Master’s Thesis

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Computer Science

Learning to play real-time strategy

games from demonstration using
decentralized MAS

Jan Maly

Study Programme: Open informatics
Field of Study: Artificial Intelligence

May 2017
Supervisor: RNDr. Michal Certicky, Ph.D.






Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Computer Science

DIPLOMA THESIS AGREEMENT

Student: Maly Jan

Study programme: Open Informatics
Specialisation: Artificial Intelligence

Title of Diploma Thesis: Learning to play real-time strategy games from demonstration using

N =

prof. Dr. Michal Péchoucek, MSc.

decentralized MAS

Guidelines:

. Review current approaches for building expert level real time strategy game-playing Al.

Identify decision making processes realized by human player in expert level gameplay of real-time
strategy game StarCraft: Brood War.

Implement game-playing agent for StarCraft Brood War. To reduce complexity and amount of
required expert knowledge, design the game-playing Al as a highly decentralized multiagent

system with the ability to learn from demonstration (watching replays of StarCraft: Brood War
games played by humans).

. Use Markov decision processes and inverse reinforcement learning to train decision modules for

individual MAS agents.

. Evaluate and discuss the capabilities of game-playing Al and compare it to state of the art Als.

Bibliography/Sources:

[1] BEN G. WEBER. Integrating learning in a multi-scale agent [online]. 2012. Santa Cruz: University of
California, 2012. ISBN 14-776-1473-7.
[2] D. Churchill, M. Preuss, F. Richoux, G. Synnaeve, A. Uriarte, S. Ontanén, M. Certicky. StarCraft Bots and

Competitions. Chapter in Encyclopedia of Computer Graphics and Games (ECGG). Springer International
Publishing. ISBN: 978-3-319-08234-9. 2016.

[3] SHOHAM, Yoav. a Kevin LEYTON-BROWN. Multiagent systems: algorithmic, game-theoretic, and logical
foundations. 2008. New York: Cambridge University Press, 2009. ISBN 05-218-9943-5.

[4] ROBERTSON, Glen; WATSON, lan D. An Improved Dataset and Extraction Process for Starcraft Al. In:
FLAIRS Conference. 2014.

[5] ABBEEL, Pieter; NG, Andrew Y. Apprenticeship learning via inverse reinforcement learning. In:
Proceedings of the twenty-first international conference on Machine learning. ACM, 2004. p. 1.

Diploma Thesis Supervisor: RNDr. Michal Certicky, Ph.D.

Valid until the end of the summer semester of academic year 2017/2018

prof. Ing. Pavel Ripka,CSc.

Head of Department Dean

Prague, January 19, 2017






Acknowledgement / Declaration

I would like to thank my supervisor Prohlasuji, Zze jsem predlozenou pra-
Michal Certicky for the valuable com- ci vypracoval samostatné a ze jsem
ments and remarks he has given me dur- uvedl veskeré pouzité informacni zdroje
ing the creation of this work. v souladu s Metodickym pokynem o do-

drzovani etickych principti pri pripravé
vysokoskolskych zavéreénych praci.
V Praze dne 26. 5. 2017



Abstrakt

Pres 1sili vynalozené na vyzkum
Umélé Inteligence, boti do strategic-
kych her redlného ¢asu nedokazi ohrozit
profesionalni lidské hrace. Stale je tu
spousta vyzev, které vyzkumnici musi
prekonat, aby AI mohla prazit ex-
perty. V této praci se zabivame tremi
vyzvami: adaptivnim planovanim, in-
tegraci doménové znalosti a integraci
AT technik do jednotné architektury.
Predstavujeme pouziti techniky Inverse
Reinforcement Learning jako zpusobu,
jak se naucit délat rozhodnuti na za-
kladé pozorovani her hranych hraci.
Abychom mohli integrovat Inverse Re-
inforcement Learning spolecné s dalsimi
technikami vyzadovanymi pro reali-
zaci kompletniho bota, postavili jsme
nasi Al na nové jednotné architektite
v podobé vysoce decentralizovaného
Multi-agentniho systému. Potom, co
jsme pouzili malou mnozinu ukazek her,
nas bot se by shopny naucit strategii,
kterd dokéze v mnékterych scénarich
porazit zabudovanou Al. Bot také vy-
kazuje schopnost uzptsobit své chovani
situaci. Nas pristup demonstruje novy
zplsob jak s minimem doménovych zna-
losti vyvijet bota, ktery bude vyzvou
pro lidské hrace.

Klicova slova: Inverse Reinforcement
Learning; Multiagentni system; strate-
gie redlného casu; bot

Preklad titulu: Uceni se hrani strate-
gickych her redlného ¢asu z demonstraci
s vyuzitim decentralizovaného MAS

/ Abstract

Vi

Despite the amount of effort put in
Artificial Intelligence research, bots for
real-time strategy games present no
threat for professional human players.
There are still many challenges to over-
come by researchers to develop Al able
to beat experts. In this work, we deal
with three challenges: adaptive plan-
ning, domain knowledge integration and
integration of Al techniques to unified
architecture. We introduce the usage
of Inverse Reinforcement Learning as a
new approach for decision-making based
on the observation human gameplay. To
be able to integrate Inverse Reinforce-
ment Learning with other techniques
needed for the complete bot, we build
our Al on new unified architecture
in the form of a highly decentralized
Multi-agent system. After using a small
set of replays, our bot was able to
learn strategy which beats built-in Al
in some scenarios. The bot also shows
the ability to adapt its behavior to
the situation. The approach presents
a novel way of developing challenging
bots with little to none domain expert
knowledge.

Keywords: Inverse Reinforcement
Learning; Multi-agent system; real-time
strategy game; bot



Contents
1 Introduction ........................ 1
1.1 Motivation ....................... 1
1.2 Objectives .........covvviiiiiin... 2
1.3 Contribution ..................... 2
1.4 Outline ........................... 2

2 Identification of decision-
making processes realized by

humans in Starcraft................ 4
2.1 Real-time strategy games
and their complexity............. 4
2.2 Decision-making processes
in RTS games .................... 5)

2.3 StarCraft specifics
3 Challenges and techniques in

RTS Game Als development...... 9

3.1 Challenges in RTS Game Als ...9
3.2 Techniques for RTS Al de-

velopment ................o.oL 10
3.2.1 Strategy .................. 10
3.2.2 Tactics.....coovveviinn 11
3.2.3 Reactive Control......... 11

3.3 Design of the state of the
art game playing (Star-

Craft) bots ......cooovviiiiiit. 13
4 Inverse Reinforcement Learn-
NG ... 15
4.1 Reinforcement Learning and
Markov Decision Process ...... 15
4.2 Inverse Reinforcement
Learning ..................o.ooL. 16

4.3 Solving Inverse Reinforce-
ment Learning problem in

Finite State Space ............. 18

5 Agents and Multiagent Sys-
tems ... 19

5.1 Description of (intelligent)
agent..........oooiiiiiiia 19
5.1.1 Types of agents .......... 20

5.2 Description of Multiagent
Systems........cooooiiiiiiiii. 20

6 Problem decomposition and
learning integration .............. 23

6.1 Framework ..................... 23
6.1.1 Architecture overview
and basic properties

vii

6.1.2 Planning, decision
making, and tech-
niques integration........

6.1.3 Implementation of
framework ................

6.2 Integrating Learning...........

6.2.1 Abstract Bot .............

6.2.2 Replay Parser ............

6.2.3 Bot

7 Presentation of the bot and
its Experimental Evaluation .....
7.1 Realization of bot..............

7.2 Analysis of bot’s behavior
and its performance............
8 Conclusion ........................
8.1 Discussion and future work....
References ........................



Tables / Figures

7.1. Results of decision-making

training

viii

3.1.
3.2.

3.4.
3.5.
3.6.

6.6.
7.1.

. AlphaGo plays Lee Sedol in

. RTS AI levels of abstraction

and theirs properties............. 6

. The main sub-problems in

RTS AI research categorized
by their approximate time
scope and level of abstraction ...6

. StarCraft: BroodWar in-

AIME SCTEEIL .« .vvvvveeenennennnnn. 8
Behavior Trees ................. 10
Starcraft map with regions

and choke points ............... 11

. Example of wall-in placement

as a Protoss .................... 12
A* example..................... 12
A* in Starcraft ................. 13
Architectures of StarCraft

bots. ..o 14

. Autonomous Helicopter Aer-

obatics through IRL ........... 15

. The reinforcement learning

framework ............. ... ... 17

. The Inverse reinforcement

learning framework............. 17

. Agents interact with environ-

ments ........oiiiiiii 19

. A model-based, utility-based

. The framework architecture

OVEIVIEW .. 24

. A high-level overview of com-

ponent and relations in our
planning algorithm ............. 26

. Agent’s life cycle in the form

of BPMN process .............. 27

. Agent Hatchery declaration

example. ... 28

. Declaration of the module

for an agent using trained
decision module ................ 28
Overview of bot’s architecture . 30
A high-level overview of the
implementation of agents

with their desires and rela-



7.2. Demonstration of our bot
capabilities ............... ...






Chapter ].
Introduction

Despite the amount of effort put in Al research to develop a program capable of play-
ing real-time strategy (RTS) video games and recent successes of programs such as
AlphaGo [1] and DeepStack [2], professional players in complex RTS games remain un-
challenged by an expert level Als. Making the game more fun to play for humans by
developing advanced Al is not the only one benefit of Al research in this area. Tasks
carried out in hardly predictable environments of those games, resemble real-world mil-
itary scenario which demands to solve many complex issues quickly and satisfactory.
Most of the decision making in real-world has similar nature. Therefore one can expect
that techniques used in Al able to master an RTS game could perform well in other
domains.

I 1.1 Motivation

There are many challenges to overcome by Al researchers to be able for their bots to
match human expertise in RTS games. In our work we would like to contribute to
following ones:

m Adaptive planning: most bots are not able to adapt their strategy to counter the
opponent. Instead, they use some hard-coded triggers to select between sets of strate-
gies or mix between them based on performance or by random.

= Domain Knowledge integration: this is related to lack of ability to adapt as many
bots creators struggle to incorporate various forms of domain knowledge to their bots.
Excellent sources of domain knowledge for the game are demonstrations of human
play. Observing other players is a natural way for a human to learn to play the game
but it does not hold for bots.

= Domain Knowledge integration: playing RTS is multi-scale Al problem. Bots cre-
ators know that and decompose the problem to sub-problem. However, approach
how they do that varies from bot to bot.

The test-bench for our research is RTS game Starcraft: Brood War where all three
challenges and the ones described in 3.1 remain valid. Researchers have been working
on techniques to solve the issues of bots in many RTS games over a decade. However,
StarCraft: Brood War has become the first choice for this kind of research in recent
years. It has one significant advantage over other similar games in a number of compe-
titions for AI StarCraft bots (organized by AIIDE, CIG, and SSCAIT [3]) so one can
easily see how created bot is doing against others. Another advantage is that players’
community around the game is still active even though the game was released back in
1998.



I 1.2 Objectives

Our primary goal of this work is to develop a bot for StarCraft: Brood War which
learns its decision-making processes from the demonstration. To meet this aim we set
up following guideline:

1. Review current approaches for building expert level real time strategy game-playing
Al

2. Identify decision-making processes realized by a human player in the expert level
gameplay of real-time strategy game StarCraft: Brood War.

3. Implement game-playing agent for StarCraft Brood War. To reduce complexity and
amount of required expert knowledge, design the game-playing Al as a highly decen-
tralized multiagent system with the ability to learn from demonstration (watching
replays of StarCraft: Brood War games played by humans).

4. Use Markov decision processes and Inverse Reinforcement Learning to train decision
modules for individual MAS agents.

5. Evaluate and discuss the capabilities of game-playing Al and compare it to state of
the art Als.

I 1.3 Contribution

By meeting our objectives, we deliver following contributions:

m By learning decision-making in a different situation of the game by observing ex-
perts, we eliminate most of the hard-coded behavior in our bot in the sake of better
adaptability. It is also a good example how to encode part of the domain knowledge
which is otherwise hard to get on the highest level of abstraction.

m Using Markov decision processes and Inverse Reinforcement Learning is way how
to explain/decide behavior in given situation. Approaching problem trough utility
based planning has some advantages over goal-oriented planning used in most current
bots (more on differences in 5.1.1).

m Decomposition of the problem is inevitable as hardly only one technique can be
used to solve all subproblems (which is in alignment with results of famous No Free
Lunch Theorems!), we developed a prototype of unified architecture in the form of
an opinionated framework based on the multi-agent system. Not only our StarCraft
bot project can benefit from this as our framework is domain independent.

I 1.4 Outline

In 2 we give a broader introduction to the domain of RT'S games, StarCraft and analyze
decision making involved to identify decision-making processes. 3 is a continuation of 2
and presents challenges and techniques in RTS game Al development. Another purpose
of that chapter is to introduce ways how bots are being developed. All of this is useful
in our attempt to build our bot. In 4 we provide a description of Inverse Reinforcement
Learning technique which we use to learn to make decisions in the same way as humans
do it in given situation. 5 presents an explanation of what we understand under term
agent as we see our bot as an agent. An important part of this chapter is to explain types

! http://www.no-free-lunch.org


http://www.no-free-lunch.org

of the agents to give some classification of them as our bot is partially concerning utility
in contrast to common bots. We also provide a description of the multi-agent system
as we use it for task decomposition in the form of the opinionated framework described
in 6. 6 is also a place where we bring everything together as we present way how we
integrated decision making to our bot and how other techniques can be incorporated.
In 7 we present our initial version of the bot with examples of the framework usage
and IRL integration. This chapter also evaluates its current performance and gives an
analysis of current issues. In last 8, we give a recapitulation of our work and discuss
directions for future work.



Chapter 2
Identification of decision-making processes
realized by humans in Starcraft

In this chapter we want to introduce real-time strategy (RTS) games, give an overview
of decision-making processes of player in those games, especially in the domain of Star-
Craft: Brood War, and show that mastering any RTS game is nothing trivial, even for
a human.

I 2.1 Real-time strategy games and their complexity

RTS is one of the sub-genre of strategy games. In those kinds of games, the player
usually needs to build economy (collect resources and construct buildings) and military
power (by training and upgrading units in buildings for gathered resources) to defeat his
opponents (by destroying his army or economy). The ,real-time“ gives RT'S games other
dimensions compare to a classic game of Chess. Each player has a small time frame
to decide the next move in an environment where players’ actions are simultaneous as
players can issue play command in same time. Most of the actions are not instantaneous;
it takes some time to complete them to see the result. On top of that, the RTS games
are partially observable as players do not have full perception of the state of the affair
in the world. To this situation is referred as fog-of-war because the player can not see
unexplored parts of the maps and do not know situations in parts of the map where he
does not have his units. Moreover, those games are usually non-deterministic as actions
may not succeed given their chance of failure, and most importantly the complexity of
the state and action space is enormous.

In [4] author gives decision space complexity (set of possible actions which can be
executed at a particular moment) estimation of RTS trough StarCraft as follows:

(1) O((W-A-P)T-D-S)+B-(R+C))

s W - number of workers

m A -number of the type of worker assignments

m P -average number of workplaces

s T -number of troops

® D -number of movement directions

m S -number of troop stances (Attack, Move, Hold)

® B -number of buildings

m R -average number of research options at buildings
m C -average number of unit types at buildings

Given an extremely simplified scenario of the game on 256x256 tile map in SC: BW
with 50 workers results in 1 000 000 000 possible actions which is orders of magnitude
higher comparing it to the complexity of Chess. Same goes for state complexity. For
example, Chess is estimated to be around 10°° and Go around 10'7°. However, StarCraft



2.2 Decision-making processes in RTS games

scenario on the typical map is believed to be many orders of magnitude larger. More
detailed discussion of StarCraft complexity can be found in [5].

s Google DeepMind
Challenge Match
. ,@ 8- 15 March 2016

Figure 2.1. AlphaGo plays Lee Sedol in 2016 (from: [6]).

I 2.2 Decision-making processes in RTS games

Due to the complex nature of problem playing RTS games, the most common approach
is by decomposition of the problem into a collection of subproblems which can be solved
independently. Conventional subdivision (not the exclusive one) is according to [5] as
follows:

m The Strategy is the most abstract level of game comprehension. It corresponds to
the high-level decision-making process and concerns all units and building as well as
properties of the environment. Finding successful strategy against given opponent is
key to defeating him.

m Tactics is a way how to realize strategy. It focuses on groups of units and implies
theirs positioning, movements, timings and so forth.

m Reactive control is the implementation of tactics concerning particular unit. It
involves moving, targeting, fleeing and so on.

s Terrain analysis is part of environment analysis (map specifically), the primary goal is
for example to identify strategic locations, resources, and distances. This knowledge
is then employed in other processes.

m Intelligence gathering that corresponds to information collection due to the partial
observability of environment to gain intelligence on the opponent.

Levels of abstraction described above and their relation to uncertainty coming from
partial observability and not knowing specific intentions of the opponent, timing corre-
sponding to a duration of behavior switching, and spatial and temporal reasoning are
on figure 2.2.



o ) mean
player's intentions

plan term
g Strategy ~3 min
=
2
2 o
.% ©
: :
[14] .
2 0 =4 Tactics ~30 sec
o =
e =]
: g @
S o
(=} —_
T
a _
w Reactive control ~1 sec

direct knowledge

Figure 2.2. RTS AI levels of abstraction and theirs properties (from: [5]).

Churchill in [7] gives a deeper elaboration of Strategy, Tactics and Reactive Control
description and their subtasks as can be seen on figure 2.3. On this figure can also be
seen information flow hierarchy between those subtasks similar to the military command
structure.

Strategic Tactical Reactive Control
High Level, Abstract Mid-Level Low-Level, Concrete
3 mins + 30 sec - 1 min ~ 1 sec

Knowledge N .
& Learning Scouting
Opponent ¥ \
Modeling \
Strategic
Stance \

Army  + Combat Timing Y Unit
Composition » & Position »  Micro
Build-Order & Unit & Building Multi-Agent ¥

Planning » Placement » Pathfinding

Figure 2.3. The main sub-problems in RTS Al research categorized by their approximate
time scope and level of abstraction (from: [7]).

Subtasks for Strategy are as follows:

= Knowledge and learning which are vital for playing the game (rules, unit properties,
openings, knowledge about the opponent and so long). This knowledge can be further
extended by playing matches and gathering additional information about the game
itself and opponents.

= Opponent modeling and prediction is useful to the player because the environment
is only partially observable so one can not be sure what is his opponent doing. In
this case, modeling and prediction come in handy as its enables player to exploit
perceived weaknesses.



m Strategic Stance corresponding to the ability to balance between aggression and
economic expansion. The choice of particular stance influences things such as army
composition and attack timing.

= Army compaosition is decided by Strategic Stance, Opponent modeling and predic-
tion, and by the current situation.

= Build-Order Planning goal is realizing decided army composition by gathering re-
sources and building infrastructure to have resources, capacity and meet requirements
to train desired units.

As for Tactics subtasks are following:

= Scouting is a way to gather intel on the opponent as areas of RT'S maps are typically
covered by fog-of-war which unable vision of other sectors and enemies expect those
in the direct vicinity of friendly units. Sometimes is possible to use technology or
ability to uncover part of the map. Scouting is a vital part of the game as it provides
information to the player to adjust his play and make right decisions.

s Combat Timing and Positioning are crucial in RTS games as it involves decision
where and when to attack the opponent. For example attacking opponent’s new
expansion when it still under construction can help the player get an edge in a
match.

= Building Placement plays most important role in the game, especially in the be-
ginning and is very influenced by map, opponent, strategy and so. For example,
one can imagine situation by placement of additional defensive buildings player can
discourage the enemy from attack, or at least delay it.

For Reactive Control Churchill in [7] list following subtasks:

= Unit Micro is mostly referred to in combat situations as it dictates individual units
behavior. Decision processes here are particularly hard as one needs to manage many
units and their actions simultaneously.

s Multi-Agent Pathfinding and Terrain Analysis are an integral part of RTS games.
Pathfinding is related to Unit Micro and involves pathfinding and other more complex
optimizations to avoid getting damage and so. Terrain analysis gives player not just
necessary inputs for pathfinding algorithms but high-level info about properties of
the map such as resources location.

Despite the decomposition, most of the task remains quite complex as is illustrated
in [8] where many games (even StarCraft) are analyzed and from the discussion of
researchers and authors of SC: BW agents in [9]. On top of that for many of the tasks,
the optimal solution does not exist which is shown in 3.

I 2.3 StarCraft specifics

StarCraft and its expansion StarCraft: Brood War was released in 1998 by Blizzard
Entertainment and became tremendously popular. To win the game, mechanics are
similar to traditional RTS games. The player needs to collect resources (in this case
mineral and gas) to be able to construct buildings, train units and unlock upgrades for
them. Resources further can be spent on defensive buildings to help units to defend
strategic points of a map given the specific situation. Player uses units, not just for
defense; he distributed them among other tasks such as scouting, attack, maneuvering
them when they meet the enemy, and various ,, mind games* to confuse the opponent.



2. Identification of decision-making processes realized by humans in Starcraft

RN L] LT RRRNIN
& ML

Figure 2.4. StarCraft: BroodWar in-game screen.

The game is set in a science-fiction universe where the player takes the role of com-
mander of an army of one of the three races:

m Zergs as an insectoid alien race with cheap and weak units which can be produced
fast giving the player ability to overwhelm opponent simply by numbers.

m Protoss is also alien race similar to humans. Units are the exact opposite of Zergs’
They have expensive production regarding costs and manufacturing times. Playing
this race means to concentrate more on quality over quantity.

m Terrans represents humans in this world with units balanced between Zergs and
Protoss.

Despite the fact that each race contains 30-35 unique types of buildings and units
(most of them has own special abilities) is extremely well balanced. The typical game
takes place on the map of dimension between 64x64 to 256x256 build tiles (32x32
squares of pixels). The game does not allow each player to control more than 200 units
at the time, but the player can have an unlimited number of buildings. All of this
makes StarCraft challenging on the one hand, but extremely fun to play (watch) on
the other. Thanks to this StarCraft became famous eSport matter with contestants
earning a considerable amount of money [10].

In comparison to 2.2 when humans playing StarCraft they typically abstract decision
making in this manner:

= Micromanagement (Micro) corresponds to Reactive Control and partially to Tactics
described in previous section. It involves the ability to control units individually.
Good micro players are more likely to keep their units alive longer.

s Macromanagement (Macro) corresponds almost to everything except Reactive Con-
trol and Tactics (except the part from micro). It represents the capacity to produce
right units and expand at appropriate times to ensure that production of units is
flowing. A player who is macro-oriented has a usually larger

This chapter is especially vital for our bot development as we had very sparse knowl-
edge about StarCraft: BroodWar game. In 7 we present implementation of our bot
based on knowledge from this chapter.



Chapter 3
Challenges and techniques in RTS Game Als
development

In previous section 2 we showed that playing RTS games can be quite challenging, even
for a human. In this chapter, we present the challenges in the development of RTS
Game Als and how game agents creators and researchers approach them.

I 3.1 Challenges in RTS Game Als

According to [5] current problems in RTS Game Als can be grouped in 6 different areas
as follows:

® Planning: As was mentioned in 2.1 due to the enormous size of action and state space,
planning in this domain presents a problem where standard adversarial planning
approaches are not directly applicable. A common approach is to use multiple levels
of abstractions as was shown in 2.2. However, this may not be enough as we explain
on common techniques in the following section.

m Learning: due to limitations of usage of standard adversarial planning techniques
researchers have been training to employ learning techniques to improve game Als.
In this area, most efforts were put into Prior Learning as a way how to learn appro-
priate strategy before game using for example replays and specific map information.
Another are of focus is deploying online learning techniques allowing agents to im-
prove their play while playing a game. It is called In-game learning. Researchers are
also interested in Inter-game learning with the goal to increase the chance of victory
in next game by learning from previous one.

m Uncertainty: what makes planning in this domain even harder is uncertainty as
adversarial planning under uncertainty in domains of the size of RTS games is still
an open question. Uncertainty comes from 2 sources — environment is partially
observable, and a player cannot predict opponent’s actions.

= Spatial and Temporal Reasoning: be able to position unit and building well in
right time is a vital part of each game playing agent for strategy and tactic execu-
tion. Therefore, RT'S Als developers pay much attention to Spatial and Temporal
Reasoning.

s Domain Knowledge Exploitation: in the case of RTS games (compare to for example
board games) exploitation of domain knowledge remains quite an uncharted territory.
There have been two main directions: in most common researchers are focusing on
hard-coding strategies to agents, so agents have to only decide on an action from the
predefined set of strategies. In other researchers are trying to learn plan, strategies,
or trends from replays. However, how to learn any of this in games like StarCraft
automatically is still uncertain.

m Task Decomposition: due to many challenges mentioned before and the fact that
decomposition is natural even for humans (as is seen in 2.2), a decomposition is a



3. Challenges and techniques in RTS Game Als development

preferred approach for developing game Al. However, even it presents many chal-
lenges. The significant one is on design architecture which would enable individual
AT techniques to work well together.

As was mentioned in 1 we are concerned on: Adaptive planning, Domain Knowledge
integration and Domain Knowledge integration.

I 3.2 Techniques for RTS Al development

To develop game playing agent, one needs to address most of the previously mentioned
problems so classification according to this problems is hard. So [5] categorize tech-
niques rather to 3 branches: strategy, tactic and reactive control. What each branch
represents is described in detail in previous section 2.2.

B 3.2.1 Strategy

Making decisions on strategy level presents still an open problem in the domain of
RTS games because of the size of the search space. Solutions based on Markov Decision
Processes (MDPs) and Partially Observable Markov Decision Processes (POMDPs) are
hardly applicable here. Over the years there have been many other simpler approaches
how to address those problems from planning based methods, hard-coded solutions to
machine learning methods. We give a short description for just a few of them in the
following text (more details can be found in [5]). Is worth to mention that most of the
techniques mentioned assume complete information which may be problematic in an
environment of imperfect information.

BEHAVE

O 000 (OO

Figure 3.1. Behavior Trees: A tree made of modular behaviors (from: [11]).

Most commonly used techniques are ones that are hard-coded. That especially holds
in commercial RTS game industry. The most typical case is to use finite state ma-
chines (FSM) where Al behavior is decomposed to manageable states with conditions
triggering transitions between them. Despite FSMs popularity and level of adoption by
developers of game Als, they are easily exploitable by opponents who can adapt, be-
cause they struggle to encode dynamic and adaptive behavior. Other approaches based
on FSMs such as Hierarchical FSMs and Behavior trees (BT) (shown in figure 3.1)
remain exploitable too. Other well-explored techniques providing more flexibility are
approaches employing planning techniques such as Case-based planning (CBP) and Hi-
erarchical Task-Networks (HTN). Many researchers have been trying to approach the
problem from machine learning point of view employing massive data sets of replays
available. Very popular technique among researchers is case-based reasoning (CBR).
In [12] it is used for Army Compositions. Examples of CBR and other less common
machine learning techniques such as Hidden Markov Models, Bayesian networks, and
evolutionary algorithms, are listed in [13].

10



3.2 Techniques for RTS Al development

Figure 3.2. Starcraft map with regions and choke points (from: [14]).

B 3.2.2 Tactics

Tactics involve two part: reasoning about tactical decisions in a battle and terrain
analysis. When concerning those parts of tactics composed mainly from spatial and
temporal reasoning for fighting battles, all the techniques mentioned in section 3.2.1
can be applied as well. On top of that literature such as [5] gives examples of other
techniques such as Answer Set Programming (ASP) for walling (intentionally blocking
the entrance to base shown in figure 3.3), UCT algorithm (a Monte Carlo Tree Search
algorithm) for tactical decisions, and so long. Most of the work done in Terrain analysis
is usually performed off-line before a game as most of the information gathered about
map holds for the whole match. Terrain analysis techniques are for example based
on influence maps, application of Voronoi decomposition to detect regions and choke
points, and others (example of analyzed map is in figure ter]).

B 3.2.3 Reactive Control

There are many useful techniques to maximize the effectiveness of units, but Potential
fields and Influence maps are the most prominent ones. Those techniques are used for
things like obstacles avoidance or for staying in maximum shooting distance to minimize
taken damage. There are other popular approaches based on usage of simple pathfinding
algorithms represented in many cases by A* (example is on figure 3.4 and 3.5). Many
researchers have been exploring options to use machine learning techniques already
mentioned in 3.2.1 and 3.2.1 for reactive control. On top of that, many of them have
tried to employ reinforcement learning (RL) of some kind.

11



3. Challenges and techniques in RTS Game Als development

FETIDL ¥

un, work: 0 ration L4 minenatio

buildManagerMinerals; 22

Opening Manager: ac

2ning: 14

Openir

Figure 3.3. Example of wall-in placement as a Protoss. The wall consists of a Gate-

way, Forge and Pylon structures and a Zealot unit. In CSP terms, variables from X =

{Gateway, Pylon, Forge, Zealot} are assigned the values of (118, 23),(122, 22),(124, 23)
and (126, 23) respectively (from: [15]).

Figure 3.4. A* example (from: [14]).

12



3.3 Design of the state of the art game playing (StarCraft) bots

Figure 3.5. A* in Starcraft (from: [14]).

I 3.3 Design of the state of the art game playing
(StarCraft) bots

Authors of [5] give a practical overview of architectures (see figure 3.6) used in Star-
Craft bots participating in StarCraft AI competitions. The current situation on the
field of complete game playing agents for StarCraft does not differ much from the one
in 2013. Developer and researchers have been working to some extent on integrating
many of the techniques introduced earlier to complete bots. The truth is that incor-
porating techniques alone to bot is not enough to match human ability to play RTS
game, so designers use a lot of domain knowledge to improve the play of their agents.
The typical approach is to divide the problem to subproblem which alone is technique
how to handle such complex issues. Creators then can for each type of subproblem
choose appropriate method how to deal with the problem. The real art of complete bot
development is designing architecture which can integrate many techniques together to
get an intelligent agent. By analyzing top bots’ structures [5] identifies following tools
used by creators to help them achieve the goal:

m Abstraction: it is very common for Al agents in StarCraft to reason about the task
on different levels of abstraction to make the problem easier to solve. For example
playing a game can be seen from a high level as deploying strategy and from low-level
spectrum as issuing commands to individual units. The usual practice is to develop
a module for each level of abstraction and use outputs of reasoning on a high level
of abstraction as input for the lower level. For example, the top-level module will
select a strategy to execute, and the lower level module uses this to come up with
build order which is then performed by the lowest level module.

= Divide-and-conquer: playing the game can be divided to separate task which can be
under some assumptions handle relatively independently of each other so one module

can, for example, concentrate on gathering resources and other on managing units in
the battlefield.

Lots of bots use a combination of those two tools. A good example of a combination
of both is using multi-agent system (MAS) architecture ([4], [16] and [14] to some

13



extent). As we are using MAS as well, we

of section 5.2.

discuss decomposition using MAS at the end

BroodwarBolQ: SPAR:
Combat L o Amitiator  |e—af  ECOTOMY Decision Making
Strategic
Work Strategy
Goal Ma‘l):a;;l Skynet: BuildOrder Threat
Manager Intelligence s Manager Evaluation
Inielligence
> ! ‘ ecsen
Managet Manager Terrain Macro Resource Expansion . - Decision
Units Anal »|
Goup | la- o Tech nalysis Manager Manager Manager Plan ¥
Action
Manager Manager Manage !
Bayesian Construction o ¢! g€l !
Unit Filter Manager Wall GameProgress > Dat:
S BlockedPath ata i
Detection Abstraction Readtions
Tactics
BTHAI PylonPower Unit *
E T Tracker Information Task
Manager
Resource Base Latency
{ Control
Build Upgrade 1 I Building
Planner Manager 3 : Taskn ™" Placer
Agent Exploration |- I
‘ Manager Manager r» ' Squads
v T
|_> ‘ UAlbertaBot:
Unit - E
|, G o
=
Spend N Game
= o Commander s
AIUR: Gombat e Economy Manager Manager
St
Combat g _____. | Mood e + Build 1
Manager ‘Worker Squad
Manager Manager Manager Combat || | Stategy | _ || Producticn
Ammy Arbiator v Manager Manager Manager
Manager Base - r Worker i ¢
Manager - Information Manager
. Intelligence \ I Squad - Manager |- o, Intelligence Building
petense '/ Construction Agent (blackboard) Planner Saued - Manager
anager Scout Spy Manager v Manager | _ 1] Information | | _ _|
Manager Manager Manager c
Under Attack ™™ Tl Producti L Buildi
ler Attac) roduction Ir‘_- . Ir e uilding
Manager Information Combat Production Micro _ Map .
Manager get Agent Manager Manager Tools b

Figure 3.6. Architecture of 7 StarCraft bots obtained by analyzing their source code. Mod-
ules with black background sent commands directly to StarCraft, dashed arrows represent

data flow, and solid arrows represent control (from: |

5

D)

Interesting fact about most current bots is that on the higher level they are usually

scripted which usually involves using a set of predefined strategies to be executed by
the agent. In better scenarios agents are mixing between those strategies. However,
even this is not enough to match human player who can adapt to those strategies in
worst case after few games as he can easily predict what will bot play based on previous
games. On top of that agents lack adaptivity because once strategy is selected bot will
follow it for the rest of the match.

14



Chapter 4
Inverse Reinforcement Learning

In this section, we would like to introduce Inverse Reinforcement Learning (IRL) as
an extension of Reinforcement Learning (RL) technique. Motivation for this technique
was [] presenting autonomous helicopter capable of performing aerobatics after ob-

serving experts (see figure 4.1).

Figure 4.1. One helicopter while performing one of the airshows. It was trained trough
IRL by observing experts (from: [17]). airshows.

I 4.1 Reinforcement Learning and Markov Decision
Process

Reinforcement Learning is very popular machine learning technique to solve situations
where the agent does not know the payoff it will receive for its actions, so at first it has
to explore the environment by taking random steps to learn what is an actual payoff
for any action in given situation. To some extent, this can be seen as a very simple

15



form of trial and error learning similar to learning experienced by humans during their
lives.

In RL agent’s goal is to choose right action in any states he is currently in to max-
imize his feature discounted reward. That is, to find optimal policy. To give a formal
definition of problem we need to formalize (finite) Markov decision process (MDP) first.
An MDP notation in [18] is given as a tuple (S, A, Ps4, 7, R), where

m S is a finite set of states with cardinality N

m A ={ay, --,ax} represents set of k actions

m Py, (.) are the state transitions probabilities upon taking action a in state s

sy € (0,1) is the discount factor

mR : S — R is the reinforcment (reward) function is bounded in absolute
value by Ryaz

Further on we will write notation R(s, a) as R(s) for simplicity in equations. A policy
is defined as any mapping 7: S — A, and the value function for a policy 7 is given
as the expectation over the distribution of the sequence of states we visit by executing
policy :

(1) v (31) =F [R (31) -+ 'YR (Sg) + ’)/QR(Sg) + ‘71'] ,81..N € S
Q-function is given as:
(2) Q"(s,a) = R(s) + vEs~ p,,, [V7(5)]

where notation s” ~ Py, means the expectation with respect to state s” distributed
according to Py,(). Assuming that MDP can model all agent’s decision one can find
optimal policy 7* such that V7™(s) is maximized. Algorithms finding optimal policies
are based on two basic properties of MDPs. All s € S,a € A, V™ and Q™ for an MDP
satisfy (Bellman Equations):

(3) V7(s) = R(s) + 72 Par(s) () V(')

(4) Q™(s,a) = R(s) +~ Z Py (sHVT(s)

moreover, the policy is optimal policy for an MDP if and only if, for all s € S holds
(Bellman Optimality):

(5) m(s) € argmaz,c ,Q7 (s, a)

Ilustration of RL process to obtain optimal policy is in figure 4.2. Inputting envi-
ronment model (MDP) and specifying reward function R(s) one can get optimal policy
trough Reinforcement Learning.

I 4.2 Inverse Reinforcement Learning

Inverse Reinforcement Learning (IRL) is a form of Apprenticeship Learning in MDP
where in contrast to RL reward function is not known. Instead, few trajectories demon-
strating expert performing the task to learn are available. The goal of IRL is then to
use those trajectories and learn reward function that can explain expert’s behavior. Re-
covering reward function first and using it to generate desirable behavior (trough RL)
is what makes IRL standout from other supervised learning techniques as most of them
is learning policy as a mapping from states to actions right away. According to [18]:

16



4.2 Inverse Reinforcement Learning

Environment
Model (MDP)

4

Reinforcement Optimal

Reward
FunctionR (s) | — SRR — policyn -
max E[R(sy)+ —+R(s7)1 2] - 4

Figure 4.2. The reinforcement learning framework (from: [19]).

yreward function provides a much more parsimonious description of behavior As is
mention in [18]: ,the entire field of RL is founded on the presupposition that reward
function, rather than the policy, is the most succinct, robust, and transferable definition
of the task. IRL is especially useful when we are attempting to learn intelligent agent
that can behave successfully in our domain where is hard to define reward function; it is
extremely labor or designer has only limited knowledge of it. RT'S games are excellent
examples of that as results of actions are not immediately observable. In figure 4.3 one
can see IRL framework in contrast to RL framework illustrated in figure 4.2 we are
using optimal policy to learn reward function.

Environment
Model (MDP)

4

T Inverse Reinforcement Optimal
- AR (s) Oy Leaming (IRL) <::| policy

R that explains Expert Trajectories
expert trajectories So,Ag, Sy, 81, 52, 85

Figure 4.3. The Inverse reinforcement learning framework (from: [19]).

17



I 4.3 Solving Inverse Reinforcement Learning problem
in Finite State Space

As was shown in [18] a solution to IRL problem in Finite State Space (for finite MDP)
can be found trough linear programming (LP). LP can be formulated based on the
characterization of the Solution Set consisting of all reward functions for which given
policy is optimal. Following theorem from [18] characterizes the Solution Set:

Definition 4.1. Let a finite state space S, a set of actions A = {ay,---,ax}, transition
probability matricies { P, }, and a discount factor v € (0,1) be given. Then the policy 7
given by 7(s) = a; is optimal if and only if, for all @ = aq, - - -, ax, the reward R satisfies

(6) (Pay — Po)(I —vPu,) "R >0

Proof of 4.1 is based on substitution equation (3) to (4) from theorem written above
and can be found in [18]. Before giving LP formulation, two problems with this char-
acterization of the Solution Set need to be considered. First, any constant vector is
always a solution of R, and second, many solutions satisfying equation (6) exist so
choosing one R may impose challenge. One of the ways described in [18] to overcome
the problem of choosing R is to demand that selected R makes given policy m optimal
and favors solutions that make any deviation from 7 costly as possible. From all R
functions satisfying (6) and |R(s)| < Rpa.Vs, we pick one maximizing:

(M ¥ Q" (sa1) ~ max Q"(s.0)

ses
Then we can formulate the optimization problem as LP which we want to maximize:

> min {(Pu(i) — Pa(i))(I —1Py) " R)

i=1a€{az2,,ar}
s.t. (Py, — P,)(I —~vP,,) 'R>0, Ya € A\a;
IRi| < Runaxri=1,...,N

In our opinion, IRL can make a useful addition to already existing approaches (more
on this in section 3.2) how to employ huge data sets with examples of professional play
in games like StarCraft and bootstrap some of the expert level domain knowledge to Al
agents.Due to the complexity of our domain and computational feasibility, we currently
restrict ourselves to the simplest cases of IRL. We consider only IRL in Finite State
Space for our experiments (to do that we are using clustering as presented in 6). Nev-
ertheless, human StarCraft players seem to also reason about finite number of typical
game situations (states). Evidence of that in StarCraft domain is the existence of many
guides' how to play in given state of affairs.

! http://wiki.teamliquid.net/starcraft/Main_Page

18


http://wiki.teamliquid.net/starcraft/Main_Page

Chapter 5
Agents and Multiagent Systems

In this section, we give one of the definitions for term agent as it is understood by [20]
and [21] in the field of Artificial Intelligence. Understanding what (intelligent) agent
is in terms of Al, has particular importance for us because our goal is to create one.
More precisely an agent — bot that would be able to play StarCraft and learn some
of the decision making involved from professional players. Because it is intractable to
learn whole decision-making trough IRL at once, and we need to use other techniques
in our bot (actually many techniques are used together to do the job as is shown in
section 3.2) decomposition of some kind is inevitable. We decided to design our agent
as Multiagent system (MAS) to help us decompose the problem of playing StarCraft as
we think that it is the natural way how to approach decomposition. Therefore we also
give a characterization of Multiagent Systems in this chapter to show that MAS is a
logical way how to approach the problem. Using MAS of some sort for architecture is
nothing new in StarCraft bot development as we show in 3.3. At the end of this chapter,
we present the reasoning behind the idea of using MAS as a tool for decomposition.

I 5.1 Description of (intelligent) agent

We use the definition from [20] and [21] which defines an agent as an entity that
perceives its environment through sensors and acting upon that environment through
actuators. This idea is illustrated in figure 5.1. Despite the vagueness of this definition,
it can frame the thing to which we refer as game playing agent well. In the case of a
human agent playing StarCraft, we can consider player’s eyes as sensors and his hands
as actuators giving commands to the game. On the contrary, given this definition, one
can consider even the game program as an agent as it receives commands as sensory
inputs and acts on the environment by displaying the game.

/Agent Sensors —as

Percepts

~
JUSWUOIIAUT

Actions

Y

\ Actuators

Figure 5.1. Agents interact with environments through sensors and actuators (from: [20]).

19



One of the differences between those two agents is autonomy — one agent decides on
commands to send, and another one executes them. Another key difference is that the
first agent mentioned can be considered asrational. One of the definitions for rational
agents based on [20] can be stated in the following manner. For each possible sequence
of sensory input, a rational agent should select an action that is expected to maximize
desirability of the resulting situation of the environment for the agent (design objective),
given the evidence provided by sensory input and built-in knowledge agent has. A
rational agent autonomously acting according to its best interest in every situation can
be to some extent considered intelligent. Environment properties play a major role in
the design of intelligent agent. As was shown in section 3.1 designing a rational agent
to play StarCraft still imposes significant challenge. Current agents are not flexible
enough in every situation. They very often lack reactivity - the ability to respond in
timely fashion to changes that occurred.

B 5.1.1 Types of agents

According to [20], there are four basic types of agent models embody the principles of
intelligent agents:

s Simple reflex agents are also the simple kind of agents. Any action is taken only
based on current sensory inputs. The action picking is based on if-then rules. A
good example of such agents in StarCraft is a unit controllers programmed only in
reactive fashion.

s Model-based agents keep some internal state of affairs of the environment that
depends on the history of their sensory inputs using a model. The model represents
knowledge how the world works. The action is then selected not just according
to current sensory inputs, but state plays an important role too. Many agents in
StarCraft use this approach as they are employing variants of finite state machines.

m Goal-based agents are based on the idea that knowing about the present situation of
the environment may not be enough. Agents need goals to describe situations which
are desirable. They are combining way how model-based agents choose actions with
emphasis on actions which may lead to a goal. An example of AT agent in StarCraft
following this principles is in [4].

m Utility-based agents try to solve the problem of the goal-based agents that defining
goals may still not be enough in complex environments like StarCraft. So, they
work with utility as a measure of desirability (preferences) for particular states of
the environment. The architecture of this agent is on figure 5.2. This type is also
in the vast interest of ours as Inverse Reinforcement Learning described in chapter 4
is a good example how to get a policy for such an agent. In this work, our main
goal is to bring utility-based decision even to higher level of decision making (most
utility-based decisions are currently restricted only to reactive control).

I 5.2 Description of Multiagent Systems

As was mentioned in previous section agent is in an environment. It is common that
many agents share the same environment and there is a subset of agents where each
agent must interact with agent different from itself. We refer to those kinds of envi-
ronments with interconnected agents as Multiagent systems (MAS). Due to properties
of agents, the system is highly distributed in nature, and one can perceive MAS as a

20



~

~
\

What the world
G—Iow the world evolves is like now

(]

( What my actions do Wi}}alt (lli)\zlcltllgi gkc

How happy I will be
in such a state

What action [
should do now

Agent Actuat -
K g cruators

Figure 5.2. A model-based, utility-based agent (from: [20]).

- ———
U4 ~ - -
S~ Sensors =

JUWUOITAUH

form of distributed artificial intelligence (DAI). Solving problems using MAS is accord-
ing to [21] best approach in situations where the multi-scale problem with following
characteristics exists:

s The problem has many subproblems. Some of the subproblems can be (geographi-
cally) distributed and are heterogeneous.

m It has large content as it has a broad scope and covers a major part of a significant
domain. Therefore there are many concepts to work with. Concepts in many cases
work with huge amounts of data.

® The topology of the subproblems is dynamic, and content may change rapidly. Main-
taining consistent information is hard.

The reasoning for using MAS in these situations is to let agents cooperate in solving
the problems which are impossible to be solved by them individually using central-
ized approaches. Distribution of computation can allow solving situations which are
otherwise impossible to solve or bring novel solutions. MAS forces system developers
to implement the system in a modular fashion, to represent multiple viewpoints and
knowledge of experts, therefore resulting system can be expected to be more fault tol-
erant and reusable. On top of that unpredictable interactions between agents make
developers more likely to use declarative approach when defining agents.

From now on when the term MAS is referred to, it means a MAS where agents
cooperate to reach common goals. For agents to be able to cooperate, they need to be
able to communicate. Communication is necessary to achieve common goals as some
form of coordination needs to take place between agents. Cooperation puts another
requirement on most (rational) agents in those systems; they need to have the social
ability — be able to communicate with others.

At the end of 3.3 we mentioned two tools for decomposition — Abstraction and Divide-
and-conquer, MAS enables both of them. Using different components in the form of
agents can be seen as a natural way for Divide-and-conquer approach and structure of
the system — relation of the agents is a kind of abstraction. For example in StarCraft
domain, one can see a unit as a vivid candidate on being an agent. So the problem
of unit behavior is decomposed to smaller subproblems which can be than influence
by other agents in higher hierarchy — commander of some kind who issues commands
to the unit. For example telling unit by agent higher in command is the abstraction.
Another advantage of MAS is a loose definition of an agent which can be decomposed

21



5. Agents and Multiagent Systems

as well. All of the properties makes from MAS great tool for decomposition and way
how to integrate many techniques to the system.

22



Chapter 6
Problem decomposition and learning
integration

Decision-making is just one of many competencies required by a bot to be able to play
games like StarCraft. In 2 we presented various other skills vital for successful bot
and showed that those skills might have certain depth as it is in the case of decision
making. To create a capable bot for games like StarCraft one must use many techniques
presented in 3. Inverse Reinforcement Learning is just one of the techniques to obtain
one particular skill, and it alone is not enough to realize bot. Therefore we developed
an opinionated framework based on ideas of distributed multi-agent systems described
in 5 to be able to integrate other techniques to our bot and due to the necessity to
decompose the problem of playing StarCraft to more manageable subproblems. In the
following chapter, we present our framework, the high-level architecture of our bot and
integration of learning. The reasoning behind using MAS can be found at the end of
the previous 5. All code related to our work can be found in public repository!. We
give concrete examples on usage in 7.

I 6.1 Framework

First of all, it is important to explain why we bothered developing something such
as framework in the first place when many others bots such as [4] and [14] use MAS
ideas to some extent, and even some previous works aim at developing framework of
some kind [16]. Simply it was not enough for our use case as those works are even
more opinionated than our intended framework. In our opinion, it would put many
restrictions on the future development as they do not meet our requirements:

® We do not want to enforce some static form of structure as relations between sub-
problems are dynamic and vary trough the time and situation. We want for parts
of the system to make proposals of the goals that they think are right for the col-
lective and augment the environment for others. Others can then decide their level
of involvement and behavior for the situation. We want to have our components as
simple as possible by reducing communication and focusing more on properties of
the environment. This kind of contract introduce a loose way of coupling for indi-
vidual components, enables greater abstraction with better decomposition and make
problems simple.

m We want our component to be able to change its behavior based on circumstances.
As we are dealing with complex problems, we want to make things easier by reasoning
what our search space looks like first and then plan on this space.

m We want our framework to be modular and easily extensible with the possibility to
integrate many techniques.

! https://github.com/honzaMaly/kusanagi

23


https://github.com/honzaMaly/kusanagi

updates

Agent .J : : 1 :
DesireMediator BeliefsMediator

h 4

| Memory [%contains— HeapOfPlanningTrees
e Register Register ]
&
Y
l—
Visitors visits/manage’ ‘ ry
I use
use/update T |—I00kupﬁ share/subscribe/commit .
—starts/terminates
[#——registers/terminates startterminates
AgeniType —{ Lookup Module

MAS E

h

cinterfaces
MAS Facade

—read/a

remove agent terminate

Figure 6.1. View on main components and their relations in our framework. The frame-
work is based on the decentralized multi-agent system. We use two kinds of mediators to
reduce communication required by agents to achieve simple and loosely coupled agents.

add agent

m We want for our framework to be portable; we may not want to use it just for
StarCraft, and declarative to be able to add functionality to encode all system using
JSON or XML configuration files.

In our framework, we use terms Beliefs, Desire, and Intention architecture from
BDI [21] to model agents. It is one way how to model rational agents. From now on,
to beliefs we refer as the information set available to the agent, desires are objectives
which agent may want to achieve, and intentions are objectives agent has committed to
accomplish. Intention also contains a plan to reach the goal. To illustrate the relation
between those three terms we give following situation from StarCraft where the player
has many options when choosing units to build (desires). Based on his beliefs about
his and enemy army composition (beliefs) he starts to create a particular unit mix to
adapt his army (intentions).

B 6.1.1 Architecture overview and basic properties

Based on our requirements we designed our framework as distributed multi-agent sys-
tem. High-level architecture overview is in figure 6.1 where building blocks of our
system are shown. Main components of the system are agents and mediators for desires
and beliefs. The system is accessible trough facade.

The central part of our framework is an agent. Its implementation is in alignment
with agent’s principles outlined in 5. It has an own memory to represent beliefs where
it stores data from sensors of the environment, additional facts it may deduce and
accessible beliefs shared by other agents trough mediator. An important part of the
memory is a belief about its current plan or plans of others. The goal for agent design

24



was to be as simple as possible to ease complexity and enable better decomposition. We
made communication as part of the environment — trough desire and belief mediator.

Each agent periodically consumes desires from the mediator. Parameters of shared
desires are initialized by beliefs of the original agent who propose them. This creates
a contract between agents. An agent treats own and shared desires in the same way.
The agent commits to desire based on current settings and state of beliefs; it is only
reacting to the situation of the environment. Therefore agents are very loosely coupled
and simple. The way how agents make proposals to the system is based on Blackboard
architecture [21]. In this architecture, experts share expertise by stating what may be
good for collective to let others do that. Bot Nova [14] also uses this kind of architecture.
Using this architecture allows topology of the agents to be dynamic as agents decide
which desires to follow and only than hierarchy is introduced.

B 6.1.2 Planning, decision making, and techniques integration

We design our planning as another way how to do problem decomposition. Our ap-
proach is similar to Behaviour Trees or Hierarchical Finite State Machine with the
difference that we simplify the structure and add the ability to create structure dynam-
ically. The architecture of our planning algorithm is in figure 6.2. Each agent contains
component referred to as ,,HeapOfPlanningTrees“ which has set of trees to represent
search space for desires and their realizations. Each planning tree is composed of mod-
ules where each instance is desire or intention. When a module has a form of intention,
it defines an internal action for an agent to take — to reason about something, execute
some action in the environment, share desire with the system or extend current tree by
adding additional nodes. On top of that, each agent has its lookup library to choose
appropriate intention for each desire it has. Selection of desire is currently based only
on key-value lookup where current desire and its parent is the key. Replacing key-value
approach by modular one in the future will grant us with the possibility to integrate
other techniques to improve search for right behavior in given situation.

Every module is declarable by the user, so there are endless possibilities how to
implement new techniques or to further decompose the problem. For deliberation, we
use submodules named as

Various visitors periodically visit every tree — two to decide commitment and third
to execute executable content of terminal modules. The way how they do that is
shown in figure 6.3 which represent an abstract overview of agent routine. User-defined
configuration initializes each agent by declaring desires agent may want to pursue,
beliefs it works with and lookup library to build up trees. The important part of the
process is to keep most current beliefs and desires as they are a vital part of agent’s
decisions.

B 6.1.3 Implementation of framework

We implemented our framework as domain independent where agents run in parallel
synchronizing only trough mediators. To achieve good performance and robustness
communication with mediators is asynchronous. Each mediator keeps a queue of sharing
requests which are incorporated to working register. Mediator also maintains a read-
only version of register available for agents. This register is periodically updated by
working one in a way that it can be accessed concurrently by agents. The downside of
this approach is the fact that data contained may not be most recent. However, this is
the obvious downside of most distributed systems.

25



is employed

is emplyed Jr
¥

Memory —flills—— Farameters [€—haz— Module ——has—» CommitmentDecider
A

is;ATA part of tk
|

HeapOiPlanningTrees

Desire Intention <t
| x
P, contain
i Abstract Act Command
Own DesiredByAnotherAgent Own DesiredByAnotherAgent
Visitor
<t
[
Reasoning DesireForOthers
Executor LY
Commitment Remover |
Cwn DesiredByAnotherAgent
Commiter =

Figure 6.2. A simplified view of components and some of the relations between them for
our planning algorithm. Objects with the arrow to Intention are the concrete instantiation
of it and contain user-specified code.

As the language of implementation, we choose Java 8. Java is portable and strongly
typed Object-Oriented programming language. On top of that, it supports generic
programming and has some functional features. Together with good dependency man-
agement and a lot of available libraries for our use case, it makes an excellent choice.
Only one downside for usage of Java is a lack of multiple inheritance support. In fig-
ures 6.4 and 6.5 we present our declarations of an agent representing Hatchery and
declaration of one module using trained decision module to make a proposal to the
system. We give an overview of agents in 7.

I 6.2 Integrating Learning

To develop bot and integrate Inverse Reinforcement Learning to it, we add three differ-
ent packages to our bot. Executable packages are Replay Parser and Bot. Both share
package Abstract Bot. We present those packages together with our implementation
specifics and way how we Integrate Inverse Reinforcement Learning in the following
text.

B 6.2.1 Abstract Bot

As our framework is domain independent, we need to introduced another layer to our
bot to be able to play StarCraft. Abstract Bot contains wrappers for StarCraft objects
which we are accessing trough BWMirror' API written in Java. This library maps on

! https://github.com/vjurenka/BWMirror

26


https://github.com/vjurenka/BWMirror

e .
| Trees 1
| i
1 1
| i
|3 Ei SEeaiee 1
| : - :
1 1
Initialize instance of | ! AESETEITM et CERESRRET A=
i Memory !
agent e i : My
1 1 i 1 [
_______________________ 1 1 [ 1 1 [
T 1 1 1 1 1 [
H | ] H ] 1 [
| 1 1 i 1 1 [
! i L ! i i i
H 1 TR ERNE e T e 1 [
| I | 1 H 1 [
! | ! 1 ! | i
| {AgeniType R . E'""J: """ VT :L""E’J:""
! |nitializatio ! ! ! ' | ) .
! | { ! ) ! ! n
I H 1 | ___1 H 1 : 1
1 I ! [ 1 H Vo
| ! 1 . ! 1 [
1 1 | 1 1 1 h o
| ! I | [ 1 [
f ! | i ! 1 [
1 | | 1 1 1 | [
1 ! 1 1
i ! [ I H .
1 ! 1 1
i ! [ B R Lol
T L Ty TN 4 S 7 T Ao STyt | I I P 1 1 1 r + 1
: T : ! | | i
Foreach desire |, I A R T ! ! !
decide commitment ! ! : l_:;_;_ ______ L Lo ol i
_______ i i ! ;
i : i L
_____ [ R TR | I 1 1
T I 1 1 1 1
1 H [ T (PR (I Jla = s cm
1 1 [ I 1
i : e i i
: : 1 : ______ aTTTTTTN
] I [ H
1 [ !
1 [ !
: it l
-------- e o

Execute terminal [~~""" """ -
executable intentions

YES

(RSB L LS L S R A R A S A

For each intention

decide commitment

Global
D o e e e e e e B B SR i R R TR T

Share beliefs

Download global
desires

Clean Up MO X

Is Alive?

Figure 6.3. A simplified model of Agent’s routine representing whole Agent’s life cycle in

the form of BPMN process. An Agent works with many data sources. It accesses global

beliefs and desires managed by mediators. It has its private memory which contains plans in

the form of HeapOfPlans. Important stores are the ones with initializations. Initializations
are declarative.

BWAPI! connected to the game. Due to properties of our framework, we had to write
wrappers for most of the objects we use from BWMirror as it does not support concur-
rent access and does not allow to work with objects outside of the main routine. We
accompanied wrappers by the cache to store wrapped instances of game-related objects.
There are other performance benefits of it. As agents access game independently — we
can serve them cached objects already accessed by different actors.

Another important part of Abstract Bot package are declarations for two remaining
packages such as types of agents, their desires, feature container headers to describe

! https://bwapi.github.io/

27


https://bwapi.github.io/

6. Problem decomposition and learning integration

public static final AgentTypsUnit HATCHERY = AgentTypeUnit.builder()
.agentTypelID (AgentTypes. HATCHERY)
.initializationStrategy(type -> [
type.addConfiguration (UPDATE BELIEFS ABOUT CONSTRUCTION, beliefsAboutConmstructien);

ConfigurationWithCormand.WithhetingCommandDesiredByOtherhigent upgradeTolair — ConfigurationWithCommand.
WithActingCommandDesiredByOtherAgent.builder()
.commandCreationStrategy (intention -> new ActCommand.DesiredByAnotherRgent (intention) |
e e
public boolean act (WorkingMemory memory) |
return intention.returnFactValueForGivenKey (IS UNIT).get().morph(LAIR TYPE);

1
hH
.decisionInDesire {CommitmentDeciderInitializer.builder()
.decisionStrategy((dataForDecision, memory) ->
dataForDecision.getFeatureValueGlobalBeliafs (COUNT OF MINERALS) >= LATR TYPE.getMineralPrice ()

|l memory.getReadOnlyMemoriesForAgentIype (AgentTypes.HATCHERY)
.map (readOnlyMemory -> readOnlyMemory.returnFactValueForGivenKey (REPRESENTS UNIT).get().getNearestBaseLocation().get())
.noneMatch (ABaseLocationWrapper::isStartlocation))

!
.globalBeliefTypesByAgentType (new HashSet<> (Arrays.asList(COUNT OF MINERALS, COUNT_OF_GAS)))
Lbuild()
1
.decisionInIntention (CommitmentDeciderInitializer.builder()
.decisionStrategy((dataForDecision, memory) -> false)
-build(}))
Lbuild();
type.addConfigquration (UPGRADE TO LATR, upgradeTolair);
n
«usingTypesForFacts (new HashSet<>(Arrays.aslist (IS BEING CONSTRUCT)))
.desiresWithIntentionToReason(new HashSet<>(Collections.singletonlist (UPDATE BELIEFS ABOUT CONSTRUCTION)))
.build():

Figure 6.4. An example of a declaration of an agent representing Hatchery. It declares
the desire to upgrade to Lair. However, ECO Manager needs to make a proposal to the
system first for the hatchery to consider commitment.

ConfigurationWithSharedDesire holdRir = ConfigurationWithSharedDesire.builder()
-sharedDesireKey (HOLD AIR)
.reactionOnChangeStrategy | (memory, desireParameters) -»> memory.updateFact (TIME OF HOLD COMMAND,
memory .getReadinlyMemoriesForAgentType (PLAYER)
-map (readCnlyMemory -> readOnlyMemory.returnFactValusForGivenkey (MADE OBSERVATION IN FRAME))
«filter (Opticonal::isPresent)
.map {Optional: :get)
.findAny () .crElse{ other null)))
.decisionInDesire (CommitmentDeciderInitializer.buildsr()
.decisionStrategy((dataForDecision, memory) -»> memory.returnFactValueForGivenKey (IS ENEMY BASE) .get()
&& Decider.getDecision{RgentTypes. BASE LOCATION, DesireKeys.HOLD AIR, dataForDecision, HOLDING))
.globalBeliefTypes (HOLDING.getConvertersForFactsForGlobalBeliefs() )
.globalBeliefSetTypes (HOLDING.getConvertersForFactSetsForGlobalBeliefs())
.globalBeliefTypesBylkgentType (HOLDING. getConvertersForFactaForGlobalBeliefsByAgentType (1)
.globalBeliefSetTypesByAgentType (HOLDING. getConvertersForFactSetsForGlokbalBeliefsByhgentType () )
.beliefTypes (HOLDING.getConvertersForFacts({))
.beliefSetTypes (HOLDING.getConvertersForFactSets() )
Jbuild())
.decisionInIntention({CommitmentDeciderInitializer.builder()
.decisionStrategy((dataForDecision, memory) -> !memory.returnFactValueForGivenkey (IS ENEMY BASE) .get()
|| !'Decider.getDecision{kgentTypes. BASE LOCATION, DesireKeys.HOLD AIR, dataForDecision, HOLDING))
.glocbalBeliefTypes (HOLDING. getConvertersForFactsForGlokbalBeliefs() )
.globalBeliefSetTypes (HOLDING.getConvertersForFactSetsForGlobalBeliefs())
.globalBeliefTypesByhgentType (HOLDING. getConvertersForFactsForGlobalBeliefsByAgentType () )
.globalBeliefSetIypesByAgentIype (HOLDING.getConvertersForFactSetsForGlobalBeliefsByAgentType () )
beliefTypes (HOLDING.getConvertersForFacts())
.beliefSetTypes (HOLDING.getConvertersForFactSets())
Lbuild())
Lbuild():
type.addConfiguration {HOLD ATR, holdRir) :I

Figure 6.5. Declaration of the module for BaseLocation agent using trained decision mod-
ule to decide if an instance of agent make the proposal to the system to hold the position.
Each air unit sees this desire and can decide to follow it.

IRL states, and beliefs. We use common declarations to make sure that data used in
both packages check.

B 6.2.2 Replay Parser

28



The Replay Parser package contains two executable programs. One is for game obser-
vation, and other is to learn decision-making trough Inverse Reinforcement Learning
using those observations. The part to observe the replays consists of observers repre-
senting agents we would like to learn to make decisions based on observation of players.
We reduce decision-making problem on two options. Was agent committed to desire or
not. Each observer has predefined set of desires to track. It tracks values of features
defined in ,,* to describe the state, and decisions made in the form of trajectory. After
each replay, trajectories are saved.

To learn decision making, we use the second program. For each agent and type
of desire, it loads saved trajectories. To be able to use IRL we have to reduce the
number of states from trajectories. As a baseline for state compression, we use K-Means
clustering with Euclidian distance, Z-Score normalization and the user-defined number
of clusters. For clustering, we employ JSAT library! which provides an implementation
of Minibatch K-Means [22]. Our approach is currently very biased and far from optimal
but computationally bearable in our setting. Using states and trajectories, we then can
create MDP with additional dummy state. We use this state as a destination for
transitions which did not take place in replays. During the run of IRL algorithm, we
keep reward for this state as small as possible to learn a policy which will not use
unknown transitions. For IRL we extended algorithms and MDP implementations of
BURLAP library? to match our use-case. The learned policy is then saved as decision
module which is then loaded by bot.

B 6.2.3 Bot

The figure 6.6 represents high-level architecture overview of our bot and shows the
integration of components. It contains package Bot with the concrete implementation
of agents — units, abstract agents and even agents for places. We present additional
implementation details on our agents in next chapter.

An important part of this package is ,,BotFacade“ implementing method for various
events called by the game. This way bot can communicate with the game by issuing
commands or reading data. To do that we introduce ,,GameCommandExecutor” which
manages requests of individual agents on game trough queue. It has a time window for
handling requests on game call. It also keeps execution time of the request type to plan
ahead as it makes sure that time will not be exceeded.

! https://github.com/EdwardRaff/JSAT
2 http://burlap.cs.brown.edu/index.html

29


https://github.com/EdwardRaff/JSAT
http://burlap.cs.brown.edu/index.html

Java

Abstract Bot J Bot
>
EotFacade Fcalls®  AgentFactories [—
Declarations
AbstractAgent UnitAgent
Wrappers |

calls

MAS Framework .J

MAS Facade  <—

Agent

AgentWithPlaceRepresentation [

DecisionLoadinService sefd requests

v

GameCommandExecutor <
lg—
Decision &
Modules
h 4
BWMirror
Y &
C/C++
‘L ¥
BWAPI —| BWTAZ
Game

StarCraft + ChaosLuncher

Figure 6.6. Overview of bot’s architecture. There are three different layers. We implement
top layers (except for BWMirror). The bot is based on our framework. The top layer
contains domain-specific packages and abstract declarations of our bot. Declarations are

30

shared with Replay Parser.




Chapter 7
Presentation of the bot and its Experimental
Evaluation

In the previous chapter, we gave an overview of the architecture of our bot with de-
scription how we integrated Inverse Reinforcement Learning to it. In this chapter, we
present examples of our implementation with an overview of agents, and their desires.
We also discuss the behavior of our bot and results against built-in AI. As our bot is
still more prototype than any serious threat to current the state of the art competition
bots, we analyze and explain its present performance its current performance to help
us in future development.

I 7.1 Realization of bot

We decided for our bot to play Zerg. In figure 7.1 we present high-level overview of the
implementation of agents with their desires and relations. Agents representing units
and agents to handle the economic aspect of the game or build orders are standard
even in other MAS systems such as those defined in [14] or [21]. We introduce a new
type of agent representing the location where a base can be built. In our opinion using
this kind of agent could be better than the central solution when coordinating multiple
attacks.

Each base location has the same set of desires as others. Those are desires such as
build static anti-ground or anti-air defense, or to send ground or air units to hold this
base. A base decides on a commitment to those desires using decision modules learned
trough IRL. When a base makes a commitment, it shares desire with system together
with its location as a parameter. This desire then propagates to units’ ,HeapOfPlans*
to let them decide if they want to realize the plan they have for this kind of situation.
For example, realization in the case of worker and desire to build static ground defense
has a form of abstract plan. A worker commits to it when it thinks it is nearest
to this location. Then it starts to execute individual steps of the abstract plan by
moving to the site, selecting a suitable place for building and finally building it. In
our implementation, each worker operates with some time limit to meet this intention.
After that, it may stop pursuing it and let others try it. To describe states for a base
location with our base on it, we use features related to units (buildings, army — for the
enemy and us) on the site, and economic value (workers mining resources). On top of
that, everything is compared to global values by introducing another set of features.
For the enemy base, we use a similar set of features.

Using MAS has other benefits besides decomposition. For example, workers can
easily cooperate on gathering resources by making reservations of the resources which
are currently gathered. Other workers can use this knowledge to decide on mining other
resources.

Trough IRL we are learning decisions for the managers and the base locations. ECO
Manager uses learned decision modules to decide when to expand, build another worker,

31



Mew Extractor <

Expand to another <

base

Gather Resources

| SE—

Build Defense <

h 4

‘ Hold Base ‘

Build

Y

h

y

Ground Melee

Larva

Air

Ground Ranged

Buildings

Base Location ECO Manager
Building Order Manager
Increase Capacity
Build Drone <
Unit Order Manager
TrainUnit e | .
A 4
Overlord Scout

Figure 7.1. A high-level overview of the implementation of agents with their desires and
relations. Blue ones have decision modules trained trough IRL by observing gameplays.

increase population capacity or build another gas extractor. So far, we have added
support only for three military type of units — melee and ranged ground, and air. Evan
though, we omit research and other unit types, it should provide bot with some level of
flexibility to start with. Decisions, when to build any unit or infrastructures, are made
by Unit Order Manager or Building Order Manager respectively. Those are trained
from replay observation using IRL. Same goes for decisions when to attack and when
to build any defense of each base location. Rest of the stuff is currently hard-coded.

To learn decision-making trough observation, we composed dataset of roughly 500
replays. We download those replays from forum thread! where the users upload hand

! http://www.teamliquid.net/forum/brood-war/310883-replays

32



http://www.teamliquid.net/forum/brood-war/310883-replays

7.2 Analysis of bot’s behavior and its performance

curated packages of interesting plays. There are many large datasets available!. How-
ever, we currently restricted ourselves to hand curated replays as we did not have the
capacity to parse larger datasets.

I 7.2 Analysis of bot’s behavior and its performance

To show our bots current capabilities, we put videos? of our bot beating default Zerg
AT on 1vl maps. The base was able to build is in figure 7.2. It was able to transit to
the mid-game meeting are requirements for training air units.

Feplay Progress

MEML Elapsad Tim=

Paused

Figure 7.2. Demonstration of our bot capabilities.

In our setting, we experiment with a dataset of various sizes; we let our bot to see
some replays ranging from 250 to 500. For each dataset, we use all replays for the
definition of MDPs, and at most 35 replays for learning reward function using IRL.
On one machine employing more replays is very time-consuming. To speed things up
and complexity restriction, we limit our MDPs to 2000 states. Sadly, 2000 as K for
clustering is in most cases not sufficient enough to get the best partitioning as we
discovered when we did some data exploration. Results of one training session are in
table 7.1.

After each training session, we tested our bot against built-in Als on different com-
petitive maps varying in size. It is fascinating to observe that the bot does different

b http://www.starcraftai.com/wiki/StarCraft_Brood_War_Data_Mining
2 https://youtu.be/hjL2Srf08pI and https://youtu.be/Y-CMgxLjul4

33


http://www.starcraftai.com/wiki/StarCraft_Brood_War_Data_Mining
https://youtu.be/hjL2Srf08pI
https://youtu.be/Y-CMgxLjuO4

Decision in desire Committed States

ENABLE GROUND MELEE 112 2000
UPGRADE TO LAIR 89 2000
ENABLE AIR 141 2000
ENABLE GROUND RANGED 101 2000
ENABLE STATIC ANTT AIR 250 2000
BOOST GROUND MELEE 710 2000
BOOST GROUND RANGED 616 2000
BOOST AIR 438 1999
BUILD CREEP COLONY 183 1000
HOLD GROUND 477 750
BUILD SPORE COLONY 52 1000
HOLD AIR 304 750
BUILD SUNKEN COLONY 172 1000
BUILD WORKER 818 2000
BUILD EXTRACTOR 500 1999
INCREASE CAPACITY 524 2000
EXPAND 946 2000

Table 7.1. Results of decision-making training. For each dataset, we use all replays for
the definition of MDPs, and at most 35 replays for learning reward function using IRL.

build orders against various opponents. In many cases, the build order is also influ-
enced by map size. Transitions are also different and may depend on the situation.
The acting is in many cases amusing. However, using the right set of default replays
for learning and the whole set of replays for MDPs, bot learned a strategy able to beat
zerg opponent in lonl maps in few scenarios. When comparing two provided videos
illustrating this strategy transitions are different — in one setting bot build mid-game
infrastructure in other it does the massive expansion.

By testing our bot, we analyzed following issues which in our opinion undermine the
performance of our bot most:

m Bot builds basic infrastructure at the beginning but sometimes is idle until it has
another vision on the enemy. To reduce the number of states, we eliminated time
from our features. We based them on the current situation only. Together with
insufficient scouting micro, it presents a big problem for bot ability to survive. Slow
transition in most cases leads to certain death.

m The composed dataset may be very opinionated and too small. With a narrow set
of situations as most of it are games from professional players. Some of the features
may not describe the problem well. Mentioned time is one of the most prominent
examples.

m Our bot is currently lacking any serious micro. We also omit many capabilities of the
full-scale player. Many capabilities are interrelated, and their absence can degrade
other ones.

m There are many parameters settings we have not optimized well yet due to the state
of the development.

m Learning single decision-making module for all races and map sizes shows its limita-
tions. The number of examples limits us when training decision modules. Situations
are also very different.

34



Despite the fact that we identified many problems lowering performance of our bot.
The results show great promise as it seems that bot could learn to play like a beginner.
We are optimistic about the possibility of our bot attending competitions in future.

35



Chapter 8
Conclusion

In this work, we develop a prototype of bot for StarCraft: Brood War which learns its
decision-making processes from demonstrations. We decompose the problem of play-
ing RTS game using our framework based on Multi-agent system to integrate Inverse
Reinforcement Learning with other techniques. Using the right set of replays to learn
decision-making trough game-play observation our bot was able to learn strategy which
can beat built-in Al for Zerg in some lonl map scenarios as we show in the last chapter.
The bot also shows the ability to adapt to the situation.

I 8.1 Discussion and future work

With the current state of bot it seems that we are still not at the end of the road to
introduce game Al which could be a severe threat to the present state of the art bot and
maybe even for humans. However, results present great promises. The latest version
of bot shows some level of adaptive behavior and is even able to learn some winning
strategy. However, there are still challenges to be addressed before bot developers
can take full advantage of IRL technique or presented framework. In the case of our
framework, we see great promise in the implementation of following features:

s It would be good to have some local belief mediator for shared desires between the
contractor and committed agents to the abstract developer from accessing global
beliefs to find information which can be shared locally.

® Another functionality increasing the level of flexibility for plan definition would be
the ability to use different techniques to select appropriate implementation of the
module.

For Inverse Reinforcement Learning usage in the domain of RTS, we see following
directions for future work:

® Exploring usage of infinite states MDPs.

s Combining IRL with other algorithms to adjust policy and reward function.

= Apply this technique to train a bot to play a different game (or at least different
RTS).

We are also interested in the possibility of using symbolic regression in combination
with our framework to model the system. In our case, a model of bot is provided by
the user which may introduce bias and can limit the performance of the system as
some of the essential domain knowledge may not be know by a designer. An instance
of symbolic regression could eliminate those issues by finding a structure which can fit
dataset by composing system from blocks of behaviors.

36



References

[1] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George
vanden Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalch-
brenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu,
Thore Graepel, and Demis Hassabis. Mastering the game of Go with deep neu-
ral networks and tree search. Nature. 2016-1-27, vol. 529 (issue 7587), 484-489.
DOI 10.1038 /naturel6961.

[2] Matej Moravéik, Martin Schmid, Neil Burch, Viliam Lisy, Dustin Morrill, Nolan
Bard, Trevor Davis, Kevin Waugh, Michael Johanson, and Michael Bowling. Deep-
Stack. Science. eaam6960-. DOI 10.1126/science.aam6960.

[3] David Churchill, Mike Preuss, Florian Richoux, Gabriel Synnaeve, Alberto Uri-
arte, Santiago Ontannén, and Michal Certicky. StarCraft Bots and Competitions.
Encyclopedia of Computer Graphics and Games. 2016, 1. DOI 10.1007/978-3-319-
08234-9,8 — 1.

[4] Ben G. Weber. Integrating learning in a multi-scale agent. 2012 edition. Santa
Cruz: University of California, 2012. ISBN 14-776-1473-7.
http://alumni.soe.ucsc.edu/ bweber/bweber-dissertation.pdf.

[5] Santiago Ontanon, Gabriel Synnaeve, Alberto Uriarte, Florian Richoux, David
Churchill, and Mike Preuss. A Survey of Real-Time Strategy Game AI Re-
search and Competition in StarCraft. IFEE Transactions on Computational
Intelligence and Al in Games. 2013, vol. 5 (issue 4), 293-311. DOI 10.1109/TCI-
AIG.2013.2286295.

[6] DeepMind’s AlphaGo is secretly beating human players online.
https://www.newscientist.com/article/2117067-deepminds-alphago-is-secretly-[i
beating-human-players-online/.

[7] David Churchill. Heuristic Search Techniques for Real-Time Strategy Games. 2016.
[8] Giovanni Viglietta. Gaming Is a Hard Job, but Someone Has to Do It!. Theory

of Computing Systems. 2014, vol. 54 (issue 4), 595-621. DOI 10.1007/s00224-013-
9497-5.

9] A Starcraft Al seems incredibly difficult. 2013.
https://day9.tv/d/jbigg2012/a-starcraft-ai-seems-incredibly-difficult/.
10] StarCraft: Brood War Prize Pool € Top Players.
[10] p Play

http://www.esportsearnings.com/games/152-starcraft-brood-war.

[11] Understanding Behavior Trees. 2007.
http://aigamedev.com/open/article/bt-overview/.

[12] Martin Certicky, and Michal Certicky. Case-Based Reasoning for Army Composi-
tions in Real-Time Strateqy Games. In: Scientific Conference of Young Researchers
2013. 2013. 70-73.

37


http://dx.doi.org/10.1038/nature16961
http://dx.doi.org/10.1126/science.aam6960
http://dx.doi.org/10.1007/978-3-319-08234-9_18-1
http://dx.doi.org/10.1007/978-3-319-08234-9_18-1
http://alumni.soe.ucsc.edu/~bweber/bweber-dissertation.pdf
http://dx.doi.org/10.1109/TCIAIG.2013.2286295
http://dx.doi.org/10.1109/TCIAIG.2013.2286295
https://www.newscientist.com/article/2117067-deepminds-alphago-is-secretly-beating-human-players-online/
https://www.newscientist.com/article/2117067-deepminds-alphago-is-secretly-beating-human-players-online/
http://dx.doi.org/10.1007/s00224-013-9497-5
http://dx.doi.org/10.1007/s00224-013-9497-5
https://day9.tv/d/jbigg2012/a-starcraft-ai-seems-incredibly-difficult/
http://www.esportsearnings.com/games/152-starcraft-brood-war
http://aigamedev.com/open/article/bt-overview/

References

[13] Gabriel Synnaeve, and Pierre Bessiere. A Dataset for StarCraft Al & an Example
of Armies Clustering. Artificial Intelligence in Adversarial Real-Time Games 2012.
2012, 7.

[14] Alberto Uriarte Pérez. Multi-Reactive Planning for Real-Time Strategy Games.
2011.

[15] Michal Certicky. Implementing a wall-in building placement in starcraft with
declarative programming. arXiv preprint arXiv:1306.4460. 2013,

[16] David Fiedler. PouZiti metod multiagantnich systémi pro implementaci umélé in-
teligence v real-time strategiich. 2016.

[17] P. Abbeel, A. Coates, and A. Y. Ng. Autonomous Helicopter Aerobatics through
Apprenticeship Learning. In: The International Journal of Robotics Research. 2010-
11-05. 1608-1639.
http://ijr.sagepub.com/cgi/doi/10.1177/0278364910371999.

[18] Pieter Abbeel, and Andrew Y. Ng. Apprenticeship learning via inverse reinforce-
ment learning. Proceedings of the twenty-first international conference on Machine
learning. ACM. 2004,

[19] Apprenticeship learning using Inverse Reinforcement Learning. 2016.
https://jangirrishabh.github.io/2016/07/09/virtual-car-IRL/.

[20] Stuart J. Russell, Peter. Norvig, and Ernest. Davis. Artificial intelligence. 3rd
ed. edition. Upper Saddle River: Prentice Hall, c2010. ISBN 978-0136042594.

[21] Gerhard Weiss. Multiagent systems. Reprint. edition. Cambridge, Massachusetts:
The MIT Press, 2001. ISBN 978-026-2731-317.

[22] D. Sculley. Web-scale k-means clustering. Proceedings of the 19th international con-
ference on World wide web - WWW ’10. 2010, 1177-. DOI 10.1145/1772690.1772862.}}

38


http://ijr.sagepub.com/cgi/doi/10.1177/0278364910371999
https://jangirrishabh.github.io/2016/07/09/virtual-car-IRL/
http://dx.doi.org/10.1145/1772690.1772862

	TITLE
	Specification
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents/
	Tables/Figures
	Introduction
	Motivation
	Objectives
	Contribution
	Outline

	Identification of decision-making processes realized by humans in Starcraft
	Real-time strategy games and their complexity
	Decision-making processes in RTS games
	StarCraft specifics

	Challenges and techniques in RTS Game AIs development
	Challenges in RTS Game AIs
	Techniques for RTS AI development
	Strategy
	Tactics
	Reactive Control

	Design of the state of the art game playing (StarCraft) bots

	Inverse Reinforcement Learning
	Reinforcement Learning and Markov Decision Process
	Inverse Reinforcement Learning
	Solving Inverse Reinforcement Learning problem in Finite State Space

	Agents and Multiagent Systems
	Description of (intelligent) agent
	Types of agents

	Description of Multiagent Systems

	Problem decomposition and learning integration
	Framework
	Architecture overview and basic properties
	Planning, decision making, and techniques integration
	Implementation of framework

	Integrating Learning
	Abstract Bot
	Replay Parser
	Bot


	Presentation of the bot and its Experimental Evaluation
	Realization of bot
	Analysis of bots behavior and its performance

	Conclusion
	Discussion and future work

	References

