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Abstract

This thesis deals with the storage of data in distributed data stores. The work studies the
possibilities of storing blob data and their representation in storage systems. The thesis deals
with object storage design, which distributes its data between individual system members.
Emphasis is on the horizontal scalability of the system. The design studies synchronization
problems and ensuring of a consistent state after a failure of the system. The work contains
an implementation of the proposed system and tests its functionality.

Abstrakt

Tato práce se zabývá ukládáním dat do distribuovaných datových úloºi²´. Studuje moºnosti
ukládání blobových dat a jejich reprezentaci v úloºných systémech. Práce se zabývá návrhem
objektového úloºi²t¥, které distribuuje svá data mezi jednotlivé £leny systému. D·raz je
kladen na horizontální ²kálovatelnost systému. Návrh studuje problémy synchronizace a
zaji²t¥ní konzistentního stavu p°i selhání systému. Práce obsahuje implementaci navrºeného
systému a testuje jeho funk£nost.
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Chapter 1

Introduction

1.1 Motivation

In the present times, applications produce increasing amounts of data that has to be stored.
The nature of data might be various and change over the time. The variability prevents
usage of conventional database technologies requiring the static structure.

We also want to conveniently and quickly access any of the stored data. Loss of data
may result in a decrease of performance of even cause serious �nancial damage. We have to
deal hardware failures. The more data we store, the higher the chance is some data will get
corrupted of lost.

A distributed data storage might satisfy all the needs. Distributed data store is a network
of interconnected computers where data are usually stored on multiple nodes. Data store
ensures high availability and consistency of stored data. We expect the system to be scalable,
therefore adding computational resources should appropriately increase the performance of
the whole system.

Several established companies are providing paid services to store virtually any amount
of data. Although cloud services allow storing user data with ease, it usually comes with a
signi�cant monetary cost. The client is charged for stored volume and used tra�c. Naturally,
there are open source variants of such storage systems, each providing slightly di�erent
features. The downside is that the user has to manage his private infrastructure of machines.
Then it depends on the application if it is worth for the user to acquire and maintain the
infrastructure. Since the systems are expected to be deployed in large data centers, to work
e�ciently, their hardware requirements might be signi�cantly high.

1.2 Goals of the thesis

The goal of the work is to design and implement simple BLOB (abbreviation stands for
binary large object) storage. This system should run in a distributed network environment.
That means it should handle problems associated with distribution and synchronization of
shared state. The user of that system must be able to store and read �les. The system
should ensure that user data would be available even in the event of failure of a part of the
system.
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CHAPTER 1. INTRODUCTION

The great emphasis of this work will be on a selection of open source tools used for
implementation. The system should have as little constrained as possible. That means it
should be able to operate on common modern operating systems. Additionally, the user
should be able to deploy the system on the majority of relevant hardware available to him.

2



Chapter 2

Analysis

In this chapter, the term object storage is de�ned. We specify functional and non-functional
requirements put on a simple BLOB storage.

A signi�cant part of the analysis is dedicated to studying of current object storages.
Since there is a plenty of di�erent systems, a few systems are selected for the deeper study.
The analysis describes strategies of the systems to store, replicate and serve data to clients.

The analysis then describes some principles of �le systems and management of state in a
distributed environment. The end of the analysis looks into capabilities of current computer
technologies. This breakdown will come into use during the implementation of a proof of
concept BLOB storage.

2.1 Block and object storage di�erence

Object storage is a general term that refers to way data are organized and how are ma-
nipulated. The data are stored in form of objects, which constist of three components[1,
2]:

Data � The content of the object in an arbitrary format

Metadata � List of attributes which describes stored data. The content of metadata de-
pendes on application. It may contain information about what is stored, what is the
format of the data, the owner of the data or some security related information.

Global identi�cation � An unique identi�er that allows the data to be found in the dis-
tributed system. The location of the object may be transparent for the user of the
system.

Block storage divides data into blocks of �xed length without any accompanied metadata.
The data are easier to modify unlike on object storage. Modifying �le stored in an object
storage requires the object is modi�es as a whole and then rewritten back. Block storage
requires access only to blocks, that needs to be modi�ed. Some block storages can be mount
as regular �le systems.[2]

3
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Block storage is more suited for applications that require virtual disk storage and the
data are modi�ed frequently. The size of the �les is smaller and access to them is random[2].

Object storage is more suitable for archiving, backuping and preserving data[3]. The
content of �les has static character and they are accessed sequentialy. Individual object may
be large. Object storage is cheaper to scale.

In this document the term object will refer to a �le, that an user deposits into storage.
By constrast, the term �le will be used to describe physical representation of object on a
disk.

2.1.1 BLOB

The abbreviation BLOB stands for Binary Large OBject[4]. Blob is an amorphous piece
of binary data, which internal structure is not known externally[4]. Another interpretation
refers to BLOB as to binary data type[4]. In the context of block storage,BLOB is another
term for an object. Therefore terms BLOB and object are interchangeable in this work.

2.2 Analysis of requirements

In this section are listed functional and non-functional requirements put on designed system.
The requirements are set by the assignment of this thesis.

2.2.1 Functional requirements

1. The system will store user data in the form of BLOB objects

2. User won't be able to modify stored data, only to erase them

3. The system will expose RESTful (Representational State Transfer) interface for client
applications

4. The system will utilize the most of internet connection bandwith between system and
client by writing and reading from disk in parallel

5. The system will enable to monitor the state of the storage with a web application

2.2.2 Non Funcitonal requirements

1. The storage must provide protection against loss of data in the event of technical failure

2. The storage must be highly horizontally scalable

3. Adding new storage nodes to cluster must be easy for the user

4. The system must be platform independent

5. The system must be able to restore after unexpected system crash

6. The system must be operational on relevant hardware with low performance

7. The system should prefer use of open source frameworks and libraries

4



2.3. RELATED WORK

2.3 Related work

There are existing object data storages that o�er features similar to requirements of this
work and are widely used in the cloud environment[5, 6]. The following section will study
some of those data stores in order to examine advantages and drawbacks of features of the
systems.

2.3.1 Haystack

Haystack is an object storage optimized for the e�cient storage and retrieval of billions of
photos, developed by the Facebook company. Its goal is to provide high throughput and
low latency[7]. The system also aims to be fault tolerant, simple and cost-e�ective. The
implementation of Haystack is not open to the public, however the paper [5] describes the
general architecture.

The Haystack consists of several subsystems. The most important are Haystack Directory
and Haystack Store. Haystack Directory manages general metadata about photos and their
location in the Haystack Store.

The previous system stored each photo separately on NFS (Network File System) in
directories consisting thousands of �les. Reading an image lead to an excessive number of
disk operations due to how NFS manages directory metadata[5]. Haystack Store composes
individual photos sequentially to �les of sizes roughly of 100GB. The Store holds the speci�c
location of an image in the memory. It maps image identity to the physical �le, its length
and position in that �le. The underlying �le system assigns no other metadata that would
be ignored regardless. Each image stored in the sequence �le is stored in a structure called
needle[5]. The needle consists a header and footer with metadata related to �le and image
data. During read, Haystack Store retrieves �le location and o�set from memory, calculates
the length of the whole needle and reads it. Usually, only one disk operation is enough to
fetch the whole needle.

To speed up the start of the system, Haystack Store manages an index �le matching the
structure of the volume �le but containing only the metadata. The systems load the index
�le to the memory and therefore does not have to traverse the volumes[5].

Haystack Store distinguishes physical and logical volumes. The logical volume consists of
several physical volumes on di�erent machines. When Haystack stores an image on a logical
volume, the image is written to all physical volumes[5].

The �gure 2.1 describes the architecture of the system and sequence of requests made
when an image is requested. A client browser requests the web server a photo over HTTP
(Hypertext Transfer Protocol). The web server retrieves metadata of the �le and returns an
address of a CDN (Content Delivery Network) and a image identi�er. The CDN stores only
photos that are popular at that time. If CDN does not own the photo, the client approaches
the Haystack Store. The Store searches its cache, and if there is a miss, it loads the photo
from a physical volume[7].

5



CHAPTER 2. ANALYSIS

Figure 2.1: Schema of a sequence of requests necessary for retrieval of an image from the
Haystack store

2.3.2 Windows Azure Storage

Windows Azure Storage (abbreviated to WAS) is cloud storage that enables clients to storage
structured and non-structured data at arbitrary volume[6]. WAS is a member of numerous
group of services o�ered on the Azure platform[8]. The client is allowed to store �les in
the form of BLOBs, structured data to tabular service called Azure Table and messages
to Azure Queue service. These services provide di�erent RESTful APIs (application pro-
gramming interface) to access the data. However, the services share the same internal data
representation. The client is charged for stored data and the tra�c.

WAS is a very complex system that ensures strong consistency of data, their availabil-
ity and partition tolerance [6], even though it is in the contradiction with CAP theorem
(explained in the section 2.4).

Storage Stamp (abbreviated to Stamp) is a single data center of the WAS system. The
capacity of one Stamp is up to 30PB. The WAS assigns the client a name of an account that
matches one Storage Stamp. The Stamp encapsulates a front-end serving client requests and
components named Partition Layer and Stream Layer. Figure 2.2 shows general architecture.

6
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Figure 2.2: Schema of high-level architekture of Windows Azure Storage

2.3.2.1 Partition Layer

Partition Layer (abbreviated to PL) provides an abstraction of stored data (BLOB, Table,
Queue). It ensures transactional operations on objects and their strong consistency. PL also
contains cache to reduce I/O (input/output) operations on Stream Layer[6].

PL is responsible for replication of data on the object level between individual Stamp
data centers. This replication takes places asynchronously after writing of an object[6].

2.3.2.2 Stream Layer

Steam Layer (abbreviated to SL) stores data in the form of Streams, which are read by PL.
SL, unlike PL, does not know the meaning of stored data. The Stream is a list of pointers
to �les names extents. In the context of WAS, an extent contains blocks of di�erent length.
Each block represents the smallest unit of data, that WAS manages. The �gure 2.3 describes
the structure of a Stream. SL comprises two principal components, the Stream Manager and
series of Extent Nodes. Extent Node stores extent �les and Stream Manager monitors their
state and location. SL also replicate data, but on the level of extent �les and in the context
Stamp data center. During block write, SL synchronously writes a block to three di�erent
Extent Nodes. Large objects are broken up over many extents by Partition Layer. For each
object, the PL keeps track of what Stream, extents and byte o�sets in these extents contain
the object data.
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Figure 2.3: Structure of a Stream stored on the Stream Layer of Windows Azure Storage

2.3.3 SeaweedFS

SeaweedFS is an open source scalable distributed �le system. SeaweedFS aims to be able to
store billions of �les and serve then fast [9]. The design of the system draws inspiration from
the Haystack store. The �le system is not POSIX (Portable Operating System Interface)
compliant, but with the help of additional software, SeaweedFS could be mount by FUSE
(Filesystem in Userspace). System exposes a HTTP API and serves responses in JSON
(JavaScript Object Notation) format [9].

Each member of the cluster takes up to two roles. Member can be a master server and
a volume server.

2.3.3.1 Volume server

Volume �le is a �le of the maximum size of 32GB that contains stored objects in a similar
way as Haystack does. Volume servers manage volumes �les. Each stored object is associated
with a unique object id. The volume server stores mapping from an object id to a volume,
an o�set in the volume and the length of the object in a key-value database or memory.
Volume server accepts, stores and server client data. The server replicates the volume �les
to other volume �les in the system [9].

2.3.3.2 Master Server

The master server only maps unique volume ids to volume servers. This approach is di�erent
other mentioned storage systems because the server does not know anything about stored
�les. Although there may be multiple servers in the cluster with the master role, only one
at a time is a leader. Delegating storage of metadata to volume servers lowers load on the
master [9].

2.3.3.3 Write of an object

The upload of a �le consists of two steps. First, a master server must assign volume id for
storage of the �le. Master allocates �le ids sequentially. For security reasons, the master
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server generates a random �le cookie for each object. The �le cookie prevents the unau-
thorized clients from accessing random �les based on guessing. The client receives JSON
response from the master containing a location of a server volume, a �le id, a �le cookie and
a volume id.

In the second step of the upload, the client sends the �le to the given volume server and
attach all identi�ers to the request.

The SeaweedFS is suitable for only small and medium size �les such as images for web-
sites. If a client wants to upload a larger �le, it must be split into chunks by master server.
Upon client request, the master returns a list of ids where each maps a chunk to object in
storage[9].

2.3.3.4 Process of failover and election of a leader

Despite multiple master servers running in the cluster, only one at a time is holds mapping
of volumes. If a client requests an object write on a master server that is not currently the
leader, the server will redirect the client to the current one (schema shown on �gure 2.4).
The present leader of the cluster periodically sends heartbeats to others. If the server fails,
a new leader is elected. Therefore the master server is not a single point of failure of the
storage system.

The election is accomplished using Raft[10] consensus algorithm. The consensus is
achieved by selecting a leader. The leader will replicate shared state to the followers. During
and after the election, there is time window, in which system does not accept client requests.
Each master must send its volume mapping to the newly elected leader.

9
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Figure 2.4: Diagram of align assignment of a volume and �le ids for write by current leading
master server

1. Client requests assignment of a volume

2. Master redirects the client to the current leader of the cluster

3. Client requests assignment of a volume

4. Master generates �le and cookie id and assignes a volume for write

5. Client writes the �le to node managing assigned volume
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2.4 Shared state in distributed environment

The sharing of some common state in distributed network of computers is a signi�cant
problem. The system must deal with concurrent updates issued on di�erent members of the
system. The data must remain in the consistent state.

CAP theorem states that a distributed data store may only provide only two out of three
following guarantees[11]:

Consistency � A read operation is guaranteed to return the most recent written value.

Availability � A non-failing node will return a reasonable non-error response within a
reasonable amount of time. The system remains functional even if there are failed
nodes.

Partition Tolerance � The system will continue to function when network partitions occur.
Network partition is a failure of a network device that causes a network to be split.

Regular relation databases usually ensure strong consistency of data. The strong consis-
tency means that after an update is committed and acknowledged by the system, all clients
must see the last committed value. In contrast, a system that provides eventual consistency
of data does not guarantee, that subsequent accesses to data will return the last updated
value[12]. However eventual consistency guarantees that if no new updates are made on an
object, eventually all members of the system will return the most up to date value.

2.4.1 Concensus on a value

Clients of distributes storage system may update a value on di�erent nodes simultaneously.
The systems must ensure consistency of the data and must propagate the correct recent
written value to the rest of the nodes.

When distributes systems synchronize data across the cluster, they may use an imple-
mentation of a Paxos[13]. Paxos is a family of consensus algorithms. The consensus is a
process of agreeing on some value among of group of participants. The general principle of
the process is following[14]:

1. A node called leader prepares a proposal of a value to a group of acceptors

2. The acceptors may promise that they accept the new value and reject all previous
updates

3. If the majority of acceptors accept the proposal, the leader proposes the value.

4. If the acceptor did not receive any new proposal, it accepts new value

Implementation of a consensus protocol is complicated as it is prone to errors. Systems
often rely on good synchronization of clocks. Any clock skew may result in data loss. The
system may also end up in a split state. Network partition divides cluster into two separate
networks. Each network creates a quorum and elects a leader. The system remains functional
and continues to accept client writes to maintain availability. When the partition is resolved,
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the state of both networks has to be merged. The storage rollbacks the writes on one of the
sub-networks. Consistency is sacri�ced in favor of availability [15].

It is important to state that this is only relevant to data stores that allow modi�cation
of stored data. Storage of immutable data does not su�er from problems mentioned above.

2.5 Analysis of �le systems

The main functionality of the designed system is the storage of data. It is crucial to under-
stand how �les systems manage the data to build an e�cient solution.

2.5.1 Journaling �le systems

Journaling �le system is a system that records changes to be made in the �les [16]. Changes
are registered in a journal. The purpose of journaling �le system is to ensure consistency of
data in the event of system crash or power loss. In that situations, changes recorded in the
journal are used for reconstruction of �les. Journaling reduces the chances of �le damage.

Operations on �le systems may consist of a series of smaller operations. In case of inter-
ruption between sub-operations, the system may end up in a non-consistent state. Journaling
FS (File System) closes these operations in transactions. The transactional approach ensures
atomicity of each operation. After system failure data are reverted to the state before trans-
action beginning, or the transaction is �nished.

The transaction consists of these steps[16]:

1. Writing of planned changes on �le to the journal

2. Making of changes to the �le system

3. Recording successful completion of operation to the journal

4. Removal of record in the journal

Storing a journal decreases the performance of FS during �le write because each piece
of data has to be written twice. Some �le systems record only metadata (eg. NTFS [17]).
Recording only metadata increases performance but it involves a risk, that inconsistency
happen between metadata and data.

Journal is a special �le stored on designated place in the �le system.

2.5.2 Ext4

Ext4 is journaling �le system for Linux. On ext4 FS, each �le is associated with an inode.
The inode stores �le metadata and a list of data blocks. Metadata are attributes partly
standardized by POSIX. The attributes contain for example �le size, user ID, group ID, �le
access mode, timestamp[18].

The blocks in the list are either direct and point to the disk sector, or are indirect and
point to another list of blocks. In a case of large continuous �les, ext4 can map �le using
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an extent tree. Allocating �le using indirect mapping requires mapping each block. Leaves
of the extent tree record number of covered blocks. This approach reduces the number of
metadata blocks used moreover, brings some disk performance improvement.

Number of inodes is set during �le system creation. The number is based on the heuristic
how many �les will be stored on FS. Storing a lot of small �les can lead to exhaustion of
inodes prohibiting storing another �le.

Directories on ext4 are �les that map names to inodes. [18] Previous versions of ext4
stored listings as a linear array. The performance was not great when directory contained
many �les. Ext4 stores mapping in htree, a special version of btree with the constant depth
of one or two levels. The system hashes �lename and uses the hash to traverse the tree to
�nd a �le. A leaf node contains a list of �les which are then sequentially searched.

Maximum �le size on ext4 is 16TiB

2.5.3 NTFS

NTFS (New Technology File System) is a proprietary �le system developed by Microsoft[19].
Each �le stored on NTFS is recorded in a special �le Master File Table (MFT). The MFT
contains metadata about itself, directory listings and may also store �le data. There is a
mirror copy of the MFT in case the original got damaged[20].

The �le record contains �le metadata named resident attributes. If the attributes take
too much space, additional clusters outside the MFT are allocated to store nonresident
attributes. A cluster is the smallest amount of disk space allocated to store �le data, usually
of a size of 4KB[20].

One of the �le attributes contains extent list with �le data. To access data faster, data
of small �les may reside in the MFT. The architecture allows the maximum size of a �le to
be 16 exabytes. However, the implementation permits 16 terabytes[20].

Directory entries are speci�c records that contain an index to �les. Large directories are
organized in a B-tree structure, that contains pointers to other directory entries stored in
clusters outside the MFT[20].

2.6 Analysis of software tools

This section analyses options for tools for implementation of the storage system. The most
a�ecting choice is the selection of a programming language. Languagea come with an ecosys-
tem of available libraries and frameworks with di�erent stability and performance. Following
list captures needed functionality based on requirements put on this thesis:

1. Deploy on multiple platforms

2. Database access

3. Serving of HTTP content

4. Fast �le access
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2.6.1 Deploy on multiple platforms

The system is required to be deployable on common operating systems which are Windows,
Linux, and macOS. There are two major high-level programming languages with rich ecosys-
tems and good overall performace[21] which are available to all three operating systems. Java
and C#. They both allow building an application which is runnable on any system. C++ is
omitted from the selection of tools despite being arguably more performant due to the fact,
that C++ is compiled and not interpreted language. The reason is that build of the system
would require multiple compilations for every architecture, and it is more complicated to
create fully portable code than using the above languages.

In the beginning, C# was exclusively bound to Windows platform. That is no longer
true with the existence of Mono. Mono1 is cross platform and most importantly open-
source implementation of Microsoft's .NET Framework. The system is Ecma standard-
compliant[22] of Common Language Infrastructure, which describes executable code and
runtime environment of C# and other languages. That allows the code to run on di�erent
computers and architectures. The Mono project mirrors the development of C# language
done by Microsoft.

In comparison, there is Java with OpenJDK. OpenJDK is an open-source implementa-
tion of Standard Edition of Java Platform[23]. It is a common Java runtime environment
on many UNIX distributions. OpenJDK is also a reference implementation of Java plat-
form[24]. In contrast, Mono developed by Microsoft± subsidiary Xamarin does not guarantee
the uniformity with C# on Windows.

Both mentioned platforms require a runtime environment to be installed on the target
machine and both are full featured languages with many similarities from the programmer
point of view.

2.6.2 Database access

The system will have to store information about user data in some way. The system will also
have to record the state of the storage persistently. Any loss or corruption of data about
state directly a�ects users. Naturally, such storage would often be accessed and therefore it
must not slow down the system.

Currently, there are several NoSQL databases available, that provide high performance.
Namely Cassandra2 or for example MongoDB 3. Each commonly used solution has good
client support for both Java and C#. NoSQL databases are usually very well horizontally
scalable and distributed. They are schema-less. The latter means querying data with some
relation between them is harder or not possible in case of key-value stores. Distributed
NoSQL databases may sacri�ce consistency to availability. Read and write operations are
not necessary ACID. The lower consistency could be manifested by the risk of loss of data
due to system crash of network partition.

The problem could be solved as a compromise between both requirements by selecting a
relevant relational database. Relational databases provide operations with ACID (Atomicity,

1http://www.mono-project.com/
2https://cassandra.apache.org/
3https://www.mongodb.com/
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Consistency, Isolation, Durability) properties. Some databases could be scaled by sharding.
The sharding is technique splitting up a large table of data row-wise. A large table can be
split into multiple smaller ones that will be placed on a separate server.

To access the database conveniently Java o�ers Hibernate4 ORM framework compliant
with Java Persistent API. For the C# there is complementary framework NHibernate5.

It will not be necessary for each member of the distributed system to run a large relational
database. However, members of the system will have to store at least a minimum amount of
�le metadata. These would contain some �le identi�cation and its location based on internal
representation. There may not be a reason to store such data in a database and instead hold
it in memory for very fast access. However, there are two reasons for the use of a database.

Despite each record could be as little as a few tens of bytes, it could add up to tens of
megabytes after surpassing millions of stored �les. The records would occupy the memory of
the machine which resources could be constrained as required in 2.2. The storage service will
be running in the background and should not limit other applications from running when
not used.

The latter reason is the need to persist the state when the server is shutdown. There
should be a representation of stored objects from which the system would read the state
to memory. Also, the system should anticipate unexpected crashes which could corrupt the
saved state. For that reason, servers could use an embedded journaling database to persist
the storage state.

There are several options to choose from in Java ecosystem. Commonly used embedded
databases contains SQLite6, H27 and Apache Derby8. In some cases they can produce more
performace than PostgreSQL[25].

For Mono, there is only SQLite as an embedded open-source relational database. The
drawback of SQLite is the lack of support for transactional access.

2.6.3 Serving of HTTP content

The requirements specify the way the clients will access the data store. The system is required
to serve clients using a RESTful API. Most requests are expected to require a signi�cant
amount of time to complete due to transfers of large data streams. Also, serving requests of
a large quantity of concurrently connected clients may be problematic[26]. It is important
to choose a framework capable of handling such pressure.

Beside traditional container based Java servers, there is low level I/O framework Netty9.
The main idea of the framework is to be event driven and spend as little time as possible in
user space. Despite running on JVM with garbage collector, Netty manages pools of native
memory. That approach allows in some cases to e�ectively work with data without loading
them into heap memory. There are dozens of large open source systems based on Netty[27],
namely Apache Cassandra, Elastic Search or Play Framework.

4http://hibernate.org/
5http://nhibernate.info/
6http://www.sqlite.org/
7http://www.h2database.com/html/main.html
8https://db.apache.org/derby/
9http://netty.io/
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The counterpart for Netty in C# is Kestrel10, cross-platform HTTP server base on asyn-
chronous I/O library libuv 11. Kestrel is used as a permormant async server for ASP.NET
Core application. If one would want to get more low-level access, the libuv could be used
directly. Since libuv is a framework written in C, there are C# wrappers12 13.

The performance of Kestrel and Netty is very high in comparison with other platforms.
When comparing the two discused frameworks, Netty is rather faster accoriding to bench-
marks[28].

2.6.4 Fast �le access

The system is expected to write and read large portions of user data from disks. There is not
much of proccessing needed. To increase performance, the system should utilize zero-copy
data transfers to save CPU cycles and memory bandwidth[26]. Netty incorporates these
principles in it is design[29].

The approach for C# application is to either invoke native library code, which is not very
suitable for designed multiplatform system, or to utilize class UnmanagedMemoryStream[30].

10https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel
11https://github.com/libuv/libuv
12https://github.com/StormHub/NetUV
13https://github.com/txdv/LibuvSharp
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Chapter 3

Design

This chapter describes proposed design of storage system in detail. The design is based on
gathered knowledge from analysis. This chapter will describe the in-depth architecture of
the whole system. It will cover competencies of each member of the system. The design
describes operations and internal processes of the system and handling of failures.

3.1 System architecture

The system will consist of two main components, a master server (in the text mentioned
simply as a master or abbreviated to MS) and a series of storage nodes (simply nodes or
abbreviated to SN). The �gure 3.1 presents an organization of a storage cluster. The client
of the system is meant to be an application communicating with the exposed interface.

3.2 Master Server

The master server will manage the running of the whole cluster. Its responsibility will be
storage of object metadata and object locations on di�erent storage nodes. The metadata
will be served on demand to clients and individual nodes. All metadata will be stored in a
relational database.

Analysis showed that sharing a state between nodes of a distributed system is problem-
atic. Therefore the master server will run in only one instance in each cluster. The server
will be a uni�ed access point for all clients.

Responsibilities of the server will include generation of object identi�ers and assignment
of suitable nodes for storage of a new object.

The master server will keep a connection with storage nodes to monitor their health.
Through this communication channel, the nodes will receive commands to replicate or delete
object data.
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Figure 3.1: Diagram of designed architecture of the storage cluster with communication
channels between components

3.3 Storage Node

The storage node will be the fundamental building block of the system. Its main purpose
will be to accept, store and serve client data. The node will manage an internal database
mapping stored objects. The database will contain only the minimum metadata necessary
for storage.

3.4 Operations on object

There are a few required operations, that client will be able to execute on an object. These
operations are:

• Object write

• Object read

• Object delete

Each operation will be a continuous process that will be composed of smaller subtasks
client will have to carry out. Subtasks di�er on what component of the storage will be
applied.
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Master Server will o�er following functions to the client:

• Create new object and assign it to nodes

• Get locations of nodes for �nishing storing

• Get location of stored object

• Delete stored object

Functions on a Storage Node mainly follows processes started on the Master Server. The
following features will be available to a client:

• Upload partial data of a new object

• Finish data upload

• Read stored object

3.4.1 Object write process

The process of storage of a new object will be the most complicated of general operations.
It will consist three steps. Detailed description of each will follow

1. Client request creation of a new object on Master Server

2. Client uploads data to a storage nodes

3. Client makes �nishing request on a storage node to end the upload

Figure 3.2 demonstrates sample process of storing of an object.

3.4.1.1 Client request for object creation

Client will request creation of a new object on Master Server. The request will contain some
metadata about stored �le. This design proposes to store the original name of the �le and
its length. MS will record a creation timestamp. The new object will be given a unique
identi�cator described in section 3.4.1.4. The client also speci�es mandatory replication
factor in his request. The replication factor is desired number of nodes, on which a replica
of the object should be stored. If there will be enough connected storage nodes that could
satisfy requested replication, MS will select a group of them of the same size as the replication
factor. These nodes will be assigned to collect and store the object. Server's response to
the client will contain a new id and a list of assigned storage nodes. The list will contain IP
addresses and corresponding ports at which the servers will be accessible.
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3.4.1.2 Upload of client data to a storage nodes

The client will be able to choose any given storage node to upload object data. The request
will contain the unique id and the length of the content.

If the object is large, it does not have to be sent using single HTTP request. Instead,
client will be advised to include Range header[31] in the request and send only partial
content. There are multiple possible usages and formatting of Range header. The SN will
not implement all of them. The design considers a simple case where the value of the header
is in the form of bytes=firstBytePos-lastBytePos . An example of the header for request
containing �rst 1000 bytes of a �le would be bytes=0-999. The implementation will not
limit the functionality.

There are couple of reasons to split data into multiple requests

• Better recovery in case of network failure

• To achieve better throughput

• To allow seeking in the stored data

Network connection should not be considered stable. A large �le transfer might take a
signi�cant amount of time and the connection interruption is possible. Therefore in case of
failure, client does not have to start all over, but instead only send the last partial content
again.

When dealing with higher latency, the bandwidth-delay product should be taken into
consideration. It measures the maximum amount of data transmitted over the network
before being acknowledged.[32] Opening multiple connections should increase the throughput
to utilize available bandwidth fully.

The client will be allowed to send data to any of given group of storage nodes. Each
storage node will synchronously share the acquired data with other peers in the group. To
prevent bu�ering of data on a node leading to crash, SN will hate to put a back pressure on
the client to lower the incoming tra�c.

Storage Node will have to verify the existence and the length of the send object presented
to him. When SN receives a client request, it will try to fetch the object metadata from its
database. If there is no record, object either does not exist, or SN is missing object metadata.
Therefore before reading the content of the request, SN will make a request on internal API
of the master server to get the metadata and a list of peers. This scenario could lead to
wasteful requests to the master server in a case when client sends simultaneously multiple
requests at once. For each of the request, SN would connect to the MS. Not only the same
metadata would be sent redundantly, but each request would open a new TCP connection.
for that reason, the design in 3.1 proposes an open WebSocket connection between MS and
each SN. After client creates a new object, MS preemptively pushes the object metadata
over the open TCP connection to all nodes in the group.

The group of storage nodes will be a measure to prevent loss of the tenant data. In case
of the failure of the node to which client is connected, a client should continue sending data
to other members of the group. Because the original node will resend the client data to the
peers, other nodes most likely will have the previously sent parts.

20



3.4. OPERATIONS ON OBJECT

Considering uniform chance of a failure of any given SN, the larger the node group will
be, the higher the chance of failure of any member. Therefore when SN cannot synchronize
data to his peer because of the peer failure, client data transfer should not be interrupted
with the server error. The purpose of the group is to maximize the availability of the system
for the client for the duration of the write of the data.

When a failed node from the group is reconnected, the system will not make any e�ort to
sychronize missing client content. This would require that each SN would have to monitor
the health of the peers for every object that is beeing assigned to it and also it would have to
synchronize what is the state of the object on other peers. This overhead would signi�cantly
reduce the performance and scalability of the storage. The other approach would require
transferring the responsibility to the master server. Each SN would have to commit collected
parts. This would bring massive overhead to MS and decreased scalability even more because
the architecture takes into account only one instance of MS. With increasing number of SN
connected to cluster would increase the load on MS.

3.4.1.3 Client �nishing request

Since the client will be allowed to send the object data to any available node from the given
group and nodes will not share a common state of the upload, the client will have to notify
that the upload is over. The client will mae a �nishing request on any node from the group.
The node will respond to the client with an acceptation of the request. Then the NS will
transform the uploaded data into an internal representation described in the section 3.5.
After a successful �nalization, node will notify the MS using the WebSocket channel. Master
server will save, that the object is stored on the node, and change the state of the object from
writable to readable (depicted in the �gure 3.5). Master Server then uses the WebSocket
connection to notify other nodes from the group to also �nalize the object. MS will give
them the location of the living replica in case any node is missing a part. The client will not
be part of the process.

Figure 3.2 shows a situation in which a node crashes during the upload. The Storage
Node 2 is missing part of client data. A similar scenario could contain crashed node that
restarted, and now the client is issuing �nishing request on it. In both cases the node is
missing data and cannot transform the object for permanent storage. It will refuse client
request client and respond with a list of all missing data ranges. The client will be obliged
to add all absent parts and make the �nishing request again.

In a situation, an SN is missing some parts and MS is issuing a �le �nalization, there will
be no client to resend the data. The node will hate to connect to the peer that already has
a complete replica of the object and request all missing data ranges from it. The location
should be requested on the master server. After successful �nalization, the node will notify
the MS. The master then records the location of the replica in the database.

3.4.1.4 Object identity

Design of the storage system does not consider any user roles or user permission. For that
reason each object is given a statistically unique identi�er. This approach limits the clients
to guess the ids of other objects in an attempt to damage or access them without any
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Figure 3.2: Diagram of an example situation of a write of an object with replication factor
2 with failure of one of the nodes
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authorization. The length of the id will be 64 bits. It provides more than enough large
namespace for objects and allows it to be internally stored as long data type. Clients will
be presented with an alphanumerical representation which will be used in URI (Uniform
Resource Identi�er) of client HTTP requests.

Generation of the id will take place on the master server during client's request to create
a new object. The generation will be based on UUID (universally unique identi�er)[33].

3.4.2 Object read process

Reading an object will be less complicated than writing. The procedure will take two steps:

1. Retrieve the object location from the master server

2. Request data from a storage node

The master servers will be able to tell, which running and connected storage nodes keep
the object. The server will return a list of these nodes together with their IP addresses. The
client may assume that the data will not migrate in the cluster often and instead directly
approach a storage node from the process of object write. If the node no longer stores the
object, it will simply respond with an error status.

In order to speed up the transfer, the client may connect to multiple nodes at once. In
that case, the request should contain Range header specifying what part of the object should
be returned from the particular node.

The whole sequence with optional request on master is shown in diagram 3.3

Figure 3.3: Diagram of sequence of client requests necessary for retrieval of object data
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3.4.3 Object deletion process

To delete an object, the client will have to make a request on the master server. The server
handles removal of the data from each storage node. A general process is shown in the �gure
3.4. Some storage nodes holding the object may not be connected to the cluster at that
moment. The master server must ensure that the deletion will be executed after the nodes
reconnect.

Figure 3.4: Process of asynchronous object deletion after client request

3.4.4 Object lifecycle

The �gure 3.5 shows the main states of the object. The states are divided with respect to
writability and readability.
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Figure 3.5: Diagram of the main states of an object and the transitions between them

3.5 Object Representation

The analysis has shown that storing large amount �les may slow �les system and increase
the number of disk operations to access a �le. The �le system also stores metadata that
the system would not utilize. For that reason, the system will store objects in �les of large
length. This work will refer to these �les as monoliths. The �gure 3.6 describes the internal
organization of data.

Figure 3.6: Diagram of the internal structure of a monolith �le

The monolith �le will start with a header that contains a unique constant identifying that
this is a monolith. The purpose of the constant will be to prevent reading and interpreting
�les, which are not monoliths. The constant will a sequence of 8 bytes encoding the word
monolith in ASCII. After the constant, a 4-byte �ag follows indicating the state of the
monolith. The �ag can mark the monolith as deleted. This is described more in the section
3.5.5. The rest of the content of the �le is a sequence of individual objects. Each object
consist of three components:
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• Object header

• Binary data content

• Object footer

Figure 3.7 shows a layout of an object. The header will identify the content of the object.
It will include a 64-bit identi�er, the length of the following data block, the �ag indicating
the state and the 32-bit check number.

Figure 3.7: Diagram of the structure of an object stored in a single monolith �le

The header will be followed by the data block that contains the whole object. The footer
after data block should contain two numbers. The checksum number calculated from data
content and the check number from the header. System will randomly generate the check
number for each object during their write. When the system will read the content of the
�le or scan the stored objects in the monolith, matching numbers in header and footer will
signify, that the reader is not misinterpreting some random data as a header. It will also
means that the monolith contains the whole object and not only a part.

3.5.1 Maximum object size

By design the system will no not split stored object. The advantage of this approach is that
less metadata is necessary to be stored on a SN about a location of an object. To know the
position of an object, only the �le and o�set in that �le will be necessary for access. If the
system stored the objects as a list of blocks, it would be much harder to reconstruct the state
of SN after a failure. Reading a split object would require more disk operations, possibly
require opening of multiple monolith �les. Conventional magnetic disks are more e�cient
when reading data sequentially.

The downside of this approach is that the system must limit the maximum size of a
stored object. The limit is the maximum length of a monolith. This length should be
con�gurable, and our design suggests the size be 100GB. The size depends on the used �le
system. However, modern �le systems usually permit this size.
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3.5.2 Partial Content

Although the idea of monolith �les draws from the design of Haystack volumes (described
in section 2.3.1), there is a fundamental di�erence in use. Since the system allows clients to
upload large �les, they could not be synchronously appended to the corresponding monoliths.
Clients will also be allowed to send the partial content of their data, and they may send it
in an arbitrary order.

Therefore an object is appended to a monolith only after the content is stored on the
SN. When the client uploads a part of the content, SN stores the content into a separate
�le. The name of the �le will contain the object identi�er and the position and the range of
the data in the original uploaded �le. When SN processes client request to �nalize upload,
it will check, if there are missing parts of the object. If not, SN will prepare an appropriate
header and a footer and appends the objects to the monolith �le. After that, SN will erase
the temporary upload data.

3.5.2.1 Expiration of temporary data

Storage Node deletes the temporary data during four events.

Client �nished object upload � After an object is fully written to a monolith, SN deletes
all temporary �les.

Client deletes un�nished object � The delete is issued indirectly by MS.

Temporary �les are checked at SN startup � SN checks temporary �les during startup
and deletes the malformed.

Temporary �les expires � The client is obliged to �nish upload of an object in 24 hours.
If the condition is not satis�ed, SN deletes the abandoned temporary �les.

3.5.3 States of a monolith �le

Storage Nodes will record two indices for each monolith. The former is readability of the �le.
The meaning is obvious. SN should not use non-readable monoliths when serving clients. The
indication comes into use when SN will have to manipulate which would interrupt readers
serving requests.

The latter indication will be writability of the monolith. Monolith may be sealed when
its size approaches the maximum allowed limit. Although no objects will be permitted to be
appended to the �le, SN will be able to delete objects from the non-writable monolith.

The combination of these two indices determines four states of a monolith.

3.5.4 Selection of a monolith to store an object

An appender will be a unit capable of writing data to a monolith �le. The storage node should
manage an appender for each writable monolith. The appender is the only one permitted
to write data to the speci�c monolith. Therefore objects will be appended sequentially. An
appender will hold open �le handler for writing.
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A machine hosting a SN may have mounted multiple di�erent disks. On the start of the
SN, a con�guration will specify which disks should be used for storage of the monoliths. SN
will track the amount of used space in the memory.

When SN needs to append a new object, an appropriate appender will be selected. The
selection consists of these steps:

1. Storage Node will choose a location location of the least used disk by the storage

2. SN searches for a writable monolith which size does not exceed the maximum limit
after the object is appended

3. If there is no such �le, SN creates new monolith �le

4. SN issues appropriate appender to write the object

5. If the size of the monolith after write exceeds 90% of the maximum size, the monolith
state will be set to non-writable, and appender will be closed.

By spreading �les equally on each disk, SN distributes IO load and utilizes better disk
capabilities. This distribution strategy is a heuristic that will fail if there is a disk of signif-
icantly lower capacity. This disk will be probably �lled �rst preventing any storage of new
objects.

3.5.5 Deletion of an object

By the nature of object storage, objects are expected not to be changed, respectively deleted,
often. However, when SN is issued to remove the object, it must be deleted from each
monolith �le. Such operation would require a signi�cant amount of disk operations if the SN
had to shift all stored data after deleted object and would be unwise to be done. Instead,
SN will use the �ag in the header of the object introduced in section 3.5. The �ag from will
be appropriately set to indicate, that the following object is deleted. After SN sets the �ag,
it will increase counter associated with monolith recording the size of deleted objects in the
�le. This operation is trivial and allows adding new objects to the �le at the same time.

3.5.6 Compaction of an monolith

When deleted objects occupy more than 25% of the size of the monolith �le, SN should
compact the monolith. Monolith compaction is an operation during which living objects are
transferred to a new location, and the monolith is deleted. Example compaction is depicted
on �gure 3.8

SN should delete such monolith only if it satis�es three conditions:

1. Monolith is not writable

2. Deleted �les occupy more than 25% of the size of the �le

3. There are no readers of the �le
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It is important that the monolith should be in the non-writable state for two reasons.
Deletion of a couple of objects when the monolith size is short would trigger unnecessary
copy operations and would prevent the monolith to grow. The latter reason is obvious since
there is no need to delete the �le when new data are appended.

The situation is more complicated with readers. SN checks the amount of space retained
by deleted object after it removes an object. At that time, there may be several clients
reading data from the �le. Therefore the compaction should proceed as follows:

1. SN traverses the �le and collects each o�set and header of each non-deleted object.

2. SN selects a new location for living objects. If there is no space in an existing monolith,
a new one is created.

3. SN appends living objects to selected monolith and makes records in the database

4. SN sets the state of the source monolith to non-readable to prevent new readers to
start new reads

5. SN removes records in database pointing to the �le.

6. SN sets the �ag in the header of the monolith to mark the whole �le as deleted.

7. After all readers are �nished, SN deletes the physical �le

Figure 3.8: Process of compaction of a monolith and selection of a new location for the living
objects

Living objects are transferred to a monolith which current size could accommodate copied data.

Monolith 1 is deleted afterward.

To know when the monolith is not being read anymore, SN will have to record the
number of readers for each monolith. Storage Node should add deletion �ag to the header
of the monolith in a case of system crash. The �le will be skipped during startup scan and
immediately deleted.
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3.6 Communitaction protocols

The master server and the storage nodes cannot operate entirely independently in the cluster.
Servers will need a communication channel to exchange information about stored objects and
peers in the cluster. The design distinguishes two types of message exchanges. Unidirectional
and bidirectional messages.

3.6.0.1 Unidirectional messages

Following unidirectional messages will be sent between a master server and a storage node:

• MS sends essential metadata to SN

• MS issues deletion of an object

• MS issues acquisition of a replica

• SN sends noti�cation about successful storage of a �le

• SN sends heartbeat message

None of these messages require the accepting side to respond with a value. Also, request
contained in each message is idempotent, and it is safe when such message is sent multiple
times. Therefore these messages will be transferred between MS and nodes over a WebSocket
connection. A WebSocket connection provides a full-duplex communication channel over
a single TCP connection. This approach brings two advantages. TCP protocol provides
reliable message delivery, and servers will not wastefully open a new connection for each
message sent.

3.6.0.2 Messages requiring a reponse

There is no case in which a master would need a direct response from a node. Following
requests will be forwarded from a storage node to the master:

• SN will need to check existence and length of an object

• SN will need to acquire a list of running nodes that shares assigned group for uploaded
object

The master server will expose a RESTful API providing this data. This interface will be
used only internally and will be accessed solely by the storage nodes.

3.6.0.3 Joining a new storage node to the existing cluster

The master server will have to record a current number of connected storage nodes. For each
storage node, the master must know its address and ports on which the node listens. The
server will also track statistics about used disk space to distribute objects across the whole
cluster better. A storage node must go through two stages to be fully functional. The �gure
3.9 describes the process of a node joining the cluster.
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1. SN makes a join request on the MS using internal REST API. The request encloses
local and public IP addresses and used TCP ports. If the node was a part of the cluster
in the past, it adds its unique identi�cation.

2. The master may generate a new unique identi�er for the new node. The master may
also require a list of all objects currently stored on the node.

3. If the node is required to send the list, the procedure continues with the following
request on master containing a list of ids.

4. The master accepts the request and returns the assigned identi�er of the node. From
that moment, the master considers that the node joined the cluster but does not
recognize the node as functional.

5. In the next stage, connecting storage node must open a WebSocket connection. The
node must send a message containing node identity so that master can pair the con-
nected channel with the node.

6. The master receives the identi�cation message on the newly connected WebSocket
channel. If the enclosed id matches a node that is not connected and has already
joined the cluster in the previous stage, the master sends a message over the channel
containing con�rmation of connection.

7. In this stage, the master acknowledges the node is connected and functional. It will
accept messages send over the WebSocket and assign a newly created object to this
node.

8. After receiving con�rmation message over WebSocket, the node may start serving client
requests as long as there is an open WebSocket connection.

3.6.0.4 Communication between peers

During client uploads and object replications, the storage nodes will need to exchange object
data. Each transfer will have a di�erent recipient. It would be unnecessarily complicated
for each node to maintain a persistent connection with every other node in the cluster. For
that reason, each data transfer will be carried out over HTTP protocol. HTTP methods are
well suitable for requesting parts of data and posting data to other peers. Storage nodes will
have to expose RESTful API intended for other peers. The clients will not have access to
this interface.

3.6.0.5 Data transfer protocol

Transfer of object data between di�erent nodes will not require any additional protocol on
top of the HTTP. Nodes will specify sent data using HTTP URI and appropriate headers.
The content of the message will be plain binary data. However, no object data will be trans-
ferred over masters internal API and WebSocket connection. The data in the message bodies
will be serialized using Google Protocol Bu�ers. Protocol Bu�ers are platform neutral data
interchange format 1. Protocol Bu�ers serialize structured data to e�cient binary represen-

1https://developers.google.com/protocol-buffers/
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Figure 3.9: Protocol of the communication during the connection of a node to the cluster

tations suitable for data transfer. Serialization and deserialization speed is comparable to
widely used JSON format[34]. The design favors the use of Protocol Bu�ers due to good
integration with Java platform and opportunity to establish a �xed structure of messages.

3.7 Heartbeat

The master server will require periodic reports from each connected node to know the current
status of the cluster.

SN will send a heartbeat every �ve seconds. The time period is chosen to keep the master
up-to-date but not to bring a signi�cant overhead to the nodes to prepare the message. The
node will transmit the message over the open WebSocket channel. The report in a heartbeat
will contain statistics about disk usage. The node will send the amount of disk space used
by the monolith �les and temporary �les and space used occupied by temporary upload
data. The node will send these metrics, although the master will know every stored object
on the node and could calculate the sum of the taken space. Thhe storage node will have
an internal policy of how many local copies of each object will store. When a client makes a
delete request on the master, the master will not know exactly when the physical data of the
object will be removed. As designed in the section 3.5, deleted data may remain stored on
the node after the associated object is deleted. The master server will use the disk statistics
to spread stored objects across the cluster better.

The �gure 3.10 shows a heartbeat check. The master server will set a grace period of
one minute for each node to send a heartbeat. If the period the time elapses, and the server
will not receive any heartbeat, the master server will mark the node as disconnected and
will close the WebSocket connection. The period is set to respect possible peak loads on the
node and network instability.
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Figure 3.10: Sequence diagram of heartbeats sent from a storage node to the master server

3.8 Replication of data

The crucial requirement of the system is to protect the stored data against a loss. The
system will achieve this by replicating data across di�erent machines in the cluster. The
data will be available to the client even during failure of a node. During the creation of an
object, the client will de�ne the value of replication factor. Replication factor de�nes how
many times the object is stored in the cluster.

The system will distinguish �ve states of an object.

Newly assigned object � This is the initial state of an object after client issues creation
request on the master. No storage holds a replica and the object is not readable.

Under replicated object � After �nalization of an object or after a failure of a node, the
number of replicas will most likely not match the desired replication factor. The master
server must command a su�cient number of nodes to acquire a replica.

Fully replicated object � For requested replication factor, there is the same number of
live replicas in the cluster. This is desired state for each object.

Over replicated object � There are more live replicas in the cluster than the set replica-
tion factor. The master server should delete the excessive.

Lost object � No SN holds the object data. Unless a node with an existing replica starts
and joins the cluster, the object is lost and not recoverable.
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3.8.1 Storage state check

The master server is responsible for the correct replication. The server will periodically
search for incorrectly stored objects. Every �ve minutes, the MS will assemble lists of those
objects and sends a message using the WebSocket channel to each a�ected node to either
acquire a replica or delete it. The time period balances the involved operation overhead and
the time the system may be in the incorrect state.

3.8.2 Assigment of missing replicas

The master server should not assign an object to a random node. The size of the object
may vary between kilobytes to gigabytes. This may lead to a situation in which a node is
tasked to acquire a series of large objects while other may collect only small one. The system
should distribute the work and data evenly.

Since storage nodes will periodically send heartbeats containing used disk space. The
master also will know about objects assigned to the node but not yet stored. The combination
of these two metrics gives the master an estimate of what amount of disk space will be used.
The under replicated object is assigned to the least �lled up node. An example situation
with an under replicated object is shown in �gure 3.11.

The side e�ect of this strategy emerges during an introduction of a new empty node to
the existing cluster. The master will direct most of the work to it until the node is �lled
similarly as others.

Each object can be assigned to a node only once. That means that if there will be fewer
nodes in the cluster than replication factor, the object will never get into fully replicated
state.

Figure 3.11: Diagram of the strategy for assignment of an under replicated object to a storage
node

The object is assigned to a node that is currently not storing its replica. The node with the least

amount of disk space used is selected
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3.8.3 Acquisition priority

When the master server sends a node a command to acquire a replica, it will determine the
priority of this operation. The goal is to lower the chance that the system will lose an object.
The priority will be a ratio between replication factor and number of living replicas.

replication factor

readable replicas

Objects with lower replication factor will usually receive a higher priority because there
is a greater chance that disconnected node will make object unavailable.

3.8.4 Deletion of redundant object replicas

During the creation of an object, the master server designates a group of nodes of size
matching replication factor. When a node crashes, the master server will expand the group
appropriately to match the replication factor. After crashed node restarts, there will be
redundant replica stored. The master will randomly select a node that will have to delete
its replica.

3.8.5 Deletion of expired objects

During the storage check, the master server will list objects that expired. An expired object
is an object abandoned by the client. The client may have sent a part of the object content
but never issued a �nalization request on any node. After a period of 24 hours passes from
the time of object creation, the master will delete the object. The master noti�es every
associated group to delete internally stored metadata and to delete temporary �les.

3.8.5.1 End of storage check

At the end of the storage check, the master server sends a list of objects to each node. These
will be assigned objects that the node did not yet acquire. Although each node may receive
the same information repetitively after each check, the list will contain updated priorities.
If the node failed to get a replica after the previous check, this would trigger a new attempt
to get the object.

3.9 Scalability

During the design of architecture, it was important to consider scalability options. There
are two scaling methods[35]:

Horizontal scaling � The scaling is done by adding new nodes to the distributed system.
The system must manage nodes e�ciently to aggregate the computational power.

Vertical scaling � Vertical scaling means to add additional resources to a single member of
a system. It may involve an increase of CPU power, disk space and speed, or increase
memory size. A scalable application should appropriately utilize additional resources
and proportionally improve its performance.
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3.9.1 Storage Node scalability

The current design anticipates that the system will be scaled through storage nodes. Both
scaling methods can be applied to achieve a similar outcome. To increase a storage space,
either a new disk could be mounted and given to use to a node, or a new instance of a node
could be added to the cluster. The same principle applies to disk speed. With more disks,
a node can write and read faster. Similarly, an additional instance could be deployed using
the disks. The node itself is not a�ected much by the existence of other nodes in the cluster,
therefore adding new nodes should nearly linearly increase the performance of the storage.

The number of stored objects on a single node should not signi�cantly a�ect performance.
However, the disk space is expected to be exhausted long before the database slows down.

3.9.2 Master Server scalability

The current design of the system prohibits the horizontal scaling of the master server as
there is only one instance running in the cluster. However, the high load is put on the nodes.
The only purpose of the master is to assign objects to nodes and serve metadata, occasionally
sending lists of objects to nodes. A potential bottleneck of the system is the database. As
the number of stored objects will increase, the queries may take more time to complete. If
the system ends up slowed down by the master, the database of the objects could be sharded
between several instances. The only option for the master is the vertical scalability.

3.10 Startup of a node

When a storage node starts, it must make sure, that the state stored in the database of the
node is matching the content of the �les on the disk. This check must precede an attempt to
join the cluster and start of content serving. Traversing the whole �le content may be time
intensive operation. For that reason, the systen design distinguishes two possible situations:

1. The node successfully terminated during the last run

2. Previous run of the node ended up in a crash

3.10.0.1 Storage node startup after successfull termination

At startup, a node will need to know the result of the previous run. Therefore during
program termination, after �nishing all pending writes, the node will create a �le marking
the successful end. The node will search for the �le during startup. If such �le is found, the
node will remove it and proceed with a fast scan of the disks. The procedure is following:

1. The node retrieves list of all monoliths stored in the internal database.

2. For each monolith �le record, the SN searches the �le system for associated �le.
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3. If the �le is found and its length matches the stored value, the node will assume
the content is identical to the records in the database. This approach is primitive.
Substituting the original �le with a counterfeit with the same length and �le path
would cause the node to serve invalid data. However, that would happen only when
someone intentionally tried to damage the run of the program. The presented approach
is a su�cient solution for regular use.

4. If the node does not �nd matching �le for the record in the database, it will remove
records of all �les previously stored in the missing �le.

5. The node searches for �les that are not recorded in the database.

6. The node scans the content of each unknown �le and adds found objects to the
database.

7. The content of the database now matches the content of the �les on the disks.

3.10.0.2 Storage node startup after a failure

After a failure of a node, the content of the database may not match the content of the
monolith �les. The node may have written data to the �le, but the database may be missing
a record about it. The node may have been interrupted during the write, and the �les may
be corrupted. When the gravestone �le is not found during startup, a full scan of the disk
is done.

1. The node deletes the content of the internal database.

2. The node searches for all monolith �les on all assigned �le paths.

3. The node scans the content of each monolith. Scanning requires a sequential reading
of headers and skipping data content to verify constant in the footer (structure of �le
described in the section 3.5). If any encountered object data are malformed, the node
will assume that previous write to the �le was interrupted. The node will truncate the
�le at the position of the last successfully scanned object.

4. The node puts a record for each found monolith and each object to internal database.

5. The node will ignore and immediately delete monolith �les that will contain delete �ag
in the monolith header. These monoliths were marked in the previous run as deleted,
but because there were clients reading data from them, the node could not remove
them at that time.

6. The node will inspect the temporary �les and delete all with length mismatching the
value coded in their name. These are the �les to which the node have been writing
client uploaded data during the crash.

7. The content of the database now matches the content of the �les on the disks.
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3.10.0.3 Missing checksum of a monolith �le

The node will not compute any checksum value for stored �les, although comparison of a
checksum during startup would be more reliable. The computation of a checksum brings
major drawbacks. Any change made in the �le would invalidate the currently computed
checksum. For example, during the deletion process of an object, the node e�ectively changes
a single bit in the �le to save disk operations. The second reason is, the computation of a
checksum during startup would require reading the whole �les.
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Implementation

4.1 Platform

The system is required to be platform independent and should rely only on libraries and
tools which are available under an open source license. After the analysis, the Java platform
was selected to implement all parts of the system. PostgreSQL1 was selected as an object-
relational database for the master server. Each node uses the H22 embedded database. The
�ve major components were developed:

• Master server

• Storage node

• Common library

• Storage client library

• Console client application

• Graphical web interface

4.2 Netty I/O framework

The Netty framework was playing the crucial role during the implementation. Entire network
communication is carried by the Netty. Both the master and storage nodes use the framework
for decoding HTTP requests and encoding the responses.

Netty was also used for client requests. The storage nodes connect to other peers using
Netty. The client library uses the framework as well.

Store nodes utilize the ability to send a part of a �le without directly reading the data and
loading them into the heap of JVM (Java Virtual Machine). Netty automatically transfer a
�le region to the connected socket using the zero-copy technique when the socket is available
for writing[36].

1https://www.postgresql.org/
2http://www.h2database.com/
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4.3 Master server API

The master server exposes several di�erent APIs.

• Internal API with object and node metadata for storage nodes

• API for GUI web page AJAX requests

• Client API for the access to the storage

The table 4.1 lists methods allowed to the clients.

Method URI Mandatory parameters Status Reponse body

POST /object length=:file-length

replication=:rep-factor

filename=:filename

200 OK JSON encoding as-
signed object id and
storage nodes. Ex-
ample shown in list-
ing 4.1

GET /object/:id op=finalize 200 OK JSON encoding stor-
age nodes for �nal-
ization.

GET /object/:id none 200 OK JSON encoding list
of connected nodes
with replica

DELETE /object/:id none 200 OK empty

Table 4.1: Table of methods available to client exposed by the master server

Listing 4.1: Sample response from the master to a client containing assigned group of nodes
to an object in JSON format

{

"objectId": "1c7387fc4d229d6e",

"availableNodes": [

{

"address": "203.0.113.1",

"port": 10201

},

{

"address": "203.0.113.2",

"port": 10001

}

]

}
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4.4 Storage Node API

The storage nodes also have interfaces for both internal and external use, but they lack
methods for web monitoring. The methods expected to be called by the clients are listed in
the table 4.2.

Method URI Headers Body Status Reponse body

PATCH /object/:id content-length,
optionally range

�le data 200 empty

PUT /object/:id empty 202 or
404

empty or
missing ranges.
Example in listing
4.2

GET /object/:id optionally range empty 200 object data

Table 4.2: Table of methods available to client exposed by a storage node

Listing 4.2: Sample response from a storage node containing missing parts of an object in
JSON format

{

"rangeList": [

{

"from": 0,

"to": 30

},

{

"from": 40,

"to": 1024

}

]

}

4.5 Common library

The master server and storage node share some parts of functionality. A Java jar library
was created to avoid duplicate code. The library also contains de�nitions of all Protocol
Bu�er messages and associated utility classes for convenient message serialization and dese-
rialization.

4.6 Client library

Both master and nodes expose RESTful API to clients. If the response is not containing data,
it is in the JSON format. The format is platform and language independent, and every major
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programming language ecosystem provides several frameworks and libraries to communicate
with such APIs. However, the implemented system may require multiple requests to upload
a large �le. For that reason, a Java client library capable of upload, download, and deletion
of an object was implemented. The library splits large �les during an upload and transfers
them in parallel. The library handles server errors and retries an upload on another node of
the cluster.

4.7 Console application

A small console application for convenient access to the storage was implemented. The
application internally uses the client library. The console application has two modes of
operation. The user may start an interactive session or invoke a single command from the
command line providing su�cient program arguments. The usage of the application is shown
in the �gure 4.1.

Figure 4.1: Screenshot of the printed help of the console client application

4.8 Graphical interface

One of the system requirements was that a user must be able to monitor the state of the
storage using a web interface. For that reason, a single page application listing stored
objects and connected nodes was implemented. The application uses React3 framework.
The components of the application fetch data using AJAX calls from the master server.
The master server o�ers a couple of methods to fetch JSON data about particular objects
and nodes. The React application is assembled to only three �les which the master server
sends to the web browsers:

• HTML index �le

• Javascript �le with the application logic

• CSS stylesheet �le

The user can see the current location and replication state of each object in the graphical
interface. The �gures 4.2, 4.3 and 4.4 show a sample listing. The web page can be accessed
from the browser on a default address http://masterIP:9001/monitoring

3https://facebook.github.io/react/
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Figure 4.2: Screenshot of GUI with a sample listing of currently stored objects

The state column shows the current status of a object.

• The object with the name binary_file_5 is currently assigned to two nodes and one of them

is already holding a replica.

• Since there are only 2 connected nodes, the object binary_file_4 with replication factor 3

cannot be fully replicated.

• The node storing object with the name binary_file_2 was disconnected and replication factor

was set to 1, therefore the replica is lost.

4.9 Dependency injection

Both master and node rely on Guice4 dependency injection framework. The framework is
lightweight and con�guration is done programmatically. The master server utilizes Guice's
support for Java Persistence API. The Guice takes care of commits of transactions[37].

4.10 Con�guration

Both master and storage node are con�gured using Typesafe Con�g5 library. The con�gura-
tion �les are written using HOCON [38] syntax, which stands for Human-Optimized Con�g
Object Notation. The language is a superset of JSON notation. The library provides two
bene�ts. During startup, the con�guration �le is mapped in a type-safe manner to a Java
class. If there is a missing value, the program gracefully terminates itself. The latter ad-
vantage is that any con�guration value may be replaced during launch using Java system
properties passed as a command line argument of the program.

4https://github.com/google/guice
5https://github.com/typesafehub/config

43

https://github.com/google/guice
https://github.com/typesafehub/config


CHAPTER 4. IMPLEMENTATION

Figure 4.3: Screenshot of GUI showing details about stored object

Figure 4.4: Screenshot of GUI with a listing of stored objects on a single node

4.11 Logging

It is di�cult to observe what is happening in the distributed system while clients concurrently
access it and individual members of the system communicate with each other. To see better
what is happening, all servers log their activity using logback6 framework. The logback
implements the SLF4J API7. The server created logs and logs produced by used libraries
using the same common API are gathered into one place. However, the JDBC driver used
during implementation for connection to PostgreSQL database was still using the legacy
java.util.logging API and had to be bridged[39] to the Logback.

6https://logback.qos.ch/
7https://www.slf4j.org/
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Chapter 5

Testing and results

The important part of the development of the distributed storage was testing. The system
should reliably handle user data. Therefore veri�cation was needed, that the designed be-
havior was correctly implemented. Two di�erent approaches to testing were selected. In
a sample distributed environment was tested the overall performance of the system. Next,
several test cases were prepared to inspect behavior of both master server and individual
storage nodes.

5.1 Performance testing

The testing was performed in a distributed environment simulating a possible real deploy-
ment. The cluster was composed of four credit card-sized computers. There was one com-
puter with the role of master and three separate storage nodes each equipped with a regular
magnetic disk. The client application was running on a desktop computer. The computers
were located in a private network. The table 5.1 captures the relevant hardware speci�ca-
tions of the used components. The �gure 5.1 describes the topology of the computers in the
network.

For each test, the network tra�c was measured on the client computer. On each storage
node was measured disk activity. The measurement procedures of the monitoring tools were
di�erent. The tra�c was measured with Linux tool ifstat showing the amount of incoming
and outcoming data. The disk statistics were collected with tool iotop sampling actual disk
read and write speed. For that reason, the measured disk statistics does not completely
match the network speed.

Master / Stogage node Test client PC

Processor Dual-core 1GHz Intel i5-6500 3.2GHz
Memory 1GB DDR3 8GB DDR4
Disk 1TB 5400 RPM �
Network interface 1Gbit/s 1Gbit/s
OS Debian 8 based Linux Windows 10
Environment Java 8, PostgreSQL 9.6 Java 8

Table 5.1: Table of hardware speci�cation of the computers used during the testing
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Figure 5.1: Diagram of the network connection con�guration of the computers used during
the testing

5.1.1 Write tests

The �rst performance tests aimed to measure a write throughput of the test con�guration.
Several clients were dispatched to upload simultaneously a larger amount of �les. The test
was parametrized followingly:

• 10 concurrently operating clients

• 1000 �les with a total size of 2GB

• Replication factor set to 3

The results of the test are listed in the table 5.2. It took a signi�cant time to make
all objects readable after their upload. Despite the fact that clients uploaded data to three
di�erent disks, quite low performance was observed. The behavior is attributed to the nature
of magnetic disks and the size of the selected uploaded �le. A regular disk is capable of write
and read speed of roughly 120MB/s in case of sequential access. However, during random
write and read access of small �les, the performance drops bellow 1MB/s [40]. During this
test, the nodes had to write and access a signi�cant number of smaller �les causing many
seeks on disks.

Upload duration 250s
Average disk write 11,406KB/s per node
Average upload speed 8,174KB/s
All objects readable 420s
All objects replicated 454s

Table 5.2: Results of the �rst write performance test
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After the test, a second test was run with a di�erent replication factor. The factor was
set to 1 to eliminate data transfers between individual nodes. The results are listed in the
table 5.3. Since the user data did not have to be shared between nodes, the write throughput
was higher than in the previous test.

Upload duration 110s
Average disk write 6,360KB/s per node
Average upload speed 18,588KB/s
All objects readable 110s

Table 5.3: Results of the second write performance test

5.1.2 Read tests

The second group of tests measured the speed at which storage can serve the objects. The
con�guration was similar to previous tests.

• 10 concurrently operating clients

• 1000 �les with a total size of 2GB

The results are captured in the table 5.4. In the following test, the size of objects was
reduced. The clients were tasked to download 5000 �les each of size of 200kB. The results
of the second read test are in the table 5.5. The decrease in performance is credited both to
greater overhead needed for request serving and a larger amount of disk seeks.

Test duration 24s
Average disk read 22,307KB/s per node
Average download speed 88,711KB/s

Table 5.4: Results of the �rst read performance test

Test duration 28s
Average disk read 18,952KB/s per node
Average download speed 37,862KB/s

Table 5.5: Results of the second read performance test

5.2 Functional testing

Client actions trigger series of events in the system. Testing each of them would involve a
creation of a simulated context with mock requests and responses from other members of
the cluster. However, such test would not verify, if the other participants would send such
messages. For that reason, a series of behavioral tests were created. The system was tested
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as a black box from the perspective of a client with a minimal understanding of the internal
structure.

The main advantage of implemented tests is that they are fully automated. After a
change is introduced in the source code, these test can be simply launched from a command
line to show, if there is a regression in the behavior of the system. The scripts are able to
start multiple instances of servers. After a test is �nished, the scripts clean up �les created
by the servers. The databases of storage nodes and stored monolith �les must not interfere
with future runs of the tests.

A couple of simulated scenarios covering the most of the functionality of the distributed
storage were created.

5.2.1 Create, read and delete scenario

The goal of the test is to verify that a client can upload data to storage, data are replicated
and can be read and deleted. The test starts with an instance of the master server and three
storage nodes. The tasks are following:

1. Upload a �le with the replication factor 3.

2. Download and compare content from each node.

3. Issue delete of the object on the master server

4. Try to read the deleted object directly from each node. No data should be served.

5.2.1.1 Delete after node shutdown scenario

The aim of the tests is to verify that a node synchronizes with the changes of state of the
storage made during its absence. In the beginning, a master server and single node are
started. Tasks are following:

1. Upload two �les to the storage.

2. Shutdown the storage node.

3. Issue delete of the �rst object on the master server.

4. Restart the shutdown storage node.

5. Try to download the �rst object directly on the node. No data should be served.

6. Try to download the second object. The node should return correct data.
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5.2.1.2 Replication balancing scenario

In this scenario, the master server should correctly ful�ll desired replication factor of the
stored object. The test starts with an instance of the master server and two storage nodes.

1. Upload a �le with replication factor 2.

2. Launch third instance of a storage node.

3. Terminate one node holding a replica of the object.

4. Await cluster rebalancing.

5. Tyr to download the object from the new node. The node should return newly acquired
data.

6. Restart the killed node

7. Await cluster rebalancing

8. Try to download the object from each node. Only two of them should return object
data.

5.2.2 Manual testing

There are cases, which are quite di�cult to reliably script for automatic evaluation. These
situations involve failures of individual members of the cluster. These cases were tested
manually using the console client application and the client library. During the tests, server
logs and presented state in web GUI were observed. The servers were manually interrupted
during their operations. The goal was to observe following behaviors:

1. After a failure and a restart of the master server, each storage node can reconnect.

2. The master server notices when a node is disconnected.

3. A client can successfully switch upload server after the �rst one fails.

4. A storage node sharing currently uploaded data to other nodes can handle a discon-
nection of a peer.

5. After a restart, a storage node should delete uploaded temporary data of interrupted
client requests.

6. After a restart, a storage node should discover and correctly truncate damaged mono-
lith �les.
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5.2.3 Test results discussion

The behavioral tests veri�ed that a client could upload, download and delete data from
the storage system and the data are correctly replicated. The performance tests showed
satisfactory performance during reads. The write tests revealed a �aw in the current imple-
mentation. The storage node does not throttle the throughput of incoming data. The more
data are uploaded, the longer it takes to make them readable. Ideally, the node should limit
incoming tra�c after a queue of �nalization operations surpasses a certain limit. The test
setup ampli�ed the �aw. If the nodes had a separate disk for temporary data and monolith
�les, the queue could be emptied much faster.
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Conclusion

In this theses, it was designed and implemented a simple storage system that can store and
serve binary data in the form of the objects. A client communicates with the system using
a RESTful API.

The architecture divided work of the storage between a central master server that man-
ages object metadata, and a set of store nodes keeping the data itself. The implemented
system achieved horizontal scalability with increasing the number of storage nodes in the
cluster. Implemented system is platform independent due to selected technologies.

Both master server and individual storage nodes can deal with the lost connection be-
tween each other. Servers automatically reconnect and resume their operation.

The system is capable of replicating client data across di�erent storage nodes to prevent
a data loss. The system maintains the target number of replicas which could be di�erent for
each object. The missing replicas are replaced and the redundant deleted. After a storage
node failure, the server deals with malformed data and synchronize with the current state
of the storage cluster.

System exposes a graphical interface served as a web page to show the current state of
the storage. For testing purposes, it was implemented a sample application that utilizes
RESTful API of the system and can upload, download and delete data from the data store.

The behavior of the system was veri�ed by a set of scripts and manual tests. In an ex-
perimental distributed environment performance was measured and the results are included
in this work.

The functionality of the system covers all goals and requirements of this thesis.

6.1 Future work

During the design and implementation, some options for improving the system have emerged.
However, all improvements would be beyond the scope of this work.

6.2 Security

The current implementation does not address any form of security of the system. All network
communication is transferred using non-secured HTTP. The system could be improved to
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use HTTP over SSL (Secure Sockets Layer). The designed system does not manage any
client accounts to impose access restrictions on client data.

In the situation the whole system is residing on a private network, an SSL termination
proxy may expose the API of the storage to the wide internet. Therefore internal communi-
cation between storage components could remain unencrypted.

6.3 File compression

The current design does not include data compression. Although the compression would save
disk space, it would also be more CPU intensive. The system is required to run on computers
with low performance. The compression would also make reading data more di�cult. The
client is allowed to request any part of a stored object. This partial read would require
starting reading the object from the beginning to decompress it.

6.4 Periodical �le checks

Future improvement of the system could add periodical scans of the store. Stored �les could
be regularly checked to �nd damaged �les or to identify malfunctioning disks. A probe would
calculate a checksum for each found object and compare it with a stored value.
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Appendix A

Nomenclature

ACID Atomicity, Consistency, Isolation, Durability

API Application programming interface

ASCII American Standard Code for Information Interchange

BLOB Binary Large Object

CDN Content delivery network

FS File System

FUSE Filesystem in Userspace

GUI Graphical user interface

HTTP Hypertext Transfer Protocol

IP Internet Protocol

JDBC Java Database Connectivity

JPA Java Persistence API

JSON JavaScript Object Notation

JVM Java virtual machine

MFT Master File Table

NFS Network File System

POSIX Portable Operating System Interface

REST Representational state transfer

SSL Secure Sockets Layer

TCP Transmission Control Protocol

UUID Universally unique identi�er
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Appendix B

Content of the attached CD

cd

sources

console-client..............................source code of console application
monitor...............................................source code of web GUI
scalable-storage................................. source code of storage node
scalable-storage-commons................... source code of the shared library
scalable-storage-master.............................sources of master server
storage-client.....................................source code client library
storage-test-tools...........source code of integration and performance tests

text .............................................. Latex sources of this document
thesis-timr-marek-2017.pdf.......................digital copy of this document

B.1 Installation manuals

Each directory with the source codes includes a README.md �le. The �le contains a list of
required software and steps for build and run of the software.
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Appendix C

Open-source licenses

Library License

Apache Commons IO Apache License 2.0
Apache Commons Lang Apache License 2.0
Guice Apache License 2.0
Hibernate LGPL 2.1
HikariCP Apache License 2.0
H2 dual licensed under MPL 2.0 and EPL 1.0
Jackson Databind Apache License 2.0
Logback dual licensed under EPL v1.0 and LGPL 2.1
Netty Apache License 2.0
PostgreSQL The PostgreSQL Licence similar to MIT license
PostgreSQL JDBC driver BSD 2-clause
Protocol Bu�ers custom permissive license
React BSD 3-clause
SLF4J MIT License
sql2o MIT License
Typesafe Con�g Apache License 2.0

Table C.1: Table of open-source licenses of used libraries and programs
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