - Used to redirect output. Allowed in UNIX systems.

• : (colon) - Among other things, a colon can be used to determine the mount point
or drive in Windows.

• ” (double quote) - Used to mark the beginning and end of names containing spaces
in Windows.

• | (vertical bar or pipe) - Used for software pipelining both in Unix and Windows.

If our library is to validate files thoroughly, we should take validating filenames into
consideration. Granted, if users pass files to the library for validation, they probably
already exist within a given file system, and their name already meets all the require-
ments, but as with many other things in software development, there may be a use case
where this does not hold true.

2.3.3 Extensions

The filename extension is a suffix regularly included after the name of the file, often
delimited by a dot. Extensions often provide a hint for the operating system as to how
data is stored within that file. The operating system can quickly assess this information
and suggest the correct program to open it with. UNIX systems take the extension as
part of the file’s name and as such multiple extensions can be included in the name of
the file (e.g., ’archive.tar.gz’).
Windows does not treat extension as part of a file’s name and hides it. This can lead
to security issues as it allows the attacker to disguise malicious software under a file
that may look innocent. Let us say we have an executable batch file readme.txt.bat
which can run some malicious scripts in the background. The user will see this file
as readme.txt and won’t consider it a risk opening this supposed text file. The latest
versions of Windows allow users to display extensions next to filenames, but it is not
enabled by default and still poses a threat for inexperienced users.
There is nothing stopping users from changing file’s extension. Simply by renaming the
file and changing the extension we can mask a file’s true format and slip through many
simple file validators which only check the extension.

8/48

2.3 FILE CHARACTERISTICS

Format Signature
BMP 42 4D
GIF 47 49 46 38
JPG FF D8 FF E0

FF D8 FF E1
FF D8 FF E8

PNG 89 50 4E 47 0D 0A 1A 0A
TIFF 49 20 49

49 49 2A 00
4D 4D 00 2A

Table 1: Popular image file formats and their signatures
Source: Filesignatures.net

2.3.4 Signatures

To expand on the idea from previous chapter, we need to look at file signatures,
sometimes also called ”magic numbers”. In a situation where a program can not recog-
nize a file’s format simply by looking at its extension, the file signature may be another
option how to overcome this problem.
It is a short set of bytes usually found at the beginning of a file that indicates the
format of the given file. There are no specific rules established by some authority, so
formats can often have multiple different signatures and some formats can share a single
signature as well. See examples in a table below.
Without an appointed authority no official database of signatures exists, so if we are
interested in validating signatures in any way, we must find a reliable source of file
signatures. Fortunately, there are a few sites that collect them.
File signatures table by Garry Kessler[4] is an ongoing attempt to track popular
file formats and their respective signatures. This project goes back to the year 2002
and includes many helpful links to other sources relevant to the topic of file signatures.
Filesignatures.net[5] is a simple database which allows users to submit new file for-
mats and their signatures to collaborate with others to improve its knowledge base.
As we can see, file signatures provide a quick and relatively reliable way to determine
file’s format, but it comes at a price. Not only do we need a database of file signatures,
but we must also be able to open and read the contents of the file. In the context of
file validation library, where we can be dealing with unknown and potentially malicious
items, this must be taken into consideration.
It seems reasonable for our library, however, to have a test which compares a file’s
extension and signature. If they do not match, we can be dealing with a file which
wears a mask of a different format and as such should be reported during the validation
process.

9/48

2.3 FILE CHARACTERISTICS

2.3.5 Size

File size is probably one of the first things that comes to mind when dealing with file
validation. Restricting them to a specific size can save our hard-drive from premature
congestion, decrease the network usage or lower the load times of whatever we might
want to do with such files afterward.
Inspecting file properties we quickly learn that every file has two values related to size -
size and size on disk. These two values are almost always different, and it is important
to understand this difference to find out the right way to validate these values in our
library.
Files usually take more space on the disk than they need. The reason is that the file
systems we regularly use – be it FAT32 (File Allocation Table), NTFS (New Technology
File System), exFAT (Extended File Allocation Table) or some other – need to know
where they can find their every file. Addressing every single byte located on the system
would require an address table that would grow in size at the same rate as the data.
So what is done instead is to have an allocation unit, the smallest addressable block of
data there can be on a given file system. The size of the allocation unit can be changed
to some degree, but on most file systems usually ranges between 4KB up to 32KB.[6]
This means the file can take a different amount of space on various computers. It is
not a value that should be used during the process of file validation. Ideally, we want
the result of the validation to be the same no matter where the files are stored.

2.3.6 Checksum

File checksum provides a means to verify the integrity of a file quickly. It is a short
string which often has a form of a string or a number depending on the method we
used to calculate such a checksum. The most frequently used methods of calculating
file checksum is to use a common hash function such as MD5 or one of the SHA (Secure
Hash Algorithm) variants (e.g., SHA-1, SHA-256, SHA-512).

$ md5sum README.txt

e0df5e079db0f1ec445e7825bbaea086 README.txt

$ sha1sum README.txt

73895333d62ff8a5a303cef6dfccdbfc6aaba969 README.txt

$ sha256sum README.txt

a73641cd891d971c475de11baed8c6316494082605717589d54e9654b22066ae

README.txt

Code preview 2: Example of checksums computed via common UNIX functions

10/48

2.3 FILE CHARACTERISTICS

The nature of most hash functions is to give us wildly different results even when the
source data was changed only ever so slightly. This is useful in situations where file
content was tampered with between the time of creation and, in our case, time of
validation. The author of the file can publish the checksum of the original, unmodified
file and we, using the same hash function, can calculate and compare checksum for the
file we received. Both of the checksums must be equal. Otherwise we are dealing with
a modified file which could pose a security risk.
Another reason checksums can be useful is to check whether the file’s contents didn’t
get corrupted due to an incomplete transmission or hard-drive failure. If parts of the
file are missing or are broken in some way, it should not pass the validation since such
a file can not be used afterward in any meaningful way.
It is worth noting that it is theoretically possible for an indefinite number of files to
have an identical checksum. A situation in which two or more different inputs result
in an identical result is called a collision. This is statistically improbable in reality, at
least for well-designed hash functions. However, it is not impossible. Collisions have
been documented both for MD5 (Message Digest algorithm)[8] and quite recently even
for SHA-1[9]. These collisions did not happen by chance and were intentional. It is
theoretically possible to have two versions of a file with an identical SHA-1 checksum
where both of these versions look similar to the end user but one of them might contain
malicious content. Both MD5 and SHA-1 are still frequently used, but efforts are being
made to migrate to more secure algorithms (e.g., SHA-256, SHA-512).
It might be reasonable for our library to support validating files against multiple modern
hashing algorithms and let the user decide whether security is the primary concern.
Checksum seems like a straightforward and reliable way to verify the integrity of a file,
but it has one significant disadvantage. Without the original trusted checksum from a
file’s owner, this method cannot be used. Should users of our library require integrity
verification of files coming from unknown sources, this cannot be used. It could,
however, be considered for use cases where users know the original state of the file,
work with it in some meaningful way without modifying it (e.g., transporting it) and
then checking whether the file’s checksum has changed.

2.3.7 Other meta-data

Most files carry other information about themselves as well. This can vary between
different file systems, but there are some that are present almost everywhere. Times-
tamps, such as ”date created”, ”date modified” and ”date opened” on Windows NTFS
file system or ”date accessed” and ”date modified” on most Linux system provide useful
information about the life cycle of a file. The problem, however, is that these times-
tamps can easily be changed and are often subject to timezone and daylight saving
time inconsistencies. Synchronizing these timestamps between two different systems
can become complicated, which makes this information extremely unreliable and will
not be a subject of our validation library.[10]

11/48

2.4 COMMON OFFICE FILE FORMATS

2.4 Common office file formats

Apart from validating generic meta-data of files, we would also like to verify the integrity
of a file and check whether such a file can be opened or whether the data inside said
file is corrupted. One option is to look at the file’s checksum (more on that in chapter
Checksum on page 10. This works only on the condition that we know the file’s
checksum before it got corrupted. Such information is often unknown to us.
Another option is to verify the file’s integrity, which requires us to know how a given
format stores data inside the file. If we do not know how to read and interpret data,
we cannot say much. To overcome this issue we need a particular piece of software that
knows how to work with a given file format. Such software can often open and work
with this format. This can be another library or even application designed to open
these files (e.g., Adobe Acrobat Reader for opening and reading PDF files or Microsoft
Word for .doc and .docx formats).
Since we can not design programs that can understand all existing formats, we will
look at a few common formats and how they can be verified through available libraries,
frameworks or other means compatible with our C# library.

2.4.1 Microsoft Office family

Microsoft Office is a very popular and well-known set of applications. There is no need to
introduce it. With around ten programs offered in the current standard desktop version,
the first three that most people use and know are Microsoft Word, Microsoft Excel
and Microsoft PowerPoint (with Microsoft Outlook right behind the three).
Files produced by these applications are arguably very often the subject of email at-
tachments. Excel tables are frequently used to import or export data from applications.
Comma separated value format (.csv) is one of the simplest ways how we can serialize
data and Microsoft Excel is an ideal application to manage such a file format. And
while such data can be saved in a .csv format that can be read even by simple text
editors, the same data is often saved and used in formats native to Microsoft Excel (.xls
or .xlsx).

2.4.1.1 Discrepancy between versions

Up until 2007, Microsoft Office data was saved in binary files with a relatively complex
structure. This was due to the numerous features these files had to support. Going
forward, this was not acceptable. Thus the OOXML (Open Office XML) came to be.
This new standard was introduced in Microsoft Office 2007 and was very similar to the
OpenDocument format for OpenOffice applications (more on OpenOffice in the next
chapter OpenOffice family on page 13). An OOXML file is a ZIP file that contains
XML (Extensible Markup Language) files along with the document’s meta-data and

12/48

2.4 COMMON OFFICE FILE FORMATS

object definitions. This allows Microsoft Office files to be smaller in size and backward
compatible with older versions. It makes creating new features for Microsoft Office
applications that much easier as well.[11] Before OOXML was introduced in Microsoft
Office 2007, there was an attempt to store Office formats in a format based on XML. The
Microsoft Office XML format was included in MS (Microsoft) Office XP to store Excel
spreadsheets and later on this was implemented to Word documents in MS Office 2003,
as well. However, this format was incompatible with older versions of these document
types, and external add-ons (or third-party converters) had to be installed.

2.4.1.2 Verifying the integrity of Microsoft Office files

The most obvious solution is to try to open MS Office files with MS Office Suite and see
whether this process fails or not. However, this requires a paid license and hundreds of
megabytes in installed software. This is not a reasonable option we want to pursue if we
are to develop a lightweight library. Microsoft does indeed provide an Interop library
for .NET Framework Common Language Runtime which allows us to programmatically
open and edit MS Office documents in MS Office applications via the COM (Component
Object Model) interface. This is easy but requires Microsoft Office to be installed on
the machine.
The new OOXML standard has an entire software development kit available, so there
are dozens of libraries that can work with this format. One of them is an official library
OfficeDev/Open-XML-SDK for C# that supports all three major extensions - .docx,
.xlsx and .pptx. [12]
When it comes to older binary formats, it would seem there is very little support for
them regarding existing libraries and frameworks (especially in the C# world). There
is a library called NPOI that can deal with OOXML formats and .xls format for older
Excel files. Distributed under the Apache License 2.0, this library could be used to
handle this older format for spreadsheets should we need it.

2.4.2 OpenOffice family

While Microsoft was trying to find the right way to switch from binary office file for-
mats to the XML format, another standard was being developed. The OpenDocument
Format for Office Applications (ODF) was based on OpenOffice XML specifications
that were supposed to be an open standard for all office documents. This was first

Legacy MS Office Office Open XML OpenDocument
Document .doc .docx .odt

Spreadsheet .xls .xlsx .ods
Presentation .ppt .pptx .odp

Table 2: Difference between office file formats extensions

13/48

2.5 POPULAR ANTI-VIRUS ENGINES

introduced in the OpenOffice suite developed by Sun Microsystems and later also in
the LibreOffice suite.
The OpenDocument Format works, in principle, much like the OpenOffice XML used
by Microsoft Office, but they are not the same. It takes form of a ZIP file containing
compressed files, where most (if not all) of them hold some data in XML format.
Much like the OOXML SDK (Software Development Kit) developed by Microsoft to
work with their file types, OpenDocument Format is backed up by a similar project, the
Apache OpenOffice API Project. It offers a ”language independent API (Applica-
tion Programming Interface) which allows to program the office in different programming
languages”.[13]
One of very few C# implementations of this API is the AODL (An Open Document
Library). It offers tools to create and edit text and spreadsheet documents. The
presentation documents seem to be left out, but with the GNU General Public License
2.0, this is the best option we have for verifying OpenOffice files.

2.4.3 Portable Document Format

PDF is another very common format found in almost every office. It was designed by
Adobe to achieve a file format that would render the same document no matter which
software or hardware was used to create it. PDF files are binary files consisting of four
main parts - header, body, cross-reference table and trailer. The header contains basic
information about the file. The body consists of all document objects including images,
fonts, annotations, streams and other elements. The cross-reference table allows users
to navigate between pages, chapters and other specific document objects. The trailer
contains, among other things, the EOF (End Of File) string necessary for the PDF file
to be processed correctly. Without it, the file is not complete. [14]
There are quite a few libraries designed to work with PDF files. One of them is the
itext/itextsharp library, which provides a comfortable way to work with such files.
It is distributed under the GNU Affero General Public License version 3, which means
we are free to use it for verifying PDF files.

2.5 Popular Anti-Virus engines

The aim of this chapter is not to analyze which AV engine is better in terms of detection
rate, but how their business model works and how they can be included in the file
validation and verification process. If we are to work with files from an unknown
source, open them and read their data, we must first be sure that they do not contain
any malicious code that could harm the system where our validation library runs or
anyone else’s system down the road.
We do want to lock the library to any single AV engine. Ideally, we want an easy way for
the user to setup access to their AV engine which can then be used by our library. We
are also interested in whether or not engines regularly include a command line utility,

14/48

2.5 POPULAR ANTI-VIRUS ENGINES

a program that can quickly be executed via our library to scan a file or a folder. We
must also look at the output these programs produce as we will need to evaluate them
if we are to correctly decide whether we can continue with the validation process or
immediately terminate it to avoid any damage.

2.5.1 Avast

Avast offers multiple products related to malware detection, however, only paid alter-
natives offer a command line tool. As of March 2017, their non-free products start at
around 30e/year. They support Windows, Mac, and Linux and also offer solutions for
companies and servers.
The command line utility called ashCmd.exe can check files or folders for potential
malware, much like a regular desktop AV program does. It accepts many different
parameters to set up the scan. These options can prove useful, but we are mostly
interested in how we can use such a tool to scan a file and handle the output result.
In the example below, you can see how this utility can be used to test all files within a
given folder and print the output of such a scan on the standard output.

1 > ashCmd.exe "C:\Users\Documents\Folder" /_

2

3 C:\Users\Documents\Folder\test1.txt OK

4 C:\Users\Documents\Folder\test2.txt OK

5 C:\Users\Documents\Folder\test3.txt OK

6 # --

7 # Number of tested files: 3

8 # Number of tested directories: 1

9 # Number of infected files: 0

10 # Total size of tested files: 0

11 # Database VPS: 170517-14, 17.05.17

12 # Total runtime of the test: 0:0:0

Code preview 3: Use of Avast’s ashCmd.exe in a Windows command line

The ashCmd.exe tool uses the following return values:

• 0 - No virus detected.

• 1 - Virus detected.

• 2 (or higher) - An error occured.

15/48

2.5 POPULAR ANTI-VIRUS ENGINES

2.5.2 AVG

The free version of AVG already includes a command line tool avgscana.exe (or
avgscanx.exe for 32-bit systems). However, their malware support does not include
Linux systems (they do talk about Android support, but phones are not relevant to
this analysis), which might be inconvenient for some users.

1 > avgscana.exe /SCAN="C:\Users\Documents\Folder"

Code preview 4: Use of AVG’s avgscana.exe in a Windows command line

The avgscana.exe tool uses the following return values:

• 0 (RETURNCODE OK) - Everything is OK.

• 1 (RETURNCODE USERSTOP) - User iterrupted the scan.

• 2 (RETURNCODE ERROR) - Error during the scan (e.g. when an incorrect
parameter is used).

• 3 (RETURNCODE WARNING) - Warning during the scan.

• 4 (RETURNCODE PUPDETECTED) - Potentially Unwanted Program de-
tected.

• 5 (RETURNCODE VIRUSDETECTED) - Virus detected.

• 6 (RETURNCODE PWDARCHIVE) - Password-protected archive found.

2.5.3 Eset

Eset includes their command line utility in every version of their product. However, all
of them are monetized. They also provide solutions for companies and their servers, and
they support all three of the major operating system families. In the example below,
we scan a given folder and on a second try we also output the result into a file specified
by the /log-file parameter.

1 > ecls.exe /base-dir="C:\Users\Documents\Folder"

2 > ecls.exe /base-dir="C:\Users\Documents\Folder" /log-file=c:\ecls.txt

Code preview 5: Use of Eset’s ecls.exe in a Windows command line

16/48

2.5 POPULAR ANTI-VIRUS ENGINES

The ecls.exe tool uses the following return values:

• 0 - No threat found.

• 1 - Threat found and cleaned.

• 10 - Some files could not be scanned (might be threats).

• 50 - Threat found.

• 100 - An error occurred.

2.5.4 ClamAV

ClamAV is a fairly popular open source AV engine that supports all the mainstream
operating systems. While some may question the quality and detection rate of such an
engine, the fact that an open source software has certain advantages which might be
important to a specific set of users cannot be ignored. In the example below, we first
update the virus definitions and then we recursively scan a given folder.

1 $ sudo freshclam

2 $ clamscan -r /home/user/Folder

3

4 ----------- SCAN SUMMARY -----------

5 Known viruses: 0

6 Engine version: 0.99.2

7 Scanned directories: 1

8 Scanned files: 5

9 Infected files: 0

10 Data scanned: 5.13 MB

11 Data read: 5.13 MB (ratio 1:1)

12 Time: 0.503 sec (0 m 0 s)

Code preview 6: Use of ClamAV’s clamscan in a Linux terminal

The clamscan tool uses the following return values:

• 0 - No virus found.

• 1 - Virus(es) found.

• 2 - Some error(s) occured.

17/48

2.5 POPULAR ANTI-VIRUS ENGINES

2.5.5 Windows Defender

Windows Defender is an AV engine available for free as a part of Windows 8 or newer
versions. In earlier versions, it was also known as Microsoft Security Essentials which
was at its core a very similar engine. Now it is pre-installed on most Windows systems.
What’s more is that it also contains a command line utility which supports scan options
much like all the tools we’ve discovered in previous chapters. The only real disadvan-
tage is the lack of support for any other operating system other than Windows. In
the example below, we scan our folder with Quick scan identified by the -ScanType 1
parameter.

> MpCmdRun.exe -Scan -ScanType 1 -File "C:\Users\Documents\eicar.txt"

MpCmdRun: Command Line:

MpCmdRun.exe -Scan -ScanType 1 -File C:\Users\Documents\eicar.txt

Start Time: Mon Apr 26 2017 09:05:21

Start: MpScan(MP_FEATURE_SUPPORTED, dwOptions=3, path

C:\Users\Documents\eicar.txt, DisableRemediation = 0)

MpScan() started

file C:\Users\Documents\eicar.txt is infected.

MpScan() was completed

Finish: MpScanStart(MP_FEATURE_SUPPORTED, dwOptions=16385)

Finish: MpScan(MP_FEATURE_SUPPORTED, dwOptions=16385, path

C:\Users\Documents\eicar.txt, DisableRemediation = 0)

Scanning C:\Users\Documents\eicar.txt found 1 threats.

MpScan() has detected 1 threats.

Start: MpCleanStart()

MpCleanThreats() started

MpCleanThreats() started for action Remove on threat 2147519003

MpCleanThreats() completed for action Remove on threat 2147519003

MpCleanThreats() was completed

Finish: MpCleanThreats()

MpCmdRun: End Time: Mon Apr 26 2017 09:05:29

Code preview 7: Use of Windows Defender’s MpCmdRun.exe in a command line

The MpCmdRun.exe tool uses the following return values:

• 0 - Clean. No malware is found, or malware is successfully remediated, and no
additional user action is required.

• 2 - Infect. Malware is found and not remediated or additional user action is
required to complete remediation or there is an error in scanning.

18/48

2.6 OPEN SOURCE LICENSE - APACHE LICENSE 2.0

Windows Linux Mac CLU Price
Avast X X X X ∼30e
AVG X X X Free
Eset X X X ∼40e

ClamAV X X X X Open source
Windows Defender X X Free

Table 3: Summary of analyzed AV engines

2.5.6 Evaluation of Anti-Virus engine integration options

All of the analyzed engines offer a CLU (Command Line Utility), which should be
the way to go regarding our library. Granted, some of them are hidden behind a pay-
wall, but this depends on the end user, and we should not limit them in their choice.
If we are to automate this process, we will need to use these utilities, the options they
provide and be compatible with any one of them.
Fortunately for us, exit status codes of the AV utilities we have discussed follow gen-
eral rules and best practices of software development. Zero indicates no problem de-
tected, positive integer indicates an error and sometimes negative integers can indicate
a warning.[15][16]
The mentioned utilities follow these rules, and we can expect most of the other, unex-
plored, AV engines to follow them too. If we are to evaluate the malware scan’s result
quickly, we can either parse the text report or only work with the status code. As we
can see from the preview 3 (page 15), preview 6 (page 17) and preview 7 (page 18)
the output can vary significantly. Rather complex definitions are required to parse these
outputs, perhaps in the form of regular expressions, which will probably be different for
every engine. The other solution on the other hand, is universal and should work with
most (if not all) AV programs. In the end, we only need to know if we can safely begin
the validation process. This does not mean we should ignore the output produced by
AV tools. The best option would probably be logging the output or directing it to the
standard output (or both).

2.6 Open source license - Apache License 2.0

The product of this thesis, the source code of our validation library, will be distributed
under the Apache License 2.0. It is one of the more permissive open source licenses
available as it allows anyone to use our code for commercial purposes, to modify it as
they see fit and to distribute it freely. On the other hand, we can not be held responsible
should something go wrong in case of an incorrect integration of the code. All that
is required from anyone using our program is that they always include the license,
copyright and that they describe any significant changes made to the library.[18]
Another significant advantage of this license is that it is more often than not compatible

19/48

2.7 LOGGING

with other licenses. This makes finding the right libraries to work with easier. Similarly,
if people decide to integrate our library into their project, they should not be, in most
cases, limited by compatibility issues. For example, while we cannot incorporate a
GPLv3 licensed project in an Apache 2.0 licensed project, it can be done the other way
around (an Apache 2.0 licensed project in a GPLv3 licensed project). Since the end
goal is that our library is used in other projects, this is exactly the issue we are trying
to avoid.[19]

2.6.1 Popular software under Apache License 2.0

According to an article published on GitHub in 2015, Apache 2.0 is the third most
popular license right after MIT and GPLv2. [20] Softwares and applications like .NET
Compiler Platform, IntelliJ IDEA Community Edition or most of the Apache products
are distributed under this license. Their source code is very often available via GitHub.
Other products with the Apache License 2.0 include:

• Android Studio (Android development platform)

• Docker (software containers management)

• Gradle (alternative to build systems like Ant or Maven)

• Swift (the programming language)

Since our goal is to have a library that is easy to share and simple to integrate into
other projects, choosing Apache License 2.0 is almost a necessity. Other possible options
include MIT and GPLv2 as both of these open source licenses also come with very few
restrictions.

2.7 Logging

Logging is a necessary part of every software, and our project should include it as well.
There are a few libraries already available to us to choose from, which provide all the
necessary functions we could possibly need.
We will be using the NLog library, that is distributed under the BSD 3-Clause License
and is compatible with the Apache License 2.0 we selected for our library in the previous
chapter in section Open source license on page 19.
The other viable option would be the log4net logging framework, another popular
option among C# projects. Both would satisfy our needs, but as we can pick only one
of them, we will be choose NLog. This is based purely on personal preference, and
while we could discuss the advantages and disadvantages of both of these libraries, it is
not necessary as we only need basic logging functions where the difference is minimal.
Should anyone want to use a different logging library, they are free to fork the project
and change it.

20/48

Part 3

Library implementation

In this chapter we will describe specific steps used in the implementation of our library
in C# language, including the steps to implement a user-friendly interface and thorough
validation functions.

3.1 Fluent interface

Fluent interface provides an alternative way how we can manipulate objects compared
to how we would normally do it. To better illustrate this, we will refer to an example
taken from Martin Fowler’s article about Fluent interface, where it was first described
in late 2005. In his examples, he compares order creation for a customer using the
standard methods and the proposed ”fluent” methods.[21]

1 private void makeNormal(Customer customer) {

2 Order o1 = new Order();

3 customer.addOrder(o1);

4 OrderLine line1 = new OrderLine(6, Product.find("TAL"));

5 o1.addLine(line1);

6 OrderLine line2 = new OrderLine(5, Product.find("HPK"));

7 o1.addLine(line2);

8 OrderLine line3 = new OrderLine(3, Product.find("LGV"));

9 o1.addLine(line3);

10 line2.setSkippable(true);

11 o1.setRush(true);

12 }

Code preview 8: Standard way of creating customer orders

1 private void makeFluent(Customer customer) {

2 customer.newOrder()

3 .with(6, "TAL")

4 .with(5, "HPK").skippable()

5 .with(3, "LGV")

6 .priorityRush();

7 }

Code preview 9: Fluent way of creating customer orders

21/48

3.1 FLUENT INTERFACE

We can see that the context is managed by the return values of every method used, so it
can be used and modified afterward again - we are always working with the same object.
This can be achieved by letting the methods always return the object that owns them.
An example below shows how this is done in our library. Notice how the instance of the
Inspector class is always returned so it can be used repeatedly with modified values.

1 namespace Verifile {

2 public class Inspector {

3 ...

4 public Inspector MinSize(int kilobytes) {

5 stepSize.MinSize = kilobytes;

6 return this;

7 }

8

9 public Inspector MaxSize(int kilobytes) {

10 stepSize.MaxSize = kilobytes;

11 return this;

12 }

13

14 public Inspector EnableSignatureTest() {

15 stepSignature.Enable();

16 return this;

17 }

18

19 public Result Scan() {

20 // starts the validation process

21 }

22 ...

23 }

24 }

Code preview 10: Implementation of the Fluent interface in our library

The other library classes do not look like this. It is only the Inspector class that users
will work with and therefore it is the only class following the fluent interface guidelines.
Notice how the Scan() method does not return an Inspector instance, but instead an
instance of a Result class. It should always be the last method in the chain and should
launch the validation process. There is no need for the Inspector to be returned, the user
might be more interested in a Result object encapsulating the results of the validation.
There are obviously more options, but we have decided to go with this design choice.

22/48

3.2 STRUCTURE OF THE LIBRARY

3.1.1 Disadvantages of Fluent API

So far we have discussed what advantages the fluent interface brings to the table. The
exposed interface is easy to use and can often be written as a single line of code. This
does have its drawbacks and having one long chain of method calls can make certain
things difficult (if not impossible).
A debugging chain of commands can be problematic as debuggers often do not allow
setting breakpoints in the middle of the method chain and stepping through such a
code can be confusing as well.
Logging faces a similar issue when we want to log the state of the object between the
methods contained in the chain. To solve this, one must split the chain into more lines,
which basically puts an end to the idea of the fluent interface.

3.2 Structure of the library

The functionality will be divided into a couple of smaller libraries. This way we can
give users a library with the core functionality (generic validators for size, extension,
checksum, etc.) in one small package and in case they are interested in verifying the
integrity of specific formats, they can download one or more of our modules intended
for this format. They often come with additional dependencies, and it is preferred to
have users download only those they will really be using.
During the analysis of Common office file formats on page 12, we identified libraries
which will assist us in verifying common office formats. We will divide the package into
the following libraries:

• Main library - Contains most of the scan process logic, exposes library’s interface
to users and can load all available validation modules

• Core library - Provides basic functions and classes for all other libraries

• Optional libraries

– Image validation module

– Microsoft Access database validation module (.accdb)

– Microsoft OpenXML validation module (.docx, .pptx, .xlsx)

– Microsoft binary format validation module (.xls) - the tools available to us
do not support .doc or .ppt format (for reasons explained in the chapter
about Microsoft Office files verification on page 13).

– ODF validation module (.ods, .odt)

– PDF validation module (.pdf)

23/48

3.2 STRUCTURE OF THE LIBRARY

Figure 1: Dependency of library modules

3.2.1 Validation steps

Every validation step is a class inheriting basic properties from the parent class Step.
We understand a validation step as a module checking a single file property (e.g. size).
This way we can assign different error codes (or other properties) to each and every one
of them. We will be releasing the library with the validation steps listed below. What
they do and how they work is described in the chapter about the Inspector interface
on page 27.

• Generic validation steps (usable for any file type)

– AV scan - Enables users to integrate their installed AV software. This val-
idation step would be the first to run in order to avoid a possible infection
from malware contained in one or more of the scanned files.

– Checksum

– Extension

– Signature

– Size

– VirusTotal - In case users are interested in some form of protection against
malware, but are unable to have an AV installed, they can use an online
solution called VirusTotal (more about VirusTotal on page 31).

• Format specific validation steps used for verifying file’s integrity
(whether the file can be opened or not). These are divided into multiple optional
libraries.

– ACCDBValidator

– DOCXValidator

24/48

3.2 STRUCTURE OF THE LIBRARY

– ImageValidator (currently validating the two most common raster image
formats - JPEG and PNG)

– ODSValidator

– ODTValidator

– PDFValidator

– PPTXValidator

– XLSValidator

– XLSXValidator

Another advantage of splitting validations steps in this manner is that we can easily
create new validation steps. All that is required is to build a new class extending the
parent Step class and implement whatever we want from this new module. The library
keeps a list of validation steps and runs them sequentially, so in order to integrate
this new step with the library, we only need to add it to the list with the rest of our
validation steps. This is when we want to make a rather permanent change to the
library.
There is another way users can integrate their own validation steps, and that is via the
Inspector class (more on that in the next section). In short, this other method does
not require overwriting the core of the library. Users can implement their validation
steps wherever they want and then just pass it to the library via the Inspector’s method
AddCustomStep(Step) (see Code preview 13 on page 29).

1 public class Step {

2

3 // Every step can have its own error code.

4 public virtual int ErrorCode { get; set; } = Error.Generic;

5 ...

6 // Sets up validation step for execution.

7 public virtual void Setup() {...}

8

9 // Starts the step validation process.

10 // Should be overwritten for custom behaviour.

11 public virtual void Run() {...}

12

13 // Prints the results of the step to user and returns

14 // the appropriate response code.

15 public virtual int Summary() {...}

16

17 // Returns the step and it is essential variables to their

18 // default state.

19 public virtual void Cleanup() {...}

20 }

Code preview 11: Overview of variables and methods exposed by Step class

25/48

3.2 STRUCTURE OF THE LIBRARY

Figure 2: General overview of the library’s scan process

26/48

3.2 STRUCTURE OF THE LIBRARY

3.2.2 Inspector

The Inspector will be the class users will use to set up and work with the library. It
will offer a Fluent interface with all the functions that can enable or disable validation
steps as the user will deem necessary.

3.2.2.1 Inspector’s interface

The following list contains all the functions the library offers and which can be used
to set it up. This list is also a part of the documentation found in the official GitHub
repository hanzik/verifiler,1 where it can help users quickly familiarize themselves
with the library’s interface. To understand how the interface should be used, a quick
look at the Code preview 12 on page 27 should make everything clear.

1 string folder = "C:\path\to\directory"

2

3 Inspector = new Verifiler.Inspector();

4 Result result = Inspector.AddExtensionRestriction(".jpg")

5 .MinSize(500)

6 .MaxSize(2000)

7 .EnableSignatureTest()

8 .Scan(folder);

9

10 if (result.Code() == VerifilerCore.Result.Ok) {

11 ...

12 }

Code preview 12: Example use of the Inspector class

• EnableAV(string pathToExecutable, string parameters)

• DisableAV()

Runs the anti-virus engine installed on your machine and scan the files before they
are analyzed by the library. Most of the available anti-virus engines include a console
application, which is the application you are looking for.

1Official Verifiler repository at https://github.com/hanzik/verifiler

27/48

3.2 STRUCTURE OF THE LIBRARY

• EnableVirusTotal(string apiKey)

• DisableVirusTotal()

Sends the files to VirusTotal and reports files with Error.Fatal if at least 10% of AV
engines find the file suspicious. Should any of the files be recognized as the cause of
this, the scan process will terminate.

• AddAllowedChecksum(string md5checksum)

• RemoveAllowedChecksum(string md5checksum)

• AddAllowedChecksums(string[] md5checksums)

• RemoveAllowedChecksums(string[] md5checksums)

Adds or removes MD5 file checksum from the whitelist. If the whitelist of checksums
is empty, this step will be skipped. If it is not empty, files with checksums not on the
whitelist will be reported with Error.Checksum.

• AddExtensionRestrictions(string[] types)

• AddExtensionRestriction(string type)

• RemoveExtensionRestrictions(string[] types)

• RemoveExtensionRestriction(string type)

Similar to checksum whitelist. Adds or removes extensions from the whitelist. If the
whitelist is empty, this step will be skipped. If it is not empty, files with extensions
that are not on the whitelist will be reported with Error.Extension.

• MinSize(int kilobytes)

• MaxSize(int kilobytes)

Sets up a minimum and/or maximum size in kilobytes of scanned files. Files that break
this rule will be reported with Error.Size.

• EnableSignatureTest()

• DisableSignatureTest()

Compares a file’s extension with file’s magic number located in the header. Files that
break this rule will be reported with Error.Signature.

28/48

3.2 STRUCTURE OF THE LIBRARY

• EnableFormatVerification()

• DisableFormatVerification()

Enables verification of a file’s integrity. This requires some of the optional packages to
be installed (depending on which file extensions you want to verify).

• AddCustomStep(Step)

• RemoveAllCustomSteps()

You can add your own validation steps. In the example below, we create a validation
step which checks the name of every file and lets through only those that start with the
string ”abc”. This means that ”abctextfile.txt” will pass, but ”defimage.jpg” will not.
Failed tests will return Error.Generic, or if you override the ErrorCode, it can return
whatever code you want. It is preferred that the error code is a positive integer.

1 inspector.AddCustomStep(new StartsWithStep("abc"))

2 .Scan(GetTestFolderPath());

3

4 class StartsWithStep : VerifilerCore.Step {

5

6 public override int ErrorCode { get; set; } = Error.Generic;

7 private readonly string startString;

8

9 public StartsWithStep(string startString) {

10 this.startString = startString;

11 Enable();

12 }

13

14 public override void Run() {

15 foreach (var file in GetListOfFiles()) {

16 string name = Path.GetFileName(file);

17 if (name.StartsWith(startString)) {

18 ReportAsValid(file);

19 } else {

20 ReportAsError(file, name + " does not start with " +

startString);

21 }

22 }

23 }

24 }

Code preview 13: Implementing a custom validation step in runtime

29/48

3.3 EXTERNAL DEPENDENCIES

3.2.3 Optional library loader

As we mentioned before, it is difficult to determine whether or not a file’s data is
corrupted and that the A file cannot be opened. Our format specific validation steps
are using the libraries mentioned in the Common office file formats chapter (page
12). This can bring quite large libraries to the table, and it is necessary to minimize
the final size of our library as much as possible.
By dividing the library into smaller libraries, we can enable users to always download
only those they will truly need. For example, should a user only want to validate PDF
files, they should not be required to download libraries related to OpenDocument file
formats.
This is where the Optional library loader comes in. It is a class that can load
optional libraries at runtime using the C# Assembly class. All it needs is an XML
configuration file which contains names of all the optional libraries. The advantage is
that if we create a new optional library supporting a new file format, we do not have
to rewrite half of the core library, we only have to edit the configuration file.
All the user needs to do is download optional libraries he or she wants to use, make sure
they are placed in the project’s folder, and they are ready to go. By using the packaging
manager NuGet, the library is put in the projects folder by default, which makes the
whole process even more straightforward (although using NuGet is not required).

3.2.4 Result object

The initial idea was that our library would only return a status code in the form of an
integer. It was quickly discovered that some additional information will be necessary.
As such, the Result object returned by the Inspector.Scan() method contains the
following information:

• Response code - A positive integer in case of an error, zero otherwise.

• List of executed steps - List of names of executed steps.

• List of valid files - List of files which passed all the validation steps.

• List of invalid files - List of files which did not pass at least one validation step
accompanied by a status code to help identify where the failure occurred.

3.3 External dependencies

One of many goals of this thesis was to make the library as independent of other
libraries as possible. This was not difficult, as the .NET framework provides many
useful functions that we can use instead of importing them from external sources. There
are, however, a few exceptions where using an external library is a necessary trade-off.

30/48

3.3 EXTERNAL DEPENDENCIES

This chapter will exclude the libraries dedicated to verifying the integrity of file formats
we work with as they are mentioned in the analysis of Common office file formats
on page 12.

3.3.1 VirusTotal.NET

We have already gone through a good deal of Anti-Virus engines in our analysis of
Popular Anti-Virus engines (page 14), but there is a use case which we have not
covered. The user might not have an AV engine installed, yet he might want to use
another popular alternative for detecting malware. VirusTotal allows users to upload
files on their server which are then in turn evaluated by over 60 isolated AV engines in-
cluding all the programs we discussed. One engine can always make a mistake, therefore
a report from dozens of them is that much more important.
If a popular file, people can even find comments and vote for the given file (identified
by SHA256 checksums). It offers a whole new perspective of malware detection.
The obvious disadvantage for us is that for a file to be analyzed, it must first be sent
over to their server. This can be unacceptable for some of our users and is therefore
only considered as one of many options as to how to approach malware detections of
the file we are about to validate. The other disadvantage is that as of 1st of April 2017,
the public API which they provide for free is limited to only four requests per minute,
which might not be enough for some people. Additionally, the public API key can not
be used for commercial purposes, but people can request a private key where some of
these restrictions can be lifted (depending on what it will be used for). Some may say
these rules are rather strict, but it is important to understand that this should serve
only as a backup solution and as a demonstration of how easily new validation methods
can be integrated into the rest of the library.
VirusTotal’s API is also fully implemented in C# as one of their libraries and can
be integrated within our library through the NuGet package manager. With Apache
License 2.0, this is a viable library to be included.[23]

3.3.2 NLog

Based on the discussion in chapter Logging (page 20), we will be using the NLog
library for logging. It offers both basic and advanced logging features, and while we do
not need much from the library, users might need more options at their disposal. Using
NLog is rather intuitive, as shown in example 14 (page 32).

31/48

3.3 EXTERNAL DEPENDENCIES

1 using NLog;

2

3 namespace VerifilerCore {

4

5 public class Step {

6

7 private static Logger logger =

LogManager.GetCurrentClassLogger();

8

9 public void Enable() {

10 logger.Debug("Step {0} enabled", Name);

11 enabled = true;

12 }

13

14 ...

15

16 protected void ReportAsError(string file = null, string msg =

null) {

17 logger.Error("Error reported by step {0} for file {1} with

message {2}", Name, file, msg);

18 ...

19 }

20 }

21 }

Code preview 14: Logging with NLog

32/48

Part 4

Testing

In this chapter we will describe how we have made sure our library works as intended.
Unit tests will be implemented to provide at least a basic certainty that each and every
module of our library validates files according to the rules we have set up in the previous
chapter. Performance tests will also be conducted to verify that our library can run
and be used in a reasonable time frame. These tests should also help us understand
how the number of files affects the library’s performance.
Thanks to unit tests we do not have to create an external application using the library
in order to test all of its functions. The interface allows us, among other things, to test
parts of our library independently.

4.1 Unit Testing in Visual Studio for C#

Since most of the development was done in Visual Studio, there are many inte-
grated tools at our disposal, such as the Microsoft C# unit testing framework Mi-
crosoft.VisualStudio.TestTools.UnitTesting. While there are other options like
the NUnit or xUnit frameworks, we will work with the UnitTesting framework pro-
vided by Microsoft as it offers all we need and will result in one less external dependency
for our library to work with.
As you can see from the example 15 on page 34, test classes in the UnitTesting frame-
work are denoted by the [TestClass] annotation and every unit test, technically a
method of such class, is denoted by the [TestMethod] annotation. For people famil-
iar with Java’s JUnit framework, this is somewhat similar. Visual Studio can use the
information from annotations to visualize testing via its Test Explorer, which makes
execution of our tests extremely simple.
Our goal is to create a test class for every module our library provides - one for the
file size module, one for the file signature module, one for the Microsoft Office module,
etc. Each one of these test classes should cover most of the possible configurations the
module offers. We understand ”unit” as a single validation step described in section
about Validation steps on page 24.
The tests will be designed as if a user was trying to validate files using the interface the
library provides via the Inspector class. The tests will invoke it just as the user would,
set it up to enable and trigger the module we are trying to test and try all possible
inputs that might break the library.

33/48

4.1 UNIT TESTING IN VISUAL STUDIO FOR C#

1 using Microsoft.VisualStudio.TestTools.UnitTesting;

2

3 namespace VerifileTests {

4

5 [TestClass]

6 public class SizeTests : Tests {

7

8 [TestMethod]

9 public void TestMinSize() {

10

11 var testFile = FileCreator.CreateFile(DefaultFileSize,

".txt");

12

13 /* MinSize requirement is met. */

14 Inspector = new Verifile.Inspector();

15 Result = Inspector.MinSize(DefaultFileSize -

1).Scan(testFile);

16 Assert.AreEqual(Verifile.Result.Ok, Result.Code());

17

18 /* MinSize requirement is not met - file is smaller. */

19 Inspector = new Verifile.Inspector();

20 Result = Inspector.MinSize(DefaultFileSize +

1).Scan(testFile);

21 Assert.AreEqual(Verifile.Error.Size, Result.Code());

22 }

23 ...

24 }

25 }

Code preview 15: Unit test of MinSize() function

We will also use the annotations [TestInitialize] and [TestCleanup] which denote
methods that are run before and after every test method. This is important for us
because we need to create a temporary folder in which we will work with the files that
are to be validated. For every test method to be truly independent, this is a necessary
function. While the TestInitialize method takes care of creating a temporary directory,
the TestCleanup method deletes such a folder with all of its contents, so we do not
waste indispensable space while repeatedly executing dozens of tests.
[ClassInitialize] and [ClassCleanup] annotations are available to us as well, but we
will not be using them. In contrast to TestInitialize, ClassInitialize denotes a method
that should be invoked when the test class is first initialized before any test from that
test class is run. Similarly, the ClassCleanup denotes a method that is to be invoked
after all the test methods have finished. There are many other annotations provided
by the framework, but we will not need them and they are therefore left unmentioned.

34/48

4.2 GENERATING A SET OF TEST FILES

4.2 Generating a set of test files

For our tests to have any meaningful results, we need to have a reliable set of input files.
There are two obvious ways to approach this. The first method includes implementing
functions which can generate files in runtime with requested extension, size, and other
metadata. The other method includes using a prepared set of files which were created
using standard tools. While the first option allows us to simply create files of arbitrary
size and extension, the other method makes it possible to simulate more delicate defects
a file can have. For example, if we want to test our PDF validation, it makes more sense
to use a previously prepared real PDF file rather than generating it via a sophisticated
function.
We will use both of these methods as there are situations where one is more useful than
the other and vice versa.

4.2.1 Infected files

We must not forget about the integration of AV engines that our library supports. In
order to test how such programs behave, we need a file that can trigger AV scans, while
still being harmless to whoever is in possession of this file. Fortunately, there are very
specific files that are universally recognized as malware while still being harmless. One
of these is EICAR Standard Anti-Virus Test File which triggers most available
AV engines.
The file is a legitimate DOS (Disk Operating System) program and produces sensi-
ble results when run (it prints the message ”EICAR-STANDARD-ANTIVIRUS-TEST-
FILE!”). It is also short and simple – in fact, it consists entirely of printable ASCII
characters, so it can be easily created with a regular text editor. Any anti-virus prod-
uct that supports the EICAR test file should detect it in any file provided that the file
starts with the following 68 characters, and is exactly 68 bytes long.[24]

4.2.2 Corrupted files

For format specific validations, we need a sample of both valid and invalid files of a
given format. First we create valid files - images via MS Paint, MS Office files via MS
Office 2010 (both the legacy formats and the Open Office XML formats), OpenOffice
files via LibreOffice 5.3 and Access Database file via MS Access 2010.
To create a corrupted alternative of these files, we copy these files, open then in a
hex editor and rewrite a very small portion of the file’s contents to make these files
unreadable by programs that originally created them. This was done through trial and
error as certain parts of some files can be changed almost entirely without making the
file unreadable. The file’s signature was always left intact (the first few bytes of the
file) as this would most likely not corrupt the file contents itself as much as confuse the

35/48

4.4 PERFORMANCE TESTS

program trying to open it.

1 X5O!P%@AP[4\PZX54(P^)7CC)7}$EICAR-STANDARD-ANTIVIRUS-TEST-FILE!$H+H*

Code preview 16: EICAR Test file contents

4.3 Summary of implemented unit tests

In the table Overview of implemented unit tests (page 37), you can find an
overview with a list of names and short descriptions of implemented unit tests. If
there was an obstacle in implementing a given unit test, an explanation will also be
provided. The tests roughly follow the structure of the library. Every test is often
linked to one specific validation module, testing every possible outcome this module
might produce.

4.4 Performance tests

To verify that our library can be used in a standard production environment, perfor-
mance tests are to be carried out. We will measure how the amount of files impacts the
library’s runtime.
While the AV scan plays a significant role in our validation, it is worth noting that the
selected anti-virus engine and the platform may yield significantly different results for
every user. We will leave it out of our two main performance tests. We will run one
additional test with it, to get a clear picture of how our library might perform with
everything turned on.
It is expected that the length of the validation will increase with additional files in a
somewhat linear fashion.

4.4.1 Preparation

As our library provides us with both the validation of generic file formats and the
validation of specific file formats we will run two separate tests:

1. Test of files where we trigger only generic validations.

2. Test of files where we trigger only format specific validations.

3. Bonus test where we enable our AV software Avast Internet Security and trigger
all validations. We will not infect any of the files as that would terminate the
scan and affect the total runtime.

36/48

4.4 PERFORMANCE TESTS

Test module Description Note
AVTest Tests the library’s integration

with a set AV engine. An EICAR
test file is used to trigger a false
positive alarm.

This test needs to be config-
ured on a per system basis
as the installed AV engine
may vary.

CustomStepTest Implements a custom validation
module and tests whether the li-
brary uses it correctly.

ExtensionTest Tests all possible configurations
of allowed extensions as restric-
tions can be added/removed one
by one or in a single batch.

ChecksumTest Creates a few arbitrary files, cal-
culates their checksum and passes
these values to the library to
check whether the validation will
fail or not.

InputTest Tests the behavior of the library if
an invalid path (or no path at all)
to files is provided. This includes
tests which provide files with path
or a name that contains forbidden
characters.

SignatureTest Tests whether the Signature mod-
ule can read and validate magic
numbers at the beginning of
scanned files.

While the previous tests
used generated empty files,
this test needs real files with
real file signatures.

SizeTest Tests setting up the combination
of both lower and upper bounds
on an allowed file size.

VirusTotalTest Tests integration with VirusTo-
tal. An EICAR test file is used
to trigger a false positive.

ACCDBTest These tests take 2 files of a
relevant file format - one valid
and one corrupted. They first
run the scan with only the valid
file and expect the scan to come
clean. They then add the
corrupted counterpart and run
the scan again.

ImageTest
LegacyOfficeTest
OpenOfficeTest
OpenXMLTest
PDFTest

Table 4: Overview of implemented unit tests

37/48

4.4 PERFORMANCE TESTS

This will allow us to compare both of these independent parts of the library. Tests will
be executed upon 10, 50, 100, 500, 1 000, 5 000, 10 000 and 20 000 files. We will run
each test 5 times and calculate the average from that. We will also calculate the time
spent per file for every test to get a clear understanding of the time complexity our
library has. To achieve accurate results, we will work with same files we use in our unit
tests as they mimic real files typically found in a production enviroment. Tests will be
performed on a computer with the following specifications:

• Intel i7-3612QM 2.10GHz

• Kingston HyperX FURY SSD 240GB

• 8GB RAM

• Windows 7 (64-bit)

• Visual Studio 2015

• .NET Framework 4.5.2

Time will be measured from the moment the library is initialized via the new Inspec-
tor() call up until the Scan() method finishes executing. A built-in Stopwatch class
will be used to measure the time. We will preheat cache by running the test twice,
measuring only the time of the second scan. We will kill any test running for more than
100 seconds.
We hope to see the execution time increase in a linear fashion as we scan more and
more files. The generic validations may take longer as all the files go through all of
them compared to the format specific validations where each file goes through only one
of them. However, we should account for the fact that the format specific validations
are trying to open and read all the files with their respective library, which may take
significantly longer. The generic validations are mostly just reading the file’s metadata,
which does not always require opening it.

1 var timer = new Stopwatch();

2 timer.Start();

3 Inspector = new Verifiler.Inspector();

4 Result = Inspector.MinSize(1)

5 .MaxSize(2000)

6 .AddExtensionRestriction(".odt")

7 .AddExtensionRestriction(".pdf")

8 .AddExtensionRestriction(".accdb")

9 .AddExtensionRestriction(".xlsx")

10 .EnableSignatureTest()

11 .Scan(GetTestFolderPath());

12 timer.Stop();

Code preview 17: Setup of the generic validations test

38/48

4.4 PERFORMANCE TESTS

1 var timer = new Stopwatch();

2 timer.Start();

3

4 Inspector = new Verifiler.Inspector();

5 Result = Inspector.EnableFormatVerification()

6 .Scan(GetTestFolderPath());

7

8 timer.Stop();

Code preview 18: Setup of the format specific validations test

1 var timer = new Stopwatch();

2 timer.Start();

3

4 Inspector = new Verifiler.Inspector();

5 Result = Inspector.MinSize(1)

6 .MaxSize(2000)

7 .AddExtensionRestriction(".odt")

8 .AddExtensionRestriction(".pdf")

9 .AddExtensionRestriction(".accdb")

10 .AddExtensionRestriction(".xlsx")

11 .EnableAV("C:\\Program

Files\\AVASTSoftware\\Avast\\ashCmd.exe",

GetTestFolderPath() + " /_")

12 .EnableSignatureTest()

13 .EnableFormatVerification()

14 .Scan(GetTestFolderPath());

15

16 timer.Stop();

Code preview 19: Setup of the bonus test with AV scan

4.4.2 Results

The result of each test can be found in the tables located on the next page (page
40). They confirm what we suspected. For a small number of files (100 or less), the
library’s initialization takes most of the time, and the generic validations themselves
do not significantly affect the total execution time. Going up (1000 or more files), we
can see the time increase somewhat linearly in both of the tests. The format specific
validations take significantly longer to run, for reasons we have already discussed. To

39/48

4.4 PERFORMANCE TESTS

Files scanned Total time [ms] Average time per file [ms]
10 22 2.2
50 33 0.66

100 48 0.48
500 152 0.304

1000 267 0.267
5000 1411 0.282

10000 2780 0.278
20000 5798 0.29

Table 5: Result of the generic validations test

Files scanned Total time [ms] Average time per file [ms]
10 168 16.8
50 842 16.84

100 1656 16.56
500 8640 17.28

1000 16726 16.726
5000 86078 17.216

10000 - -
20000 - -

Table 6: Result of the format specific validations test

discover whether the file is corrupted or not, we have to try to open it. Opening files
(and reading its contents) does indeed take much longer. We had to kill the tests of 10
000 and 20 000 files as they ran for far too long.
The bonus test, where we also used our installed AV software, confirms what we already
learned in the first two tests. However, it is interesting to see that starting up the AV
program is very time-consuming. This is seen most clearly in the plot of average times
per file (page 41).
One of the most important things we have learned from these tests is that
our library runs with a linear time complexity.

40/48

4.4 PERFORMANCE TESTS

Files scanned Total time [ms] Average time per file [ms]
10 1802 180.2
50 2515 50.3

100 3263 32.63
500 10245 20.49

1000 19500 19.5
5000 96871 19.374

10000 - -
20000 - -

Table 7: Result of the bonus test with AV scan

Figure 3: Plot of average time per file

41/48

Part 5

Conclusion

5.1 Future of the library

The library is already available on GitHub and package manager NuGet. It offers users
two options how they can quickly integrate our library with their project. This presents
us with a lot of possibilities when speaking about the future of this project. Should
anyone be interested in extending the functions beyond its current capabilities, they
are free to fork the project and create modifications as they see fit. Depending on the
popularity, additional functions and validation modules can be created. Of the many
possible options, the first few that come to mind are the following:

• Module validating the time of file’s creation and modification.

• Format specific modules that can check additional popular file formats beyond
what is already offered (e.g. audio formats, video formats).

• Format specific modules that can validate formats used for serialization of data
(e.g. XML, JSON). These modules would only let through files with a valid data
structure. For example, they would filter out a .json file which does not contain
a valid JSON data structure.

• Similarly to the previous point, given a file containing a source code written in an
arbitrary language, a module that would allow only a valid source code written
in the selected language through could be an interesting addition. Indeed, we are
getting quite specific, but our library does not care. Users can create their own
validation modules that can be as specific as they need. There is no reason to
restrict them.

Given that the source code is distributed under an open source license, there is no
way of telling how many people might include it in their projects. It is important to
remember that this library is useful only for a fraction of possible users, so we can
hardly predict how widely it would be adopted.
The library is already being integrated into a project where it will assist with processing
incoming requests. These requests contain a batch of files and it is crucial that these
files meet certain requirements for the request to be processed correctly.

42/48

5.2 SUMMARY

5.2 Summary

We have created a library which can validate important metadata like size, checksum
or signature of all file types and additionally implemented modules that can detect
corrupted files of a standard file formats by integrating existing libraries designed to
manipulate a given file format. Our library can use installed anti-virus software as part
of the validation procedure or an available online malware detection service VirusTotal.
Users can choose to use only the core functions or download optional modules they
might need for their project. As the library can load them dynamically, the user always
has to download only what he will really be using. This limits the number of external
libraries being downloaded and reduces the size of the library. Should a new optional
library be created in the future, we have shown that it can be easily integrated into
existing functions due to the library’s modular nature. The library’s interface offers a
handful of commands which keep it straightforward and easy to use. Distributed under
an open source license and available under GitHub and NuGet, anyone can use, modify
and extend the result of our work. While it does provide functions that only a fraction
of programmers might ever need, there are no similar libraries available for free, which
can make our work a valuable tool for many.

43/48

REFERENCES

References

[1] GAIGALAS, Gomes Alexandre. Respect/Validation. [online]. [cit. 2017-05-01].
Available from: https://github.com/Respect/Validation.

[2] SKINNER, Jeremy. JeremySkinner/FluentValidation. [online]. [cit. 2017-05-01].
Available from: https://github.com/JeremySkinner/FluentValidation.

[3] MSDN. Naming Files, Paths, and Namespaces. [online]. [cit. 2017-05-01]. Avail-
able from: https://msdn.microsoft.com/en-us/library/windows/desktop/

aa365247.

[4] KESSLER, Gary. File Signatures Table. Gary Kessler Associates. [online].
23.7.2016 [cit. 2017-05-01]. Available from: http://www.garykessler.net/

library/file_sigs.html.

[5] MATTHEWS, Ron. File signatures. [online]. 8.3.2012 [cit. 2017-05-01]. Available
from: https://www.filesignatures.net/.

[6] MICROSOFT. Default cluster size for NTFS, FAT, and exFAT. [online]. 2017 [cit.
2017-05-01]. Available from: https://support.microsoft.com/cs-cz/help/

140365/default-cluster-size-for-ntfs,-fat,-and-exfat.

[7] KOHNO, Tadayoshi., Niels. FERGUSON and Bruce SCHNEIER. Cryptography
engineering: design principles and practical applications. Indianapolis, IN: Wiley
Pub., c2010. ISBN 978-0470474242.

[8] WANG, Xiaoyun, et al. Collisions for Hash Functions MD4, MD5, HAVAL-128
and RIPEMD. IACR Cryptology ePrint Archive. [online]. 2004 [cit. 2017-05-01].
Available from: http://eprint.iacr.org/2004/199.pdf.

[9] STEVENS Marc, BURSZTEIN Elie, KARPMAN Pierre, ALBERTINI Ange,
MARKOV Yarik. The first collision for full SHA-1. [online]. 23.2.2017 [cit. 2017-
05-01]. Available from: https://shattered.it/.

[10] DONIS, Peter. Windows vs. Linux File Timestamps. [online]. 2010 [cit. 2017-05-01].
Available from: http://www.peterdonis.net/computers/computersarticle3.

html.

[11] ECMA International. OFFICE OPEN XML OVERVIEW. Ecma International [on-
line]. 2010 [cit. 2017-05-01]. Available from: http://www.ecma-international.

org/news/TC45_current_work/OpenXML%20White%20Paper.pdf.

[12] Microsoft Open Technologies. OfficeDev/Open-XML-SDK. [online]. [cit. 2017-05-
01]. Available from: https://github.com/OfficeDev/Open-XML-SDK.

[13] The Apache Software Foundation. The Apache OpenOffice API Project. [online].
[cit. 2017-05-01]. Available from: http://www.openoffice.org/api.

44/48

https://github.com/Respect/Validation
https://github.com/JeremySkinner/FluentValidation
https://msdn.microsoft.com/en-us/library/windows/desktop/aa365247
https://msdn.microsoft.com/en-us/library/windows/desktop/aa365247
http://www.garykessler.net/library/file_sigs.html
http://www.garykessler.net/library/file_sigs.html
https://www.filesignatures.net/
https://support.microsoft.com/cs-cz/help/140365/default-cluster-size-for-ntfs,-fat,-and-exfat
https://support.microsoft.com/cs-cz/help/140365/default-cluster-size-for-ntfs,-fat,-and-exfat
http://eprint.iacr.org/2004/199.pdf
https://shattered.it/
http://www.peterdonis.net/computers/computersarticle3.html
http://www.peterdonis.net/computers/computersarticle3.html
http://www.ecma-international.org/news/TC45_current_work/OpenXML%20White%20Paper.pdf
http://www.ecma-international.org/news/TC45_current_work/OpenXML%20White%20Paper.pdf
https://github.com/OfficeDev/Open-XML-SDK
http://www.openoffice.org/api

REFERENCES

[14] THOMAS, Kas. Portable Document Format: An Introduction for Programmers.
MacTech [online]. [cit. 2017-05-01]. Available from: http://www.mactech.com/

articles/mactech/Vol.15/15.09/PDFIntro/index.html.

[15] MSDN. System Error Codes. [online]. 2017 [cit. 2017-05-01]. Available from:
https://msdn.microsoft.com/en-us/library/ms681381.aspx.

[16] COOPER, Mendel. Exit and Exit Status. [online]. 12.6.2003 [cit. 2017-05-01].
Available from: http://www.faqs.org/docs/abs/HTML/exit-status.html.

[17] MSDN. C# Reference. [online]. [cit. 2017-05-01]. Available from: https://msdn.

microsoft.com/en-us/library/618ayhy6.

[18] The Apache Software Foundation. Apache License. [online]. 2017 [cit. 2017-05-01].
Available from: https://www.apache.org/licenses/LICENSE-2.0.html.

[19] The Apache Software Foundation. Apache License v2.0 and GPL Compatibil-
ity. [online]. 2017 [cit. 2017-05-01]. Available from: https://www.apache.org/

licenses/GPL-compatibility.html.

[20] BALTER, Ben. Open source license usage on GitHub.com. GitHub. [on-
line]. 9.3.2015 [cit. 2017-05-01]. Available from: https://github.com/blog/

1964-license-usage-on-github-com.

[21] FOWLER, Martin. FluentInterface. MartinFowler.com. [online]. 20.12.2005
[cit. 2017-05-01]. Available from: https://www.martinfowler.com/bliki/

FluentInterface.html.

[22] CMSC 311. Ascii vs. Binary Files. [online]. [cit. 2017-05-01]. Avail-
able from: https://www.cs.umd.edu/class/sum2003/cmsc311/Notes/BitOp/

asciiBin.html.

[23] JONES, Keith. Genbox/VirusTotal.NET. [online]. [cit. 2017-05-01]. Available
from: https://github.com/Genbox/VirusTotal.NET.

[24] EICAR. Intender use. [online]. 2017 [cit. 2017-05-01]. Available from: http://www.
eicar.org/86-0-Intended-use.html.

45/48

http://www.mactech.com/articles/mactech/Vol.15/15.09/PDFIntro/index.html
http://www.mactech.com/articles/mactech/Vol.15/15.09/PDFIntro/index.html
https://msdn.microsoft.com/en-us/library/ms681381.aspx
http://www.faqs.org/docs/abs/HTML/exit-status.html
https://msdn.microsoft.com/en-us/library/618ayhy6
https://msdn.microsoft.com/en-us/library/618ayhy6
https://www.apache.org/licenses/LICENSE-2.0.html
https://www.apache.org/licenses/GPL-compatibility.html
https://www.apache.org/licenses/GPL-compatibility.html
https://github.com/blog/1964-license-usage-on-github-com
https://github.com/blog/1964-license-usage-on-github-com
https://www.martinfowler.com/bliki/FluentInterface.html
https://www.martinfowler.com/bliki/FluentInterface.html
https://www.cs.umd.edu/class/sum2003/cmsc311/Notes/BitOp/asciiBin.html
https://www.cs.umd.edu/class/sum2003/cmsc311/Notes/BitOp/asciiBin.html
https://github.com/Genbox/VirusTotal.NET
http://www.eicar.org/86-0-Intended-use.html
http://www.eicar.org/86-0-Intended-use.html

Appendices

A List of CD contents

cd

src

Verifiler..Main library.
VerifilerCore............................Library with core functionality.
VerifilerACCDB................Optional library verifying ACCDB format.
VerifilerImage.................Optional library verifying image formats.
VerifilerMSLegacy.......Optional library verifying old MS office formats.
VerifilerODF..........Optional library verifying OpenDocument formats.
VerifilerOpenXMLOptional library verifying OpenXML formats.
VerifilerPDFOptional library verifying PDF format.
VerifilerTest ...Unit test library.

doc

mt...Final version of the thesis.
text src.......................................Source code of the thesis.

img..Images used in the thesis
readme..List of CD contents

46/48

B List of used abbreviations

AODL An Open Document Library

API Application Programming Interface

ASCII American Standard Code for Information Interchange

AV Anti-Virus

CLU Command Line Utility

COM Component Object Model

DOS Disk Operating System

EOF End Of File

exFAT Extended File Allocation Table

FAT File Allocation Table

JPEG Joint Photographic Experts Group

MD5 Message Digest algorithm

MS Microsoft

NTFS New Technology File System

ODF Open Document Format

OOXML Open Office XML

PDF Portable document format

PHP Hypertext Preprocessor

SDK Software Development Kit

SHA Secure Hash Algorithm

UTF-8 UCS/Unicode Transformation Format

XLS Microsoft Excel Spreadsheet

XML eXtensible Markup Language

47/48

C Links to GitHub repositories

• https://github.com/Hanzik/verifiler

• https://github.com/Hanzik/verifiler-test

• https://github.com/Hanzik/verifiler-core

• https://github.com/Hanzik/verifiler-accdb

• https://github.com/Hanzik/verifiler-image

• https://github.com/Hanzik/verifiler-mslegacy

• https://github.com/Hanzik/verifiler-odf

• https://github.com/Hanzik/verifiler-openxml

• https://github.com/Hanzik/verifiler-pdf

D Links to NuGet repositories

• https://nuget.org/packages/Verifiler

• https://nuget.org/packages/VerifilerCore

• https://nuget.org/packages/VerifilerACCDB

• https://nuget.org/packages/VerifilerImage

• https://nuget.org/packages/VerifilerMSLegacy

• https://nuget.org/packages/VerifilerODF

• https://nuget.org/packages/VerifilerOpenXML

• https://nuget.org/packages/VerifilerPDF

48/48

https://github.com/Hanzik/verifiler
https://github.com/Hanzik/verifiler-test
https://github.com/Hanzik/verifiler-core
https://github.com/Hanzik/verifiler-accdb
https://github.com/Hanzik/verifiler-image
https://github.com/Hanzik/verifiler-mslegacy
https://github.com/Hanzik/verifiler-odf
https://github.com/Hanzik/verifiler-openxml
https://github.com/Hanzik/verifiler-pdf
https://nuget.org/packages/Verifiler
https://nuget.org/packages/VerifilerCore
https://nuget.org/packages/VerifilerACCDB
https://nuget.org/packages/VerifilerImage
https://nuget.org/packages/VerifilerMSLegacy
https://nuget.org/packages/VerifilerODF
https://nuget.org/packages/VerifilerOpenXML
https://nuget.org/packages/VerifilerPDF

	1 Introduction
	Thesis outline

	2 Analysis
	Specification of requirements
	Requirements for library's core functions
	Requirements for generic validations
	Requirements for integrity verifications

	Similar existing libraries
	Respect/Validation
	JeremySkinner/FluentValidation

	File characteristics
	Format
	Text file formats
	Binary file formats

	Filename
	Extensions
	Signatures
	Size
	Checksum
	Other meta-data

	Common office file formats
	Microsoft Office family
	Discrepancy between versions
	Verifying the integrity of Microsoft Office files

	OpenOffice family
	Portable Document Format

	Popular Anti-Virus engines
	Avast
	AVG
	Eset
	ClamAV
	Windows Defender
	Evaluation of Anti-Virus engine integration options

	Open source license - Apache License 2.0
	Popular software under Apache License 2.0

	Logging

	3 Library implementation
	Fluent interface
	Disadvantages of Fluent API

	Structure of the library
	Validation steps
	Inspector
	Inspector's interface

	Optional library loader
	Result object

	External dependencies
	VirusTotal.NET
	NLog

	4 Testing
	Unit Testing in Visual Studio for C#
	Generating a set of test files
	Infected files
	Corrupted files

	Summary of implemented unit tests
	Performance tests
	Preparation
	Results

	5 Conclusion
	Future of the library
	Summary

	Bibliography
	Appendices
	List of CD contents
	List of used abbreviations
	Links to GitHub repositories
	Links to NuGet repositories

