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Abstract

The most common method of capturing online user behavior is through a sequence of
clicks, which is referred to as a clickstream. This thesis explores methods for clickstream
prediction based on URL embeddings. URL embeddings are continuous representations
inspired by word embedding techniques. These embeddings, which are learned from click-
stream without supervision, capture semantic and syntactic meanings of URLs and are
used for reduction of the state space of predictive models.

We present three methods for generation of URL embeddings and evaluate them using
a clickstream dataset of more than 12M clicks. One of our proposed methods shows
promising results, improving the baseline result and significantly reducing the state space.

Keywords: Clickstream prediction, Online user behavior, Word embeddings, Machine
learning, Neural networks, Web mining.
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Abstrakt

Nejčastější způsob zaznamenávání chování online uživatelů je pomocí sekvence jejich kliků,
jinak také nazývané clickstream. Tato práce zkoumá metody predikce clickstreamu pomocí
distribuovaných reprezentací URL. Distribuované reprezentace URL jsou reprezentace
ve spojitém prostoru, inspirované podobnými přístupy v oblasti zpracování přirozeného
jazyka. Tyto reprezentace, které jsou natrénované bez učitele z clickstreamových dat,
zachycují sémantické a syntaktické vlastnosti URL a jsou použity pro zmenšení stavového
prostoru prediktivních modelů.

V této práci představujeme tři metody pro generování distribuovaných reprezentací
URL, které jsou vyhodnoceny na datasetu o více než 12 milionech kliků. Jedna z před-
stavených metod vykazuje nadějné výsledky, které jsou lepší než referenční model a
zároveň mnohonásobně zmenšují stavový prostor.

Keywords: Predikce clickstreamu, Chování online uživatelů, Distribuované reprezentace
slov, Strojové učení, Neuronové sítě, Web mining.
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Chapter 1

Introduction

People spend more and more time online and the range of their digital activities is greater
than ever. With this rapid increase in past years and a trend that does not seem to get
slower anytime soon, the need for a better understanding, modeling and prediction of
human online behavior is an important topic. This need, together with recent advances
in computational abilities and datasets with billions of events drives research in this field.

Online behavior is most commonly recorded as a sequence of events that were per-
formed by users, and this sequence is usually referred to as a clickstream; every event in
the clickstream usually represents change of a URL. The task of predictive modeling of
online user behavior can be therefore formulated as a task of clickstream prediction. The
problem can be specified in following way: Given a sequence of URLs visited by a user
in a single session, predict the next URL, which will be visited by a user. Alternatively,
under the presumption that the set of possible next URLs is known and finite, the task
may be formulated as a learning to rank task, ranking URLs according to a probability
that it will be the next URL in a session. The output of the model would then be a
probability distribution over the set of all possible URLs.

Most of the current approaches, as described in section 3.2, are built on the presump-
tion that clickstream can be modeled as a Markov process, which means that predictions
can be made using limited historical information. The most common problem, that has
to be addressed, is that there is a tradeoff between lower Markov order models (that look
only a few clicks into history) and higher order models. Lower order models are beneficial
because of high recall, but they usually have low precision. Higher order models, on the
other hand, suffer from low recall but offer higher precision. This is caused by the com-
plexity and sparsity of the state space of higher order models – it is quite uncommon to
see the exact sequence of several clicks in both training and testing data.

One of the reasons of such large state space is that most approaches in literature
treat URL as an atomic unit. The state space has dimensionality of the vocabulary (set

1



2 CHAPTER 1. INTRODUCTION

of possible URLs) to the power of the model’s order. One approach for reducing this
dimensionality is using models of lower orders, another is to use smaller vocabulary of
URLs. This thesis follows the latter approach.

When the task is to understand user behavior, it is also desired to understand individ-
ual elements of this behavior. The URL – Uniform Resource Locator – is one of the most
important building blocks of the World Wide Web. In the clickstream data, URL acts as
an identifier of a particular content, most commonly a webpage, but it can refer also to
a multimedia content such as a photo and a video. When modeling the user behavior,
we would like to use unique representations of the content that user perceives – such that
two identical webpages visited by two users would be represented identically. However,
one of the challenges with clickstream data is that a single webpage may be represented
by multiple URLs. This can happen for example in the case when a URL contains an
identification of user’s session or referrer of an ad that led the user to the page.

Another problem of URL representations is that it does not contain any semantic in-
formation. While it is legitimate to have two separate representations for e-shop webpages
with t-shirts in two different colors, the difference from the perspective of user behavior
is negligible. A better representation of the content perceived by a user, that captures
semantic information, is therefore an important part of our task.

This thesis explores possible approaches of URL representations inspired by recent
achievements in the field of computational linguistics. Word embeddings that capture
syntactic and semantic meanings and allow significant reduction of the state space are now
widely used in many NLP tasks. Our approach uses similar technique for unsupervised
learning of URL embeddings, which are then used as underlying representation for a
Markov model.

We present three methods for learning distributed URL representations, which differ
in the amount of information that is extracted from clickstream and from URLs. The
simplest approach use only behavioral information gathered from clickstream, while other
approaches also leverage syntactic information extracted from the structure of URL. The
produced URL representations are then hierarchically clustered and these clusters are used
as representation for a Markov model. Our results from an evaluation on a large click-
stream dataset show that a limited amount of behavioral information from clickstream is
not enough for achieving even baseline accuracy level of a regular Markov model (with-
out clustered representations). On the other hand, our second proposed model, based on
tokenized URLs, was able to outperform this baseline and achieved modest improvement.

The content of this thesis is structured into six chapters. The description of the
task and specification of goals is present in chapter 2. Overview of state of the art
methods follows in chapter 3, which presents approaches for both clickstream modeling
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and generation of word embeddings. Chapter 4 presents details about proposed approach,
with details on implementation in chapter 5. Evaluation of all proposed methods is present
in chapter 6. Finally, recapitulation and short elaboration about possible future research
directions can be found in chapter 7.
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Chapter 2

Thesis goals

The main goal of this thesis is to propose a model for prediction of the next click performed
by a user, given clickstream data that represent user’s previous behavior. This model has
to leverage embeddings (also called distributed representations) of URLs and therefore
act as an evaluation method for quality of these representations. URL representations
have to be obtained only using the present clickstream data and should represent both
semantic and linguistic relations between URLs.

The first step required for designing this predictive model is the state of the art
analysis of the field of clickstream prediction. Clickstream prediction is one of the tasks
of the field of Web mining, focused on mining and modeling clickstream logs of online
user activity. The analysis of various methods used for clickstream prediction together
with a summary of several relevant approaches from other disciplines of Web mining are
presented in section 3.2.

The similarities between language and clickstream lead to the second part of the
state of the art research – the analysis of approaches in word embeddings. Word em-
beddings, also called "distributed representations" is a term for mapping from words to
n-dimensional continuous space, which capture characteristics of individual words and
their relations. The short history and overview of methods used for unsupervised learn-
ing of these embeddings can be found in section 3.1. The prominent part of this section
is focused on novel methods based on neural networks that got lots of research interest
shortly after 2010.

As it was already stated in the beginning of this chapter, the main goal of this thesis is
to propose an approach for clickstream prediction using distributed URL representations.
This approach is built on top of previous research in the field of clickstream prediction
and addresses main issues that are common for most of the current methods – namely
the complexity of state space of Markov models, its poor generalization to unseen URLs
and sessions; and the lack of short-term history and the large number of predictions of

5
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methods based on Association rules [1]. Analysis of strengths and weaknesses of tradi-
tional methods can be found in section 3.2. Our proposed method which addresses these
weaknesses using URL embeddings is presented in chapter 4.

The proposed model has to be trained on a clickstream dataset which was provided
by Jumpshot Inc.1 This task consists of data cleaning, preprocessing and training both
parts of the model. First, a neural network for generation of URL embeddings is trained.
Second, we train a Markov model for clickstream prediction, which works on top of clusters
of URL embeddings obtained from the first model. The process of training these models
is described in sections 4.4.6 and 4.5.

The quality of predictions made by the proposed model is then evaluated and compared
with a selected baseline method. The results together with methodology that was used
for evaluation can be found in chapter 6.

2.1 URL embeddings

The goals listed in previous paragraphs are necessary steps for the task of learning URL
representations that would sufficiently capture semantics of the latent space of URLs
and could be used for modeling the Web itself. Clickstream prediction is just one of
the tasks that can be solved using these representations – high quality URL embeddings
would be beneficial for myriad of tasks that are currently modeled using discrete URL
representations. These include tasks like URL categorization, clustering, detection of
malicious URLs, focused crawling and many others.

2.2 Clickstream prediction

The task of clickstream prediction is selected as a convenient method for evaluation of
the quality of URL embeddings and also as a mean of evaluation of a generative model
of user online behavior. While the exact prediction of the next click given only a limited
history of clickstream data may be desired in some applications, it is a complicated task
and even noisy or imperfect predictions can be highly beneficial to related tasks including
recommender systems and personalization, which require models of the user behavior.
Other applications include improvements of performance of online services with intelligent
caching or pre-fetching of websites or multimedia. Models of user behavior can be also used
for anomaly detection, filtering malicious traffic or Sybil detection in online communities.
Predictive models can also serve as an input for website creators and help to improve user
experience with webpages.

1https://www.jumpshot.com/

https://www.jumpshot.com/
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2.3 Assumptions and limitations

The main simplifying assumption that has been made is that we currently focus on pre-
diction of clicks on a single domain. Disregarding this assumption would not only make
the problem by a level of magnitude harder, but it would also complicate comparison with
similar works, as most of them hold this assumption. The clickstream data provided by
Jumpshot contains data for amazon.com, which is one of the largest e-commerce retail-
ers in the world. The main part of the amazon.com domain is a catalogue of products,
which is hierarchically structured. There is also a significant amount of other types of
webpages that support Amazon’s customer electronics business, serve for managing user
profiles or seller’s administration. This wide range of webpages together with the fact
that amazon.com is one of top 20 most visited domains worldwide2 makes it an ideal
candidate.

Another limitation for this thesis is that both prediction task and embedding genera-
tion has to be done using clickstream data only. This may present a small disadvantage
in comparison with other methods in literature (see 3.2.3). This limitation is in place
mainly for scalability reasons, as Web crawling or other methods for obtaining webpage
content are prohibitively expensive in large scale.

Also, as was already stated in the chapter 1, we presume that the set of URLs that
can be visited by a user is finite and known in advance.

2http://www.alexa.com/topsites

http://www.alexa.com/topsites
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Chapter 3

Related Work overview

This chapter is divided into two main parts, in the first one we will present an overview
of the current state of the art of word embedding techniques, with more details about
word2vec [2] and related methods based on neural networks, which had significant impact
on the most recent research in the field and has been inspiration to many subsequent al-
gorithms. The second part will present research in fields related to clickstream prediction,
Web mining, online user behavior and studies of structure of the Web itself.

3.1 Word representations

In recent years, traditional word representations in natural language processing (NLP)
are being replaced with word embeddings, which have gained substantial popularity. The
word embedding is a mapping from large discrete space where each dimension represents
a single word into continuous space with much lower dimensionality. The task of learning
word embeddings is unsupervised (with some exceptions) and is based on the presumption
that words that occur frequently in the same context are semantically similar. Produced
dense vectors then capture both syntactical and semantical similarities between words.
Moreover, these representations enable us to do simple vector arithmetic in the semantic
space – as is shown in the well-known example king - man + woman = queen [2].

This section presents and compares several methods for learning word embeddings and
also shortly discusses embeddings of sentences and paragraphs.

3.1.1 Bag-of-words representation

Most machine learning tasks require fixed-length vector representations of inputs. The
simplest, however still broadly used representation of text, is a bag-of-words representation
[3] (BOW). In bag-of-words representation, every word is represented as a one-hot encoded
vector (e.g. vector of a length equal to a number of words in the dictionary which has

9



10 CHAPTER 3. RELATED WORK OVERVIEW

zeros on all indices except the index of the word) and document is represented as sum of
one-hot vectors of corresponding words.

This approach is used mostly for its simplicity and sufficient results for many tasks.
There are however several drawbacks, that led to more sophisticated methods. Bag-
of-words representation does not capture ordering of words or its semantics. Another
problem is high dimensionality of generated space, which is also almost in all cases very
sparse.

3.1.2 Statistical language model

The basic building block in statistical language modeling is a language model – probability
distribution over sequences of words. It can be represented as the conditional probability
of the word at the position t given all the previous words. Formally, W denotes the
sequence of words:

W = (w1, w2, . . . , wt) (3.1)

P (W ) = P (w1, w2, . . . , wt) =
t∏

i=1

P (wi|w1, . . . , wi−1) (3.2)

This language model is sometimes called "the perfect language model", as it aims to
capture the full information present in the data. The cost for this is the exponentially
large number of parameters and therefore this approach is not applicable in practice.
For real world applications, one has to employ simplifying assumptions, such as Markov
property.

Language model with Markov approximation of n−1th order is called n-gram language
model. Under this approximation, the probability of word at position t is only conditioned
by last n words of the sequence. It can be defined as follows:

P (W ) =
t∏

i=1

P (wi|wi−n+1, . . . , wi−1) (3.3)

The main issue of these statistical language models is the curse of dimensionality –
the number of possible word sequences is astronomical and it is common to see sequences
different from training data in testing data. Statistical language model also does not take
in account any similarities between individual words; all words are treated independently
to others. This is addressed by models that operate on continuous variables instead of
discrete ones like simple word counts.
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3.1.3 Methods based on matrix factorization

One of the applications that require document or word representations that capture se-
mantic relationships is information retrieval. This need is frequently addressed by methods
based on Latent Semantic Analysis, which was introduced by Scott Deerwester et al. in
1986 [4].

The input for Latent Semantic Analysis (LSA) is a bag-of-words representation of
multiple documents. This sparse document-word matrix is then decomposed using SVD,
which results in dense representation of underlying (latent) characteristics of documents.

Representations produced by LSA are significantly better than simple one-hot vectors,
however the ordering of words is still not taken in account and the structure of produced
vector space is reported to be suboptimal [5]. Also, this method is computationally
expensive and does not scale well to larger datasets. (Note that there recently exist
methods for computing LSA incrementally [6])

While the LSA method operates on document-word matrix and results in represen-
tation of documents, other approaches like "Hyperspace Analogue to Language" [7] are
based on word-word matrix. The representations produced by this method suffer from
the fact that the co-occurrences matrix is unnormalized and frequent words therefore add
noise to semantic meaning of the embeddings.

This is addressed by another notable approach, the GloVe model, which was proposed
in 2014 by Pennington et al. [5]. Similarly to other factorization based methods, the GloVe
approach is based on matrix decomposition – but in this case the word co-occurrence
matrix is normalized and log-smoothed.

3.1.4 Methods based on neural networks

Methods that rely on artificial neural networks are based on the old idea of learning
distributed representations that capture hidden semantics of symbolic data, which has
been around since 1980s [8]. These representations, or so called "thought vectors" as
popularized by one of the co-authors of mentioned paper, Geoffrey Hinton, are in fact
a part of neural networks regardless of the task. They are inherent to problems from
the field of NLP such as machine translation or speech recognition, but also to image
recognition, segmentation, generation and others1.

One of the pioneers of language models based on neural networks is Yoshua Bengio,
who has proposed a "Neural Probabilistic Language Model" [9]. In this case, the model
learns both word representations and probability function for sequences of words simulta-
neously. It therefore generalizes better than n-gram language models, mostly because of

1https://deeplearning4j.org/thoughtvectors

https://deeplearning4j.org/thoughtvectors
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the fact that unseen sequences of words can still get high probability when they are com-
posed of words similar to words in training sequences. While this method has achieved
decent results and significantly improved at the time state of the art results, scaling to
large datasets is still challenging.

All approaches listed so far were based on unsupervised learning, leveraging only
unannotated corpora. The method proposed by Collobert and Weston in 2008 [10] can be
classified as a semi-supervised multitask learning problem, which provides several advan-
tages, however it may suffer from unavailability of large enough datasets. Their model is
a deep convolutional network optionally combined with a classic fully connected network,
which is trained on multiple NLP task jointly. These tasks may include part-of-speech
tagging, chunking or named-entity recognition.

Later work from the same leading author - "Natural Language Processing (Almost)
from Scratch" presented by Collobert et al. in 2011 [11] returns back to unsupervised
learning, as it enables usage of datasets that are by magnitude larger. The main difference
of this model and previous works based on language model analogy is that it is one of the
first approaches that use both preceding and succeeding context of the target word.

Word2Vec model

While the method proposed by Bengio has achieved decent results and significantly im-
proved at the time state of the art results, its main drawback is that it does not scale
to larger datasets. This has been addressed by Tomas Mikolov et al. with model called
word2vec [2].

Mikolov has proposed two similar architectures, that are essentially feedforward neural
networks with one linear projection layer, and a nonlinear output layer. For the first
architecture, Continuous Bag-of-Words model (cbow), the input consists of words sampled
from neighborhood of the target word (four words that occurred before or after the target
word), while the output is the target word itself. Words are represented as one-hot encoded
vectors of fixed size. Second proposed architecture is called Continuous Skip-gram model
and the only difference is that the target word is on the input of network, while words
from neighborhood are predicted on the output.

Word2vec models are capable of learning representations from datasets that contain
billions of words. This is particularly because the projection layer is linear and the only
nonlinear, computationally costly functions are on output layer. Moreover, these expen-
sive computations are usually further optimized using hierarchical softmax or candidate
sampling [2].

In candidate sampling only a selected sample of target labels (words in case of word2vec)
is evaluated in each step. Target positive labels are always evaluated, but from negative
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labels (words that are not the target word in case of cbow model) only a small randomly
drawn subset is evaluated.

Both hierarchical softmax and negative sampling presume that labels would not be
assigned randomly, but according to the probability of its occurrence. For hierarchical
softmax, most frequent labels should be in top levels of hierarchy, therefore Huffman’s
encoding is commonly used.

Apart from the improvement in scalability to large datasets, the other benefit of
"word2vec" model is that produced representations capture both syntactic and semantic
meanings of words. Thanks to the linearity of the model, the relationships between words
can be expressed in algebraic operations in the embedded space, as was presented in the
beginning of this chapter.

Most recent methods based on neural networks

A recent improvement of the word2vec model was proposed by Bojanowski et al. [12]
in 2016. The approach was developed by Facebook Research (Tomas Mikolov has joined
Facebook in 2014 and is one of the co-authors of this paper) and is known under the
name "fastText". The main idea is to leverage subword information, which improves
performance mostly for morphologically rich languages that contain many rarely occurring
words. The method produces embeddings for individual character n-grams which are
present in the words in training dictionary. The representation for a word is then a
simple summation of representations of its n-grams. The proposed approach uses all n-
grams with a length from 3 to 6 and also uses special representation for the most frequent
words in the vocabulary, due to computational reasons.

3.1.5 Paragraph and document embeddings

Task that directly follows word embedding is distributed representation of larger pieces
of text. While this task might seem unrelated to our problem, as there is no ambition to
generate embeddings for multiple URLs, one of the possible approaches is to take URL
itself as a combination of its tokens.

The first indication of a method that is based on composition of multiple embeddings
was the fastText method, which combines representations of character n-grams. While
simple addition of individual embeddings which is done in this case may be feasible, there
also exist more sophisticated approaches.

One of the possible solutions was introduced by Quoc Le and Tomáš Mikolov in "Dis-
tributed Representations of Sentences and Documents" [13]. In this work, which is some-
times referred to as "paragraph2vec", a paragraph is represented using embeddings of
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words that it contains, together with a special paragraph vector. This paragraph vector
is obtained using second vocabulary of entire paragraphs. Vocabulary of the whole model
is then a concatenation of vocabularies of words and paragraphs.

Even newer approach based on a recurrent neural network architecture was presented
by Ryan Kiros et al. in an article called "Skip-Thought Vectors" [14]. This approach
is inspired by recent achievements in neural machine translation and uses similar model
based on recurrent neural network encoder-decoder with attention mechanism. The goal of
the decoder is to reconstruct sentences in the surrounding context of an encoded sentence.
Authors also propose a method for generalization to unseen words, which uses embeddings
generated using second model like word2vec and maps them into embedding space of
encoder-decoder model. However, this approach still does not generalize to words that
were not seen by the second model.

Another interesting approaches based on more sophisticated neural network architec-
tures include convolutional neural networks proposed by Kalchbrenner et al. [15] and
tree-structured long short-term memory networks by Tai et al. [16].

3.1.6 Applications outside of the field of NLP

Our proposed method for URL embeddings is not the first use of originally NLP technique
in another field. As presented by Asgari and Mofrad, semantic embeddings are used in
biology for representation of sequences of proteins or genes [17]. There are also exper-
iments with representation of rooted subgraphs from large graphs [18], or modeling of
mobile applications based on their usage patterns [19]. Combination of clickstream data
and word embeddings technique was also presented by Sagar Arora and Deepak Warrier
in their work focused on e-commerce personalization [20]. Another similar approach can
be also found in the following section – a click model based on distributed representation
of user information need [21].
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3.2 Clickstream prediction and Web mining

According to a survey presented by Stumme et al. [22], there are three main areas of
research in the area of Web mining:

• content mining, which explores the actual content of webpages

• structure mining, leveraging hypertext structure of the Web

• usage mining, inspecting activity of online users

Our task of modeling user behavior and clickstream prediction falls into the usage
mining category. However, this division which has been formalized in 1997 by Cooley et
al. [23] is getting loose as there are often hybrid approaches that combine both content
and usage data. The overview of methods in this section therefore does not respect this
division strictly.

Contrary to the field of natural language processing, clickstream prediction or Web
usage mining is a less coherent field. This is mainly due to scattered, highly specific tasks
that do not allow direct comparison. Another obstacle is also the lack of standardized
datasets or competitions. Most large clickstream datasets are proprietary and not avail-
able to public due to privacy or commercial concerns. Despite that, there are several
significant contributions and inspirational works.

The task of clickstream prediction is traditionally solved using Markov models or
Association rules. However, both of these approaches have its drawbacks which will
be discussed in the following sections. There is an ongoing research in improving these
methods, often inspired by other closely related fields of clickstream mining. We therefore
also present a short overview of click models for Web search, which are models that predict
the next click on search engine results page (SERP). Another related task that is discussed
in this section is user categorization or clustering. This also usually requires modeling
user behavior and is mostly intended for a better ad targeting, content recommendation
or for the detection of intruders.

3.2.1 Clickstream prediction using Markov models

Markov models are commonly used in predictive modeling and are therefore well suited –
and also frequently used – for our task. Markov property assumes that any future state
of a stochastic process is dependent only on the present state. In our case, the next URL
visited by user would only be dependent on the current URL. However, this assumption
is too limiting, therefore we may use, similarly to language models discussed in 3.1.2,
Markov approximations of higher orders.
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The drawback of using higher order Markov approximations is that the sparsity of
state space grows exponentially, and while the precision of these models increases, the
recall decreases. Higher order Markov models are also more computationally demanding
and require larger amount of training data.

One of the possible approaches for improving accuracy of higher order Markov models
is an All-Kth-order Markov model, proposed in [24]. The method works such that we
generate Markov models of all orders up to given K and combine them in prediction. If
a model of order n fails to predict because corresponding n-gram was not present in the
training data, we use model of order n − 1 and repeat this procedure if needed. The
problem of this approach is the complexity of the state space. In the proposed work, this
is addressed using three pruning methods: support pruning, confidence pruning and error
pruning.

Different method for dealing with high complexity of state space was proposed by
Dongshan and Shen [25]. Their "Hybrid-order tree-like Markov model" combines multiple
Markov models with a tree-like structure, each of them having different order for improved
recall. The tree structure serves as compressed version of user sessions.

3.2.2 Clickstream prediction using Association Rules

Association rule learning, which was introduced in 1993 by Agrawal et al. [1], is a common
method used in recommender systems, personalization and similar applications. The main
principle is that given a database of transactions that contain discrete items (in our case
sessions that contain URLs), association rules are generated from item sets that frequently
occur together in transaction. For example, if we see items A, B and C frequently
together, we may introduce a rule that suggests C if A and B were already seen in the
session.

Association rules have also gained its popularity in clickstream prediction. However,
due to their nature, methods based on association rules frequently generate large number
of predictions and suffer from inability to select the correct one [26].

One of the first applications was proposed by Mobasher et al. [27]. Their approach
is built on Apriori algorithm [28], which is used for discovery of frequent itemsets, which
are then stored in custom data structure.

Another possibility is to mine sequential association rules, which were studied by
Yong et al. [29]. They showed that using association rules with sequential and temporal
constrains may improve the prediction ability of the model.
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3.2.3 Combined approaches in clickstream prediction

As was already mentioned, both Markov models and Association rules alone have several
drawbacks. Many researchers therefore look for combinations of these methods that would
pick advantages of both of them. Popular approaches include clustering webpages or
sessions, and adding other information to the model like webpage content or temporal
context.

One direction of research are ensemble methods, which combine results of multiple
methods. For example, the framework proposed by Khalil et al. [26] combines low order
Markov models and Association rules. Markov model is in this case used for prediction of
candidates for possible next URL and Association rules are then employed for selection
of the most probable one. An ensemble of four models – Markov models, both sequential
and classical association rules and clustering is proposed by Kim et al. [30]. Models are
ordered by its precision and prediction is selected from the most precise one that covers
the presented sample.

Another direction is enhancing classical models with an additional information. Work
presented by Vishwakarma et al. [31] improves All-Kth-order Markov model with clustered
representations of webpages. These clusters are constructed using keywords obtained from
the webpage content, and are used for disambiguation in case that Markov model outputs
multiple predictions with similar probability.

Another similar approach is enhancement of Markov models with hidden context [32].
The context in this case may either be provided by a domain expert, or induced from
training data. The process of context discovery is in the second case formulated as opti-
mization problem which can be directly solved.

3.2.4 Click models for Web search

One of the most active – if not the most active – areas of Web related research is the
problem of Web search. Most important components of the search engine are related
to information retrieval and learning to rank fields, but inputs from user behavior has
recently got its significance. Naturally, research in this area is driven by large search
companies – in this section we more closely examine approaches initiated by Yahoo [33],
Microsoft [34], [35] and Yandex [21].

There are some differences between regular browsing sessions and search sessions. Most
importantly, the core of the search sessions is a user query. Secondly, the clicks that were
not performed are equally important as these that were performed. The set of possible
clicks is limited to these present on SERP and the session ends with the final outgoing
click.
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Traditionally, the probability of user clicking on a document presented on search engine
results page (SERP) is modeled using probabilistic graphical models. In these models,
user’s behavior is a sequence of events, which some are observable (user clicked a link)
and some may be hidden from the observer (user information need was satisfied). One of
the first models that take in account previous clicks of the user was proposed by Dupret
et al. [33]. The model is essentially a Bayesian network in which the probability of a click
event on the document depends on all previous clicks on other results and on the rank of
the document.

There are several other approaches that leverage user’s behavior – those based on
probabilistic graphical models can be found in a comprehensive survey by Chuklin et al.
[36] – however for our task are more relevant newer approaches based on neural networks.

Methods based on neural networks

The work of Zhang et al. [35] is not directly dealing with click prediction on SERP, rather
with click prediction on sponsored search offers. Their model uses both features that
are static in time (information about the ad and about the user) and more interestingly
sequential features about the past behavior of the user. However, these sequential features
does not directly capture visited URLs or performed actions, but time dynamics (like the
time since the last click event) of users behavior. Their proposed architecture is a recurrent
neural network with time-dependent input, single hidden layer and click probability on
output.

Particularly interesting paper that combines click models and distributed representa-
tions was presented on last year’s Conference on World Wide Web. Borisov et al. have
proposed "A Neural Click Model for Web Search" [21], a click model that combines dis-
tributed representation of user’s information need and representation of the information
acquired during the search session. The distributed representation of the query is derived
from click patterns that has been observed for the same query in the past. The document
representation is based on all click patterns on pages where the document was present,
not necessarily generated by the same query. Initially, the representation is derived only
from the user’s query. When documents are presented to the user, the input of the model
is enhanced with document representation and information about user’s interest (whether
the user clicked at the document or not). Loosely speaking, the representation changes its
position in the latent space of click patterns according to user’s actions. The architecture
proposed by Borisov et al. is a recursive neural network with LSTM units, the model is
therefore capable of modeling arbitrarily long search sessions.
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3.2.5 Clickstream data for user modeling

Another task which relies on clickstream data is user clustering or classification. This
usually does not directly involve clickstream prediction or modeling of individual clicks,
it rather uses aggregated clicks or clickstream subsequences for modeling users.

One of the early applications was detecting outliers in user traffic on search pages
proposed in [37]. Authors model individual user sessions using Markov chains with states
that represent different user actions, such as a click on the search button, a click on
a sponsored or organic link or a request for image results. Atypical sessions are then
identified according to the probability with which it would be generated by this model.

Another application can be found in security, where user behavior can be used as a part
of authentication. Similarly to the previous application in outlier detection, clickstream
data is commonly preprocessed and user behavior is modeled using higher level events
rather than URLs. More general approach for authentication on mobile devices was
presented by Shi et al. [38]. User’s behavior is modeled using Gaussian Mixture Models
and clickstream data, which is reduced to domain names only is enhanced with other
features like GPS position and phone call history.

User behavior data can also be used for detection of fake users in online communities.
The task is in this case instance of supervised learning, as the classes of users are explicitly
defined. Wang et al. [39] modeled the simplified clickstream (URLs were grouped into
8 event types) using Markov Chains, however the final classification was done on hand-
picked features using SVM.

Unsupervised approach from the same leading author was presented in [40]. The raw
clickstream data is also transformed and analysis is performed on 33 derived event types.
This data is then hierarchically clustered using method based on similarity graphs – the
distance (similarity) between two users is defined using count of common n-grams in
clickstream sequences.

Clustering of both sessions and users is presented in an article by Volodymyr Melnykov
published in 2014 [41]. Proposed approach is based on mixture of low order Markov models
which operate on top of clustered URLs. However, the model itself does not perform this
clustering – cluster assignments were part of the dataset.
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Chapter 4

Approach

The approach for clickstream prediction proposed in this thesis is based on two key com-
ponents: Markov models that capture short term history, which is essential for accurate
prediction, and URL embeddings that capture global behavior of users and are crucial
for proper generalization. Markov models are a standard technique used in the field
of clickstream prediction. Its known weaknesses were frequently addressed by selecting
more general representation of individual URLs. Our proposed method uses clustered
URL embeddings as a general representation, which is inspired by recent achievements in
linguistics.

In the first part of this chapter we describe general architecture of the proposed
method. Then we present individual parts of this architecture and its variations. As
there are multiple possible approaches for both clickstream modeling and URL embed-
dings, we provide more details about them and present short comparison of proposed
methods.

4.1 Motivation

The main idea behind the proposed approach is that we can model clickstream data in
a similar fashion to natural language. Traditionally, the basic unit of language is word,
however as was shown in section 3.1.4, there are approaches that leverage even smaller
units like morphemes or characters. Word has its inherent meaning and semantic content,
and is usually used to represent some object or concept.

The basic unit in clickstream modeling would be, by this analogy, a single URL. URL
by its nature represents an object that can be retrieved using the World Wide Web, but
it can also represent user’s action or intent - such as intent to read an article or buy a
product.

Similarly to words, which are made up from morphemes, URLs have its distinct struc-
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ture and are made up from smaller parts, tokens, that are frequently word-like to assure
human readability. A single URL is therefore a basic unit of the clickstream, but it can
be perceived also as a combination of smaller units. With this approach, one session
in clickstream would correspond to a paragraph or a document, with URLs instead of
sentences and tokens instead of words.

4.2 Architecture

This thesis compares several different methods, all of them are based on a similar frame-
work. The main motivation of proposed framework is to reduce the complexity of state
space, which is the biggest problem of higher order Markov models. This approach is sim-
ilar to methods discussed in section 3.2.3, which combine Markov models with association
rules or clustering by webpage content. However, our approach does not leverage any other
information than this already present in the clickstream. Moreover, our approach com-
bines both global information (which is common to methods based on Association rules)
and local history of Markov models. Contrary to Association rules, the global informa-
tion is encoded into continuous space of URL embeddings, which adds more flexibility
and better generalization. The description of the proposed framework follows:

1. Clickstream data is preprocessed

2. Distributed URL representations are learned as an unsupervised task. These repre-
sentations capture both semantic and linguistic similarity between URLs.

3. URLs are clustered according to their embeddings.

4. Markov model is constructed on top of these clusters.

5. Both seen and unseen URLs in prediction time are embedded and their embeddings
are assigned to clusters.

This framework permits different approaches to embedding generation and subsequent
construction of Markov model. Following sections describe these approaches in greater
details.

4.3 Preprocessing

Raw clickstream data is naturally very noisy and require heavy preprocessing. This holds
for the data obtained from Jumpshot Inc., which are described more thoroughly in section
6.1. The number one problem that should be addressed by preprocessing is uniqueness of
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URLs. From the definition, URL should provide a way of resource identification, however
single resource – webpage – can be identified by multiple URLs. That is because of query
parameters and fragment part, which are commonly used for user or session identification.
On the other hand, query parameters do often contain an important information for the
webpage identification, like product id. Our problem is fortunately limited to a single
domain, therefore we can identify these "noisy" parameters manually and filter them out.

The distribution of URLs present in the dataset have (even after the first preprocessing
step) a very heavy tail – there is a great number of URLs that have been seen only few
times in training data. This is troublesome, but expected, especially on domain like
amazon.com. Given the fact that every product sold on Amazon has its unique URL,
and given the number of products listed there is greater than number of US citizens1, this
would hold with basically any amount of clickstream data. While some of our proposed
approaches address the issue of unseen data, we limit this amount in preprocessing to
considerable amount for better comparison with baseline methods and mainly for practical
computational reasons. We discard all URLs that were seen less than 5 times in the
dataset.

Another preprocessing step removes duplicated clicks, which are caused by users who
refresh the page or navigate within one page. These duplicated clicks would bring noise
to the prediction task and also complicate convergence of the model for embeddings
generation. We also remove sessions that contain less than 10 clicks.

The first part of preprocessing, which is common to all approaches can be summarized
in the following way:

1. URLs are stripped of referral parameters

2. Least common URLs are removed

3. Duplicated clicks, e.g. situations when next URL is equal to present URL are
removed

4. Sessions that contain less than 10 clicks are removed

The input for the model for embeddings generation requires further preprocessing
steps, which are slightly different for different architectures, which are presented in section
4.4. Example describing these steps for model emb2.1 on a real URL is provided in the
figure 4.1. First, URLs have to be tokenized, either using tokens extracted from training
data, or using all possible character n-grams in the case of n-gram method.

1https://export-x.com/2015/12/11/how-many-products-does-amazon-sell-2015/

https://export-x.com/2015/12/11/how-many-products-does-amazon-sell-2015/
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Next, tokenized URLs are represented as sparse bag-of-words vectors. We have also
experimented with an even simpler representation, when the BOW vector is binarized –
obtained results were comparable.

Last two steps in the preprocessing pipeline are present mostly from implementation
reasons, which are explained in section 5.2. Sparse BOW vectors are padded to fixed
length, which may, in rare occurrences, when the number of tokens in single URL is large,
lead to loss of some information. The size of fixed length representation was selected such
that the fraction of trimmed URLs is less than 1 %. The final step is mini-batching of
input for more efficient training (the description of mini-batch training can be found in
section 4.4.6).

Preprocessing steps required for the model for embeddings generation therefore are:

1. URLs are tokenized either using extracted vocabulary of tokens or using n-gram
method

2. These tokenized URLs are encoded using BOW method

3. For computational reasons, BOW vectors are padded to fixed length

4. Finally, batches of BOW vectors are created for mini-batch learning

4.4 URL Embeddings

In this work, we propose two architectures for generation of URL embeddings. Both
architectures are built on top of the skip-gram architecture presented by Mikolov et al. in
[2]. This architecture is known for producing high quality embeddings for both frequent
and rare words. Also, the model scales well to datasets with billions of words and can be
relatively easily implemented in a scalable fashion.

Our proposed architectures differ in the granularity of basic units of clickstream – the
first architecture (emb1) works on URL level, the second one operates on sub-URL level.
We propose two additional implementations of the second architecture: emb2.1, which
represent URL as bag of tokens, and emb2.2, which represent URL as a bag of character
n-grams. Both variations of second architecture share the same model implementation
and the only difference is in the preprocessing step.

In comparison with existing approaches in NLP, we can take the emb1 model as
the skip-gram model in the original word2vec proposal [2]. The architecture underlying
emb2.2 model can be aligned with the fastText approach [12], while the emb2.1, even
though it uses very same neural network, can be conceptually compared with document
embeddings presented in [13].
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https://www.amazon.com/gp/product/handle-buy-box/ref=dp_start-bbf_1_glance

https://www.amazon.com/gp/product/handle-buy-box/

https, www, amazon, com, gp, product, handle, buy, box

...
amazon → 31
box → 38
buy → 40

...

[67, 137, 31, 46, 61, 101, 62, 40, 38]

[67, 137, 31, 46, 61, 101, 62, 40, 38, 67, 137, 31, 46, 61, 101]

extracted vocabulary

stripping

tokenization

encoding

padding to fixed length

Figure 4.1: Example of preprocessing steps for the emb2.1 model. A raw URL is stripped
of referral parameters, tokenized and encoded with vocabulary of tokens that has been
extracted from training data. This sparse bag-of-words representation is then padded to
fixed length for efficient training.

https://www.amazon.com/gp/product/handle-buy-box/ref=dp_start-bbf_1_glance
https://www.amazon.com/gp/product/handle-buy-box/
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The drawback of emb1 architecture is inability to generalize to unseen URLs, as the
vocabulary has to be fixed prior training. Also, this architecture does not handle well
URLs that appear rarely in the clickstream. Even with this limitation this architecture
allows generalization to unseen sessions, which improves baseline results.

Architectures emb2 have the ability to generalize to unseen URL under the limitation
that it consists of tokens or n-grams that were seen in training. These architectures
can also handle rarely appearing URLs, as long as they are composed of more frequently
appearing tokens. Training with tokens in model emb2.1 in general yields better precision,
is less computationally demanding and requires smaller training data in comparison with
emb2.2. The n-gram method on the other hand generalizes better and should be more
robust. However, the representation is noisier and may require longer training and greater
number of training examples.

4.4.1 Neural network design

Both models are feedforward neural networks with one linear projection layer and one non-
linear output layer. These networks are also often called shallow networks as they usually
consist of few layers with large numbers of neurons, opposed to deep neural networks with
many layers of smaller number of neurons.

The input of the network is always the present URL – represented as a simple one-
hot encoded vector in case of URL-level model emb1 or as a bag-of-words vector in case
of the second architecture emb2. The output layer is then probability distribution over
candidate URLs – where the selected URL from the session context should have the
highest probability.

4.4.2 Context

The main purpose of the model is to generate embeddings that capture semantic rela-
tionships between URLs, and produce vectors that are close to each other if the URL has
similar interpretation in user session. This is motivated by the linguistic observation that
word’s semantics is defined by its context.

In NLP, one of the first mentions of the importance of larger context is given by
Collobert et al. [11], where authors propose context of size 5. Even larger context is used
in the word2vec model, where target words are selected from context of size 10, which
means that 20 surrounding words in a sentence are sampled. Extended context is said
to improve the quality of vectors; however, it comes at cost of increased computational
complexity [2]. It is also worth to note that the probability with which the context word
is sampled in word2vec model decays with the distance from the target word.



4.4. URL EMBEDDINGS 27

embeddingut

ut+2

ut−1

ut−2

ut−3

ut−3 http://amazon.com/gp/site-directory/134-4897415-3048740
ut−2 http://amazon.com/Mens-Fashion/b/?ie=UTF8&node=7147441011
ut−1 http://amazon.com/b/?node=16613798011
ut http://amazon.com/Original-Penguin-Stripe-Button/dp/B01N6O61J3/
ut+1 http://amazon.com/Original-Penguin-Collar/dp/B01N7P567J/
ut+2 http://amazon.com/gp/product/handle-buy-box/
ut+3 http://amazon.com/gp/huc/view.html?ie=UTF8

Figure 4.2: Sample clickstream data and an example of skip-gram architecture. URL ut
is on the input of the neural network, and its embedding is used for the task of context
prediction. In this example, URLs ut+2, ut−1, ut−2 and ut−3 were randomly sampled from
the context of size 3, with number of skips (sampled URLs from context) equal to 4.

The motivation in our application is analogical to NLP – however given the fact
that user sessions are in general noisier than sentences; the fact that our datasets are by
magnitude smaller than those used in mentioned works; and due to limited computational
resources, we have used modest contexts of sizes 1 and 3. We have also experimented with
one-sided context, which uses only one context word wt+1 for each target.

4.4.3 URL-level model (emb1)

The first proposed approach is built on a presumption that URL is an atomic unit of
clickstream. The input vocabulary for the neural network is constructed from training
data and consists of all unique URLs.

The input of the network is one-hot encoded URL ut and the output is a randomly se-
lected URL from the context – ut+r, where, in case of context of size 3, r ∈ {−3,−2,−1, 1, 2, 3}.
Weights in the network are then trained to maximize likelihood P (ut+r|ut). (Note that
the actual optimization criterion is only an approximation of this due to performance
reasons, which is described in 4.4.6).

The network has one hidden layer, which is a linear projection using weight matrixW0,
that produces embedded representations e. MatrixW0 has a dimensionality |V |×d, which
yields embeddings of dimension d. The weights and biases of an output layer are denoted

http://amazon.com/gp/site-directory/134-4897415-3048740
http://amazon.com/Mens-Fashion/b/?ie=UTF8&node=7147441011
http://amazon.com/b/?node=16613798011
http://amazon.com/Original-Penguin-Stripe-Button/dp/B01N6O61J3/
http://amazon.com/Original-Penguin-Collar/dp/B01N7P567J/
http://amazon.com/gp/product/handle-buy-box/
http://amazon.com/gp/huc/view.html?ie=UTF8


28 CHAPTER 4. APPROACH

by W1 and b1 respectively. It is required to have a proper probability distribution on the
output layer, which is accomplished by the softmax function σ. The softmax function
scales an input vector of arbitrary real values x to a vector of values in range [0, 1] that
sums to one. In the following equation, a softmax value of an element of original vector
x on index j is computed as σ(x)j.

et = utW0 (4.1)

P (ut+r = j|ut) = σj(etW1 + b1) (4.2)

σ(x)j =
exj∑|V |
k=0 e

xk

(4.3)

This model leverages only behavioral information which is present in the clickstream
and does not take in account linguistic similarities between individual URLs. This also
implies that the model will not be able to deal with URLs that have not been present in
the training dataset.

4.4.4 Token-level model (emb2)

With the paradigm that URLs itself can be decomposed to smaller parts, tokens, the
second model leverages both behavioral information from user sessions and linguistic
similarities that are present in the URL. This is desired especially in the case when the
clickstream is limited to a single domain, which can be assumed to use similar tokens for
construction of URLs.

There are two different methods how tokens can be obtained. First one relies on
domain knowledge, when we know the structure of the URL and we can parse it into
different chunks, usually breaking the full URL on non-alphanumeric characters. However
non-alphanumeric characters often carry important information, so it may be favorable to
not dispose them. We also do not have a natural upper bound on the number of possible
tokens, therefore we have to employ a pruning mechanism in case when URLs contains a
large number of generated ids or hashes.

The second option is to use all possible n-grams as tokens; this approach reduces the
problem to character-level representation with space of dimensionality equal to the length
of alphabet when n = 1, and quickly increases with larger n. Our experiments were
performed with n = 3, as trigrams are the largest n-grams that yield space with smaller
dimensionality than pruned tokens.

The embedding of the URL is in this case combination of multiple embeddings of
tokens, which the URL consists of. There are several options how these token embeddings



4.4. URL EMBEDDINGS 29

can be combined, most common approaches are mean and weighted sum. All models in
presented experiments use weighted sum as a combination function.

Given the fixed length sparse bag-of-words representation u obtained from the prepro-
cessing step, the frequency of tokens is encoded by repeating them – all weights in the
weighted sum are equal to one.

In the following equations, the input URL is denoted ut and consists of p tokens wt,i

(either obtained using tokenization in case of emb2.1 or n-gram tokenization in case of
emb2.2). The probability of the target URL randomly selected from context, ut+r, is
computed in the following way:

ut = (wt,1, . . . , wt,p) (4.4)

et =

p∑
i=0

wt,iW0 (4.5)

P (ut+r = (wt+r,1, . . . , wt+r,p)|ut) =
p∑

i=0

σi(etW1 + b1) (4.6)

4.4.5 Embeddings

The output layer of neural network gives us probabilities of other URLs being in context
of input URL. Embeddings, which are the main product of this model are obtained from
the hidden layer. Dimensionality of embeddings is equal to the number of neurons in
the hidden layer d and can be therefore adjusted given the size of training data and
computational resources. Experiments in this thesis were performed with d = 512.

4.4.6 Training

Neural networks are commonly trained using backpropagation, which is a method based
on the minimization of the error of the network. The first part of the backpropagation
algorithm is the forward calculation, when the input is propagated through the whole
network and values on the output layer are compared to true labels. This comparison
yields error value, which is used for the computation of the gradient of the loss function.
The gradient is then used for updating weights in the network during the backward
pass. One of the important properties that is required by the backpropagation is that
all functions in neural network has to be differentiable, se we are able to compute its
gradient.

The general principle of the gradient descent is simple, however it has its limitations
mostly due to the problem of the high dimensionality of the loss function and also due to
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the fact that it has many local minima. We therefore have to employ several tricks that
are required for a proper convergence. These are described in following sections.

Prior to training, weights of the neural network have to be initialized. The most
commonly used way is to use values drawn from a normal or a uniform distribution,
depending on the chosen activation function. All our models were initialized using a
truncated normal distribution, which is beneficial because all weights are guaranteed to
be close to zero. Truncated normal distribution discards all values that are further than
2 standard deviations from mean, and re-generates them. All biases of the hidden layer
are initialized to zeroes, which is also a common strategy.

While there are several approaches how to select stopping criteria for neural network
training, most of them are valid mostly for supervised tasks. We therefore stop the
training when the loss function gets saturated and does not change substantially.

Mini batch training

There are three common strategies for estimation of the true gradient using gradients of
training samples: online learning, batch learning and mini-batch learning [42]. In online
learning, weights of the neural network are updated after a calculation of a gradient of
each training sample. On the other hand, batch learning performs the update of weights
using an average gradient of all samples in the training set. The mini-batch method is a
compromise – weights are updated after a specific number of samples.

The advantage of mini-batch learning is that a large number of input samples can
be processed together, which improves performance especially on devices that allow large
parallelization like GPUs. Also, the quality of gradient estimation is higher than in case of
online learning, as it averages several training examples. The disadvantage of mini-batch
learning is that the variance in examples in a mini batch may lead to lower final accuracy.

Loss function

The training objective for both emb1 and emb2 models is to predict the other URL in
the context of the session. The standard approach is to normalize outputs of the neural
network using softmax function σ and then maximize log-likelihood (for performance and
numerical stability reasons). The training objective JML for model emb1 is in this case
computed as a logarithm of conditional probability of the other URL in context, ut+r,
given the input URL ut, which is described in equation 4.2. The x denotes output of the
hidden layer.
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JML = logP (ut+r|ut) = xt+r − log

|V |∑
k=0

exk (4.7)

However, the computation of full softmax is an expensive operation, which may be
prohibitive when the size of vocabulary of possible URLs or tokens is large. The most
common method for solving this issue is to approximate the full softmax using a sampling
method. Mikolov et al. [2] used negative sampling, we have used similar method called
Noise contrastive estimation [43] for our model.

Noise contrastive estimation approximates the task of maximizing log-likelihood with
the task of distinguishing samples drawn from the target distribution from samples gen-
erated by noise distribution. In our case the samples are tokens from encoded URLs in
case of a token-level model or a single sample from vocabulary of possible URLs in case
of URL-level model.

Optimizer

The most straightforward approach for computing weight (parameter) updates in back-
propagation is using the gradient method, commonly using mini-batch stochastic gradient
algorithm (SGD). This means that the update step is computed for every mini-batch of
training examples. As a result, the parameters fluctuate around current local minima,
which enables the possibility of finding better local minima, but also makes the conver-
gence more complicated. Moreover, SGD is sensitive to the selection of learning rate,
which adds another hyperparameter to the model.

After initial experiments with SGD, that proved difficulties with convergence of this
method, we have replaced it with Adagrad, which was proposed by Duchi et al. in 2011
[44].

Adagrad is an extension of SGD, that dynamically changes gradient steps based on
the data that have been observed in previous iterations. In comparison with SGD, which
is independent on the structure of gradient landscape, the Adagrad algorithm changes
gradient steps such that it leverages predictive, but rarely seen features instead of those
that are seen frequently. This information is used for adaptive modification of the proximal
function (which approximates the loss function, which is not fully explored) which results
in more robust results and lower sensitivity to selection of learning rate. If not stated
otherwise, all models in this thesis were trained with a learning rate 0.01. More details
about Adagrad can be found in the original paper or in introductory article by Duchi and
Singer2.

2http://www-cs.stanford.edu/~ppasupat/a9online/uploads/proximal_notes.pdf

http://www-cs.stanford.edu/~ppasupat/a9online/uploads/proximal_notes.pdf
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4.5 Markov models

Markov models, also called Markov chains, are used for modeling stochastic processes that
can be simplified such that they satisfy the Markov property. This property says that
the probability distribution of the future state depends only on the present state – and
is independent on states preceding it. In our case this would mean that the next URL
in user’s clickstream depends only on a current URL. This dependency can be extended
using proper encoding of current state. If we select the representation of current state as
n last visited URLs, we get Markov model in which next URL depends on last n URLs.
Formally, given a session W of length t, a Markov model of order n − 1, and a set of all
URLs U , the probability of next URL in this session being u is given by:

W = (u1, u2, . . . , ut) (4.8)

P (ut+1 = u|W ) = max
u∈U

P (ut+1 = u|ut−n+1, . . . , ut) (4.9)

This approach is basically about computing probabilities for all webpages and for all
sequences of given length and then selecting the webpage with highest probability. This
model has several drawbacks, which are discussed in 3.2.1.

4.5.1 All-Kth-order model

One of the most straightforward solutions that improves recall of higher order Markov
models is so called All-Kth-order model. In this approach, we generate models of orders
1 . . . k and combine them for prediction. This is similar technique as n-gram smoothing
in language modeling. The problem can be expressed as:

P (ut+1 = u|W ) = max
u∈U

( k∑
i=0

λiPi(ut+1 = u|ut−i+1, . . . , ut)
)

(4.10)

s.t.
k∑

i=0

λi = 1 (4.11)

This has introduced a new parameter λ, which can be set according to different strate-
gies. In NLP, this is usually addressed either by setting all lambdas equal to 1/k, or by
learning optimal lambdas from training data using expectation maximization algorithm.
This adds another layer of complexity and while the motivation in natural language is
clear, it may not be desired in clickstream prediction.

Our approach is rather simple and follows the All-Kth-order model as proposed by
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Deshpande et al. [24]. We set all lambdas to zero, except the first one for which we are
able to make decision – that effectively means we are going from highest order model to
lowest one and stop when we are able to make prediction. Formally:

λi =

1 if i = argmaxi i(Pi(ut+1 = u|ut−i+1, . . . , ut) > 0)

0 otherwise
(4.12)

4.5.2 Markov model on clustered embeddings

Even though the All-Kth-order approach partially solves the problem of state-space com-
plexity, it does not improve predictions for previously unseen URLs and does not take in
account any semantic information about URLs. We therefore propose a model, which is
not based on discrete URL representations. For our purpose, a URL is in the Markov
model represented with its cluster. This cluster is obtained from its embedding, which
was generated in the previous step. Details on clustering methods are provided in section
4.6. It is worth to note that cluster representations figure only in the user’s session, pre-
dictions made by our model are plain URLs. The problem for a Markov model of order
n− 1 can be reformulated as follows:

ci = cluster(ui) (4.13)

W = (c1, c2, . . . , ct) (4.14)

P (ut+1 = u|W ) = max
u∈U

P (ut+1 = u|ct−n+1, . . . , ct) (4.15)

4.6 Clustering

The purpose of clustering of URL representations is to reduce dimensionality of the state
space and to allow generalization to unseen URLs. Our goal is to cluster together URLs
that has identical semantical meaning – are interchangeable in user’s sessions and usu-
ally are seen preceding same URLs. These can be either a different URL representing
identical webpage (e.g. when URLs differ only in session identifier as discussed in section
1) or similar webpages that usually lead to common successor (e.g. pages describing two
different shipping methods leading to order confirmation).

Granularity of clustering is one of the most important hyperparameters of the model.
It can be seen that if number of clusters |C| is equal to the number of URLs |U |, the
clustered model performs equally to the regular Markov model. Also, when |C| → 1, the
performance would be similar to the performance of Markov model of order 0.
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Our representations of URLs are embedded in high dimensional space, which compli-
cates clustering due to the curse of dimensionality. One of the challenges is that with the
increasing dimensionality, the Euclidean distance between points is less informative, as
the difference in the distance between different pairs of points is vanishing.

One of the commonly used solutions for this problem is using cosine similarity instead
of Euclidean distance. An intuitive explanation of cosine similarity may be that we
first project the points to unit hypersphere, and then measure the angle between them.
Formally, given input vectors A and B:

cos (θ) =
A ·B

‖A‖2‖B‖2
(4.16)

While there are several clustering methods that allow parametrization of the num-
ber of clusters, the natural choice for this application is hierarchical clustering. We use
agglomerative clustering, which begins with all samples assigned to its own cluster and
merges them subsequently. In each step, the algorithm merges two clusters with minimal
average distance between samples. The clusters are therefore built in a "bottom up"
fashion.
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Implementation

Most parts of this thesis were implemented as a modular Python framework, which incor-
porates methods for preprocessing, model training and evaluation. Exploratory analysis
and prototyping was done using Jupyter notebooks [45], which provide enough interaction
and flexibility which is important for this task.

Python was selected for its expressivity and because of the vital scientific ecosystem,
which includes number of libraries that provide out-of-the-box implementations of com-
mon algorithms. Python is nowadays also one of the main languages used for training
neural networks, as its the main API for Tensorflow framework [46] and many others. In
addition, Python packages NumPy [47] and SciPy [48] provide fundamental matrix types
and include convenient implementations of many numerical routines. These packages are
built on low level linear algebra libraries like BLAS, which guarantees fast and efficient
computations with larger amounts of data.

5.1 Data acquisition and preprocessing

The very first part of data acquisition, selection and sampling of the data for use in this
thesis was done in Apache Hadoop ecosystem using Hive1 and Spark [49]. This initial step
yielded the dataset, which is described in section 6.1. Hive provides SQL-like interface to
large datasets stored on HDFS, which is convenient, as user does not have to write low
level map-reduce tasks. Hive is used for the initial filtering of the Jumpshot’s internal
dataset, namely the selection of date frame, country and particular domain. This raw
clickstream dataset is then processed using Spark, which is a framework for distributed
computing, data manipulation and machine learning. The dataset from the previous step
is reindexed and divided into user sessions. The resulting dataset is small enough to fit
on a single machine and is therefore saved in a csv format for an easy manipulation.

1https://hive.apache.org/
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The next step is data filtering and preprocessing, as discussed in section 4.3. The im-
plementation of the preprocessing pipeline respects the scikit-learn [50] philosophy, and
consists of several custom transformers together with some that were already implemented
in other libraries. These transformers operate on a dataset which is streamed from the
disk, therefore are memory efficient and scalable. The modular nature of the prepro-
cessing pipeline also allows fast prototyping and enables an easy comparison of different
preprocessing methods. Apart from the scikit-learn library, which was used as a frame-
work holding all modules together, we have also used the Gensim library [6] for dictionary
operations and pandas [51] as a convenient method for work with tabular data and its
serialization.

5.2 URL Embeddings

The neural network, which is used for learning URL embeddings was implemented in the
Tensorflow [46] framework. Tensorflow is one of the most popular open source libraries for
training neural networks and similar models based on computational graphs. Tensorflow is
developed by Google Brain team and its first version was released in November 2015. The
framework quickly became popular and is now used by many top technological companies
and has an active community.

Despite its wide popularity, Tensorflow has its weaknesses, mainly unstable API, which
is a consequence of the fact that there was not a stable release until February 2017. The
second weakness is that Tensorflow operates on a quite low level of abstraction and while
this is beneficial for great flexibility and allows us to change and implement specific
details of the architecture, its effect is a steeper learning curve and slower prototyping.
These weaknesses are addressed by Keras [52], which is a popular high-level library build
on top of Tensorflow (or Theano [53], which is another frequently used library for tensor
computations) backend. While we have initially experimented with Keras implementation,
we have quickly discovered its limitations – mostly because of need of more advanced layers
and loss functions.

Tensorflow is a quite novel project and while it contains number of ready-made com-
ponents, there are still parts that are not fully completed. This is unfortunately true for
some methods and components that are required by our proposed model, we had therefore
employ several workarounds to overcome these difficulties. One of the main difficulties
is that Tensorflow’s sparse embedding, which is required for mapping from bag-of-words
representation to vector representation, does require fixed number of tokens. This can be
fortunately addressed in a way when we set the fixed number of tokens high enough and
pad these representations by repeating the individual tokens. This way we can also pre-
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serve the observed frequencies of tokens, however this approach adds unnecessary noise to
the model. Similar complications arise with the noise contrastive estimation loss function,
which does not allow variable number of target classes.

5.2.1 Training on GPU

One of the benefits of Tensorflow library is ability to change between CPU and GPU
implementations seamlessly. While prototyping work can be done locally on CPU, training
on larger datasets was done on GPUs which were provided by either Metacentrum or
Jumpshot. The amount of data combined with the size of the network is prohibitive for
training on CPUs, we have therefore utilized graphics cards with CUDA support, namely
nVidia Tesla K20Xm 6GB and nVidia Tesla K80 24GB. Still, even with this computational
power, training of neural networks for URL embeddings took 5-20 hours, depending on
number of steps.

5.3 Markov models

The implementation of Markov models of various orders is quite straightforward and
was done using SciPy library [48]. The SciPy library provides fast and memory efficient
methods for work with large sparse matrices, which are essential for this method.

Our approach for clickstream modeling is built on top of clustered URL representa-
tions. We have experimented with several different clustering methods, and used imple-
mentations that are present in the scikit-learn library.
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Chapter 6

Evaluation

This chapter is divided into three parts. The first part consists of a description of the
dataset which was used for training and evaluation of proposed models. The second part
contains definitions needed for a proper evaluation of the quality of models. The third
part presents actual experiments that were performed as a practical part of this thesis.

Proposed models are compared with selected baseline methods – regular Markov mod-
els of varying orders. The baseline model acts as an upper bound in terms of training
accuracy, as its inner working is based on memorizing the training data. The goal of our
approach is to explore the possibility whether this baseline model can be outperformed
in terms of generalization, e.g. whether our proposed model can achieve higher accuracy
on the test set.

6.1 Dataset

The dataset provided by Jumpshot Inc. is a random sample of clickstream data acquired
from their panelists. Clicks that are included in this sample are limited to a single domain
– amazon.com – and are restricted to IP addresses from the US only. The sample was
collected in January 2016 and contains sessions of both PC and mobile users. Due to the
private nature of data, the dataset unfortunately can not be made public. The clickstream
data contains three columns: session identifier, order of a click in a session and URL.

The original dataset contains around 60M clicks, which were reduced to slightly more
than 12M after preprocessing steps as described in the section 4.3. This dataset is re-
ferred to as data-12M and includes about 600k unique URLs in about 1M sessions. The
histogram of session lengths is displayed in the figure 6.1.

The second dataset was created for the purpose of in-memory training of Markov
models. It is a subset of the full dataset and consists of 500k clicks. This dataset is
referred to as data-500k.

39
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Figure 6.1: Histogram of session lengths in the raw dataset. Y-axis is in logarithmic scale,
sessions longer than 500 clicks were merged into the last bin.

6.2 Methodology

6.2.1 Accuracy

The quality of clickstream prediction is evaluated on related tasks – exact prediction
top1, where is measured whether the model is able to predict the exact next URL; and
top5 prediction, where we measure whether any of top 5 guesses of the model is the true
next URL. The performance of models is measured using accuracy score, which is defined
as the fraction of correct predictions in the set of n samples. We denote the true value
(the actual next URL) yi and predicted values ŷi,j, where i stands for index of sample
and j is index of prediction, when ordered from the most probable to least probable. The
accuracy of the exact prediction and the top5 prediction is then defined as follows:

accuracy(y, ŷ) =
1

n

n∑
i=1

(ŷi,1 = yi) (6.1)

top5 accuracy(y, ŷ) =
1

n

n∑
i=1

max
j∈1...5

(ŷi,j = yi) (6.2)

6.2.2 Cross-validation

Estimating model performance on real-world data is a sensitive task. The common way
is to use two sets of data - training set and testing set. It is also sometimes beneficial
to use a third, validation, set for hyperparameters selection. As the significance of hy-
perparameters in our approach is low and we do not employ methods for hyperparameter
tuning like gridsearch, conducted experiments were done with only train and test sets of
data. Under the assumption that samples in our dataset are drawn from the real-world
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distribution i.i.d. (independent and identically distributed), it can be said that the real
model error corresponds to the error measured on the test set.

For a more accurate estimation of the test set error, it is recommended to compute
cross-validated metrics. In this thesis, experiments were performed using k-fold cross-
validation, which works as follows: First, dataset is split into k folds. Next, k iterations
of training and testing procedures are performed – the model is evaluated with different
fold every time and remaining k − 1 folds are used for training.

If not stated otherwise, cross-validated results are presented with 95% confidence in-
tervals.

6.2.3 t-SNE

For visualization, embeddings were reduced to 2-dimensional space using t-distributed
stochastic neighborhood embedding (t-SNE) [54]. t-SNE is a nonlinear dimensionality
reduction technique that preserves locality. That means that points that are nearby in
original space are close to each other in projected space. This makes it popular choice
for visualizations of high-dimensional data, however interpretation of projected data may
be sometimes misleading [55]. t-SNE is a nonlinear technique and performs different
transformations in different regions, therefore projections that look similar in reduced
space does not have to be as similar in original space.

6.3 Generalization of higher order Markov models

6.3.1 Simple Markov model

The baseline model for our task of clickstream prediction is a Markov model with one-
hot representations of URLs. The first experiment compares Markov models of different
orders, as defined in section 4.5.

All Markov models were evaluated using the data-500k dataset, train/test accuracy
is computed using k-fold cross-validation with k = 5. Due to memory requirements of
models of larger orders, results were computed for orders up to 4.

Results are presented in the figure 6.2 with accuracy plotted against y axis and Markov
order on x axis. We have observed the same behavior of Markov models as reported
in other literature (see section 3.2.1), most notably poor generalization of higher order
Markov models and expected overfitting on training set.
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Figure 6.2: Accuracy of Markov models of
increasing orders.

Figure 6.3: Accuracy of All-Kth-order
Markov models of increasing orders.

train set

Markov order 1 2 3 4

Simple 0.4761± 0.0061 0.6631± 0.0031 0.7591± 0.0012 0.8363± 0.0023
All-Kth 0.4761± 0.0061 0.6687± 0.0026 0.7729± 0.0020 0.8597± 0.0012

test set

Simple 0.3053± 0.0431 0.3107 ± 0.0482 0.2718± 0.0502 0.2461± 0.0574
All-Kth 0.3053± 0.0431 0.3447± 0.0467 0.3479± 0.0471 0.3576 ± 0.0537

Table 6.1: Accuracy of Markov models of increasing orders.
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6.3.2 All-Kth-order Markov model

First improvement of the Markov model is so called All-Kth-order model, which combines
predictions of Markov models of orders up to k, as described in section 4.5.1. The setup
was identical as in the previous experiment.

Results are presented in the figure 6.3 and in the table 6.1. The accuracy of higher
order models have improved, but it comes with performance and memory costs – the
model have to train and store probabilities for all four sub-models.

6.4 Markov models on clustered embeddings

The predictive quality of URL embeddings was evaluated on both tasks – top1 and top5

prediction, with embeddings clustered into 27354 clusters (unless stated otherwise) using
hierarchical clustering with cosine similarity as a linkage criteria. All experiments were
performed with Markov model of the second order.

The embeddings were trained on the dataset data-12M, Markov models were then
evaluated on dataset data-500k. Results for all models are presented in the table 6.2.

6.4.1 emb1

First embeddings were produced using the emb1 model, which is built on top of one-hot
representations of URLs. The context window was set to 3, dimensionality of embeddings
to 512. Training was done using Adagrad optimizer with learning rate 0.001 on batches
of size 256.

The visualization of generated embeddings can be found in appendix in figure A.4.
The figure shows 2-dimensional t-SNE visualization of a random sample of 2048 URLs.
Also, corresponding learning curve which shows dependency of the value of loss function
on the mini-batch step is also presented in appendix in figure A.1.

Embeddings produced by this model have several drawbacks, which results in poor
accuracy of the Markov model. As can be seen from the embeddings visualization, the
produced space has practically no structure. Apart from a random noise, we can observe
one cluster that contains the most visited URLs related to customer account and checkout
process – which are tasks that most users have to perform.

Learning curve (figure A.1) indicates that the model has not enough capacity to cap-
ture information from training data. This can be possibly caused by the fact that the
dataset contains too many URLs that appear rarely and that the total number of URLs
in vocabulary is too large in comparison with the size of hidden layer.
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As can be seen in the table 6.2, the accuracy of the Markov model on top of these
embeddings is much lower than the baseline on both training and testing data.

6.4.2 emb2.1

Embeddings produced by the model emb2.1 combine both linguistic and behavioral infor-
mation, because the embedding of an URL is a combination of embeddings of its tokens,
as described in section 4.4.4. Embeddings in this experiment were trained using binary
BOW representation of tokens and context of size 3. Dimensionality of embeddings was
set to 512. The neural network was trained on mini-batches of size 256, using Adagrad
optimizer with learning rate 0.01.

The visualization of produced embeddings, which is presented in figure A.5 shows
that the space is highly structured and contains large number of clusters. Similarly to
the previous visualization, we can see a sample of 2048 URL embeddings reduced to 2-
dimensional space by t-SNE. The learning curve, which is present in figure A.2 shows that
the value of loss function is much lower than in case of the previous model.

The Markov model with clustered representations generated by this model is able to
outperform the baseline model on both tasks top1 and top5. The improvement is more
significant on the task top5, which is expected, as embeddings improve the model with
global information, which mainly improves recall of the model.

Embeddings produced by this model were used for two following experiments, compar-
ison of top1 and top5 tasks and analysis of models with different numbers of clusters,
which are presented in sections 6.5 and 6.6, respectively.

6.4.3 emb2.2

Architecture emb2.2 is built on top of bag-of-trigrams representation of URL. The neural
network was trained using Adagrad optimizer with learning rate 0.001 and mini-batch
size 128. Target URLs were selected from context of size 3.

The space produced by embeddings, as seen in figure A.6, which was created in a same
way as previous two visualizations, is comparable to the space produced by embeddings
generated by model emb2.1. While one can find subtle differences between these two,
it is important to note that some of the structural differences may be caused by t-SNE
projection and that the real situation in the 512-dimensional space may be different.

The learning curve, presented in figure A.3, indicates better ability to capture infor-
mation from training data than in case of emb1 model, however the resulting value of
loss function after training is still higher than in case of model emb2.1.

Results on the clickstream prediction are slightly better than results of emb1 model,
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train test

top1 top5 top1 top5

baseline 0.6631± 0.0031 0.8679± 0.0036 0.3107± 0.0482 0.4319± 0.0536
emb1 (27k) 0.2910± 0.0073 0.5000± 0.0065 0.0603± 0.0083 0.1653± 0.0305
emb2.1 (27k) 0.5723± 0.0044 0.8066± 0.0041 0.3216± 0.0483 0.4607± 0.0535
emb2.1 (2k) 0.3506± 0.0116 0.5997± 0.0130 0.2854± 0.0435 0.4842± 0.0543
emb2.2 (27k) 0.3304± 0.0071 0.5715± 0.0024 0.1642± 0.0045 0.3427± 0.0316

Table 6.2: Markov models on clustered embeddings. The baseline model is in this case
simple Markov model of second order. Other models are also Markov models of second
order, but with clustered representations of URLs. Number of clusters is indicated in
parenthesis.

however the accuracy is still lower than baseline. Inspection of produced clusters has
shown that the distribution is different compared to those produced by emb2.1, and
that the fraction of large clusters is higher. This may be caused due to worse ability
to distinguish similar URLs of the model based on character trigrams. The number of
individual trigram embeddings that form the final embedding of URLs is larger than in the
case of tokens and the selected combination method, as described in 4.4.4, may introduce
larger amount of noise to the model.

6.5 The task of top5 prediction

As was already stated in section 2.2, the task of exact clickstream prediction is quite
complicated. Also, in many applications our goal is to recommend more than one possible
succeeding URL, therefore we may be interested in less strict task of top5 prediction.

We have compared both Markov models on simple URL representations and models
on clustered representations. In both cases the model has order 2, and was trained on the
dataset data-500k. Results were obtained using k-fold cross-validation with k = 5.

Train accuracy for the regular Markov model in task of top1 prediction is 0.6631 ±
0.0031, test accuracy is 0.3110 ± 0.0474. The model is identical to the one which is
presented in section 6.3.1, results are therefore same – minus small variance due to different
train test splits – to results in column 2 of table 6.1. If we lower our requirements for
the model and measure its performance on the top5 task, train accuracy goes up to
0.8679± 0.0036, while test accuracy increases to 0.4319± 0.0536. This trend can be seen
in the figure 6.4.
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Figure 6.4: Accuracy of simple Markov
model on topN prediction tasks.

Figure 6.5: Accuracy of Markov model on
topN prediction tasks, using clustered rep-
resentations generated with emb2.1 model.

6.6 Markov models with different numbers of clusters

As was stated in the section 4.6, clustering granularity is one of the key factors that affect
model performance. We have evaluated accuracy of a Markov model of second order with
clustered representations. This experiment was performed on dataset data-500k, with
representations produced by model emb2.1 with the same setting as in the experiment
6.4.2. Clusters were obtained using hierarchical clustering and using cosine similarity as
a linkage criteria. The number of clusters was selected as a fraction of number of URLs –
ranging from 1/2 to 1/50. We have measured accuracy of the model on both top1 and
top5 tasks. Presented results are mean from k-fold cross-validation with k = 5.

Results are shown in the figure 6.8. It can be seen that when the number of clusters is
high, therefore each cluster contains small number of URLs, the model overfits to training
data. As the number of clusters is decreasing, the performance on training set decreases
as well. The difference in accuracy on testing set is surprisingly low – the best result
achieved on testing set is 0.3216± 0.0483 with 27354 clusters (1/2 * number of URLs) for
the task of top1 prediction and 0.4842± 0.0543 with just 1823 clusters (1/25 * number
of URLs) for the task top5. This result indicates that URL embeddings have captured
significant amount of information needed for clickstream modeling.

Histograms of cluster sizes, that can be seen in figure 6.6, show that even when the
number of clusters is large, there is still significant number of clusters that contain more
than 300 URLs.
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Figure 6.6: Histogram of cluster size for different numbers of clusters. The x axis shows
number of URLs in a cluster. Clusters of size larger than 300 were merged into the last
bin. The y axis is presented in logarithmic scale and denotes the number of clusters in
the bin.

train test

n. clusters top1 top5 top1 top5

1094 0.2783± 0.0068 0.5603± 0.0142 0.2318± 0.0250 0.4706± 0.0532
1823 0.3506± 0.0116 0.5997± 0.0130 0.2854± 0.0435 0.4842± 0.0543
2735 0.3651± 0.0106 0.6191± 0.0118 0.2870± 0.0435 0.4838± 0.0542
5470 0.4224± 0.0105 0.6649± 0.0094 0.3112± 0.0503 0.4830± 0.0546
10941 0.4722± 0.0087 0.7174± 0.0065 0.3172± 0.0505 0.4819± 0.0537
13677 0.4925± 0.0079 0.7351± 0.0059 0.3192± 0.0503 0.4775± 0.0550
18236 0.5228± 0.0067 0.7629± 0.0051 0.3216± 0.0484 0.4717± 0.0536
27354 0.5723± 0.0044 0.8066± 0.0041 0.3216± 0.0483 0.4607± 0.0535

Table 6.3: Accuracy of Markov model on different numbers of clusters of URL embeddings.
Numbers of clusters are selected as a fraction of the number of URLs, ranging from 1/50
(1094 clusters) to 1/2 (27354 clusters). Embeddings were generated with emb2.1 model
with same configuration as in experiment in section 6.4.2.
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Figure 6.7: Accuracy of Markov model on
different numbers of clusters for the task of
top1 prediction

Figure 6.8: Accuracy of Markov model on
different numbers of clusters for the task of
top5 prediction



Chapter 7

Conclusion

The goal of this thesis was to propose and evaluate an approach for clickstream prediction
using URL embeddings. The first part presents current approaches in both clickstream
prediction and in word embeddings generation. We have studied several approaches for
clickstream prediction based on Markov models, Association rules and other techniques;
as well as approaches used for other tasks closely related to modeling user behavior. In
the survey of word embedding techniques, we have described several methods based on
matrix factorization and shallow neural networks, and also explored more complex task
of document embeddings.

The second part then presents proposed method for generation of URL embeddings and
clickstream prediction. We have proposed and evaluated three approaches for generation
of URL embeddings, which are based on the idea of similarity between clickstream and
language. These embeddings were then used in the task of clickstream prediction using
Markov models.

While the performance of two of proposed approaches have not reached the baseline,
the third proposed approach was able to deliver more than 10% improvement of the
baseline model (increasing accuracy from 0.43 to 0.48), while using 25 times more compact
representation. These results implies that produced URL embeddings capture significant
amount of information about user behavior.

Even though our results are not significant enough for the sole task of clickstream
prediction, the performance of generated URL embeddings is promising and encourages
applications in related tasks and further research in this area.

7.1 Future work

This thesis presents initial exploration of an application of URL embeddings based on the
idea of clickstream - language similarity. While achieved results look promising, they are

49
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far away from the possible production use. We consider three possible directions of future
research. First, the quality of embeddings can be evaluated on other related tasks like
categorization and others that were discussed in section 2.1. Second, while this thesis is
only limited to a single domain, generalization to arbitrary number of domains would be
important for real world use. Last, but not least, newer approaches in deep learning favor
so called end-to-end learning, where the whole task is performed by single neural network.
It would be interesting to see whether this principle can replace proposed combination of
neural network and Markov model.
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Figure A.1: Learning curve of emb1 model
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Figure A.2: Learning curve of emb2.1 model

Figure A.3: Learning curve of emb2.2 model
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Figure A.4: t-SNE projection of embeddings generated with emb1 model
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Figure A.5: t-SNE projection of embeddings generated with emb2.1 model
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Figure A.6: t-SNE projection of embeddings generated with emb2.2 model
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