

master’s thesis

Layout of hierarchical flow charts

Bc. Tomáš Tušla

May 2017

Ing. Ladislav Čmolík, Ph.D.

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Computer

Graphics and Interaction

Acknowledgement
I would like to thank Ing. Ladislav Čmolík Ph.D. for his guidance when supervising
this thesis.

Declaration
I declare that I worked out the presented thesis independently and I quoted all used
sources of information in accord with Methodical instructions about ethical principles
for writing academic thesis.

iii

Abstract
Tato práce se zabývá tvorbou rozvržení pro hierarchické vývojové diagramy. Práce ob-
sahuje analýzu několika algoritmů a jejich nedostatků při tvorbě tohoto typu rozvržení.
Práce dále popisuje návrh a implementaci upraveného hierarhického rozvrhovacího al-
goritmu, který může být použit k tvorbě rozvržení pro hierarchické vývojové diagramy.
Tento algoritmus zachovává stabilitu rozvržení u podgrafů a také podporuje různé stra-
tegie pro agregaci hran nebo například dynamickou výšku vrstev. Algoritmus je imple-
mentován v rámci aplikace Ideal Graph Visualizer, která umožňuje zobrazit hierarchické
vývojové diagramy. Práce pak obsahuje zhodnocení vytvářených rozvržení a navrhuje
možná vylepšení algoritmu.

Klíčová slova
Hierarchický vývojový diagram; kreslení grafů; hierarchické rozvržení; stabilita rozvr-
žení

iv

Abstract
This thesis deals with creation of layouts for hierarchical flow charts. The thesis con-
tains analysis of several algorithms and their shortcomings, when creating this type of
layout. The thesis then describes design and implementation of a modified hierarchi-
cal layout algorithm, which can be used to create layouts of hierarchical flow charts.
This algorithm maintains layout stability in subgraphs and it also supports different
edge aggregation strategies or, for example, dynamic height of layers. The algorithm
is implemented as part of application Ideal Graph Visualizer, which allows to visualize
hierarchical flow charts. Thesis then contains evaluation of created layouts and suggests
possible improvements of the algorithm.

Keywords
Hierarchical flow chart; graph drawing; hierarchical layout; layout stability

v

Contents

1 Introduction 1
1.1 Goal and motivation . 1
1.2 Thesis structure . 2

2 Analysis 3
2.1 Hierarchical flow chart . 3
2.2 Layout algorithm requirements . 4
2.3 Layout algorithms . 4

2.3.1 Comparison of algorithms . 8

3 Design 11
3.0.1 Hierarchy support . 11
3.0.2 Filtering support and layout stability 11

3.1 Layout algorithm . 12
3.2 Data structure . 13
3.3 Outer layout algorithm . 13
3.4 Inner layout algorithm . 14

3.4.1 Removing cycles . 14
3.4.2 Assigning layers to nodes . 15
3.4.3 Proper layering . 16
3.4.4 Aggregate edges . 17
3.4.5 Crossing reduction . 18
3.4.6 Assigning coordinates . 19
3.4.7 Edge routing . 20

4 Implementation 23
4.1 Ideal Graph Visualizer . 23

4.1.1 Features of IGV . 24
4.2 Code structure . 26

4.2.1 Implemented code . 27
4.3 Implementation features . 28

4.3.1 Dynamic gap between layers . 28
4.3.2 Interrupting too long connectors 28

5 Testing 31
5.1 Performance overview . 31
5.2 Running time of individual steps . 32
5.3 Running time with and without clusters 33
5.4 Conclusion . 33

6 Results 35
6.1 Node filtering . 35
6.2 Comparison with the original algorithm 37
6.3 Edge aggregation strategies . 38
6.4 Layout with clusters . 40

vi

7 Coneclusion 43
7.1 Future improvements . 43

7.1.1 Two step algorithm . 43

Bibliography 45

vii

Abbreviations
IGV Ideal Graph Visualizer
JVM Java Virtual Machine

viii

1 Introduction

Flow charts are widely used type of diagrams in many different use cases. Be it some
real world business process or visualization of an algorithm. While there are many
tools that allow easy creation of flow charts, often these tools leave the responsibility
of creating visually pleasing layout in hands of the flow chart creator.

1.1 Goal and motivation

Goal of this thesis is to create an algorithm that can generate a flow chart layouts from
an input graph automatically. The algorithm should also have some useful properties.
One of these properties is allowing nodes to be grouped into clusters.

Figure 1 Hierarchical flow chart

Then in the layout created by the algorithm, all the nodes that are part of the same
cluster will be placed in vicinity of each other. Figure 1 shows such flow chart. Having
all the processes grouped together makes it easier for users to find all the processes that
are part of the same system.

Figure 2 Stability of layout

Another very useful property is maintaining stability of the layout when only part
of the whole graph is shown. The layout can be considered stable, if relative positions
of nodes in the original layout are maintained in the layout created for subgraph of
the original graph as shown in figure 2. The last important property is interactive
computation for instances with few thousands of nodes.

An application called Ideal Graph Visualizer is a Java application used to visualize
hierarchical flow charts. This application allows users to visualize different steps of

1

1 Introduction

bytecode optimizations done by JVM. In these visualizations, nodes represent instruc-
tions and edges represent passed values. Users can then use these visualizations to check
if, for example, a result value of an instruction is correctly passed to next instruction,
or they can check that there aren’t any unwanted instructions used. To achieve this,
users have to be able to find nodes they are interested in and then they have to be able
to track where their edges lead to. This can be often very difficult due to graphs being
too large. The IGV helps with this, by allowing users to turn off visibility of nodes
they aren’t interested in, which makes the graph smaller. Unfortunately the layout is
recreated every time when visibility of node changes and this new layout can be very
different when compared to the previous one. It would be helpful if the layout stayed
similar when switching visibility of nodes, as it would decrease time an user needs to
orient himself, after the layout is modified.

1.2 Thesis structure
The following text of this thesis is divided into five chapters. The second chapter
contains description of hierarchical flow chart and properties, which should be achieved
by final implementation of the layout algorithm. In the second part of the chapter, there
is an analysis of different graph layouts and their algorithms. In the third chapter is a
design and explanation of individual steps of the implemented algorithm. The fourth
chapter contains details of IGV environment and implementation details together with
some implemented features of the algorithm. The fifth chapter contains details of
testing of running time the implemented algorithm. In the sixth chapter, results of the
implemented algorithm are shown on several different examples of diagrams. In the last
chapter, there is a conclusion of this thesis.

2

2 Analysis

This chapter contains description of a hierarchical flow chart and it’s properties that
should be taken into consideration when creating a hierarchical flow chart layout. The
description is then followed by an analysis of several possible layout algorithms, which
could be used to create an automatic layout for the hierarchical flow charts.

2.1 Hierarchical flow chart

A hierarchical flow chart has the same structure as a standard flow chart, meaning
graph structure that contains nodes and edges that connect these nodes. All edges have
assigned direction and there can be both multiple ingoing and outgoing edges per each
node. Also cycles, including loops, are allowed. The nodes themselves can have different
dimensions and shapes. The main usage of a flow chart is to visualize a sequence of
individual steps or decisions, which are made while working on some process. Each
node then represents an action or a decision and edges represent transitions between
these actions.

Figure 3 Flow chart

Flow charts also generally have one direction (see figure 3), most commonly from up
to down, in which the steps of a process are heading, as progress through the process
is made. While it is not a strict rule, it makes these charts easier to follow and it can
even help users to guess how far in the process they are.

3

2 Analysis

Figure 4 Hierarchy of nodes

Unlike in the standard flow chart, in case of the hierarchical flow chart, it is allowed
for nodes to be subnodes of some other node. The edges can be not only between nodes
on the same level in this hierarchy, but also across different levels of different nodes as
shown in figure 4.

As for the nodes, flow charts use differently shaped nodes for actions and decisions,
so nodes can have different dimensions. The edges are not limited and can connect any
two nodes so they can sometimes return even several steps back in the process. This
means that it is possible for the flow chart to contain cycles and also, that it is not
always possible to have all edges heading in top-down direction.

2.2 Layout algorithm requirements
Layout algorithm should support creating layouts for hierarchical flow charts. This
means that it has to be able to work with nodes of different sizes. It also has to support
nodes being grouped into clusters. The algorithm will then automatically keep the
nodes together in created layout. These properties are not the only ones that should
be achieved by the layout algorithm. As mentioned earlier, the algorithm should also
create stable layouts, meaning relative position of nodes should be maintained when
creating layouts of a subgraph, to minimize disruptions to users mental map. Another
important property is that the algorithm allows to create layouts interactively. All
of the algorithms have implementations that can be used interactively. Although it
may not be possible to maintain this property after adding some of features that the
algorithm is missing. The algorithm should be also able to work at least with hundreds
of nodes interactively.

Then there are aesthetic requirements, while these may not be necessarily as critical
as requirements that were already described, the aesthetic requirements are still very
important. As shown in case of the Ideal Graph Visualizer, users have to be able to
find nodes easily and they have to be able to track where edges lead to. This can be
difficult especially when there are overlapping nodes, or an edge and a node overlap.
Another problems are edge cluttering and edge crossings. There are also some minor
improvements, like having the edges go in top-down direction, which also help.

2.3 Layout algorithms
There are many layout algorithms, but most of them are not suitable for creating
hierarchical flow chart layouts. In this section, there will be presented only those

4

2.3 Layout algorithms

suitable algorithms which could be considered as a basis of the final algorithm. There is
force-directed layout algorithm, which is very fast algorithm, even though it’s results are
least controllable. Another possibility is hierarchical layout algorithm, this algorithm
has much higher control over the result, but it is slower. The last discussed algorithm is
compact layout algorithm, which support grouping of nodes and stability of layout, but
it’s also much more complicated and has even worse performance, then the hierarchical
layout algorithm. While none of these algorithms fits perfectly, it may be possible to
modify them.

Force-directed Layout Algorithm Force-directed layout algorithm is one of the most
popular layout algorithms. While being extremely easy to implement, it has also rea-
sonable asymptotic running time of O(𝑛3), 𝑛 representing number of nodes, when using
naive approach. This running time can be lowered[10] even to O(𝑛*𝑙𝑜𝑔(𝑛)) with heuris-
tic, making the algorithm very fast. This allows the algorithm to work in real time even
with thousands of nodes.

An advantage of the force-directed layout algorithm is that it works with any type of
graph. The downside is relatively small control over the resulting layout. The algorithm
is also iterative. At the beginning, it creates some initial state, which is then improved
in every iteration by decreasing overall energy of the graph [4]. If bad initial state is
selected, then the algorithm can find only local minimum. This local minimum can
still be a very poor solution compared to the best possible solution that would exist for
given graph.

Figure 5 Force-directed layout

As the name suggests, important part of the algorithm are forces. There are two
types of forces, the first is an attractive force and the second is a repulsive force. The
attractive force is generally a force between two nodes connected by an edge. This
edge can have some priority assigned. The priority represents strength of the attractive
force which pulls both nodes together. The repulsive force is generally a force between
every two nodes, which tries to push the nodes apart. By combining these two forces,
the algorithm tries to balance having nodes with connections between themselves close
together, while preventing nodes overlapping with each other using the repulsive force.

At the beginning of the algorithm, all nodes are placed at random locations. Then the
algorithm computes forces that are affecting each node and moves nodes accordingly.
This step is repeated until there are either no unbalanced forces, or if these unbalanced
forces are lower than some threshold. Figure 5 shows such possible layout.

5

2 Analysis

Hierarchical Layout Algorithm Hierarchical layout is, as its name suggests, creating
hierarchy of nodes. With each node having assigned some layer. Unlike the Force-
directed layout algorithm, which can be used with any type of graph, the hierarchical
layout algorithm requires directed acyclic graph. Because this requirement cannot be
always achieved, it is possible to transform an input graph containing cycles to acyclic
graph by switching direction of ideally minimal number of edges. The hierarchical
layout algorithm also tries to achieve some aesthetic criteria [3], for example minimal
width, minimal height, but also more complex criteria like minimal number of edge
bends or having minimal edge crossings. Often these criteria oppose each other, so
commonly each implementation will try to focus only on a few aesthetic rules. Another
disadvantage of hierarchical layout algorithm is that many of its steps are NP difficult.
This makes the algorithm unsuitable when trying to create layouts in real time, or when
working with graphs that contain many nodes and edges.

Figure 6 Hierarchical layout

Due to these constraints, it is better to use heuristic algorithms. The most common
heuristic solution is using Sugiyama’s framework. This algorithm splits creation of the
layout to several steps. One of the biggest advantages of this approach is an ability to
configure the resulting layout based on which implementation of each step is chosen.
With some of the steps being optional and the others having many implementations [1]
it is possible to adjust both asymptotic running time and aesthetic criteria.

The steps of the Sugiyama’s framework [2] are:
Remove cycles In this step, it’s required to convert an input graph to directed acyclic

form. This is done by either switching direction of problematic edges, or by removing
them from the graph during the algorithm.

Assign layers to nodes In this step, every node is assigned to some layer. Generally,
the goal is to satisfy aesthetic condition, that all incoming edges come from nodes,
which have assigned lower layer number. Also assigning layers to nodes in a way that
reduces length of the edges benefits both readability of layout and performance.

Reduce long edges If there is an edge between two nodes which are not in adjacent
layer, then this edge is converted to a path between original nodes with special dummy
node in each layer it goes through. This is done to help navigate long edges through
graph and avoid edges overlapping nodes.

Aggregate edges Optional step. If group of nodes shares a parent node, or a child
node, it is possible to aggregate such edges to one. This is helpful especially if the
edges are long. This will decrease number of dummy nodes and edges, making the
algorithm faster and resulting layout easier to read.

6

2.3 Layout algorithms

Crossing reduction Probably the most important step of the algorithm. In this step,
nodes are assigned positions relative to each other in order to find such permutation
which would have minimal number of edge crossings. Because ideal solution requires
to compute all possible permutations, heuristic approaches are used. The original
Sugiyama framework uses barycentric method, which places each node on average
position computed using positions of children of the node. But it’s possible to use
many different implementations.

Assigning coordinates This step can be combined with previous step, if not, then in
this, step each node is assigned y coordinate according to its layer and x coordinate in
such a way that does not violate relative positioning created in previous step. After
this step, the resulting layout will be similar as the one in figure 6.

Compact Layout Algorithm Unlike previous algorithms which were from the category
of automatic graph drawing algorithms, this algorithm is a layout adjustment algorithm
[6]. The difference is that the automatic graph drawing algorithms receive all nodes
and edges and then create a layout. On the other side, the layout adjustment algorithm
has some initial layout and then receives changes. These changes can be anything from
zooming some node, changing size of a node, to adding completely new nodes and edges.
This makes these algorithms more suitable in places where there are a lot of changes
to the graph in real time.

Figure 7 Compact layout including interval lines

The compact layout [6] uses intervals to denote both position and dimension of node.
Each node has four these intervals (see figure 7) which create a bounds of the node.
These intervals can change during life cycle of the graph, for example when scaling
node size or making it invisible. While these intervals do not create strict grid, they
are used to achieve some grid like properties. It is possible to use them to maintain
relative positions when some of the nodes are resized. Node can be made invisible by
simply setting appropriate intervals to zero size. This stability is guaranteed only as
long as the change applied to the layout is not node creation or removal. In these cases,
structure of intervals has to be changed.

The algorithm has several problems. The first is that the algorithm required fixed

7

2 Analysis

screen size. This is of course impossible to achieve when working with different sizes
of graphs. The algorithm also doesn’t have any procedure, that would decide where
new nodes should be added. This makes reading the graph harder. It also means that
creating paths for the edges is more complicated. Among possible solutions to this is
creating a grid and then using some shortest path algorithm to find a possible route,
other possibility is marking every corner of each node and then navigating the edges
around. The first solution can be optimized by not using some random grid, but by
using the original structure of the intervals. Also it’s possible to create metrics for the
edges to minimize how many times the edge will bend or how long it will be. It is also
possible to minimize how many other edges will an edge cross. But finding such path
can be rather time consuming.

While this layout allows better manipulation with graph, it is also more complicated
to implement and requires to have robust data structures and algorithms to be able to
run in real time. The algorithm by itself also doesn’t bring much more than the other
algorithms, but rather allows implementation of other features which would be able to
make good use of this layout structure. This is quite a big disadvantage since many of
these features would have to be implemented by creators of applications, which would
use this layout, to be compatible with both the algorithm and the application itself.

2.3.1 Comparison of algorithms

While none of the algorithms is ideal on its own, each of them has some positive traits
which should be in the final algorithm.

Force-directed algorithm is very versatile, easy to implement and works very fast in
real time, but it lacks any sort of structure. The algorithm supports nodes of different
dimensions and has mechanism to prevent node overlapping. Normally a repulsive
force is based on distance of nodes. This works well, if nodes have shape of a circle,
but it can be problematic to balance the forces for a rectangle shaped node with very
different height and width. Having too strong repulsive force can then create big gaps
in layout, on the other side, too weak forces can sometimes result in overlapping nodes.
Another problem is that edge crossings are not minimized and the edges themselves
can overlap with nodes, which is undesirable. The algorithm has also no support for
subnodes, although it can be very easily added. The bigger problem is that a result of
the algorithm relies heavily on initial positions of nodes.

Hierarchical layout algorithm, compared to the force-directed algorithm, brings solid
structure and support for flow charts. It has also no problem with different shapes of
nodes, prevents node overlapping and tries to minimize the number of edge crossings.
The hierarchical layout algorithm doesn’t support subnodes by itself, but it is quite
flexible and it is possible to add support for subnodes quite easily. The hierarchical
algorithm has two big problems. The first problem is its high time complexity, which
can be solved by using heuristic. The second problem is that hierarchical algorithm will
produce bigger layouts than force-directed algorithm and compact layout, especially if
there are big differences between dimensions of nodes.

The compact layout algorithm, on the other side, allows better manipulation with
resulting layout, it also supports different dimensions of nodes and prevents nodes from
overlapping. It’s also the only algorithm, that is able to work with subnodes and it also
creates stable layout. But same as for the force-directed algorithm, it doesn’t naturally
form flow charts. Another disadvantage is that the algorithm is more complicated. Even
basic edge routing is much more complex than the one in the hierarchical algorithm, even
though it can be modified to minimize the edges better than in hierarchical approach.

8

2.3 Layout algorithms

But it requires much more processing power. The compact layout was tested by its
authors using graphs with about sixty nodes and about same number of edges [6].
These are relatively small instances, on the other side both force-directed algorithm
and hierarchical algorithm can be used with much bigger graphs.

Out of these algorithms, the hierarchical layout algorithm is the most viable solution
in this case. It is a reasonable compromise between simplicity and complexity. It
satisfies many of required features that force-directed algorithm is missing, while at the
same time, it’s faster and less complicated than the compact layout algorithm. The
hierarchical layout algorithm can be very easily modified, so it’s possible to add missing
features while maintaining positive properties of hierarchical layout.

9

3 Design

This chapter contains description of new algorithm, which is based on hierarchical layout
algorithm that selected in previous chapter. This algorithm is built upon Sugiyama’s
framework with several modifications. These modifications should allow the algorithm
to fulfill requirements specified in the previous chapter and thus be possibly used to
create hierarchical flow charts.

As described in previous chapter, the main weak point of hierarchical algorithm is a
lack of support for grouping nodes into clusters. This algorithm also doesn’t naturally
create stable layouts and has high time complexity without heuristics. In this chapter,
these problems are addressed with possible solutions.

Before explaining the algorithm itself, it is important to be able to distinguish nodes
without subnodes from the nodes which have some subnodes. In the following text,
when writing about a node, it means that it is irrelevant if the node has any subnodes
or not. On the other side, if a node is called a cluster, then it contains some subnodes.

3.0.1 Hierarchy support
Because the hierarchical layout by itself doesn’t have any support for subnodes, it has
to be added. This can be done by doing separately an inner layouts of subnodes in
every cluster. Then, in the second phase a layout on a level of the clusters is created.
The order of doing the layout from inner subnodes is required since it is important to
know dimensions of subgraph, as it also decides dimensions of the cluster.

3.0.2 Filtering support and layout stability
The designed layout algorithm also supports node filtering. This means that user can
focus only on selected set of nodes and their neighbours. If layout of filtered nodes is
done independently of rest of the graph structure, it can lead to big changes in layout
when switching between these different views.

Figure 8 Filtering without stable layout

Node which was at the top of the original layout can get to the bottom of filtered
layout, since when considering only filtered nodes and edges, such layout would be
considered better as shown in figure 8. These changes then disrupt users mental map,
which was formed during work with original graph layout. To avoid disruption of mental
map and aid user, the layout should be stable. Stable layout is a layout that follows
these two rules.

11

3 Design

∙ The first rule is vertical stability. This means that if node was in higher layer than
some other node, then this positioning will be maintained in every possible view.

∙ The second rule is horizontal stability. This means that if node was on the right of
some other node, then it will be always on the right of that node. But unlike the
first rule, this rule can be relaxed. It is important that this stability is maintained
among nodes of same layer, but nodes of different layers can break this rule in
different views. By relaxing this rule it’s possible to, for example, better balance
child nodes under their parent node. Condition for this relaxation is that while
the strict horizontal stability rule can be broken, the change in relative positioning
of nodes won’t be significant. To avoid significant changes, appropriate algorithms
for creating ordering of nodes and assigning coordinates to them have to be chosen.

Figure 9 Stable layout in case of tree graph

Creation of a stable graph layout can be easily achieved if there is some limitation
of structure of graph, for example input graphs are only binary trees. Stability can be
also achieved if values of nodes are mutually comparable. Figure 9 shows graph with
tree structure and comparable values of the nodes. In this case, creating ideal layout is
trivial. Even if a structure of the input graph is not a tree, the layout can be created as
result of sorting of nodes. But this method promotes stability of layout at expense of
aesthetic quality of the layout itself. Creating stable layout which also tries to minimize
edge crossings and maintain other aesthetic criteria for an arbitrary graph, where nodes
have arbitrary values, cannot be solved by these simple methods. To be able to create
stable layout, the algorithm has to know the structure of whole graph even in case if
only subgraph is currently visible, otherwise it cannot maintain stability throughout
changes in filtering. This means that the algorithm always has to get whole structure
of the graph and each node and edge gets indicator showing if it is visible in current
view, or not. The algorithm can then repeatedly create same structure where relative
positions of nodes are maintained and then separately assign real coordinates which are
specific to currently generated view.

The need to be able to recreate always same relative ordering creates limitation on
used data structures and algorithms. No algorithms that use some form of random
selection can be used. Also no changes in data structure are allowed if they depend
on visibility of some element and could affect relative ordering. Another limitation is
usage of data structures that have unstable order of returned elements when iterating
over them. Namely sets and maps are problematic if used wrong. Especially when
using iterative heuristic approaches, since even small change in input data can lead to
very different results after several iterations.

3.1 Layout algorithm

Layout creation will use an inner layouting algorithm to create a layout of nodes on
the same level, for example all subnodes of some cluster and even the nodes on the top

12

3.2 Data structure

level itself. The outer layout algorithm doesn’t create a layout on its own, but rather
prepares clusters to be processed, as the layout of each cluster has to be done separately.
The outer layouting algorithm will create separated subgraphs for each cluster and use
the inner layouting algorithm to create these layouts, then it will use the inner layouting
algorithm to create layout of clusters themselves. After this is done, the outer layouting
algorithm combines these layouts to final layout. The order of creating these layouts
is fixed, since in time of creating cluster layout, the dimensions of clusters have to
be already known. Also since the outer layout doesn’t do layouting itself it’s possible
to use the inner layouting algorithm independently. If the outer layouting algorithm
is used the final layout will be created with consideration of clusters. If the inner
layouting algorithm is used directly, the clusters will be ignored and resulting layout
will be created solely with consideration of edges.

3.2 Data structure

Figure 10 Graph data structure

The algorithms work with following input data representations shown in figure 10.
∙ Node is represented by its coordinates, dimensions, visibility and by being associ-

ated to some cluster. The node also has ports, these are places where edges begin
or end. The layout algorithm representation of node then adds informations about
assigned layer, relative position of this node in its layer. The layout node doesn’t
use ports, but maintains lists of child and parent connections to other nodes. Also
layout nodes themselves don’t maintain 1:1 ratio with nodes of the input graph as
the algorithm can create some dummy nodes during layout creation.

∙ Port represents endpoints for connectors. Each port has assigned its node and
relative position from upper left corner of its node. The layout algorithm uses
ports only in final phase, when routing of edges is being done.

∙ Edge - Each edge leads from one port to another one and has set of points through
which resulting polyline should be drawn. Edges, just like nodes, have an indicator
of visibility. The layout algorithm encapsulates this edge to connection which has
parent and child node directly without ports. Some of these connections may also
have an indicator of being reversed edge. This indication is used only during layout
creation and doesn’t affect the input graph. Connections are also not mapped 1:1
to input graph edges, but one connection can represent only part of an edge.

3.3 Outer layout algorithm
The outer layout algorithm takes clusters of the graph and their nodes. For each cluster,
it creates data structure which contains all nodes of the cluster and all its edges between
nodes of the cluster. All edges which are between nodes of different clusters have to be
split. Splitting of such edge going from cluster A to cluster B is done by splitting it to
three parts.

13

3 Design

Figure 11 Splitting of edge by the outer layout

As shown in figure 11, the first part is the edge from the Node A in the cluster A to
a border of the cluster A, the second part indicated by the green line is edge between
the cluster A and the cluster B and the third part is edge from a border of the cluster
B to Node B.

After the preparation of the clusters is done, the inner layout algorithm is called to
create layout of each cluster. After this is done, the inner layout algorithm is called
also on the clusters themselves. At the end, the algorithm joins edges which have been
split back together.

3.4 Inner layout algorithm
The inner layout algorithm creates the layout of nodes itself using Sugiyama’s frame-
work. In this section there is a description of selected implementations of its steps.

3.4.1 Removing cycles

Removing loops can be done directly. These edges are removed from the graph data
structure and maintained separately since they wouldn’t affect the resulting layout but
only increase the running time.

Figure 12 Removing cycles from graph

Then removal of longer cycles begins. Since the input graph has oriented edges,
only oriented cycles have to be removed. And these cycles can be broken by changing
direction of any edge in that cycle. As shown in figure 12, the edge causing cycle has
its direction reversed. But every change of direction of an edge results in back edge

14

3.4 Inner layout algorithm

in final layout. To maintain the aesthetic criteria of hierarchical layout, the number
of back edges should be minimized. Finding minimal number of edges that have to
be reversed in order to break all cycles in directed graph is called minimum feedback
arc set and is proven to be NP-hard task[7]. To be able to create layouts in real time,
a heuristic algorithm has to be used. The possible heuristics have two parameters by
which they can be compared. The first is time complexity and the second is upper
bound guarantee specified by multiplying constant. This constant shows how many
times more edges will be reversed than in ideal solution in the worst case. One of the
possible heuristics is using a simple depth first search, which can be easily modified
to detect cycles and break them. The main advantage of this heuristic is linear time
complexity. The disadvantage is that this method doesn’t guarantee any upper bound
on number of reversed edges. These problems can be expected especially when a lot of
edges are part of multiple cycles. This heuristic is selected primarily due to its speed
and also since expected number of cycles is relatively small compared to size of the
instances. In case of using the algorithm on, for example, tournaments, this part of the
algorithm should be replaced with some other heuristic which, while being slower, will
create less back edges.

3.4.2 Assigning layers to nodes
When assigning layers, there are several aesthetic criteria to consider. The first is
minimizing number of back edges. This essentially means that each child node should
be in a higher layer than all of its parent nodes. The only exception to this rule are
edges which have been reversed in previous step of the algorithm. The second criterion
is a compromise between having minimal height of the layout and minimizing width of
the layout. If width of node is significantly bigger than width needed for edge, which is
usually the case, then overall width of the layout can be decreased by spreading nodes
across several layers. This criterion is also not purely aesthetic. Having more layers
can lead to more edge crossings when using heuristic algorithms. This is due to each
layer having a chance to create suboptimal relative ordering of nodes. It also means
that changes in layout have to be propagated through more layers.

Figure 13 Assigning minimum layer to nodes

Assigning minimal possible layer to each node doesn’t necessarily have to lead to
minimum of dummy nodes as shown in figure 13. By moving node C into higher layer,
number of dummy nodes could be decreased. The optimal layering can be found by
using integer linear programming or by static scheduling [8]. There are also many
heuristics that try to find reasonable compromise between width, height, number of
dummy nodes and performance. The limiting factor in this use case is real time com-
putation. Running time of some of possible algorithms can reach seconds even for

15

3 Design

instances smaller than one hundred of nodes [9]. On the other side, the longest-path
algorithm creates layering in linear time while maintaining reasonable properties. This
algorithm also guarantees that resulting layering will have minimal number of layers
which can lead to wider layout.

The longest-path can be implemented by assigning balance to each node and using
a queue. The initial balance is equal to indegree of node. Edges of nodes, which have
initial zero balance, are added into queue and nodes themselves have assigned first
layer. Then, edges are iteratively picked from queue and if child node has smaller layer
than parent node, then layer of child node is updated and balance decreased by one. If
balance reaches zero, then it indicates that all parent nodes of the current child node
have been visited and the child node itself has its final layer assigned. Child connectors
of this node are then added into the queue. After the queue is emptied, all the nodes
have its layers assigned.

3.4.3 Proper layering

Another problem that exists in context of assigning layers is called proper layering [1].
The layering is called proper if edges are only between nodes in neighboring layers.

Figure 14 Layout without proper layering

Figure 14 shows layout that is not properly layered. If the layering is not proper
after assigning layers to nodes, it has to be transformed into one. This is done by
transforming any long edge, meaning an edge which connects nodes that are not in
neighbouring layers, into path of dummy nodes and edges.

Figure 15 Layout after proper layering

Figure 15 shows layout after being transformed to be properly layered with black
node indicating dummy node. While this transformation is easy to do, long edges
bring two disadvantages. The first disadvantage is simply a performance issue. Since
transformation of long edge increases size of the instance for which layout is computed
by adding more nodes and edges. The second disadvantage is increasing number of
bends of visualized edge, this is problematic especially if there are many edges, as it
makes edge tracking harder.

16

3.4 Inner layout algorithm

This step can be easily implemented by iterating over edges of nodes and checking if
the edge connects nodes in neighbouring layers. If that is not the case, then this edge
is transformed into path of edges and dummy nodes. In this case, this transformation
is done together with aggregation of edges based on output rules. This is done to avoid
creating unnecessary dummy nodes, which would be removed again in the next step.

3.4.4 Aggregate edges

To reduce amount of dummy nodes, it’s possible for edges to share them. There are
several strategies which can be used. Easiest solution is skipping this step and simply
leaving path of edges and dummy nodes for each individual long edge. Or it’s possible
to create only one dummy node per-node, or even per-port. This allows to decrease
number of dummy nodes which speeds up the algorithm.

Figure 16 Aggregation decreases number of dummy nodes

Another advantage is that since dummy nodes are shared as long as possible by
multiple edges, it decreases number of visual edges user sees and has to keep track of,
as shown in figure 16. Both per-port and per-node reductions can also be done based
on both input and output part of the edges and all approaches can be combined at the
same time. But, when combining, it’s important to always combine only those edges
which won’t create situations where it’s impossible to see from which, or to which node
an edge goes.

Figure 17 Aggregation per-node from inputs and outputs

Figure 17 shows situation where edges are reduced by per-node reduction based on
both input and output. In this case, it’s still possible to track which nodes are connected
by edges. For example, an edge from the node F to node D joins aggregated edges from
nodes A and E only after edges going to node C split from the aggregation. But it’s no
longer possible to say exactly which port of node E has edge leading to the node C or
which edges lead to first port of node D.

While these reductions have advantages, they are not suitable in every use case.
Sometimes it may be critical to be able to track exact port to port connections. In

17

3 Design

case of the Ideal Graph Visualizer, the ideal setting is aggregating outputs per-port
and no aggregation for inputs, since the IGV provides tools to work with this type
of aggregation. But other tools may not have this support, or may support some
other combination. To provide support for different tools and use cases, the algorithm
implements all three aggregation strategies per-node, per-port and no aggregation based
on both input and output side of edges. Due to the output aggregation strategy being
applied already during transformation into proper layering, the input strategy effect is
limited as it will be used only when it doesn’t interfere with the output strategy.

3.4.5 Crossing reduction

Edge crossing reduction is problem of finding such ordering of vertices which leads to
minimal number of edge crossings. Optimal solution of this problem is NP-complete
as it requires to try all node permutations in each layer. The original solution uses
barycentric 2-layer algorithm[8].

Implemented algorithm uses similar concept of iterative improvements. There can
be between two and ten iterations. The number of iterations is based on a number of
real edges, i.e. edges created by transformation into proper layering don’t count. Each
200 edges decreases iteration count by one. This allows to create smaller layouts with
better quality and also bigger layouts can be created in better time, even though the
quality may suffer.

Figure 18 Solving collisions

The crossing reduction is done by placing nodes to initial positions, which represent
their relative positions. The algorithm then iteratively goes over the layers several
times. During these iterations, each node has its position recalculated. If resulting
ideal position is different, node is moved to its ideal position. If the position was
already occupied, this state is called collision. Collision is solved by moving node,
which was previously at position of collision, one position to the right or to the left
based on exact positions each node wants. This shift can result in new collision, so
this shift has to be repeated recursively if needed. Figure 18 shows both cases of
possible collisions with green nodes being currently placed. The numbers represent
wanted position and position after they are placed. For the other nodes, the numbers
represent assigned positions before and after placing. While these shifts may be more
performance demanding than placing node on closest non-colliding position, they are
important. Using more aggressive strategy of placing nodes on required positions and
then solving collisions helps to overcome a poor quality of initial placement of nodes
and it also prevents layout from getting locked in some permutation.

These steps are similar to the original algorithm, but there are some important dif-
ferences. Unlike the original concept which uses combination of downward and upward
passes through layers. This implementation uses only downward passes, which gener-
ally provide better results. This is combined with another important difference. The
original algorithm compares always only two layers, but this implementation computes

18

3.4 Inner layout algorithm

the ideal position of each node based on both parent and child nodes at the same time.
This allows the algorithm to propagate relative positions in both ways, which would be
normally done by switching between downward and upward passes.

After the main crossing reduction algorithm finishes, there is an auxiliary algorithm.
It goes iteratively over the nodes same as the main algorithm. But this time it checks if
each two neighbouring nodes wouldn’t be closer to their ideal position if they swapped
their positions. Unlike the main algorithm, this swapping is not aggressive, meaning
that if both nodes want the exact same position, they won’t swap their positions.
Another difference is that the node can swap its position only with its neighbour, it
cannot jump to its ideal position as in the main algorithm.

Figure 19 Position swapping

Figure 19 shows these two cases. The numbers represent current position, wanted
position and final position after swap. In the left case, the swap is done, but even
though the left node would be placed even after the white node if the main algorithm
would be used, in this case that doesn’t happen. The other case in the figure shows two
nodes wanting same positions, no swapping happens in this case. Due to this different
approach the layout won’t change as drastically as in the main algorithm, but rather if
there is possibility to make some final beneficial adjustments, they are done.

While these relative positions created by the ordering algorithm could be used as basis
for real positions of nodes, it leads to poor layouts in cases where there are several nodes
which share same group of parent and child nodes. Since all these nodes want same
ideal position, the algorithm will always do default right shift. This then leads to parent
node not being centered over its child nodes, but rather being left-aligned. Another
thing to consider is that there may be several subgraphs which are well separated and
create big gap in positions. This then leads to unnecessary gaps and resulting layout is
too wide.

3.4.6 Assigning coordinates

Due to selected implementation of previous step, assigning coordinates based on po-
sitions would lead to poor results. To prevent this, another step is added to assign
x coordinate. There are several possible ways to assign coordinates. A very trivial
solution is simply placing all the nodes as close to each other as possible and center-
ing them around the middle of previous layer. This solution will create a layout with
minimal width, not considering other possible layer assignment, but it will also lead to
very significant edge cluttering. Other possible solution is using some uniform form of
grid which adds more rigid structure to the layout. This is problematic if differences
in width of nodes are big, as it leads to a lot of wasted space. The implemented algo-
rithm uses more complex system to assign coordinates which is combination of these
approaches.

19

3 Design

Figure 20 Assigning coordinates to nodes

As you can see in figure 20, the assigning coordinates begins by finding the widest
layer (green nodes). Nodes of this layer are then placed using the relative order gained in
the previous step and are placed as close together as possible, having only the minimal
spacing between themselves. Starting from this layer, the rest of the algorithm is split
into two parts. Both parts are identical, only the first is going upward and the second
downward as indicated by green arrows.

In each processed layer, groups are created at first. Group contains nodes which want
the same position relative to previously processed layer. From these groups, group which
wants to be positioned as close to the center of already processed layer is placed first
(yellow nodes). Then going to the left and to the right from the placed middle group
(yellow arrows), other groups are placed either to their ideal position or if the position
is already occupied, the group is placed at the first possible position after that. By
assigning coordinates from the widest layer and then having every layer built from the
middle to the sides, it is possible to create good layouts.

Figure 21 Unbalanced graph

But problems can appear if the graph is heavily unbalanced on one side as shown
in figure 21. Then this approach can lead to small middle group (yellow node) being
placed first and then big unbalanced group (red nodes) having to be pushed more to
the side. To prevent this, it is possible to iteratively sweep over the layers and their
groups of nodes, adjusting coordinates of the groups. When doing this, it is good idea
to have some threshold to prevent small changes to positions which lead to staircase
effect over many layers. This optimization iterates three times, but it’s done only if a
number of input graph edges is smaller than 300. This limitation was added as it can
be rather time consuming to recalculate coordinates.

3.4.7 Edge routing

After previous step, creation of the layout is nearly complete. There are only two
problems to be solved. The nodes still need to get y coordinates and also routing of

20

3.4 Inner layout algorithm

the edges has to be done. These two problems are connected. While the edges will be
routed either directly between nodes, or through dummy nodes, beginnings and endings
of back edges may need extra space. Otherwise there is a risk that the back edges will
overlap with nodes. At the same time, this required space should be minimized. To
do this, for each layer and both directions, a mapping is created. This mapping maps
offsets of the back edges. When a new back edge is added, it’s checked against already
added back edges and it gets assigned the lowest offset where there is no collision. This
approach is very fast, but there is no guarantee that this mapping will result in minimal
extra height.

After assigning the offsets to the back edges, it’s possible to assign y coordinate to
the nodes as needed gaps are now known. After this, routing of the edges is simple.
Lines, representing a normal edge, are created by navigating through the dummy nodes.
The back edges differ only in the first and the last step of path, where the previously
assigned offset is used.

21

4 Implementation

In the previous chapter, the description of implemented algorithm was made. This
chapter contains description of tool IGV which is used to visualize results of layout
algorithm. This description is focused on features that allow working with graph itself.
The second half of chapter then contains code structure and layout algorithm features
that are not part of Sugyiama’s framework.

4.1 Ideal Graph Visualizer
The Ideal Graph Visualizer [11], or the IGV, is tool created by Thomas Wuerthinger
and is part of OpenJDK platform. This tool is used to visualize bytecode flow charts
in different steps of optimization. The IGV allows to load bytecode graphs in XML or
BGL format. These graphs can then be visualized. Users can manipulate with these
visualizations, for example zoom or change visibility of the nodes. They can also use
special language to write filters, these filters can change style of both the nodes and the
edges.

Figure 22 IGV user interface

This means that IGV provides loading of graph to graph structure inside the appli-
cation and it also provides renderer of the final graph layout. The original application
has its own layout algorithm. This algorithm doesn’t support changes in visibility of
nodes and edges. To simulate these changes, the layout is used only with nodes and
edges that are visible in current view. This leads to strange anomalies. For example

23

4 Implementation

node which has been at last layer in the original graph layout moves into first layer
upon making some other node as invisible.

The IGV itself is built as modular application using Netbeans 7.1 platform [12]. The
code is written and compiled using compliance level of Java 1.8. This means that to
create a build of the application, user has to have this platform available. Netbeans
platform 7.1 is a part of a standard Netbeans IDE of version 7.1, but it is possible to
use newer versions of Netbeans and required dependencies of IGV will be automatically
downloaded. In some cases, Netbeans fail to download some of the dependencies, but it
doesn’t generally lead to build failure. If the missing dependencies are not satisfied in
runtime, some of the modules will be disabled. This should not prevent from visualizing
the graphs, but it may affect some other features like filters and manipulation with the
graph.

4.1.1 Features of IGV

The IGV implements several features that make it a good tool to showcase the new
layout algorithm. There are also features which help users to navigate through the
layout. While the new algorithm can be used even without these features, they do
significantly increase readability of the graph layouts.

It’s also important to note that the IGV doesn’t provide full support of these features
for all of the possible combinations of edge aggregation strategies of the new algorithm.

Figure 23 IGV - Edge context menu

Users can open a context menu by clicking on an edge by right mouse button as shown
in figure 23. Context menu then shows parent node and all child nodes if connector is
aggregation of edges. Users can also click on any of these nodes to immediately center
view on selected node. This feature is supported only if the edges are aggregated based
on having the same output slot, or there is no aggregation at all. This is due to this
setting being the default behavior of the original layout algorithm. If the new layout
algorithm is used with different settings, this feature won’t work correctly.

24

4.1 Ideal Graph Visualizer

Figure 24 IGV - Connectors highlighting

When a user points at some edge, it will get highlighted as shown in figure 24. This
feature allows to track edges even in layouts with many edges and edge crossings. Same
as in the previous case, this feature is supported with same aggregation rules as in
the original layout algorithm, that is edge aggregation based on output port, or no
aggregation.

Figure 25 IGV - Filters

IGV allows users to use and even create their own filters. These filters can be either
purely visual, changing only colors of nodes and edges, or they can be used to remove
some type of edges from graph. This second type of filters will force recreating graph
layout, while first type doesn’t.

Figure 26 IGV - Splitting graph into clusters

IGV supports hierarchy of nodes. By swithing button on toolbar as shown in figure
26, IGV will force recreating layout with consideration of clusters.

25

4 Implementation

Figure 27 IGV - Visibility of nodes

Users can select which nodes they want to focus on. They can either use context
menu to remove focus on some node, or use double click with mouse to switch focus
on and off. Figure 27 shows situation where there are two opaque nodes which are
focused and four are semi-transparent. Semi-transparent nodes are neighbours of at
least one focused node. From perspective of layout algorithm, both focused nodes
and their neighbours are considered visible nodes. The layout algorithm doesn’t have
information about which nodes are part of focused group.

4.2 Code structure

IGV is created as modular software with 17 modules. Since there is already layout
algorithm, there are several relevant modules.

∙ Layout module contains interfaces of graph elements, namely node, port, edge
and cluster. Next, there is interface for layout algorithm. This interface is very
lightweight and describes only how graph structure is passed to layout algorithm.
The graph structure is passed using class implemented in same module.

∙ HierarchicalLayout module contains the original layout algorithm, same as the
new algorithm.

∙ Graph module contains implementations of interfaces defined in Layout module.
While layout algorithm uses interfaces from Layout module, these are real imple-
mentations of those interfaces.

∙ View module, among many other classes, contains class DiagramScene, this class
handles manipulation with work area, where the graph is visualized. It is also
place where layout algorithm is used to recreate the view.

Since there was already layout algorithm in the application before, some of the code is
reused in the new layout algorithm, especially interfaces. This doesn’t prevent reusing
the layout algorithm since interfaces are very minimalistic.

26

4.2 Code structure

4.2.1 Implemented code

Figure 28 Direction of usage

As shown in figure 28. The yellow classes represent classes which were created based
on classes in the original solution. These classes contain varying levels of modifications.
In case of DiagramScene, the original one is used with modification of used layout
algorithm. It also contains a change in way the graph structure is passed to layout
algorithm to add support of visibility. The StableHierarchicalClusterLayoutManager
class represents the outer layout algorithm presented in previous chapter. This reused
class has some modifications compared to the original one and it also uses many other
different classes from the original solution. These classes are used purely to store a
structure of an input graph and have minimal modifications to add support of layout
stability. The green classes are the newly created classes of the solution created in
this thesis. The StableHierarchicalLayoutManager class is the implementation of the
Sugiyama’s framework as described in previous chapter. This implementation uses its
own representation of nodes and edges (connectors). Layout module then contains
StableLayoutGraph which is modification of original class used to pass graph structure
to layout algorithm. StableLayoutManager is an interface used for new LayoutManager
classes.

27

4 Implementation

4.3 Implementation features
The new algorithm supports several features that may affect visual result of layout
algorithm.

4.3.1 Dynamic gap between layers

The layout algorithm uses dynamic gap between layers. This gap is based on angles of
edges between those two layers and it’s possible to set minimum and maximum gap.
This technique is introduced to reduce edge cluttering which happened in the original
layout.

Figure 29 Original layout edge cluttering

Figure 29 shows situation in the original layout. Since gap was static, it was set to
low value, to reduce height of graph. But in some cases it can lead to having many
edges with very similar angles at the same place. This then reduces edge traceability.

Figure 30 New layout with dynamic gap

Figure 29 shows same case with the new layout. Since very flat edges have been
detected, gap between layers was increased to help users with edge tracking.

While this technique can help with edge traceability, it also increases overall height of
graph. Due to performance issues the algorithm doesn’t set height of gap by searching
for edges that are very close and then finding minimal height needed to get proper
angle between those two edges, which would be more optimal solution. Instead heuristic
algorithm is used. This algorithm uses differences between horizontal positions of edge
beginning and ending to find proper height. Due to heuristic nature of whole layout
algorithm, this can possibly lead to unnecessary big gaps between layers. By setting
maximum for this gap, it’s possible to diminish worst cases. It also allows more easily
to shift between better edge traceability and graph layout compactness.

4.3.2 Interrupting too long connectors

Same as the original layout algorithm, it’s possible to set maximum difference in layers,
for which edges will be still drawn. Reasoning behind this technique is that too long
edges are hard to trace and in case of IGV, it is possible to use edge navigation (see
4.1.1). In case of using the algorithm in tool, which doesn’t support any other suitable
navigation technique, it’s possible to turn this feature off and always have all edges
drawn. Due to the need of maintaining stable layout, changes in this setting have

28

4.3 Implementation features

rather minimal impact on performance of the algorithm itself. Implementation of this
technique also changed.

a) Edge of cluster b) Standard node

Figure 31 Interrupting long edges in old layout

Figure 31 shows how were long edges interrupted in the old layout algorithm. The
interrupted edges were led to auxiliary node placed in next layer. This has advantage
that edge will be more visible. On the other side if created ordering places this auxiliary
node too far from the original node, then resulting edge will be very long and may add
unnecessary edge crossings. It may also worsen problems with edge cluttering.

a) Edge of cluster b) Standard node

Figure 32 Interrupting long edges in new layout

The new layout algorithm uses different approach. As figure 32 shows. In case of
clusters, edge is interrupted on the border of cluster with distinctive bend. In case of
normal nodes, outgoing edges act similarly as in case of clusters. Incoming edges are
placed in such a way that prevents their crossings. Both incoming and outgoing edges
do not lead to previous or next layer, but instead they are placed in gap between layers.
Edges are also bent in such a way that prevents them from being overlapped by other
edges. This helps to reduce edge crossings and edge cluttering, even though it can make
it harder to work with these edges if node has many edges in the first place.

29

5 Testing

Automatic testing of the layout algorithm is quite complicated because it’s hard to
evaluate the results algorithmically. Testing of a quality of the layout has to be done
manually. It’s also problematic to create specific graphs for testing since the IGV uses
mainly a binary format BGV to store graphs. It’s also possible to use XML format, but
this leads to problems with loading clusters. Fortunately Oracle, which uses the IGV,
provided huge number of graphs. These graphs have anywhere from a few to several
hundred thousands nodes and edges.

The visualized graphs will be discussed in the following chapter. In this chapter, the
performance of the algorithm is presented on several graphs with sizes from hundreds
of nodes and edges to tens of thousands. The time is measured using Netbeans profiler.

5.1 Performance overview

ID Nodes Edges Nodes1 Edges2 Time (ms) Time3 (ms)
1 272 436 1,706 3,534 15.4 9.98
2 650 1,027 6,553 15,483 10 20.1
3 949 2,121 19,763 42,188 30.1 30.1
4 2,017 3,367 16,242 49,774 10 10
5 11,918 27,877 326,900 1,479,396 1,258 575
6 2,278 10,081 191,713 1,524,173 2,352 746
7 7,220 15,479 32,179 3,530,520 859 390
8 17,286 33,701 212,932 9,557,330 2,514 512
9 19,997 36,610 290,932 29,532,825 8,767 705

1 Node count including dummy nodes
2 Edge count with split edges to achieve proper layering
3 Time of the old algorithm

Table 1 Time needed to create layouts

Table 1 shows time needed to create a layout for some graphs. First thing that can
be noticed is that the new algorithm is slower than the original one. The main reason
behind this is that the new layout algorithm has to maintain stability. Because of this,
the new algorithm has to truly create paths from dummy nodes between all nodes. The
original algorithm can do optimization. In the previous chapter, a feature that allows
to avoid drawing edges that are too long was presented. This feature allows the old
algorithm to actually convert too long edge into only two edges with two dummy nodes,
one at the beginning and the other at the end. This can drastically decrease size of
instance which is processed by the algorithm. The new algorithm cannot do this, as
it would break the connection between these nodes, which would cause instability of
layout. This is due to changes in visibility of layers that can change which edges are
too long and won’t be drawn. As the table shows, the number of needed nodes and

31

5 Testing

edges by the algorithm can grow very fast. For example graphs 4 and 6 are very similar
in number of nodes, but a size of the instances is very different.

Another very significant result is graph 7. Even though the number of edges needed
by the algorithm is very high, the overall time needed is smaller than in case of a
instance with less than half of the edges. The main difference in this case is much
smaller size in terms of nodes. This makes especially the crossing reduction step of the
algorithm much faster, because while the ideal position of a node is computed using
all the edges, the lower number of nodes in this step simply means that there is less
possible collisions and also less time is needed to maintain a data structure.

Considering the results, the algorithm can be used to create layouts in real time.
But unlike the original algorithm, it doesn’t scale as well. This is due to the need to
maintain all dummy nodes. Still, the algorithm can be used to create layouts with
several thousands nodes, but an edge-node ratio has to be considered. A graph with
relatively few nodes and many edges is a good indicator that there may be also a lot of
long edges, which will have to be transformed into paths with dummy nodes.

5.2 Running time of individual steps

Measuring running time of individual steps is important in order to find the places,
that need to be optimized.

ID Time (ms) Dummy nodes Edge crossings Coordinates Edge routing
5 1,258 200 462.2 161 301
6 2,352 153 213 52.1 1,879
7 859 240 260 141 146
8 2,514 1,111 706 261 304
9 8,767 4,427 875 395 242

Table 2 Time needed to perform individual steps of the algorithm

The table 2 shows time needed to perform individual steps of the algorithm. This
table is missing some steps, particularly cycle removal and assignment of layers. This is
due to these steps being very fast and borderline unmeasurable with times about 10ms.
Also first four graphs were omitted because of the same reason.

As table shows, most of the time is needed to create dummy nodes and redirect
the edges. Unfortunately, these steps are mandatory to provide layout stability. But
considering linear time complexity of layer assignment which was below threshold of
the profiler. It might be possible to optimize dummy node creation time by using more
complex layer assignment algorithm which would generate a better layer assignment.
This would then require less edges to be transformed into dummy node paths and thus
decrease running time of this step.

Another more time consuming step is reduction of edge crossings, although this step
seems to scale well with a size of an instance. Tested graphs also contain one anomaly,
the graph 6 has much longer time needed to route edges. This is due to high number of
interrupted edges connected to one node. To prevent having unnecessary edge crossings,
these edges are sorted, which is very time consuming action, when considering sizes of
the instances. While this sorting doesn’t commonly take much time, it can become a
problem in some edge cases.

32

5.3 Running time with and without clusters

5.3 Running time with and without clusters

ID Time With Clusters (ms) Time Without Clusters (ms)
5 1,063 1,258
6 2,098 2,352
7 1,013 859
8 2,369 2,514
9 6,739 8,767

Table 3 Running time with and without grouping nodes to clusters

The table 3 shows comparison of time needed to create layout with consideration of
clusters and without it. With exception of the graph 7, layouts with clusters generate
faster. While this may seem counterintuitive, it is important to understand, that layout
with clusters is created by splitting the instance into smaller instances of layouts, which
are created separately. Having more smaller tasks then helps with non-linear algorithms.
Also smaller instances means less dummy nodes and less chances for collisions, when
creating relative ordering of nodes. At the same time splitting the graph into these
subgraphs is done in linear time. The only downside is, when there are many edges
connecting nodes in different clusters, or there are many clusters with only a few nodes.
Then the running time can increase.

5.4 Conclusion
Tests show that it’s possible to create layouts for even few thousands of nodes and edges
quickly. But even graphs with similar count of nodes and edges may have very different
running time. This makes it hard to find some maximum size of graph that can still be
worked with interactively. The main problem is creation of dummy nodes, which can
be partly solved by using layouts with clusters.

33

6 Results
This chapter contains a samples of different layouts created using the new layout al-
gorithm. Sample layouts shown here belong among the smaller ones due to space
constraints. The chapter is divided into four parts. In the first part, a layout created
when some of nodes are not visible is presented. In the second part, there is a com-
parison of the new layout algorithm and the old layout algorithm from IGV. The third
part shows results when using a different edge aggregation strategies. In the last part,
there are shown some flaws of the new layout algorithm, which could be fixed to achieve
better resulting layouts.

6.1 Node filtering
This section contains two figures of the same graph, first figure shows the graph with
all nodes visible, the other figure contains the graph with only a few nodes visible.

Figure 33 Full layout of graph

Figure 33 shows whole layout of sample graph. This graph contains one back edge
and also two cases of edge aggregation. It also shows usage of dynamic height of layers.

35

6 Results

The gap between layers changes dynamically to avoid low angles of the connectors.
This is done to make graphs more readable, the downside of this is making the layout
taller. Since dynamic gap is computed by heuristic algorithm, it can sometimes create
unneeded gap. In case of this layout, the gap between second and third layer could
be smaller. On the other side the bigger gap between fourth and fifth helps, as there
are several nearly parallel edges nearby. Generally, there are more problems if graph
contains very wide nodes like the two green nodes in this graph.

Figure 34 Changing visibility of graph nodes

The Figure 34 shows the same graph as in previous figure 33. But this time with
focus on two nodes, so only their neighbouring nodes are shown. In this case, the layout
looks very similar to the original one. This may not always be the case. When assigning
coordinates, the algorithm takes into consideration even nodes which are not visible,
but these have zero width. This changes width of whole layer and assigned coordinates
then differ. In some cases, these differences can add up and have relatively big impact,
yet again the very wide nodes are more problematic.

This layout also shows case where horizontal relative positions of nodes in different
layers change. The two nodes at the top of the graph changed their relative positions.
This is due to wide green node no longer being visible. In this case the green node is
still placed on the left of the blue node, but has zero width and so it doesn’t drag the

36

6.2 Comparison with the original algorithm

gray node in the first layer to the left. The original relative positions wouldn’t make
sense in this layout, but by allowing this change it’s possible to create layout which
looks better and it also doesn’t disrupt users mental map.

6.2 Comparison with the original algorithm

In this section there are presented again one graph and two figures. In the first part,
there is the graph layout created by new algorithm, in the second part is the original
layout.

Figure 35 Layout of graph using the new algorithm

The Figure 35 shows one of the more complex layouts. It is obvious that some
edges can be really long, going over many layers. The overall shape of layout is pretty
good. Even by looking at the overall shape of the layout it’s still possible to recognize
which nodes are connected. The dynamic height of layers make the layout taller, but
it also helps with edge traceability. For example even though there is many connectors
crossings in the bottom part of the layout, it is still possible to follow where each of the
connectors is heading.

37

6 Results

Figure 36 Layout of graph using the old algorithm

Since the original application had its own algorithm, it is good to compare the results
of both algorithms. Figure 36 is same graph as in Figure 35. The first thing anyone will
notice is that the original layout is wider. In this case the extra width is also illogical
as there is no reason for the gap between the upper part of the layout and rest of the
graph. Another problem is at the lower part of the layout. The original layout uses
static gap between layers. This gap is quite small, since with static gap, it’s better to
try to minimize overall height of graph. Trying to find some sort of ideal gap size that
would fit all possible graphs would be impossible. But in this case, this leads to edges
in the lower part of the graph to be completely untraceable.

The old algorithm also tries to have spaces between objects as small as possible,
which makes situation even worse. Although it helps to minimize the overall width of
the layout. It also increases edge cluttering, especially when there are long edges as in
this graph.

This example shows that by trying too much to achieve some aesthetic criteria, which
is typically considered to be positive, it is possible to actually make the resulting layout
worse.

6.3 Edge aggregation strategies

The new algorithm also supports different aggregation strategies which were described
in chapter Design (3.4.4).

38

6.3 Edge aggregation strategies

Figure 37 Layout with no aggregation

The figure 37 shows a layout with no edge aggregation. Quality of this layout is
quite good. The only problem is the back edge crossing all the edges, even though
a solution where this doesn’t happen is trivial. As for the edges, while this layout is
simple enough, it may be quite hard to track for example all the edges coming from
the node in the second layer. Especially since one of these edges, the one on the right,
splits off the main group. This could be problematic in bigger layouts.

Figure 38 Layout with port-based aggregation

39

6 Results

The figure 38 shows a layout of the same graph as was in figure 37, but this time with
port-based edge aggregation for both inputs and outputs. The first thing that needs
to be mentioned is that layout stability is not guaranteed across different aggregation
rules. Another thing that can be easily noticed is that the back edge crossing over the
layout remained. But this time, the number of edges is smaller. This also allows the
layout to be thinner, which is additional benefit, as it means that users have to scroll
less, which reduces problems with navigation.

6.4 Layout with clusters

One of the most important properties of the new layout algorithm is support for group-
ing nodes into clusters. Since creation of a layout with clusters is very similar to creation
of a standard layout, results will be generally quite similar. But there are still some
differences.

Figure 39 Part of layout with many clusters

The figure 39 shows part of a layout with nodes placed into different clusters. Since
this figure shows only a part of much bigger layout, many of the edges are actually not
drawn outside of the area of the clusters due to interruption of too long edges. Another
thing that can be noticed is that the clusters are vertically centered and edges leading
to these clusters are routed in such a way that they won’t overlap with neighbouring
clusters. This feature is not exclusive to clusters, but these do generally have different
heights.

40

6.4 Layout with clusters

Figure 40 Problematic layout with clusters

Clusters also bring some problems, as shown in figure 40, due to splitting creation of
layout into two parts. The inner layout algorithm, which knows nothing about graph
outside the cluster, can place outputs from the cluster in wrong order, when considering
to which other clusters the edges lead. This then brings additional unnecessary edge
crossings. This is also connected to other problem. At the time, when relative ordering
of nodes is created, it’s done based on positions of nodes with no consideration of ports.
This is apparent from clusters in second and third layer. In both cases, the outputs
from cluster are placed in wrong order, but from a point of view of the algorithm, this
placement was good, because both nodes wanted to be under their parent node and
they got it. But later, when the edge routing is done and the ports are considered, it
leads to edge crossing. It also cannot be really solved by swapping positions of ports
on the side of nodes, as this position may have some additional meaning.

41

6 Results

Figure 41 Cluster layout detail

Figure 41 contains cluster with many incoming connectors. It has also both aggrega-
tion rules set to aggregation per-node, which can significantly reduce number of visible
edges. From this figure, it is evident it would be better if the connectors were joined
even sooner, either during entering the cluster, or even before entering the cluster. But
this is problematic, since the outer layout doesn’t know content of the cluster and so it
cannot aggregate the edges.

42

7 Coneclusion

The goal was to create a layout algorithm, which would allow to create layouts of
hierarchical flow charts with about a few thousands nodes. This algorithm was created
using Sugiyama’s framework, which is heuristic hierarchical layout algorithm. Some
of the aspect of the algorithm were modified to allow having nodes with subnodes.
The algorithm also maintains stability of layout when focusing on only part of whole
graph. This adds additional benefit, when it’s used together with tools supporting node
visibility and filtering. Functionality of this algorithm was presented when using it as
part of the Ideal Graph Visualizer tool.

When comparing the new layout algorithm to the old layout algorithm implemented
in the original IGV, it can be noticed that the new layout algorithm creates layouts
which are easier to read. This was achieved by suppressing some aesthetic rules. When
comparing these two solutions, it can be seen that balancing aesthetic criteria is more
important than trying to maximize some of them at the expense of other.

7.1 Future improvements
The resulting layout algorithm manages to create good layouts, yet there are still places
which could be improved. Created layouts sometimes contain more edge crossings than
is needed and number of connectors could be decreased even more when there are edges
between nodes in different clusters.

Also back edges could be reworked to be more aware of their surroundings in some
cases, when a connector of back edge bends it does so inconveniently in wrong location.
While it is always better to prevent having back edges, it would be better if in case
the back edge exists, the algorithm could handle them with more awareness to their
surrounding to make the resulting layout more comfortable for the user.

While this algorithm creates layouts in real time for small and medium sized graphs
with up to few thousands nodes, it starts to fall behind when instances have several
thousands nodes and edges. Maybe further optimizations of dummy nodes would allow
to solve bigger instances, even though it’s impossible to reach same performance as
with layout algorithms that disregard layout stability.

7.1.1 Two step algorithm

Another possible improvement would be splitting the algorithm into two parts. In
the first part, data structure of whole graph would be created together with removing
cycles, assigning layers and creating relative positioning of nodes. Then the second part
would handle assigning coordinates to nodes and routing edges. This split is possible
since the first part of the algorithm is shared and always same, no matter which nodes
and edges are visible in the current view. Splitting the algorithm would then allow
to run the first part of the algorithm only when opening the graph for the first time.
Subsequent changes in visibility of nodes and edges would invoke only the second part
of the algorithm. This would increase performance when working with bigger graphs.
Unfortunately, the architecture of IGV doesn’t support this split at this time, but the

43

7 Coneclusion

algorithm is created in such a way that splitting the algorithm into these two steps
would be possible with relatively minimal changes in the algorithm itself. To split the
algorithm properly, procedure that removes volatile nodes from invisible layer in the
second part of algorithm would have to be removed and edge routing rewritten to jump
over volatile nodes in these invisible layers. These changes shouldn’t be done unless
the algorithm will be truly used for two step layout creation, since current solution is
faster.

44

Bibliography

[1] S. NIKOLOV, Nikola and Patrick HEALY. Hierarchical Drawing Algo-
rithms. In: R. Tamassia, Editor.Handbook of graph drawing and visualiza-
tion. CRC Press, 2013, pp. 409-453.ISBN 978-158-4884-125. Available from:
https://cs.brown.edu/ rt/gdhandbook/chapters/hierarchical.pdf

[2] K. SUGIYAMA, S. TAGAWA and M. TODA. Methods for Visual Understanding
of Hierarchical System Structures in IEEE Transactions on Systems, Man, and Cy-
bernetics, vol. 11, no. 2, pp. 109-125, Feb. 1981. doi: 10.1109/TSMC.1981.4308636

[3] REYNOLDS, Jason. A Hierarchical Layout Algorithm for Drawing Directed
Graphs. Canada, Ontario, Queen’s University Kingston: 1997. Available from:
http://www.collectionscanada.gc.ca/obj/s4/f2/dsk2/ftp04/mq20694.pdf. Thesis.
Queen’s University Kingston, Department of Computer and Intormation Science.
Supervisor Dr. D. Rappaport

[4] G. KOBOUROV, Stephen. Spring Embedders and Force Directed Graph Drawing
Algorithms [online]. CoRR, 2012, abs/1201.3011 University of Arizona. Seen on
19.1.2017 Available from: http://arxiv.org/pdf/1201.3011.pdf

[5] T. WÜRTHINGER. Visualization of Program Dependence
Graphs. Austria, Linz, Institute for System Software Jo-
hannes Kepler University Linz: 2007. Available from:
http://ssw.jku.at/Research/Papers/Wuerthinger07Master/Wuerthinger07Master.pdf.
Master Thesis. Institute for System Software Johannes Kepler University Linz.
Supervisor O.Univ.-Prof. Dipl.-Ing. Dr. Dr.h.c. Hanspeter Mössenböck.

[6] T. REINHARD. Complexity Management in Graphical Models. Switzerland,
Zurich, University of Zurich: 2010. Doctoral Thesis. University of Zurich, Faculty
of Economics, Business Administration and Information Technology. Supervisors
Prof. Dr. M. Glinz, Prof. Dr. H. C. Gall

[7] R. M. KARP. Reducibility among Combinatorial Problems. In: R. Miller, Editor.
Complexity of Computer Computations. Springer US, 1972, pp. 85-103.ISBN 978-
1-4684-2003-6.

[8] K. SUGIYAMA. Graph Drawing and Applications for Software and Knowledge
Engineers. World Scientific, 2002. ISBN 981-02-4879-2.

[9] N. S. NIKOLOV, A. TARASSOV and J. BRANKE. In Search for Efficient Heuris-
tics for Minimum-width Graph Layering with Consideration of Dummy Nodes. In:
Journal of Experimental Algorithmics. ACM, 2005. doi:10.1145/1064546.1180618

[10] A. QUIGLEY, P. EADES. FADE: Graph Drawing, Clustering, and Visual Ab-
straction. In: J. Marks, Editor. Graph Drawing. Springer, 2000, pp. 197-210. DOI:
10.1007/3-540-44541-2

45

Bibliography

[11] Ideal Graph Visualizer [online]. Johannes Kepler University Linz. Seen on
19.1.2017. Available from: http://ssw.jku.at/General/Staff/TW/igv.html

[12] Netbeans [online]. Oracle Corporation. Seen on 19.1.2017. Available from:
http://www.netbeans.org

46

	Introduction
	Goal and motivation
	Thesis structure

	Analysis
	Hierarchical flow chart
	Layout algorithm requirements
	Layout algorithms
	Comparison of algorithms

	Design
	Hierarchy support
	Filtering support and layout stability

	Layout algorithm
	Data structure
	Outer layout algorithm
	Inner layout algorithm
	Removing cycles
	Assigning layers to nodes
	Proper layering
	Aggregate edges
	Crossing reduction
	Assigning coordinates
	Edge routing

	Implementation
	Ideal Graph Visualizer
	Features of IGV

	Code structure
	Implemented code

	Implementation features
	Dynamic gap between layers
	Interrupting too long connectors

	Testing
	Performance overview
	Running time of individual steps
	Running time with and without clusters
	Conclusion

	Results
	Node filtering
	Comparison with the original algorithm
	Edge aggregation strategies
	Layout with clusters

	Coneclusion
	Future improvements
	Two step algorithm

	Bibliography

