


Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Computer Science and Engineering

Master’s thesis

Management of timestamps C# library

Bc. Dominik Hons

Supervisor: Ing. Jan Kubr

Study Programme: Open Informatics , Master

Field of Study: Software Engineering

May 20, 2017



iv



v

Aknowledgements
I would like to thank my supervisor Ing. Jan Kubr for his valuable advice and kind approach.
I am also very thankful to my family for support throughout my study.



vi



vii

Declaration
I declare that I elaborated this thesis on my own and that I mentioned all the information
sources and literature that have been used in accordance with the Guideline for adhering to
ethical principles in the course of elaborating an academic final thesis.

Prague, May 14, 2017 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



viii



Abstract

The goal of this work is to analyze current timestamping tools and to design and imple-
ment a C# library for managing the creation and verification of digital timestamps. The
implementation follows the RFC 3161 timestamp protocol, which is based on the public key
infrastructure. The resulting library provides a complete solution for managing timestamps.
This library allows creating timestamps from one or more files, represented in different for-
mats, using several hash algorithms. It also provides two output formats of resulting time-
stamp. The verification of a timestamp returns relevant information about the timestamp
such as the generated time or certificate validity period. The library is publicly available as
open source software.

Abstrakt

Cílem této práce je analyzovat existující nástroje určené pro práci s časovými razítky
a následně navrhnout a implementovat knihovnu pro C# umožňující vytváření a ověřování
časových razítek. Implementace knihovny se řídí razítkovacím protokolem RFC 3161, který
je založen na infrastruktuře veřejných klíčů. Výsledná knihovna poskytuje kompletní řešení
správy časových razítek. Knihovna umožňuje vytvářet razítka z jednoho či více souborů, v
různých vstupních formátech, pomocí několika hashovacích algoritmů. Na výběr jsou také
dva formáty výsledného razítka. Při ověřování razítka knihovna vrací důležité informace jako
oražený čas nebo platnost certifikátu. Tato knihovna je veřejně dostupná jako open source
software.

ix



x



Contents

1 Introduction 1

2 Analysis 3
2.1 What is a timestamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Timestamping schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.1.1 PKI-based . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.1.2 Linked-based . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.1.3 Transient key . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1.4 Message authentication code . . . . . . . . . . . . . . . . . . 5
2.1.1.5 Decentralized timestamping using Bitcoin . . . . . . . . . . . 6

2.1.2 Timestamping standards . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2.1 RFC 3161 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2.2 X9.95 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2.3 ISO/IEC 18014 . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.3 Creating timestamps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.4 Verifying timestamps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.5 Storing timestamps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.6 Revocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.7 Re-stamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Current alternatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 TimeStampClient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 TSA services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Used technologies 15
3.1 C# . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 .NET framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.1 Cryptography library . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Bouncy Castle library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Design 17
4.1 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1.1 Creating timestamps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1.2 Verifying timestamps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 Data privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

xi



xii CONTENTS

4.3.1 Creating timestamps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3.2 Verifying timestamps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.4 Configuration file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.5 Fluent interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Implementation 23
5.1 TimestampCreator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 TimestampVerifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.3 Additional classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.3.1 TimestampData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.3.2 TimestampObject . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3.3 Utils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3.4 HashAlgorithm and OutputFormat . . . . . . . . . . . . . . . . . . . . 28

5.4 Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.5 Evaluation of the implementation . . . . . . . . . . . . . . . . . . . . . . . . . 29

6 Testing 31
6.1 Test-driven development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.2 System testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.3 Performance testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.3.1 TimestampData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.3.2 TimestampVerifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.3.3 TimestampCreator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7 Evaluation and future 41
7.1 Summary of the work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.2 Future . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

8 Conclusion 43

A CD contents 47



List of Figures

1.1 Diagram showing steps involved in creating a timestamp[15] . . . . . . . . . . 2

2.1 Diagram showing simple linked timestamping scheme[18] . . . . . . . . . . . . 5
2.2 Creating new keypair in transient key timestamping scheme[20] . . . . . . . . 6
2.3 Verifying file integrity[17] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 ASIC-S structure applied to a nested container . . . . . . . . . . . . . . . . . 10
2.5 Timestamp validity with revoked certificate . . . . . . . . . . . . . . . . . . . 11
2.6 Possible collision document[17] . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.1 Diagram depicting workflow of timestamp creation . . . . . . . . . . . . . . . 18
4.2 Diagram depicting workflow of timestamp verification . . . . . . . . . . . . . 19

6.1 List of system test results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.2 TimestampData hashing performance comparison . . . . . . . . . . . . . . . . 35
6.3 TimestampVerifier performance graph with logarithmic scale . . . . . . . . . . 37
6.4 TimestampCreator performance graph . . . . . . . . . . . . . . . . . . . . . . 38

xiii



xiv LIST OF FIGURES



List of Tables

4.1 Table containing configuration options . . . . . . . . . . . . . . . . . . . . . . 21

5.1 ITimestampCreator API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2 ITimestampVerifier API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.3 Utils API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6.1 Specification of test executing computer . . . . . . . . . . . . . . . . . . . . . 33
6.2 TimestampData hashing performance table (time in milliseconds) . . . . . . . 34
6.3 TimestampVerifier performance table (time in milliseconds) . . . . . . . . . . 36
6.4 TimestampCreator 20 minutes load performance test results . . . . . . . . . . 39

xv



xvi LIST OF TABLES



Chapter 1

Introduction

The phenomenon of the current world is digitalization. It influences almost every aspect
of everyday life. People are starting to read digital books, listen to digital music, buy
things in electronic shops and pay with digital money. This trend also applies to electronic
documents. We use them everyday by sending e-mails, paying bills, writing word documents
and in many more situations. As it usually is, new technology comes with new obstacles.
The challenge is, how to sign a digital document so that it is undeniable who created the
document and when it was created. This challenge is solved by using digital signatures and
digital timestamps. This work is dealing with the latter one. Digital timestamping (further
referred to as just timestamping).

A digital timestamp is a form of a digital signature which is used to capture a moment
of time. The timestamp then guarantees that the timestamped document has been created
somewhen before that moment of time. Security of digital timestamping is ensured by using
publicly available and trusted providers called time-stamping authorities. It also means that
nobody, not even author of the document, can temper with the captured timestamp[17].

This project aims to provide a complete set of timestamp management tools while re-
maining straightforward and easy to use. The library will guide a user through the process
of creating, keeping and verifying timestamps. Creating timestamps is a process which at
minimum involves providing data to be time stamped. As you can see in Figure 1.1, the
provided data is hashed using a cryptographic hash function. This hash is then sent to the
time stamping authority, which sends the complete timestamp back (more about this in a
later chapter). We don’t need the time-stamping authority to verify a timestamp. However,
this step involves checking the digital signature used by the time stamping authority to sign
a timestamp.

In my opinion, timestamping is quite complicated but interesting topic. Thanks to that,
programming a timestamping library is a complex work involving all sorts of programming
features. It implicates some knowledge ranging from cryptography to application protocols.
Working on this project has broadened up my horizons in many fields. And I genuinely hope
that this library will help to simplify timestamp management.

1



CHAPTER 1. INTRODUCTION

Figure 1.1: Diagram showing steps involved in creating a timestamp[15]

2



Chapter 2

Analysis

This chapter is going to explain the terminology and processes involved around time-
stamping. I will clarify what the goals of the developing library are. Also, I will look into
some other current alternatives for timestamping and explain the choices I have made.

2.1 What is a timestamp

As I have previously mentioned, a timestamp is a form of digital signature. It is used to
guarantee that a document has been created at a particular point in time. An example of
using a timestamp might be to certify that a payment has been made before its due date.
Another example of timestamping is when some new technology is invented and needs to be
patented before other competitors claim it.

2.1.1 Timestamping schemes

There are several strategies for timestamping, each of them with slightly different security
goals. I will explain the advantages and disadvantages of these schemes and explain my
choice.

The schemes I will talk about are:

• PKI-based scheme

• Linked-based scheme

• Transient key scheme

• Message authentication code scheme

• Decentralized timestamping using Bitcoin

3



CHAPTER 2. ANALYSIS

2.1.1.1 PKI-based

PKI stands for public key infrastructure. It is a series of processes and standards used to
ensure that the electronic transfer of information can be carried out securely; it is an industry
standard approach used for e-commerce, Internet banking, confidential email and a range of
other network activities[13]. In terms of cryptography, it is a technique that enables entities
to securely communicate on an insecure public network, and reliably verify the identity of
an entity via digital signatures[1].

There are several essential components of this infrastructure:
Certificate authority (CA) is a trusted, independent provider of digital certificates. A

CA issues a public key to the sender to enable the data being transferred to be encrypted
and a private key to allow the individual receiving the data to decrypt that information.
The certificate authority has its own certificate (known as the root key or trusted certifi-
cate), public key and secret private key; the CA’s trusted certificate is used to verify the
digital signatures it issues. In addition to issuing certificates, a CA must also be able to
revoke a certificate that has been lost or compromised and to make that information readily
available[13].

Digital certificate serves as a confirmation about the identity of the owner of a public
key. The public key is a part of the certificate itself. Additionally, the certificate proves that
the owner of a public key located in a certificate is in exclusive possession of the corresponding
private key. A certificate is associated with a period of time during which the certificate is
valid. But the validity may be revoked before the expiration date. This feature serves as a
way to deal with a non-standard situation, for example, if the private key is compromised
and we can no longer trust the certificate[17].

Public and private key are specially created paired numbers that allow the digital
signing of content. The private key positively identifies its owner and it needs to be kept
secret. In contrast, the public key, as the name suggest, is publicly distributed and it serves
to verify data signed by its paired private key[5].

All of this stands as a base for trusted timestamping. The timestamps are protected
by digital signatures and verification of such timestamps consist of verification of digital
signatures used to sign these timestamps.

Advantages - simple
Disadvantages - breach of CA1

2.1.1.2 Linked-based

Linked timestamping creates timestamp tokens which are dependent on each other, en-
tangled into some authenticated data structure. Later modification of the issued timestamps
would invalidate this structure. The temporal order of issued time-stamps is also protected
by this data structure, making backdating of the issued timestamps impossible, even by the
issuing server itself. The top of the authenticated data structure is generally published in
some hard-to-modify and widely witnessed media, like printed newspaper. There are no
(long-term) private keys in use, avoiding PKI-related risks[21].

Figure 2.1 illustrates the simplest linear hash chain-based timestamping scheme.
1https://www.schneier.com/academic/archives/2000/01/ten_risks_of_pki_wha.html

4



2.1. WHAT IS A TIMESTAMP

Figure 2.1: Diagram showing simple linked timestamping scheme[18]

The standard ISO/IEC 18014 describes the mechanisms for producing linked based time-
stamps2.

2.1.1.3 Transient key

Transient key cryptography is a form of public-key cryptography wherein keypairs are
generated and assigned to brief intervals of time instead of to individuals or organizations.
Data encrypted with a private key associated with a specific time interval can be irrefutably
linked to that interval. A keypair is active only for a few minutes, after which the private
key is permanently destroyed. Therefore, unlike public-key systems, transient-key systems
do not depend upon the long-term security of the private keys[23].

Whenever a time interval in a transient-key system expires, a new public/private keypair
is generated, and the private key from the previous interval is used to digitally certify the new
public key. This process is illustrated in Figure 2.2. The old private key is then destroyed.
As an extra security measure, all requests for signatures made during an interval are stored
in a log that is concatenated and is itself appended to the public key at the start of the next
interval. This mechanism makes it impossible to insert new “signed events” into the interval
chain after the fact. Transient-key cryptography is protected under US Patent #6,381,696
and has been included in the ANSI ASC X9.95 standard for Trusted Timestamping[23].

2.1.1.4 Message authentication code

In cryptography, a message authentication code (MAC) is a short piece of information
used to authenticate a message. In other words, to confirm that the message came from
the stated sender (its authenticity) and had not been changed in transit (its integrity). A
MAC algorithm accepts a secret key and an arbitrary-length message to be authenticated
as input and outputs a MAC. The MAC value protects both a message’s data integrity as

2https://www.iso.org/standard/50457.html

5



CHAPTER 2. ANALYSIS

Figure 2.2: Creating new keypair in transient key timestamping scheme[20]

well as its authenticity, by allowing verifiers (who also possess the secret key) to detect any
changes to the content of the message. MACs differ from digital signatures as MAC values
are both generated and verified using the same secret key. This implies that the sender and
receiver of a message must agree on the same key before initiating communications, as is the
case with symmetric encryption. This also means that MACs do not provide the property
of non-repudiation3 offered by digital signatures[22].

2.1.1.5 Decentralized timestamping using Bitcoin

Crypto currencies can serve as decentralized trusted timestamping services if hash values
of digital data are embedded into the transactions recorded in the block chain of the crypto
currency. Service4 based on this design has been created to allow users to hash files and store
these hashes on the block chain. Users can then retrieve and verify the timestamps that
have been committed to the block chain. The non-commercial service enables anyone, e.g.,
researchers, authors, journalists, students, or artists, to prove that they were in possession
of certain information at a given point in time. Common use cases include proving that a
contract has been signed, a photo taken, a video recorded, or a task completed prior to a
certain date. All procedures maintain complete privacy of the user’s data[9].

This approach sounds promising, however, in order to reduce operating costs, the service
collects submitted hashes, concatenates them and generates a single aggregated hash. This
hash is then submitted as a Bitcoin transfer, which implicates spending a small amount
of currency. From personal observation, the service does that approximately every month,
which makes it unsuitable for situations where timestamps must be created as soon as pos-
sible.

3It means that the sender cannot deny sending the message.
4http://www.originstamp.org

6



2.1. WHAT IS A TIMESTAMP

2.1.2 Timestamping standards

There are various standards covering timestamping. I will shortly talk about three of
them, RFC 3161, X9.95 and ISO/IEC 18014.

2.1.2.1 RFC 3161

This standard was created by the Internet Engineering Task Force5. It is the most widely
used timestamping standard. The text is fully available online at <https://tools.ietf.
org/html/rfc3161> for free. It contains a detailed description of requests and responses
between TSA and requester, the requirements of TSA and explains security considerations
when dealing with timestamps. The developing library will be following this standard be-
cause it is the most widely used, many TSAs offer RFC 3161 compliant timestamps and also
it is the only free standard out of these three.

2.1.2.2 X9.95

The standard, X9.95 describes the roles, responsibilities and requirements for users of
trusted time stamps-time source entities, time stamp authorities, time stamp requestors, and
time stamp relying parties. The standard also specifies data objects, processing flows, error
handling, and message formats as well as defines technology methods for digital signature,
message authentication code, linked token, and transient key. In addition, the standard
offers a comprehensive set of time stamp control objectives to validate a trusted time stamp
system for use by a professional audit practitioner. It also provides sample time stamp
policy and time stamp practice statements[24]. At the time of writing, this standard is
available for purchase at <http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.
95-2016> for 100 dollars.

2.1.2.3 ISO/IEC 18014

This standard was made by the International Organization for Standardization6. It
consists of three parts. The first one gives general definitions of timestamping services. The
second one specifies mechanisms producing independent tokens. And the third one deals
with mechanisms producing linked tokens. All three parts are available in ISO store at
<https://www.iso.org/search/x/>.

2.1.3 Creating timestamps

Timestamps are created by trusted third party called Time Stamping Authority (TSA).
But we need to provide it with all necessary information. The process of creating timestamps
is shown in Figure 1.1 and I will split it into several steps for an explanation.

5http://ietf.org/
6https://www.iso.org/about-us.html

7

https://tools.ietf.org/html/rfc3161
https://tools.ietf.org/html/rfc3161
http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.95-2016
http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.95-2016
https://www.iso.org/search/x/


CHAPTER 2. ANALYSIS

1. Hash calculation: The first step on the road to getting a timestamp is to calculate a
hash from the file we want to timestamp. This hash is also called message digest,
and it can be seen as the fingerprint of a message, i.e., a unique representation
of a message. The calculation is made by cryptographic hash function. This
function has fixed output length, usually between 128-512 bits. It should be
highly sensitive to all input bits. It means that small changes in input produce
significant changes in output. Another important feature of a hash function is
one-wayness. It must be computationally infeasible to find the original message
from its hash[16]. MD5, SHA1, SHA256 and SHA512 are some of the widely
used hash functions. Once the hash is calculated, it is then sent to the TSA.

2. Timestamp creation When the TSA receives the request, it does some checks to verify
the correctness of the request and the hash itself. After that, it uses a trustworthy
source of time to capture a moment of time into a timestamp. This timestamp
is together with the sent hash signed by the TSA. It means that it uses a spe-
cial digital certificate reserved for the purpose of timestamping. This signed
timestamp is returned to the requester.

3. Response verification Upon receiving the response, the requester SHALL verify that
what was time-stamped corresponds to what was requested to be time-stamped.
The requester SHALL verify that the timestamp contains the correct certificate
identifier of the TSA, the correct data imprint, and the correct hash algorithm.
It SHALL then verify the timeliness of the response by verifying either the time
included in the response against a local trusted time reference. Then, since the
TSA’s certificate may have been revoked, the status of the certificate SHOULD
be checked. If any of the verifications above fails, the timestamp SHALL be
rejected[2].

4. Timestamp storage The requester is now in possession of the original file, its hash and
signed timestamp. Only the original file and the timestamp needs to be stored.
He can throw away the calculated hash because it is going to be calculated again
during verification in order to guarantee file integrity, but he needs to remember
which hash algorithm was used so it can be applied again.

2.1.4 Verifying timestamps

The process of timestamp verification is very similar to verification of digital signatures.
In fact, it is its superset because while verifying a timestamp, it is necessary to verify the
digital signature used by the TSA to sign the timestamp. But let’s start with the first step.

1. File integrity check: The first and relatively easy step in verifying a timestamp is to
check that the file has not been tempered since the timestamp was issued. This
step is based on the security of cryptographic hash function and asymmetric
cryptography. We use the original file to recalculate its hash. Since the hash
function has the properties described in the previous section, we can assume
that if this hash is equal to the hash inside the timestamp, then the file has not
been tempered. To get the original hash from a timestamp, the public key of

8



2.1. WHAT IS A TIMESTAMP

TSA needs to be applied to the timestamp. Schema of this process is depicted
in Figure 2.3.

Figure 2.3: Verifying file integrity[17]

2. TSA certificate check: There are two parts in this step. The first one is to verify that
the certificate’s validation period has not expired. This check is done simply
by comparing time from the timestamp with the information embedded in the
certificate. The other part is a bit more complicated. Certificate’s validation
period may be expired prematurely, before the official time. This mechanism is
called revocation. It serves as a protection against an unusual situation, such as
private key compromising. I will explain more about revocation in section 2.1.6.
For now, let’s just say that the certificate can’t be revoked. It is necessary to
verify not only the certificate used by TSA but all of the parent certificates as
well. This connection is called certificate chain, and it ends in root self-signed
certificate[17].

In conclusion, there are three conditions to declare timestamp as valid:

9



CHAPTER 2. ANALYSIS

1. File integrity has not been violated

2. No certificate in chain has been revoked before timestamped time

3. Certificate validation period has not been expired for all certificates in chain

However, if the first two conditions are fulfilled but some certificate has expired, then the
timestamp is not considered invalid. It is in a "we don’t know" state, and its invalidity would
have to be proved. Nevertheless, there are some risks associated with expired certificates, so
it is a good idea to keep timestamps valid. It is done by re-stamping and I will explain it in
section 2.1.7.

2.1.5 Storing timestamps

The final timestamp is a signed data structure represented by a byte array. This byte ar-
ray can be loaded back into object form in order to be used during verification. A timestamp
can be stored on its own. There is, however, the possibility to store it together with the
timestamped data in a container called ASIC-S. It is essentially a zip container that holds
one or multiple files and their associated timestamp. If the timestamp is applied to multiple
files, they have to be stored in a nested container inside the ASIC-S container. Figure 2.4
shows the resulting structure. This approach negates the risk that the signature becomes
separated from the data to which it applies[6].

Figure 2.4: ASIC-S structure applied to a nested container

2.1.6 Revocation

The certificate used by TSA to timestamp our data may be revoked. It means that the
private key could have been compromised or that there is some other reason to invalidate it.

10



2.1. WHAT IS A TIMESTAMP

The important thing is that this certificate is potentially dangerous and needs to be checked
against the rules described in Figure 2.5. This verification is done because some revocation
reasons don’t necessarily mean that timestamps created with this certificate are invalid. For
example, the TSA may be ending its operation, therefore revoking the certificate for future
usage, but already created timestamps remain valid[2].

Figure 2.5: Timestamp validity with revoked certificate

2.1.7 Re-stamping

Certificates used by TSA to timestamp our documents have limited period of validity
(usually between one and five years). The reason is the fact that over time the development of
cryptography or the computational force of computers may allow finding collision documents.
This indicates that someone can pretend that this collision document is the original one. As
depicted in Figure 2.6, two different documents have the same imprint, and therefore both
of them can claim the original timestamp.

Re-stamping is one method how to keep our documents timestamped after the certificates
expire. The document is being continuously timestamped again and again, right before the
current certificate validity period is about to end. Repeated signing grants the ability to
react to the aging of cryptographic algorithms. Each new stamp can use new, stronger
and bigger ciphers. This way we can adequately increase the difficulty of finding collision
documents[17].

11



CHAPTER 2. ANALYSIS

Figure 2.6: Possible collision document[17]

2.2 Current alternatives

This section introduces what the current alternatives for timestamp management are.

2.2.1 TimeStampClient

TimeStampClient is easy to use .NET RFC 3161 time-stamp client library and appli-
cations based on Bouncy Castle library and it is available on Github7 and Nuget8. It is
comprised of a C# library, command line application and a GUI application. The library
provides tools for creating timestamps. The basic usage is shown in Listing 2.1. However,
this library doesn’t provide any timestamp verification.

2.2.2 TSA services

Many companies providing timestamping services have their own internal solutions that
they offer to customers. It can be in the form of desktop or web application.

An example of a desktop application is TSA_klient from PostSignum. Demo version
is available for free on their website <http://www.postsignum.cz>. They sell packages of

7<https://github.com/disig/TimeStampClient>
8<https://www.nuget.org/packages/TimeStampClient/>

12

http://www.postsignum.cz
https://github.com/disig/TimeStampClient
https://www.nuget.org/packages/TimeStampClient/


2.2. CURRENT ALTERNATIVES

Listing 2.1: Example of TimeStampClient library usage
using Dis i g . TimeStampClient ;

. . .

TimeStampToken token = TimeStampClient
. RequestTimeStampToken ( "http :// l o c a l h o s t / t sa " , "document . docx" ) ;

. . .

timestamps which are required in order to use the proper version. The application is a bit
older (2009). It uses the Bouncy Castle library.

As an example of a web application, I have picked universign9. It is a company sim-
ilar to PostSignum, which offers electronic signatures and timestamps. They provide five
free timestamps that are available after signing up. The web application is simple to
use by dragging and dropping files, and there is a small tutorial available at <https:
//www.universign.eu/en/timestamp/online/>.

9<https://www.universign.eu/>

13

https://www.universign.eu/en/timestamp/online/
https://www.universign.eu/en/timestamp/online/
https://www.universign.eu/


CHAPTER 2. ANALYSIS

14



Chapter 3

Used technologies

This chapter will describe the technologies used for this project. It includes programming
language, framework, and packages. The main technologies, C# and .NET, were chosen by
supervisor.

3.1 C#

C# is a modern object-oriented, general-purpose programming language, created and
developed by Microsoft together with the .NET platform. C# is a high-level language that
is similar to Java and C++. Because C# is developed by Microsoft as part of their modern
platform for development and execution of applications, the .NET Framework, the language
is widely spread among Microsoft-oriented companies, organizations and individual devel-
opers. The C# language is distributed together with a special environment on which it
is executed, called the Common Language Runtime (CLR). This environment is part of
the platform .NET Framework, which includes CLR, a bundle of standard libraries provid-
ing basic functionality, compilers, debuggers and other development tools. Thanks to the
framework CLR programs are portable and, once written they can function with little or
no changes on various hardware platforms and operating systems. C# programs are most
commonly run on MS Windows, but the .NET Framework and CLR also support mobile
phones and other portable devices based on Windows Mobile, Windows Phone and Windows
8. C# programs can still be run under Linux, FreeBSD, iOS, Android, MacOS X and other
operating systems through the free .NET Framework implementation Mono, which, however,
is not officially supported by Microsoft[11].

3.2 .NET framework

The C# language is not distributed as a standalone product – it is a part of the Microsoft
.NET Framework platform. .NET Framework generally consists of an environment for the
development and execution of programs, written in C# or some other language, compatible
with .NET (like VB.NET, Managed C++, J# or F#). The .NET Framework is part of
every modern Windows distribution and is available in different versions. It consists of:

15



CHAPTER 3. USED TECHNOLOGIES

• the .NET programming languages (C#, VB.NET and others)

• an environment for the execution of managed code (CLR), which executes C# programs
in a controlled manner

• a set of development tools, such as the csc compiler, which turns C# programs into
intermediate code (called MSIL) that the CLR can understand

• a set of standard libraries[11]

3.2.1 Cryptography library

One of the most useful .NET library in this project was the Cryptography library. It pro-
vides services such as hashing algorithms, that are crucial for timestamping. The cryptogra-
phy namespace also includes X509Certificates library which presents resources for certificate
management.

3.3 Bouncy Castle library

Bouncy Castle is a collection of cryptographic APIs. It started with Java and C# was
added in 2006. It provides an implementation of many cryptographic algorithms. But most
importantly, it provides means for generating and processing timestamp request. This func-
tionality is following the RFC 3161 standard. Bouncy Castle is licensed under an adaptation
of the MIT X11 license[10].

16



Chapter 4

Design

4.1 Workflow

This section is going to explain workflow of the two main library features, creating and
verifying timestamps.

4.1.1 Creating timestamps

The workflow of creating timestamps is pictured in Figure 4.1. There are three roles in
the process of creating timestamps, a user of the library, the library, and TSA. The process
starts with the user. He has to provide all necessary inputs such as the URL and credentials
of primary and secondary TSA, hash algorithm for calculating message digest and most
importantly the data he wants to timestamp. The library then validates whether the input
is complete. If so, it generates timestamp request, which is sent to primary TSA. If there
is some exception during the communication with primary TSA (e.g. connection timeout,
malformed URL), then the secondary TSA is used. TSA returns timestamp response which
needs to be validated. If it is valid, all that’s left to do is to validate the certificate used by
TSA to sign the timestamp. The user is given the timestamp and other relevant information
such as the time of timestamp, the issuer of the timestamp, certificate validity period or
hash algorithm.

4.1.2 Verifying timestamps

The verification process starts by a user providing a timestamp and the data to which
the timestamp applies. Then the library takes control. First, it validates that the provided
input is complete. Then integrity of timestamped file is checked. And finally, all certificates
in certificate chain are checked for validity. If the verification is successful, the library returns
the timestamp with other information, same as it does after creating timestamp. Otherwise,
an exception is raised. The complete process is depicted in Figure 4.2.

17



CHAPTER 4. DESIGN

Figure 4.1: Diagram depicting workflow of timestamp creation

4.2 Data privacy

There will be occasions where the user wants to timestamp some private document. The
user is cautious and doesn’t want to give the private document to some unknown library.
For this cases, there is the possibility to provide already calculated message digest instead of
the original document. It means that the user hashes the file on his own and give the final
hash to the library. The original file remains private to the user. However, this approach
leaves a little bit more responsibility on the user.

4.3 API

This section provides the description of library’s interface available to users. Once again,
this is divided into two parts, creating and verifying timestamps. Mandatory items are

18



4.3. API

Figure 4.2: Diagram depicting workflow of timestamp verification

highlighted in bold. Some of the inputs can be provided through a configuration file which
is described in section 4.4.

4.3.1 Creating timestamps

Inputs:

• Primary TSA url

• Hash algorithm

• Data to be timestamped

19



CHAPTER 4. DESIGN

– File

– List of files

– Message digest

• Output format

• Secondary TSA url

• Primary and secondary TSA credentials

• TSA connection timeout

• Minimum certificate validity period

Outputs:

• Timestamp

– TSR format

– ASIC-S format

• Additional info (generated time, certificate validity period, ...)

4.3.2 Verifying timestamps

Inputs:

• Timestamp

• Hash algorithm

• Timestamped data

– File

– List of files

– Message digest

• Minimum certificate validity period

Outputs:

• Timestamp

• Additional info (generated time, certificate validity period, ...)

20



4.4. CONFIGURATION FILE

4.4 Configuration file

Several data, required for working with timestamps, can be provided through a configu-
ration file. The purpose of this approach is to minimize the complexity of the code. Static
data that doesn’t change, such as credentials to access TSA, can be retrieved from this file.
This way the user doesn’t have to specify these settings every time he wants to create or
verify a timestamp. All of the possible configuration options are described in Table 4.1. The
configuration file will have the form of a simple text file. Each row contains exactly one
key-value pair of settings separated with the equals sign (example: hash.algorithm=sha1).
The configuration file should be easy to use. All of the settings are together in one file,
available for a change. The file will be provided as a string containing the path to this file.

Configuration name Description Value
tsa.primary.url Url address of primary TSA
tsa.primary.username Username for accessing protected TSA
tsa.primary.password Password for accessing protected TSA
tsa.secondary.url Url address of secondary TSA
tsa.secondary.username Username for accessing protected TSA
tsa.secondary.password Password for accessing protected TSA
tsa.timeout TSA connection timeout limit (millisec-

onds)

hash.algorithm Hash algorithm used to create message di-
gest

MD5
SHA1
SHA256
SHA512

timestamp.output Specifies format of timestamp that is re-
turned

TSR
ASICS

certificate.minimum.validity Minimum time period when signing cer-
tificate has to be valid (days)

Table 4.1: Table containing configuration options

4.5 Fluent interface

As you can see in the API section, the library offers a lot of different input options.
This would require quite a complicated approach to building objects responsible for creating
and verifying timestamps. There is a solution to alleviate this problem. It is the fluent
interface approach. It is used to simplify the construction of complex object that would
normally require having multiple constructors to satisfy all possible combination of provided
parameters, or setting these parameters separately. This approach is primarily designed to
be readable and to flow. The price of this fluency is more effort, both in thinking and in the
API construction itself[8]. The best way to express the improved readability is to look at
the example in Listing 4.1 and compare it to the traditional approach in Listing 4.2.

21



CHAPTER 4. DESIGN

Listing 4.1: Creating timestamp using fluent interface
TimestampCreator c r e a t o r = new TimestampCreator ( ) ;
TimestampObject timestamp = cr ea t o r

. SetTsaPrimaryUrl ( t saUr l )

. SetDataForTimestamping ( data )

. CreateTimestamp ( ) ;

Listing 4.2: Creating timestamp without fluent interface
TimestampCreator c r e a t o r = new TimestampCreator ( ) ;
c r e a t o r . SetTsaPrimaryUrl ( t saUr l ) ;
c r e a t o r . SetHashAlgorithm ( HashAlgorithm .SHA1)
c r e a t o r . SetOutputFormat (OutputFormat .TSR)
c r e a t o r . SetDataForTimestamping ( data )
TimestampObject timestamp = cr ea t o r . CreateTimestamp ( ) ;

22



Chapter 5

Implementation

The Implementation chapter describes the resulting library code. The library structure
is shown below. It is comprised of interfaces, implementing classes, helper classes, enums
and a configuration text file.

TimestampLibrary
ITimestampCreator.cs
ITimestampVerifier.cs
TimestampCreator.cs
TimestampData.cs
TimestampException.cs
TimestampObject.cs
TimestampVerifier.cs
Utils.cs
Enums

HashAlgorithm.cs
OutputFormat.cs

5.1 TimestampCreator

TimestampCreator is the main class responsible for creating timestamps. It implements
the ITimestampCreator interface. This interface defines the public API for creating time-
stamps. It is shown in Table 5.1. When TimestampCreator is instantiated it already contains
properties that have been defined in the configuration file. These properties can be manu-
ally overwritten using setters. And these setters can be called fluently as it was described in
section 4.5.

Data for timestamping can be provided in several different formats. The library accepts
a file as a stream, a byte array or a string representing the path to the file. Each of these
formats can also be supplied in an array in order to timestamp multiple files together. If the
user doesn’t want to provide the file, for example for privacy reasons, it can be exchanged for
already calculated message digest. Provided file or files are handed over to TimestampData
object which will be described later.

23



CHAPTER 5. IMPLEMENTATION

Type Method
ITimestampCreator SetTsaPrimaryUrl(string tsaUrl)
ITimestampCreator SetTsaPrimaryCredentials(string username, string

password)
ITimestampCreator SetTsaSecondaryUrl(string tsaUrl)
ITimestampCreator SetTsaSecondaryCredentials(string username, string

password)
ITimestampCreator SetTsaTimeout(int timeout)
ITimestampCreator SetHashAlgorithm(HashAlgorithm hash)
ITimestampCreator SetOutputFormat(OutputFormat format)
ITimestampCreator SetMinimimCertificateValidityPeriod(int days)
ITimestampCreator SetDataForTimestamping(string pathToFile)
ITimestampCreator SetDataForTimestamping(string[] pathsToFiles)
ITimestampCreator SetDataForTimestamping(Stream stream)
ITimestampCreator SetDataForTimestamping(Stream[] streams)
ITimestampCreator SetDataForTimestamping(byte[] data)
ITimestampCreator SetDataForTimestamping(byte[][] datas)
ITimestampCreator SetMessageDigestForTimestamping(byte[] digest)
ITimestampCreator SetMessageDigestForTimestamping(byte[][] digests)
TimestampObject CreateTimestamp()

Table 5.1: ITimestampCreator API

After all of the necessary data has been provided, it is time to invoke the CreateTime-
stamp method. First, it verifies that everything essential has been provided. Then, if
necessary, the hash is calculated from the given file or files. This is done again by the Times-
tampData object. Now it is time to involve TSA. TimeStampRequest is generated from
message digest and hash algorithm (because the TSA is required to check that the digest
is of corresponding length to its hashing algorithm) and send over HTTP to the TSA. If
necessary, credentials to access the TSA are included in the HTTP request. If any exception
occurs during communication with TSA, the secondary TSA is used (if provided). Response
from TSA needs to be validated for appropriate status and other controls. Some of this
validation is handled by Bouncy Castle (for example it checks that the message imprints
are identical in the request and the response). If the response passes this validation, all
that’s left is to validate the certificate and its predecessors in the chain. This is done by
TimestampVerifier which is described in the next section. After the certificates are declared
as valid, TimestampObject, containing the timestamp and additional info, is returned to the
user.

In conclusion, the basic usage of TimestampCreator is shown in Listing 5.1. However,
this can be even further simplified by providing repetitive settings through the configuration
file.

24



5.2. TIMESTAMPVERIFIER

Listing 5.1: Basic usage of TimestampCreator
TimestampCreator c r e a t o r = new TimestampCreator ( ) ;
TimestampObject timestamp = cr ea t o r

. SetTsaPrimaryUrl ( t saUr l )

. SetHashAlgorithm ( HashAlgorithm .SHA1)

. SetOutputFormat (OutputFormat .TSR)

. SetDataForTimestamping ( data )

. CreateTimestamp ( ) ;

5.2 TimestampVerifier

This class is in charge of verifying timestamps. It includes the verification of file integrity
and validation of certificate chain. Similar features can be found in TimestampVerifier
and TimestampCreator, namely that both implement its own interface (ITimestampVerifier,
ITimestampCreator), during instantiation properties are loaded from a configuration file and
both use the fluent interface. The API of ITimestampVerifier is shown in Table 5.2.

Type Method
ITimestampVerifier SetTimestampedData(string pathToFile)
ITimestampVerifier SetTimestampedData(string[] pathsToFiles)
ITimestampVerifier SetTimestampedData(Stream stream)
ITimestampVerifier SetTimestampedData(Stream[] streams)
ITimestampVerifier SetTimestampedData(byte[] data)
ITimestampVerifier SetTimestampedData(byte[][] datas)
ITimestampVerifier SetMessageDigest(byte[] digest)
ITimestampVerifier SetMessageDigest(byte[][] digests)
ITimestampVerifier SetTimestamp(string pathToFile)
ITimestampVerifier SetTimestamp(byte[] data)
ITimestampVerifier SetTimestamp(Stream stream)
ITimestampVerifier SetHashAlgorithm(HashAlgorithm hash)
ITimestampVerifier SetMinimimCertificateValidityPeriod(int days)
TimestampObject Verify()

Table 5.2: ITimestampVerifier API

Three things are necessary to verify a timestamp: the timestamp, the timestamped file
or files and hash algorithm used to calculate message digest during timestamp creation. The
timestamp is a binary representation of TimeStampResponse object. It is used to verify the
file integrity in following way. File or files are used to recalculate message digest using the
same hash algorithm as in creation. TimeStampRequest is generated from this hash and
now it is time to validate it against the response. If it passes this validation, it means that
file integrity has not been violated. All of the above mentioned is expressed in four lines as
it is shown in Listing 5.2. The hash calculation is handled by TimestampData object and
validation by Bouncy Castle’s TimeStampResponse object.

25



CHAPTER 5. IMPLEMENTATION

Listing 5.2: File integrity verification
byte [ ] hashedData = timestampData . getHashedData ( this . hashAlgorithm ) ;
TimeStampRequestGenerator requestGenerator = new TimeStampRequestGenerator ( ) ;
TimeStampRequest r eque s t = requestGenerator

. Generate (new Oid ( this . hashAlgorithm . ToString ( ) ) . Value , hashedData ) ;
this . timestampResponse . Va l idate ( r eque s t ) ;

Certificate validation is managed by a static method because this validation is needed
during timestamp creation as well. This method takes TimeStampToken as a parameter,
which is extracted from TimeStampResponse. This token contains the signing certificate,
and at first, it is validated that it is actually signed by this certificate. Another step is to
check if this certificate was valid at the time of timestamp creation. This is a necessary
condition for timestamp validity. If the certificate was valid at that time but it has expired
now, or it is going to expire soon, a warning is appended to the resulting TimestampObject.

Now it is time to validate the certificate’s chain. It is done by .NET’s X509Chain Build
method. There are many reasons for this validation to fail such as untrusted root, partial
chain or revoked certificate. All possible reasons are enumerated in X509ChainStatusFlags
class. If any of these reasons occur, the validation is marked as failed, with the exception of
the revoked reason. Even if there are any revoked certificates, there is still a possibility for
the validation to succeed. Method IsValidAfterRevocation takes the certificate and validates
it against the rules described in section 2.1.6. It does that by searching for revocation date
and reason inside certificate revocation list. The evaluation of revocation date and reason is
shown in Listing 5.3.

5.3 Additional classes

5.3.1 TimestampData

This class serves as a container for timestamped file or files. It has constructors allowing
to accept all possible input formats (stream, byte array, string with the path to file). The class
also contains private enum DataMode which specifies whichever input format is currently
used to provide the input.

The most important functionality of this class is calculating message digest from the
data it holds. This is used during timestamp creation and verification as well. The method
GetHashedData accepts the name of the hash algorithm as an input and uses this name
to create the corresponding instance of .NET’s HashAlgorithm. In case there are multiple
files given to timestamp, they need to be hashed together. HashAlgorithms in .NET im-
plement ICryptoTransform interface. This interface provides two methods, TransformBlock
and TransformFinalBlock. These methods allow calculating the hash block by block, in our
case file by file[7]. Headers of these methods look complicated, but they are simply given
the byte array representation of current file and its length. Code for this calculation process
is shown in Listing 5.4.

26



5.3. ADDITIONAL CLASSES

Listing 5.3: Revoked certificate validation
/∗ Al l t imestamps crea t ed a f t e r r evoca t i on date are i n v a l i d ∗/
i f (DateTime . Compare ( timestampGenTime , revocat ionDate ) > 0)
{

return fa l se ;
}

DerEnumerated reasonCode = DerEnumerated
. GetInstance ( GetExtensionValue ( revokedEntry , X509Extensions . ReasonCode ) ) ;

/∗ I f the revoca t i on reason i s not present ,
the timestamp i s cons idered i n v a l i d ∗/

i f ( reasonCode == null )
{

return fa l se ;
}

int reason = reasonCode . Value . IntValue ;

/∗ I f the revoca t i on reason i s any o ther va lue ,
the timestamp i s cons idered i n v a l i d ∗/

i f ( ! ( reason == Org . BouncyCastle . Asn1 . X509 . CrlReason . Unspec i f i ed | |
reason == Org . BouncyCastle . Asn1 . X509 . CrlReason . A f f i l i a t i onChanged | |
reason == Org . BouncyCastle . Asn1 . X509 . CrlReason . Superseded | |
reason == Org . BouncyCastle . Asn1 . X509 . CrlReason . Cessat ionOfOperat ion ) )

{
return fa l se ;

}

Listing 5.4: Calculating hash from multiple files
private byte [ ] [ ] datas ;
. . .
for ( int i = 0 ; i < datas . Length−1; i++)
{

a lgor i thm . TransformBlock ( datas [ i ] , 0 , datas [ i ] . Length , datas [ i ] , 0 ) ;
}
a lgor i thm
. TransformFinalBlock ( datas [ datas . Length −1] , 0 , datas [ datas . Length −1] . Length ) ;
return a lgor i thm . Hash ;

27



CHAPTER 5. IMPLEMENTATION

5.3.2 TimestampObject

This class is just a placeholder for timestamp relevant data. It is returned to the user
at the end of timestamp creation and verification. It contains the generated time, the name
of the hash algorithm, the message imprint, the TSA’s signing certificate and its validity
period, a string containing warning message in case the certificate has expired or is going to
expire and finally the timestamp itself. The timestamp is a byte array which corresponds to
either TimestampRequest object or ASIC-S container depending on user’s choice of output
format.

5.3.3 Utils

Utils is a static class designed to help with common generic tasks, such as reading settings
from a configuration file and creating zip containers. It contains a LoadConfigurationFile
method which parses settings from the configuration file and saves these values into a dictio-
nary. For creating the ASIC-S container structure, .NET’s ZipArchive and ZipArchiveEntry
classes were used.

Type Method
void LoadConfigurationFile(string pathToFile)

Table 5.3: Utils API

5.3.4 HashAlgorithm and OutputFormat

These enums are used as parameters inside the library. They enumerate possible choices
of hash algorithm and output format that users can select. In addition, HashAlgorithm
contains a mapping between algorithm name and its output length. This is used to verify
the correctness of input when the user provides already calculated hash.

5.4 Exceptions

During the execution of timestamp creation or verification, many non-standard situations
may occur. This ranges from user providing incorrect input (e.g. non-existing TSA URL,
invalid path to file or wrong timestamp) over infrastructure errors (e.g. HTTP connection
not working) to validation exceptions (e.g. invalid response status from TSA, expired signing
certificate). In all of these situations, the library throws appropriate exception to inform the
user about the reason of failure.

In order to distinguish between exceptions coming from outside and inside the library,
custom exception called TimestampException has been created. This exception serves as
a marker for user to know if there is something wrong with his input[19]. Whenever this
exception is raised, the user should be aware that the problem is probably related to his
actions.

All exceptions raised by the library and their description are listed below.

28



5.5. EVALUATION OF THE IMPLEMENTATION

TimestampException: Custom made exception serving as a marker for exceptions occur-
ring inside the logic of the library. This exception is raised in situations related
to user’s input such as incorrect path to a file, invalid message digest length,
wrong TSA’s URL.

ArgumentNullException: This exception is raised when any of the mandatory input
has not been provided. In such case, the library can’t proceed with execution
because these inputs are essential for timestamp creation of verification. An
example of these inputs is the hash algorithm, data for timestamping, TSA URL
and timestamp output format.

TspException and TspValidationException: These exceptions come from the Bouncy
Castle. They are thrown when exceptions happen while using objects or meth-
ods from Bouncy Castle. For example, method Validate on object Timestam-
pResponse throws TspException if message digests don’t match on request and
response.

CryptographicException: Coming from .NET, this exception is thrown in case the cer-
tificate chain validation fails. It is enhanced by failure reason and sometimes
there are multiple reasons for the validation to fail.

AggregateException: AggregateException is used to consolidate multiple failures into a
single, throwable exception object[12]. It is used when exception occurs while
accessing both primary and secondary TSA.

5.5 Evaluation of the implementation

Every library requirement and feature has been successfully implemented. The library
provides all necessary tools to create and verify timestamps. Usage of the library should be
very straightforward and also readable thanks to using fluent interface.

Creating a timestamp can be done in a few steps, by providing several essential inputs,
such as the files that are going to be timestamped. And the library is able to process various
different formats of input. It also offers two output formats of the final timestamp. One of
these, the ASIC-S container, is accommodating the timestamp together with files to which
it applies.

Timestamp verification is done very thoroughly and precisely in my opinion. The tricki-
est part was the certificate validation and in particular the special case of revoked certificate.
Microsoft chain validation can find revoked certificates but doesn’t give any additional infor-
mation about the revocation date or reason. So it had to be achieved by getting and parsing
the certificate revocation list. In conclusion, the verification process provides user with very
detailed explanation of status of his timestamp.

29



CHAPTER 5. IMPLEMENTATION

30



Chapter 6

Testing

Testing is an essential part of software development. In this project, testing was inte-
grated into every development stage. Three levels of testing were utilized:

1. Unit testing

2. System testing

3. Performance testing

6.1 Test-driven development

Test-driven development is a technique used in software development. Its main idea is
to write small tests before developing corresponding functionality. This process ensures that
the tests are correctly reacting to new functionality thus increasing developer’s trust in the
tests. These steps should be written to cover requirements from a specification. It forces
the developer to fully understand the specification of functionality he’s about to code. The
development is done by incrementally repeating following steps:

1. Quickly add a test: A vital first step is to write a test. It can cover new function
or improvement of a function, even just a small change. In reality, tests are
usually written for whole functions, but it’s nice to know that it is possible to
tests even minor changes, because these tests come in handy when things are not
working as they should. This first step assures that the developer is focused on
the requirements before writing the code.

2. Run all tests and see the new one fail: Failure is progress. The new test should
fail. If it doesn’t fail then either the functionality is already developed, or the
test is poorly written. This step gives programmer base for further development.

3. Make a little change: The next step is to write some code that makes the test to pass.
It can be written in a very simple and non-elegant way. The purpose of this
step is to just pass the test. The code will be refactored later. There are two
strategies for quickly getting the test to pass:

31



CHAPTER 6. TESTING

• Fake It — return a constant and gradually replace constants with variables
until you have the real code

• Obvious Implementation — type in the real implementation

When everything goes smoothly, the second strategy is a natural choice. How-
ever, it is much simpler to search for mistakes in a fake implementation and
gradually refactor to get the real code.

4. Run all tests and see them all succeed: Running all tests should result in all of
them passing. If not, then the new change probably broke some other func-
tionality and needs to be revised. Passing this step also doesn’t instantly mean
that everything is finished. The test should be generalized to cover all different
situations.

5. Refactor to remove duplication: This step is dedicated to refactoring code from step
3. The code passing the test could have been copied from a similar functionality
or just written ineffectively. Object, function and variable names should clearly
express their meaning[3].

Test-driven development was accomplished by utilizing unit tests. These tests were
created during development. They were constantly changing, to include new features or
to cover bigger section of possible input values. Nice example of this approach are the tests
for TimestampData GetHashedData function. It is quite a complex function that has to
deal with several different formats of data and non-standard situations when calculating the
hash. So for example test called TestGetHashFromPath was created to cover the situation
of calculating the hash from a file provided by path. After this test successfully passed, a
new test called TestGetHashFromWrongPath was designed to cover the situation when the
provided path is incorrect. These tests are demonstrated in Listing 6.1.

Listing 6.1: TimestampData tests for GetHashedData function
[ TestMethod ]
public void TestGetHashFromPath ( )
{

TimestampData timestampData = new TimestampData ( path ) ;
byte [ ] r e s u l t = timestampData . GetHashedData ( HashAlgorithm .SHA1) ;
byte [ ] data = Encoding .UTF8. GetBytes ( dataToTimestamp ) ;
byte [ ] expectedResu l t = new SHA1Cng ( ) . ComputeHash ( data ) ;
Assert . IsTrue ( r e s u l t . SequenceEqual ( expectedResu l t ) ) ;

}

[ TestMethod ]
[ ExpectedException ( typeof ( TimestampException ) ) ]
public void TestGetHashFromWrongPath ( )
{

string path = "C:\\ Inva l idPath " ;
TimestampData timestampData = new TimestampData ( path ) ;
byte [ ] r e s u l t = timestampData . GetHashedData ( HashAlgorithm .SHA1) ;

}

32



6.2. SYSTEM TESTING

6.2 System testing

System testing encompasses the entire system, fully integrated. Sometimes, as in instal-
lation and usability testing, these tests look at the system from a customer or end-user point
of view. Other times, these tests stress particular aspects of the system that users might not
notice but are critical to proper system behavior[4].

System tests were done to examine the library behavior in different situations. Time-
stamp creation and verification were tested with various settings. The varying parameters
include different data formats, hash algorithms, output formats, using a configuration file,
different validation results and more. All system tests are depicted in Figure 6.1.

Figure 6.1: List of system test results

6.3 Performance testing

All tables in this section show comparison of execution time expressed in milliseconds.
Tests to get these results were executed several times and the tables contain the averaged
values. The hardware and software specifications of the computer used for the execution of
these tests are shown in Table 6.1.

Operating system Windows 10
Processor Intel i5-4460 3.2GHz,
Memory 8GB DDR3 1600MHz
Storage SATA SSD

Table 6.1: Specification of test executing computer

33



CHAPTER 6. TESTING

6.3.1 TimestampData

Variables:

• Hash algorithm

• File size

• File count

The performance testing of calculating message digest was done to find out if there is
some bad combination of settings that would slow down this process. The variables for
this test are the hash algorithm, file size, and file count. For each hash algorithm, there
were four test case settings differing in file size and file count. From the data depicted in
Table 6.2 it is clear that the stronger a hashing algorithm is, the more time it requires to
operate. But all of the calculations were accomplished in a reasonable time. The numbers
show that there is a linear growth for adding additional files. This means that there isn’t any
significant computational demand related to adding more and more files. This test was done
by providing the TimestampData with an array of strings expressing the paths to files. This
is the worst case scenario because each file needs to be loaded into memory first and then
used for calculation. The bottleneck in this situation can be the storage in which these files
are located. This is in opposition with providing the library with byte array representation
of these files, which can be used directly for calculation.

1x 1MB file 1000x 1MB file 1x 100MB file 10x 100MB file
MD5 6 2730 431 3011
SHA1 8 3379 361 3624
SHA256 14 12598 1384 12759
SHA512 52 46407 4662 46600

Table 6.2: TimestampData hashing performance table (time in milliseconds)

Figure 6.2 shows the comparison of hash calculation performance. The MD5 algorithm
is used as a base for this comparison, and the scale shows multiples of increase in time
execution. The figure illustrates various facts. First one is that the performance of using
MD5 and SHA1 is very similar. The other one is that the results are ordered by total file size
and not by total file count. It is most evident when looking at the SHA512 algorithm. The
topmost and therefore the slowest performance is for thousand files of 1MB size, followed
closely by ten files of 100MB size. Then there is a bigger gap going to one file of 100MB,
and obviously, the best case is for one file of 1MB size. This means that the execution time
of hash calculation will be primarily affected by the total size of files.

34



6.3. PERFORMANCE TESTING

Figure 6.2: TimestampData hashing performance comparison

35



CHAPTER 6. TESTING

6.3.2 TimestampVerifier

Variables:

• Timestamp count

• Timestamp validity

Testing the performance of timestamp verification has a different set of variables than
the hashing performance. It would be redundant to include different hash algorithms, file
sizes, and counts as it is already tested in the previous section. For that reason, the variables
for testing timestamp verification are timestamp count and timestamp validity. Timestamp
validity means that the verification will result either positively or negatively. The reasons
for negative verifications are file integrity violation and invalid certificate.

Number of timestamps
1 10 100 1000

Valid 6 46 448 4110
File integrity violated 5 29 157 1267
Invalid certificate 15 43 391 3933

Table 6.3: TimestampVerifier performance table (time in milliseconds)

The data in Table 6.3 shows the results. It is clear that the shortest times occurred
in cases when the file integrity was violated. It is due to verification workflow as it was
described in 4.1.2. The worst case scenario is actually a valid timestamp. But even in this
scenario, the performance of timestamp verification is around 250 timestamps per second.

Another assurance comes from looking at Figure 6.3. It contains three plots of data from
Table 6.3. The graph’s vertical scale is logarithmic allowing better demonstration of the
linear growth.

36



6.3. PERFORMANCE TESTING

Figure 6.3: TimestampVerifier performance graph with logarithmic scale

37



CHAPTER 6. TESTING

6.3.3 TimestampCreator

Variables:

• Timestamp count

• File size

• Output format

There is one other variable, that isn’t listed here. It is the TSA used for creating time-
stamps. Testing the performance of timestamp creation is dependent on the response time
of TSA. Because of this, two TSAs were used to compare the results. It is more important
to see the comparison of the different set of variables rather than the actual values.

The Graph 6.4 again shows the linear growth of additional timestamps. It means that cre-
ating one hundred timestamps takes roughly ten times longer than creating ten timestamps.
More interesting fact is the comparison of timestamp output formats: TSR and ASIC-S.
The difference becomes noticeable for the bigger file. Using ASIC-S results in approximately
three times slower execution time. This is understandable as it is a zip container and re-
quires to be run through a compression algorithm. Another fact coming from the graph is
that the total file size is no longer the main factor. The last column, representing total file
size of 1000MB, results in the same and even faster execution time than the third column,
where the total file size is only 100MB. This is due to the TSA response time and the fact
that timestamp creation includes timestamp verification (except for additional hash calcula-
tion). Therefore ten timestamps need only ten verifications, whereas 100 timestamps require
verification to be run 100 times. This finding inspired another test but instead of creating
a hundred timestamps of one file, there was only one timestamp for 100 files together and
so on. This configuration eliminated previous effects, and total file size became the main
factor again. The conclusion of this experiments is that users should consider grouping files
together, instead of timestamping them separately, to achieve better performance.

Figure 6.4: TimestampCreator performance graph

38



6.3. PERFORMANCE TESTING

Another form of performance test was conducted in order to see how the library behaves
under continuous load. The setup of this test was following:

• Duration: 20 minutes

• Data: rotation of 3 different files, provided as a file path (2x png, 1x txt)

• Hash algorithm: SHA1

• Output format: TSR

The results of this test are shown in Table 6.4. The library successfully completed this
test without any performance issues.

Total number of timestamps 8088
Timestamps per second 6.74
Minimal creation time of a timestamp 116 ms
Maximal creation time of a timestamp 682 ms
Average creation time of a timestamp 148 ms

Table 6.4: TimestampCreator 20 minutes load performance test results

39



CHAPTER 6. TESTING

40



Chapter 7

Evaluation and future

7.1 Summary of the work

The work on this project went through several stages. The first stage was to analyze the
current situation. Different timestamping schemes were considered and analyzed in section
2.1.1. Decentralized timestamping using Bitcoin sounded promising. The idea behind it is
to use Bitcoin’s block chain as a proof of time instead of traditional ways like using TSA.
The concept is relatively new but it has some flaws, that made it unsuitable for this project.
In the end, the PKI-based scheme was chosen as it is the most widely used, it is very well
described in the literature and fairly straightforward to use.

It turned out that there aren’t many solutions for managing timestamps programmati-
cally. There was one option, TimeStampClient, which provides a library for creating time-
stamps. However, it is not very flexible to input and doesn’t do enough timestamp ver-
ification. The result of this analysis was that a library offering flexible ways of creating
timestamps and providing thorough timestamp verification is not available; thus it makes
sense to create such library.

The second stage of work was the actual development and testing. Processes of timestamp
creation and verification were separated. Class responsible for holding and processing the
data for timestamping was created. The development was accompanied by testing thanks
to following the test driven development principle. The developing code was constantly
versioned using Git1. The development finished by system and performance testing.

7.2 Future

This project is going to be further developed as an open source software. It means that
everyone can use it and change it for his needs. Additional features may be included into
the library based on user’s suggestions.

The source code is available on GitHub2 and NuGet3. NuGet is the package manager

1<https://gitlab.fel.cvut.cz>
2<https://github.com/honsdomi/AbsoluteTimestamp>
3<https://www.nuget.org/packages/Honsdomi.AbsoluteTimestamp/>

41

https://gitlab.fel.cvut.cz
https://github.com/honsdomi/AbsoluteTimestamp
https://www.nuget.org/packages/Honsdomi.AbsoluteTimestamp/


CHAPTER 7. EVALUATION AND FUTURE

for the Microsoft development platform including .NET. The NuGet client tools provide
the ability to produce and consume packages. The NuGet Gallery is the central package
repository used by all package authors and consumers[14].

42



Chapter 8

Conclusion

I have analyzed the current situation and came to the conclusion that there is a gap which
can be filled by a library providing flexible tools for creating and verifying timestamps. The
design phase separated the processes of timestamp creating and verification. Also, the library
interface has been defined.

The result of implementation is a fully functional C# library for creating and verifying
trusted timestamps. Timestamps are created by hashing provided files and sending requests
to a time stamping authority. The authority responds with a timestamp, which can be stored
and verified. This process follows the RFC 3161 time-stamp protocol which is based on
public key infrastructure. The timestamp verification comprises of file integrity verification
and certificate check.

The code was carefully tested throughout the implementation. System and performance
testing were conducted after the implementation finished.

The library is publicly available as open source software for everyone to use. Integration
into other projects is done easily, thanks to NuGet package manager.

43



CHAPTER 8. CONCLUSION

44



Bibliography

[1] ADAMS, C. – LLOYD, S. Understanding PKI: concepts, standards, and deployment
considerations. Addison-Wesley Professional, 2003.

[2] ADAMS, D. C. – PINKAS, D. Internet X.509 Public Key Infrastructure Time-Stamp
Protocol (TSP). RFC 3161, August 2001. Available from: <https://rfc-editor.org/
rfc/rfc3161.txt>.

[3] BECK, K. Test-driven development: by example. Addison-Wesley Professional, 2003.

[4] BLACK, R. Managing the Testing Process. Wiley Publishing, Inc, 2009.

[5] BUDIŠ, P. Elektronický podpis a jeho aplikace v praxi. 1. Kollárovo nám. 698/7,
Olomouc : Anag, 2008. ISBN 978-80-7263-465-1.

[6] European Telecommunications Standards Institute. Electronic Signatures and Infras-
tructures (ESI);Associated Signature Containers (ASiC). Electronic Signatures and In-
frastructures (ESI).

[7] FARKAS, S. Using the Hashing Transforms (or How Do I Com-
pute a Hash Block by Block [online]. 2004. [cit. 10. 4. 2017]. Avail-
able from: <https://blogs.msdn.microsoft.com/shawnfa/2004/02/20/
using-the-hashing-transforms-or-how-do-i-compute-a-hash-block-by-block/>.

[8] FOWLER, M. FluentInterface [online]. 2005. [cit. 8. 4. 2017]. Available from: <https:
//martinfowler.com/bliki/FluentInterface.html>.

[9] GIPP, B. – MEUSCHKE, N. – GERNANDT, A. Decentralized Trusted Timestamping
using the Crypto Currency Bitcoin. Newport Beach, CA, USA, March 24 - 27, 2015.
Available from: <http://ischools.org/the-iconference/>.

[10] Legion of the Bouncy Castle Inc. The Legion of the Bouncy Castle [online]. 2017.
[cit. 3. 4. 2017]. Available from: <http://www.bouncycastle.org/>.

[11] NAKOV, S. Fundamentals of Computer Programming with C# (The Bulgarian C#
Programming Book). 2013.

[12] .NET Documentation. AggregateException Class [online]. 2017. [cit. 6. 5. 2017].
Available from: <https://msdn.microsoft.com/en-us/library/system.
aggregateexception(v=vs.110).aspx>.

45

https://rfc-editor.org/rfc/rfc3161.txt
https://rfc-editor.org/rfc/rfc3161.txt
https://blogs.msdn.microsoft.com/shawnfa/2004/02/20/using-the-hashing-transforms-or-how-do-i-compute-a-hash-block-by-block/
https://blogs.msdn.microsoft.com/shawnfa/2004/02/20/using-the-hashing-transforms-or-how-do-i-compute-a-hash-block-by-block/
https://martinfowler.com/bliki/FluentInterface.html
https://martinfowler.com/bliki/FluentInterface.html
http://ischools.org/the-iconference/
http://www.bouncycastle.org/
https://msdn.microsoft.com/en-us/library/system.aggregateexception(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.aggregateexception(v=vs.110).aspx


BIBLIOGRAPHY

[13] Net security training. What is a Public Key Infrastructure? [on-
line]. 2016. [cit. 26. 3. 2017]. Available from: <https://web.archive.
org/web/20161009124244/http://www.net-security-training.co.uk/
what-is-a-public-key-infrastructure/>.

[14] Nuget Team. What is NuGet? [online]. 2017. [cit. 7. 5. 2017]. Available from: <https:
//www.nuget.org/>.

[15] Original by Bart Van den Bosch, vector by Tsuruya. Trusted timestamping [online].
2012. [cit. 2. 5. 2017]. Available from: <https://en.wikipedia.org/wiki/Trusted_
timestamping#/media/File:Trusted_timestamping.svg>.

[16] PAAR, C. – PELZL, J. Understanding cryptography: a textbook for students and prac-
titioners. Heidelberg : Springer, 2010. ISBN 3642041000;9783642041006;.

[17] PETERKA, J. Báječný svět elektronického podpisu. 1. Americká 23, 120 00 Praha 2 :
CZ.NIC, z. s. p. o., 2011. ISBN 978-80-904248-3-8.

[18] RistoLaanoja. Linked timestamping [online]. 2009. [cit. 2. 5. 2017]. Avail-
able from: <https://en.wikipedia.org/wiki/Linked_timestamping#/media/File:
Hashlink_timestamping.svg>.

[19] SEGUIN, K. Foundations of Programming – pt 8 – Back to Basics: Exceptions [online].
2008. [cit. 14. 4. 2017]. Available from: <http://codebetter.com/karlseguin/2008/
05/30/foundations-of-programming-pt-8-back-to-basics-exceptions/>.

[20] Skulvis. Cross-Certification [online]. 2007. [cit. 2. 5. 2017]. Available from:
<https://en.wikipedia.org/wiki/Transient-key_cryptography#/media/File:
Cross-Certification.png>.

[21] Wikipedia contributors. Linked timestamping [online]. 2017. [cit. 26. 3. 2017]. Available
from: <https://en.wikipedia.org/wiki/Linked_timestamping>.

[22] Wikipedia contributors. Message authentication code [online]. 2017. [cit. 26. 3. 2017].
Available from: <https://en.wikipedia.org/wiki/Message_authentication_
code>.

[23] Wikipedia contributors. Transient-key cryptography [online]. 2017. [cit. 26. 3. 2017].
Available from: <https://en.wikipedia.org/wiki/Transient-key_cryptography>.

[24] X9 Accredited Standards Committee. New Standard Provides Time Stamp Secu-
rity [online]. 2005. [cit. 2. 4. 2017]. Available from: <https://web.archive.org/web/
20070206014938/http://www.x9.org:80/news/pr050701>.

46

https://web.archive.org/web/20161009124244/http://www.net-security-training.co.uk/what-is-a-public-key-infrastructure/
https://web.archive.org/web/20161009124244/http://www.net-security-training.co.uk/what-is-a-public-key-infrastructure/
https://web.archive.org/web/20161009124244/http://www.net-security-training.co.uk/what-is-a-public-key-infrastructure/
https://www.nuget.org/
https://www.nuget.org/
https://en.wikipedia.org/wiki/Trusted_timestamping#/media/File:Trusted_timestamping.svg
https://en.wikipedia.org/wiki/Trusted_timestamping#/media/File:Trusted_timestamping.svg
https://en.wikipedia.org/wiki/Linked_timestamping#/media/File:Hashlink_timestamping.svg
https://en.wikipedia.org/wiki/Linked_timestamping#/media/File:Hashlink_timestamping.svg
http://codebetter.com/karlseguin/2008/05/30/foundations-of-programming-pt-8-back-to-basics-exceptions/
http://codebetter.com/karlseguin/2008/05/30/foundations-of-programming-pt-8-back-to-basics-exceptions/
https://en.wikipedia.org/wiki/Transient-key_cryptography#/media/File:Cross-Certification.png
https://en.wikipedia.org/wiki/Transient-key_cryptography#/media/File:Cross-Certification.png
https://en.wikipedia.org/wiki/Linked_timestamping
https://en.wikipedia.org/wiki/Message_authentication_code
https://en.wikipedia.org/wiki/Message_authentication_code
https://en.wikipedia.org/wiki/Transient-key_cryptography
https://web.archive.org/web/20070206014938/http://www.x9.org:80/news/pr050701
https://web.archive.org/web/20070206014938/http://www.x9.org:80/news/pr050701


Appendix A

CD contents

CD
library

TimestampLibrary
ITimestampCreator.cs
ITimestampVerifier.cs
TimestampCreator.cs
TimestampData.cs
TimestampException.cs
TimestampObject.cs
TimestampVerifier.cs
Utils.cs
Enums

HashAlgorithm.cs
OutputFormat.cs

TimestampLibraryTests
TimestampCreatorTest.cs
TimestampDataTest.cs
TimestampVerifierTest.cs

text
source
honsdomi.pdf
honsdomi.tsr

47


	Introduction
	Analysis
	What is a timestamp
	Timestamping schemes
	PKI-based
	Linked-based
	Transient key
	Message authentication code
	Decentralized timestamping using Bitcoin

	Timestamping standards
	RFC 3161
	X9.95
	ISO/IEC 18014

	Creating timestamps
	Verifying timestamps
	Storing timestamps
	Revocation
	Re-stamping

	Current alternatives
	TimeStampClient
	TSA services


	Used technologies
	C#
	.NET framework
	Cryptography library

	Bouncy Castle library

	Design
	Workflow
	Creating timestamps
	Verifying timestamps

	Data privacy
	API
	Creating timestamps
	Verifying timestamps

	Configuration file
	Fluent interface

	Implementation
	TimestampCreator
	TimestampVerifier
	Additional classes
	TimestampData
	TimestampObject
	Utils
	HashAlgorithm and OutputFormat

	Exceptions
	Evaluation of the implementation

	Testing
	Test-driven development
	System testing
	Performance testing
	TimestampData
	TimestampVerifier
	TimestampCreator


	Evaluation and future
	Summary of the work
	Future

	Conclusion
	CD contents

