
CZECH TECHNICAL UNIVERSITY IN PRAGUE

FACULTY OF ELECTRICAL ENGINEERING
DEPARTMENT OF COMPUTER SCIENCE

Master’s Thesis

Detection of Malicious Network
Behaviour in Encrypted

Network Traffic

Bc. Pavel Potoček

Thesis Advisor:
Ing. Martin Rehák, Ph.D. Praha, 2017

Prohlášení autora práce
Prohlašuji, že jsem předloženou práci vypracoval samostatně a že jsem uvedl veškeré
použité informační zdroje v souladu s Metodickým pokynem o dodržování etických
principů při přípravě vysokoškolských závěrečných prací.

V Praze dne ……………... ….…………………
Podpis autora práce

Acknowledgments

My sincere thanks goes to my supervisor Martin Rehák for introducing me to the
field of network security and providing me with an opportunity to work at the Cisco
Cognitive Threat Analytics.

I am extremely grateful to Martin Grill and Jan Kohout for their guidance and help
over the whole course of writing my thesis. Especially Martin Grill’s contributions
in later stages of the writing process were invaluable.

Abstract

Computer networks are facing threats of ever-increasing frequency and so-
phistication. With encryption becoming the norm in both legitimate and ma-
licious network traffic, Intrusion Detection Systems (IDS) are now required to
work efficiently regardless of encryption. In this thesis, we develop a method
designed to improve the efficacy of the Cisco Cognitive Threat Analytics IDS
system by sharing intelligence across a large number of enterprise networks.
Intelligence sharing provides additional information to the intrusion detection
process, which is much needed particularly for analysis of encrypted traffic with
inherently low information content.

We experimentally evaluate our new method in four variants on real network
traffic data, including a variant that employs a novel outlier ensemble normal-
ization algorithm in presence of missing data. We show that our intelligence
sharing method greatly improves detection efficacy for networks with bad base-
line detection efficacy and slightly improves upon the average case. Robustness
of the novel outlier ensemble normalization algorithm is also demonstrated.
These improvements were measured on encrypted as well as non-encrypted net-
work traffic.

Keywords: Intrusion Detection System, outlier ensemble model,
anomaly detection, encrypted network traffic

Anotace

Počítačové sítě se potýkají s čím dál tím sofistikovamějšími a frekvento-
vanějšími frebezpečnostními hrozbami. S tím jak se šifrování postupně stává
normou, systémy pro detekci průniku (Intrusion Detection Systems, IDS) nyní
musí efektivně fungovat i nad šifrovanou komunikací. Tato práce se zabývá
návrhem metody pro vylepšení efektivity IDS systému Cisco Cognitive Threat
Analytics s pomocí sdílení informací ve velkém počtu monitorovaných pod-
nikových sítí.

Navrženou metodu experimentálně porovnáme ve čtyřech variantách, včetně
varianty využívající nový algoritmus pro normalizaci detektorů anomálií v přítomnosti
chybějících dat. Experimenty ukazují, že použitím navržených metod se výrazně
zlepší efektivita detekce průniku v sítích se špatnou schopností detekce a mírně
se zlepší efektivita v průměrném případě. Dále je demonstrována robustnost
nového algoritmu pro normalizaci detektorů anomálií. Tato zlepšení byla naměřena
nejen na šifrované, ale i na nešifrované komunikaci.

Klíčová slova: systém pro detekci průniku, detekce anomálií,
šifrovaná síťová komunikace

Contents

1 Introduction 14

1.1 Challenges in anomaly-based IDS . 15

1.2 Thesis Outline . 18

1.3 Cognitive Threat Analytics IDS . 18

1.4 Thesis goals . 21

1.5 Proposed architecture . 22

2 Related Work 25

2.1 Outlier Ensemble Models . 26

2.1.1 Model normalization . 27

2.1.2 Model combination . 29

2.2 Dealing with missing values . 30

3 Proposed Algorithm 32

3.1 Global reputation model as an outlier ensemble 32

3.2 Normalization . 33

3.3 Combination . 35

3.4 Missing values . 35

3.5 Pairwise optimization of normalization error 35

3.5.1 Derivation . 35

3.5.2 Time Complexity . 37

3.6 Reputation model usage scenario . 37

9

CONTENTS

4 Experimental evaluation 39

4.1 Dataset description . 39

4.2 Evaluation criteria . 41

4.3 Global reputation table evaluation 41

4.4 Improvement of per-flow anomaly scores 44

5 Conclusions 49

Bibliography 49

A Convexity of the error function E 53

B CD Contents 56

10

List of Figures

1.1 Anomaly processing pipeline architecture 20

1.2 Global reputation model overview illustrated on three networks . . . 24

3.1 Horizontally and vertically sampled ensemble illustration 33

3.2 Error function decay illustration . 34

4.1 Flow counts per network . 40

4.2 Network intersection sizes . 42

4.3 Global reputation table ROC curve comparison on the biggest 100
networks . 43

4.4 Comparison of AUCs of per-flow anomaly scores 46

4.5 Network AUC score vs. network traffic size on all input data 48

11

List of Tables

1.1 HTTP(s) flow fields . 19

4.1 Characteristics of the dataset used for experimental evaluation . . . 39

4.2 Global reputation table AUC score comparison on the biggest 100
networks . 42

4.3 Comparison of AUCs of per-flow anomaly scores 47

12

List of abbreviations

malware malicious software

IDS Intrusion Detection System

C&C Command & Control

CTA Cognitive Threat Analytics

HTTP Hypertext Transfer Protocol

HTTPS HTTP over Transport Layer Security

URI Uniform Resource Identifier

flow proxy log entry

LAMS Locally Adaptive Multivariate Sampling

EM Expectation Maximization

CDF Cumulative Distribution Function

ROC Receiver Operating Characteristic

AUC Area Under the ROC Curve

TPR True Positive Rate

FPR False Positive Rate

13

Chapter 1

Introduction

Computer networks are facing threats of ever-increasing frequency and sophistica-
tion. Recent years have seen an increase in both targeted and automated attacks, or-
chestrated by well-funded or even state-level adversaries. To mitigate those threats,
sophisticated and layered defense mechanisms are needed. First line of defense is typ-
ically deployed on the network perimeter: a boundary of a network that is composed
of various Internet-facing devices including boundary routers and firewalls. These
are configured to block any easily-identifiable illegitimate traffic [1]. The second line
of defense is an Intrusion Detection System (IDS): a system built to analyze events
within the network for any evidence of ongoing malicious activities. Such evidence
is reported to the network administrators so they can react accordingly [2]. IDSs
can operate on various levels of computer system architecture and can be classified
into two broad categories.

Host-based IDS monitors events occurring within a single host for suspicious activity.
Characteristics such as network activity, system logs, running processes or applica-
tion activity can be measured. A typical example of a host-based IDS is antivirus
software preforming static analysis. Host-based IDSs are most commonly deployed
on publicly available machines or machines containing sensitive information.

Network-based IDS monitors network traffic to detect malicious traffic flows, such as
denial of service (DOS) attacks or traffic generated by malicious software (malware)
on hosts in the network. Traffic within organization’s network can be monitored, as
well as traffic to and from external networks (e.g., the Internet).

From now on, we will discuss only network-based IDS and refer to them simply as
IDS, since host-based IDS are outside the scope of this thesis.

Methodologies used by network-based IDSs can be categorized by the level of inspec-
tion (deep vs. shallow packet inspection) or by the method of detection (signature-
based vs. anomaly-based techniques). While many systems use them in combina-
tion, different categories have different characteristics that will be discussed below.

First, categorization by the level of inspection (deep vs. shallow packet inspection):

14

CHAPTER 1. INTRODUCTION

Deep Packet Inspection exploits the data contained in packet payloads and operates
on the Application layer of the network stack. Application-specific detection tech-
niques can be deployed targeting, for example, JavaScript code in web pages [3] or
DNS NXDomain responses [4]. With encryption becoming the norm [5], deep packet
inspection is becoming non-effective since the packet payloads are inaccessible. En-
crypted traffic can either be disregarded, lowering the recall, or a man-in-the-middle
attack is performed, which may not be possible or desirable in various circumstances.
Moreover, the sheer volume of transferred data often makes these techniques imprac-
tical: there may not be enough resources available to deeply analyze a significant
portion of network traffic. Their advantage is, however, that they have more in-
formation available and e.g., signature-based detection may be largely impossible
without deep packet inspection.

Shallow Packet Inspection exploits only information in packet headers and meta-
information such as request-response delay. This method is much less granular than
deep packet inspection, but it may be used on larger volumes of data and it’s function
is not impacted as much by encryption.

Categorization by the method of detection (signature-based vs. anomaly-based):

Signature-based detection systems search network traffic for predefined signatures
indicating malicious behavior. Their advantages are low false positive and false
negative rates and a comparatively simple design. However, they rely on expert-
created signatures that are expensive and time-consuming to create, and can respond
to new threats only with a non-trivial delay. While used extensively in the past,
they are becoming less relevant due to increases in threat variability, pervasive use
of encryption and other evasive techniques.

Anomaly-based detection systems rely on anomaly detection, which is the problem
of finding patterns in data (called outliers or anomalies) that do not conform to
expected behavior [6]. The major benefit of anomaly-based methods is the ability to
detect previously unknown threats or whole classes of attacks based on broad behav-
ioral characteristics rather than precise signatures. This often comes at the expense
of higher false-positive rates and greater complexity. High false-positive rates cause
a need for manual sifting through the data to extract actionable knowledge, which
limits the utility of anomaly-based IDS in practice.

In this thesis we focus on improving an anomaly-based Intrusion Detection Sys-
tem, so we will describe the characteristics of such systems in greater detail in the
following text.

1.1 Challenges in anomaly-based IDS

There are several common challenges that all anomaly-based IDSs face [7]. It is
argued in [8], that due to these challenges, network anomaly detection is a funda-
mentally harder problem than classical machine-learning tasks such as classification.

15

1.1. CHALLENGES IN ANOMALY-BASED IDS

These challenges heavily influence the design decisions of any such system. In order
to understand the design and evaluation decisions in this thesis, we will discuss them
in this chapter.

Outlier detection

Network anomaly detection is an outlier detection problem. However, machine learn-
ing algorithms excel much more at finding similarities and patterns rather than data
that does not conform to those patterns. This problem can be side-stepped by view-
ing anomaly detection as a classification problem with two categories: background
(legitimate) and anomaly (malicious). To learn efficiently, machine learning algo-
rithms typically need examples of all categories, preferably comprehensively captur-
ing each category’s characteristics. We can learn using known malicious samples,
but this leads to a scenario where our algorithm is well suited to finding variants of
known behavior, not novel malicious activity [8]. If it is desirable to capture novel
threats, then by definition, training samples of only one class are available. This
leads to a situation where we are trying to find a class based on characteristics this
class does not have, which is certainly not ideal. In order to do that, we need an
accurate model of background behavior, which proves challenging to construct given
the large diversity of network traffic discussed in the next paragraph.

Diversity of network traffic

Due to the fact that the Internet is a universal system for communication, there is
an immense number of applications, sites, services and users, all contributing to the
diversity of network traffic. When network behaviour is marked as anomalous, it
may be because it is a rare (but legitimate) form of behavior observed for the first
time instead of it being malicious. This can lead to high false alarm rates of IDSs,
limiting their utility in practice. The impacts of this problem are exacerbated by
class imbalance and the resulting high false-positive costs discussed below.

Class imbalance

The amount of background data is, by definition, much greater than the number
of anomalies, and the difference is often many orders of magnitude. In order to
have acceptable precision, due to the base-rate bias, the false positive rate of an
anomaly detector must be kept extremely low [9]. Also, due to class imbalance,
many classification algorithms are not directly applicable as they may require classes
to be of comparable sizes. Smart sampling or cost weighting strategies may need to
be employed to overcome this issue.

16

CHAPTER 1. INTRODUCTION

High cost of errors

The cost of classification errors is extremely high compared to the cost of errors in
other fields of machine learning (character recognition, image classification, etc.).
Alarms generated by an IDS are analyzed by human operators and each false alarm
costs valuable time and resources. Even a very small rate of false positives can
quickly render an IDS unusable [9]. On the other hand, false negatives have a
potential to cause serious damage: even a single compromised system can severely
undermine the integrity of an enterprise network.

Data volume

The volume of network traffic that needs to be analyzed is huge. This alone can make
deep inspection of the traffic unfeasible, so only metadata such as connection type
and timing is often exploited. Even in that case, the number of records can be large:
The IDS developed by Cisco (see Section 1.3) reports more than 10 billion analyzed
requests daily [10]. This places stringent limits on algorithmic complexity. IDSs are
frequently built with a complex layered architecture, decreasing with each layer the
amount of processed data and increasing with each layer algorithmic complexity.

Low quality training data

There is no recent and common training dataset for IDS [11, 8] and there are several
reasons for it. High-quality training datasets for IDS development are typically very
expensive to construct. It is possible to capture real-world traffic from a network
and label parts of the traffic as malicious by hand, but this is a costly and laborious
process and due to the complexity of the task and large data volume, the results may
not be very reliable. Another option is to use real-world or simulated background
network traffic and add malicious traffic gathered from infected virtual machines.
However, it is difficult to gather realistic network traffic that does not already contain
some malicious behavior. Moreover, the proportion and characteristics of artificially-
introduced malicious traffic may not be realistic.

The biggest hurdle to publishing datasets in the security domain is, however, privacy
concerns. Data may be sanitized by removing or anonymizing potentially sensitive
information, but this may introduce artifacts and limit its utility for IDS develop-
ment [12] and significant amounts of sensitive information may still be possible to
extract [13].

Perhaps mainly due to these concerns, the availability of public training datasets is
poor. This is best illustrated by the fact that a synthetic dataset KDD Cup ’99 [14]
created in the year 1999 is still widely used by the research community as shown in
an extensive survey [11]. This is despite it’s age and serious flaws that have been
discovered over time [15].

17

1.2. THESIS OUTLINE

1.2 Thesis Outline

The remainder of the thesis is structured as follows.

In the rest of Chapter 1, we look at the Intrusion Detection Systems in more detail.
We start by describing the concrete instance of an IDS that we are working on: Cisco
Cognitive Threat Analytics. We identify its weaknesses and propose an outline of
a reputation model designed to improve its performance by integrating intelligence
gathered from a large number of client networks.

In Chapter 2, we investigate relevant state of the art in relation to the design and
requirements of the reputation model.

In Chapter 3, we propose several variants of the reputation model. One of the
variants is a novel model designed for outlier ensemble normalization in presence of
a substantial number of missing values.

In Chapter 4, we experimentally evaluate the proposed reputation model variants
on real-world network traffic and discuss the results.

In Chapter 5, we summarize the results and conclude this thesis.

1.3 Cognitive Threat Analytics IDS

Cognitive Threat Analytics (CTA) [16], developed by Cisco Systems, Inc., is a cloud-
based software-as-a-service product designed to detect infections on client machines.
It functions as a network-based IDS, analyzing proxy logs produced by web proxies
on a network perimeter. It is able to to discover data exfiltration, the use of do-
main generation algorithms1, infections by exploit kits, malicious tunneling through
HTTP(S) and command-and-control (C&C) communications [10].

CTA IDS focuses solely on analyzing traffic using the HTTP and HTTPS protocols.
The rationale is that when malware communicates with a C&C server, it frequently
does so using standard HTTP(S) protocols in order to blend in with the vast amounts
of legitimate traffic that is typically generated in any network [17]. Moreover, com-
munication protocols other than HTTP(S) are not universally available as they tend
to be filtered out by networks.

The input of the CTA IDS anomaly detection pipeline is a proxy log. In the re-
mainder of this thesis, we will call proxy log entries network flows or simply flows.
Each flow contains various fields extracted from the HTTP(S) headers, such as time
of the request, source and destination IP addresses, HTTP method, downloaded
and uploaded bytes, user agent, etc. The full list is in Table 1.1. The content of
the flows differs considerably for HTTP and HTTPS traffic. For HTTP, each log
entry consists of a single HTTP request and response. For example, a typical web
page triggers many flows of the GET method, because various assets need to be

1Domain generation algorithms generate an arbitrary number of domain names to avoid detection
and blacklisting of hosts that provide malware.

18

CHAPTER 1. INTRODUCTION

Field name Field description HTTPS
x-timestamp-unix timestamp p
x-elapsed-time elapsed time p
sc-http-status HTTP status ∅
sc-bytes bytes up p
cs-bytes bytes down p
cs-uri-scheme URI scheme Y
cs-host URI host Ynote1

cs-uri-port URI port Y
cs-uri-path URI path ∅
cs-uri-query URI query ∅
cs-username user name ∅
s-ip server IP Y
c-ip client IP Y
Content-Type MIME type ∅
cs-referer HTTP referer ∅
cs-method request method ∅
cs-user-agent User-Agent ∅

Table 1.1: HTTP(s) flow fields. Fields marked with “Y” are available in HTTPS,
fields marked with “p” provide only partial information in HTTPS flows due to the
fact that many requests may be grouped in one HTTPS flow, and the fields marked
by ∅ are not available at all. Only 4 out of 17 fields are unaffected by the HTTPS
protocol.
note1: The cs-host field is not available in HTTPS traffic, but the host name can be
extracted from HTTPS certificate information.

downloaded separately (HTTP is a stateless protocol). On the other hand, HTTPS
communication is hidden inside an encrypted tunnel which is typically left open for
a time and may contain many HTTP requests. The whole tunnel is represented by
a single flow with the method set to CONNECT. This means that not only is the
information that is encrypted unavailable in HTTPS (such as the user agent string
or the resource URI), also meta-information such as request size, request count and
timing information is mangled. This makes the encrypted communication much less
information-rich than non-encrypted and this fact is one of the key motivations for
this thesis.

CTA uses multiple anomaly detectors to assign multiple anomaly values to individual
network flows. Since each anomaly detector is (by design) a very weak classifier on
its own, a layered anomaly processing pipeline is employed to combine the anomaly
values into a single final per-flow anomaly score. The flows with high anomaly
score are clustered, assigned labels and severities and finally sorted in the post-
processing step. The results are displayed to a network operator so they can react
accordingly. The main steps of this process are described in more detail in the
following paragraphs. For a more in-depth treatment, see [7].

19

1.3. COGNITIVE THREAT ANALYTICS IDS

Figure 1.1: Anomaly processing pipeline architecture. The output of the Anomaly
detectors is processed in three layers. The first layer aggregates the inputs using
two functions: Evangelista and Acc@Top. The second layer uses LAMS models to
smooth the detector ensemble outputs and decrease the false positive rate. Finally,
the outputs from different LAMS models is once again aggregated by the Evangelista
and Acc@Top functions and their results are averaged together to produce the final
anomaly score. (image taken from [7]).

Anomaly detectors are used to compute anomaly scores from input flows by
using information in a single flow as well as fusing information from the previously-
encountered flows and aggregating it (in e.g. per-host traffic volume statistics).
There were more than 40 separate anomaly detectors in CTA at the time of writing of
this thesis. Each of them is a weak classifier with a real-valued output in the interval
[0, 1] , zero is background and one is anomaly. The detectors are designed to be fast,
single-purposed, diverse from one another and to have high recall (sensitivity) at the
cost of low precision. Because they are diverse, false positives can later be filtered
out in the anomaly processing pipeline, increasing the precision of the output.

Anomaly processing pipeline starts with the anomaly detector outputs and
converts them into a single value with high classification strength. This process
is illustrated in Figure 1.1. Detector outputs are processed in three layers. The
first layer aggregates the results of anomaly detectors using two functions: the
unsupervised Evangelista function and the supervised Acc@Top function. These
functions are designed to increase the precision and preserve recall. The second layer
uses LAMS models (described below) to smooth the anomaly values and decrease
the false-positive rate. Finally, the outputs from different LAMS models are once
again aggregated by the Evangelista and Acc@Top functions and their results are
averaged together to produce the final anomaly score.

20

CHAPTER 1. INTRODUCTION

LAMS (Locally Adaptive Multivariate Smoothing) [18] is a method designed to lower
false positive rates by smoothing the output of a detector. This way, accidental spikes
in anomaly score are ignored while locally-repetitive patterns of malicious behavior
are preserved. It works by replacing an output of a detector by a weighted average
of itself over similar samples. Similarity is defined a Gaussian function of Euclidean
distance in a predefined feature space[18]. Multiple different feature spaces are used
in the pipeline in parallel to achieve better classification strength.

Post-processing of the final anomaly score is the process of converting the nu-
merical output of the anomaly processing pipeline into actionable intelligence that
can be presented to a network operator. It involves clustering the flows, attaching
labels and severities, sorting by anomaly scores and displaying the output. It is not
relevant to this thesis and will not be further discussed.

To sum up, Cognitive Threat Analytics IDS is an anomaly-based IDS operating
on network traffic. Features are extracted from individual network flows and pro-
cessed in an anomaly processing pipeline with the end result of displaying actionable
intelligence to a network operator.

As noted above, network traffic using both HTTP and HTTPS protocols is analyzed,
but the amount of information that can be extracted from HTTPS traffic is heavily
reduced in comparison to HTTP traffic. With many companies and organizations
advocating encryption and initiatives such as Let’s encrypt decreasing adoption
difficulties (for both malicious and legitimate entities), recent years have witnessed
a dramatic increase in encryption pervasiveness. It is now a must to develop threat
detection algorithms that perform well on encrypted traffic and to improve the
performance of existing algorithms thereon.

1.4 Thesis goals

The main goal of this thesis is to improve the detection efficacy of the existing CTA
anomaly-based network IDS (described in Section 1.3) on malware that uses network
traffic encryption to avoid detection. To achieve this, we utilize information that is
currently not utilized by the CTA IDS: inter-network data correlations. Although
the CTA IDS is employed on hundreds of different networks, the existing anomaly
processing pipeline makes no attempt to share information between individual net-
works and all the information that is used for anomaly detection is network-local.

We propose a novel way of improving the efficacy of anomaly detection by using
threat intelligence gathered from a large number of enterprise networks that are
all separately monitored by the CTA IDS. We create a global intelligence database
that is shared among all the participating IDS systems and use it to improve their
anomaly detection performance on both encrypted and non-encrypted network traf-
fic.

21

1.5. PROPOSED ARCHITECTURE

There are several ways in which global intelligence sharing could improve detection
capabilities of participating networks.

• There are networks that use the man-in-the-middle (MiTM) attack to inspect
HTTPS connections and provide the full set of features for the individual
HTTP requests that were sent through an HTTPS tunnel. Intelligence gath-
ered from those networks can be used to improve detection efficacy on networks
that do not use MiTM inspection.

• Some false positives might be specific to a single network and can be removed
when using global intelligence. For example, there might be flows that are
labeled as anomalous in the context of one network, but are labeled as normal
in other networks, which would suggest that it is a case of a false positive. An
example of this type of a false positive might be an access to the Yandex search
engine that could be easily considered anomalous in American companies, but
it is the most commonly used search engine in Russia.

• The detection efficacy on smaller, geographically-local networks may be poor,
because there may not be enough data to meaningfully initialize the system and
generate strong baseline of normal behaviour in the individual anomaly detec-
tors. These networks can benefit importing information from well-initialized
networks.

Apart from improving detection in participating networks, global intelligence can
also be useful in its own right. For example, a global reputation list can be built
to help network analysts assess threat severity, or the gathered intelligence may be
used to better understand global statistics of network threat behavior (determine
originating countries, scale of an attack, C&C mobility, etc.)

We set out three specific goals for this thesis.

1. Build a global intelligence sharing system in several variants on top of the CTA
Intrusion Detection System.

2. Evaluate the performance of the system variants when used as global reputa-
tion lists.

3. Use the global intelligence to improve upon existing anomaly detection capa-
bilities in individual networks and measure the results on both HTTPS and
HTTP traffic.

1.5 Proposed architecture

In order to share intelligence pertaining to a part of observed traffic in a network, a
way to identify similar parts of traffic in other networks must be devised. There are
two ways to identify similarities in network traffic: remote identity identification or
behavioral correlation.

22

CHAPTER 1. INTRODUCTION

Remote identity identification (using hostname2, IP address, etc.) is a simple,
crisp way to correlate traffic across networks. It can be used in a straight-
forward manner to assign reputation scores to different endpoints or form a
blacklist of malicious entities. It is a standard and functional way to enhance
network security. Identity identification offers an added benefit of reliably bin-
ning captured HTTPS traffic together with the corresponding traffic where an
MiTM attack was used to inspect the contents. It can also be easily interpreted
by a human operator. On the other hand, pervasive use of identity indentifica-
tion has led to adaptation: attackers frequently change their originating hosts
to make blacklisting less effective.

Behavioral correlation (using timing, request sizes, request methods, etc.) is
able to overcome such evasive tactics as the resulting features are designed not
to be tied to a single identity, but there is a steep cost to it: it is complex,
fuzzy and unreliable. Moreover, behavioral correlation techniques must exploit
a wide range of traffic characteristics and sharing these may raise privacy
concerns in involved parties.

Because of its relative merits, we will use identity identification as the basis for
our intelligence sharing system. There are several ways of identifying the remote
party that are available for network flows: URI, hostname, IP address or the second-
level domain. Out of these, we will use hostname as is the most specific identity
information that is available for both encrypted and non-encrypted flows apart from
the IP address. IP addresses are potentially more specific but also less meaningful;
many IP addresses may be used to serve identical resources and be distinct just for
the purpose of load balancing. Hostname is not always available; in cases it isn’t,
its value will be substituted by the IP address.

We propose a global intelligence sharing model, henceforth called the global repu-
tation model, which uses information gathered in individual networks to globally
associate anomaly values to individual hostnames. The overall reputation model
structure is visualized in Figure 1.2. There are three parts to this reputation model
(represented by blue arrows in the figure):

1. Aggregation of anomaly scores over hostnames, producing a set of local repu-
tation models. This part can be implemented simply as an average of per-flow
anomaly values (details in Section 3.1).

2. Combination of local reputation models to form a global reputation model. This
part is much more involved than the others and presents difficult challenges
such as normalization of individual local reputation tables. The remainder of
this thesis mainly focuses on the design and implementation of this part of the
overall intelligence sharing algorithm.

2A hostname is in the context of the Internet a fully qualified domain name that specifies the
address of a host computer, e.g. en.wikipedia.org.

23

1.5. PROPOSED ARCHITECTURE

3. improvement of anomaly detection in individual networks using the global
reputation model. This part can be implemented by replacing individual flow
anomaly scores with hostname reputation values (details in Section 3.6).

Figure 1.2: Global reputation model overview illustrated on three networks. The
input is a list of flows with associated anomaly scores (produced by the anomaly pro-
cessing pipeline of the CTA IDS), the output is a global reputation model. The global
reputation model can be used in its own right or to enhance detection strengths in
individual networks. Blue arrows represent parts of the global reputation model
algorithm that are developed and evaluated as in this thesis.

24

Chapter 2

Related Work

In this chapter, we investigate the state of the art related to building a reputation
model and discuss challenges in application to our domain.

It should be noted that the proposed reputation model is not an instance of a rep-
utation system. Reputation systems let parties rate each other and use aggregated
ratings about a given party to derive a trust or reputation score [19]. Notable ex-
amples of reputation systems include Google’s PageRank [20] or user rating systems
on many e-commerce sites. The main challenge faced by reputation systems is that
the parties rate each other; trust is transitive and potentially malicious parties are
not only rated, but they themselves also rate. We do not face this challenge: in
our case, the rating parties (client networks) and rated parties (remote servers) are
disjoint.

A better fitting abstraction to our problem is that of outlier ensemble models. In
contrast to better-known classifier ensembles, outlier ensembles are designed to be
applicable in an unsupervised setting and their design characteristics are much closer
to our needs as stated in Section 1.1. Individual client networks can be viewed as
individual outlier detectors and a global reputation model can be viewed as their
ensemble. The output of each outlier detector (client network) is in this case a local
reputation model, associating an outlier score to every observed hostname in each
network1.

One of the challenges is that individual outlier detectors observe different sets of
hostnames. As argued in Section 3.1, this property can be treated systematically
as an instance of missing data. In the following chapters, we investigate these
ideas further. We start by introducing outlier ensemble models. Then, we explore
relevant design decisions in outlier ensembles and discuss how they apply to our
setting. Finally, we assess the impact of missing values on outlier ensembles and
discuss algorithms dealing with this issue.

1We can arrive at the local reputation model (for example) by simply averaging the anomaly
values of all flows corresponding to each single hostname.

25

2.1. OUTLIER ENSEMBLE MODELS

2.1 Outlier Ensemble Models

In machine learning, ensemble models are the techniques of combining the outputs
of multiple data-mining algorithms to produce a single algorithm [21, 22]. Because
different algorithms make mistakes in different parts of the input space, this ensem-
ble is often more accurate than any of its constituent parts [23, 24, 25]. Ensemble
models are widely studied and successfully used in problems such as clustering and
classification, but their usage is relatively sparse in the field of outlier detection.
Two factors have been major impediments to the success of ensemble models in out-
lier detection: class imbalance and the unsupervised nature of the problem. Class
imbalance refers to the issue that the number of outliers is (by definition) compar-
atively small. This makes it difficult to evaluate the success of the algorithm in
a statistically robust way and presents a danger of over-fitting. The unsupervised
nature refers to the fact that objective ground truth is often not available to be
used to evaluate the quality of components in the ensemble, making it necessary to
develop only simple algorithms with few qualitative choices. Nevertheless, outlier
ensembles have been treated in literature a number of times and recent years have
seen a number of significant advances in the topic [26].

Aggarwal [27] divides outlier ensemble methods into two categories:

Model-centered ensembles combine the outlier scores from different algorithms
(models) built on the same data set. The major challenge is that the outputs
of models are not directly comparable. It may even be the case that high
outlier scores corresponds to high outlier probabilities in one algorithm and
low outlier probabilities in another. Good normalization of the algorithm
outputs is crucial for good ensemble performance.

Data-centered ensembles use only a single outlier detection algorithm, but apply
it to different subsets or functions of the input data in order to produce an
ensemble. Horizontal sampling (a sample of data points) or vertical sampling
(a subspace of feature space) can be employed. The earliest formalized outlier
ensemble method [28] called feature bagging falls into the category of data-
centered ensembles, employing vertical sampling of random feature sub-spaces.
Because only a single outlier detection algorithm is used, the outlier scores are
not nearly as heterogeneous as is the case in model-centered ensembles and
normalization does not play such a central role. To improve performance, the
sampling procedure can be adjusted as well as the final combination function,
and it can still be beneficial to employ normalization as seen in the original
feature bagging article [28] or in [29].

Our reputation model can be viewed as a data-centered outlier ensemble, where each
ensemble model is a network and data points are the observed hostnames. A typical
outlier ensemble meta-algorithm contains three components that are used to arrive
at the final result:

26

CHAPTER 2. RELATED WORK

1. Model creation. This is the methodology used to create the individual algo-
rithms (models) that form an ensemble. In data-centered ensembles, it may
be, for example, a particular way of sampling input data points or feature
dimensions.

2. Model normalization. Different models may produce outlier scores on different
scales. In order for the scores to be comparable, they must be normalized.

3. Model combination. The normalized outlier scores are combined to form a
single outlier score. A (weighted) average or maximum are common choices of
combination functions.

The first component, model creation, is not relevant to this thesis, since the indi-
vidual models are already given as individual network outputs. The next two steps,
however, are necessary components of our reputation model and will be discussed
in the following sub-sections.

2.1.1 Model normalization

The simplest approach to model normalization is not to normalize at all. This is
possible for some data-centered ensembles where the models do not differ substan-
tially in their output characteristics. For our purposes, this is certainly a viable
approach since our ensemble is data-centered and it is unclear how, if at all, do
the constituent model outputs statistically differ. Their differences may also be
meaningful and not accidental, and normalization may in fact decrease the ensem-
ble performance. That being said, normalization has been shown to be beneficial in
the case of data-centered ensembles multiple times [28, 29]. Several approaches to
model normalization have been proposed in literature and will be discussed below.
A good summary of available normalization methods can be found in [30].

Two key properties of outlier scores for the purposes of model normalization are
regularity and normality. An outlier score S is called regular if for any scored
object o, S (o) ≥ 0, and S (o) ≈ 0 for an inlier and S (o) ≫ 0 for an outlier. S is
called normal if S is regular and S (o) ∈ [0, 1] for any o. A process of making S
regular, resp. normal while preserving the rankings of different data points is called
regularization, resp. normalization. Normally, an outlier score is first regularized,
then normalized. Normalization can be useful even if S is already normal: the
requirements for normality are too lose to guarantee the possibility of meaningful
outlier score combination in an ensemble.

Perhaps the simplest regularization method is simple linear scaling. A baseline
value baseS is chosen, equal to the expected inlier value. Then, the function S can
be regularized as follows:

Sreg (o) = max {0,±s (S (o)− baseS)} .

The sign (±s) depends on whether low outlier score S (o) indicates that o is an
outlier (plus sign is used) or conversely (minus sign is used). This regularization

27

2.1. OUTLIER ENSEMBLE MODELS

method is often used as a preprocessing step to make it easier to apply one of the
normalization functions below. A similarly trivial normalization technique would be
to scale Sreg to fit within the [0, 1] interval in the following way:

Snorm (o) =
Sreg (o)

maxo Sreg (o)
.

Since the maximum function is not a robust statistic, Snorm normalization is not
robust either and it is useful more as a preprocessing step to reduce gross calibration
differences than as a final normalization function. In our case, outlier scores are
already normalized to begin with so the transformations above are not of any use
to us.

A somewhat more involved approach to normalization is discarding precise outlier
scores and using their ranks only (scaled to fit the range [0, 1]) [28, 30]. This neatly
solves the normalization issue and makes the outputs of wildly different outlier
detection algorithms comparable, but loses a lot of information in the process. The
absolute differences between outlier scores are disregarded so there is no way for
individual algorithms to express the amount of their confidence in a sample being an
outlier or an inlier. Moreover, there is no way to express that there is no anomalous
sample at all. In our case, nearly half of the networks do not contain any anomalies
so this makes the rank-only normalization unsuitable.

Another option is to transform outlier scores into probability distributions. Two
methods for achieving this goal are described in [29]. The first method assumes
that the posterior probability of a sample being an outlier follows a logistic func-
tion in relation to its outlier score and learns the parameters of this function from
the distribution of outlier scores. The second method models the outlier scores as
a mixture of two distributions: exponential for the background and Gaussian for
the outliers. Parameters of these distributions are learned and posterior probabil-
ities are calculated using the Bayes’s rule. In order to learn in an unsupervised
manner, a generalized Expectation Maximization (EM) algorithm is used to jointly
learn the distribution parameters and classifications of data points. Authors show
modest improvements over the plain feature bagging [28] ensemble model. There
are, however, several problems with this approach. It favors extreme values (0 and
1) in the resulting probabilities, which does not lend itself well to combination [30].
Moreover, it is not very stable due to the usage of the EM algorithm and the results
can degenerate if there are only few outliers in a sample, which is frequently the
case in the network security field. This means that this form of the EM algorithm
is not applicable in our case.

Kriegel et al. [30] transforms outlier scores into probability values using a different
approach. They assume that the outlier scores follow a chosen distribution, esti-
mate its parameters and use its cumulative distribution function to arrive at the
probability values. For example, for a normal distribution, an outlier score S (·) is
transformed into a normalized score Norm1 (·) as follows:

Norm1 (o) = max {0, 2 · cdfgauss (S (o))− 1} ,

28

CHAPTER 2. RELATED WORK

where cdfx (·) is a cumulative distribution function of an estimated distribution x.
Scaling and maximum are used because we are interested only in a one-tailed prob-
ability value: an average case is assigned the outlier score of zero. Note that the
probability Norm1 (·) can not be directly interpreted as a probability of the sample
being an outlier; this is not needed since the goal is just making the values compa-
rable. Instead of the Gaussian distribution, other distributions can be used in the
same manner; the paper proposes also the use of uniform and gamma distributions.
Although it is argued that the precise choice of a distribution is not very important,
Gaussian scaling shows the best results in the majority of tests.

The last option we will discuss here is normalization without assuming a concrete
probability distribution. Instead, the sample means can be normalized to zero and
residuals to one by subtracting the sample mean µ and dividing by sample standard
deviation σ [31]:

Norm2 (o) =
S (o)− µ

σ
.

This is similar to the Gaussian normalization Norm1 discussed above, but for the
use of the cdfgauss function. However, the result is not guaranteed to lie in the
interval [0, 1], and high values are not exponentially dampened by the cumulative
distribution function that exponentially approaches one.

After being normalized by one of the techniques described above, the ensemble model
outputs must be combined to form a single value. In the next section, we describe
such model combination functions.

2.1.2 Model combination

There are several choices of the model combination function f : RN → R. The
following paragraphs discuss the most common model combination functions.

Average is the obvious choice of a model combination function and as such, it
has been used extensively in literature [30, 28]. It is quite robust to outliers
and its estimation is unbiased regardless of the sample size (in contrast to
e.g. maximum). One problem with Average has been identified though: if
many models return irrelevant results (for example, when only the minority
of models is expected to assign a high score to an outlier), the average could
get diluted. In our model, we can’t expect the average to be get diluted by
this mechanism, but the converse may be true: many models could assign high
anomaly scores to inliers (background traffic) due to them being observed for
the first time. This may be a reason to consider other combination methods,
but owning to its robustness, average is the obvious choice.

Maximum is useful for setups where the models in the ensemble display high pre-
cision and low recall. It is one of the most common combination functions and

29

2.2. DEALING WITH MISSING VALUES

it is used particularly in parameter tuning scenarios: the individual models
represent the same algorithm over identical data, but with different parame-
ters. The ensemble then picks the strongest result with the maximum function.
This choice was discussed in the classical Local Outlier Factor (LOF) paper
[32] that implicitly used an outlier ensemble model. Maximum estimation is
is meaningful for comparison only if all the data points have the same number
of components in the ensemble. For our model, this is not true and neither do
our ensemble models have high precision and low recall, so Maximum is not
useful for us.

Minimum classifies a point as an outlier only if all the models in the ensemble
classify it as such. Therefore, it could be useful for models with low precision
and high recall. For vertically sampled ensembles this is not the case, because
by vertical sampling, recall is diminished. On the other hand, for many out-
lier detection algorithms, horizontal sampling preserves recall and diminishes
precision, so minimum can be a good choice. Horizontal sampling in outlier
ensembles is not common so the minimum function is rarely (if at all) used.
As is the case for maximum, all data points must have the same number of
components in the ensemble, and this excludes Minimum from consideration
as our combination function of choice.

Pruned average is a way to overcome the diluting effects of a simple average.
Low anomaly scores are discarded (either by tresholding or by using only
top n scores), and the remaining scores are averaged. The problems with
this approach are that it contains parameters that must be tuned (which is
difficult to do in an unsupervised setting), it is computationally expensive and
some issues of comparability between the scores of different data-points arise.
Despite the fact it combines the benefits of average and maximum, it is rarely
used in practice [27].

Damped average applies a dampening function, such as a square root or loga-
rithm, to the values before averaging them. This is used to prevent the result
from being dominated by few extreme values. Geometric mean is a special
case of damped average, where the dampening function is a logarithm. It does
not seem necessary to implement dampening in our case, since the anomaly
scores are already normalized and so very extreme values can not appear.

2.2 Dealing with missing values

When our reputation model is viewed as a horizontally-sampled ensemble (Equation
3.2), there are so many missing values (specifically, 99.2%) that they require careful
treatment. There are several conventional techniques used to deal with missing
values [33]:

Complete-case analysis, also known as listwise deletion. In this method, the
entire record is excluded from analysis if a single value is missing. This method is

30

CHAPTER 2. RELATED WORK

known to behave well even if values are not missing completely at random [34]. In
our case that means that only the hostnames that are found in all of the networks
would be used for analysis. This is difficult, because such a set of hostnames is
actually empty. A way to get a non-empty set is to use only a subset of available
networks. This, however, leads to a very small resulting dataset, which in turn leads
to large estimation errors.

Available-case analysis, also known as pairwise deletion. For many models,
the parameters of interest can be expressed using population mean, variance, cor-
relation2 and other population statistics. In available-case analysis, each of these is
estimated using all of the available data for each variable or pair of variables. In
our case, assuming we need the mean and standard deviation estimates, the entirety
of the available data would be used, but the sets of hostnames that each network
normalization is dependent on would be different. Intuitively, this would give better
results than complete-case analysis due to the much bigger dataset available, but it
also introduces additional bias if the probability of a value being missing is corre-
lated to the anomaly score, and it introduces bias in estimating standard deviation
due to the different sample sizes.

Data imputation. Many methods fall into this category; the common trait is that
these methods guess or estimate the missing values before doing the analysis. A
popular approach is simply to substitute means of existent values for missing values.
Another method is to estimate the missing values using the maximum likelihood
method, or draw the missing values from a chosen distribution multiple times and
aggregate the results. If the substituted values are biased, the results of analysis
based on them will also be biased. Due to the extremely large number of missing
values in our case, data imputation seems not to be the right choice. The methods
with strong theoretical guarantees (maximum likelihood and multiple imputation)
need precise probabilistic models of the data which are unfortunately not available
in our case.

In this chapter, we discussed the state of the art relevant to building a reputation
model using an ensemble of outlier detectors. In the next chapter, we will use
that knowledge to design several variants of the reputation model that can later be
evaluated and compared.

2This is where the name pairwise deletion originates: to compute correlation, pairs of cases are
needed.

31

Chapter 3

Proposed Algorithm

In this chapter, we propose several variants of the reputation model based on the
considerations in the previous chapter. First, we show how the reputation model
can be viewed as an outlier ensemble model. Then, we present our implementation
choices of the three parts of the ensemble model that were identified in Section 2.1:
normalization, combination, and the way of dealing with missing values. Lastly,
we propose and analyze the properties of a novel normalization algorithm that is
designed to suffer from missing values less than the state-of-the-art methods.

3.1 Global reputation model as an outlier ensemble

In order to use the outlier ensemble abstraction, we must first transform our input
from the form of network flows with anomaly scores into a local reputation model
(step 1. in Figure 1.2). We do this by treating each flow’s anomaly score as an
estimate of the corresponding hostname anomaly score. We then estimate the host-
name anomaly scores by averaging the anomaly scores of all flows that communicate
with said hostname in a single network. This simple procedure arrives at the local
reputation model.

The global reputation model can be viewed as a data-centered outlier ensemble with
horizontal sampling. Let H be the set of all existent hostnames and Hn ⊆ H the set
of all hostnames that were observed in the network n ∈ N. Let fn : Hn → R be the
anomaly score of a hostname measured in the network n. Now, Hn is the horizontal
sampling of H, and the sets of anomaly scores observed in individual networks form
an ensemble Eh:

Eh = {{fn (h) | h ∈ Hn} | n ∈ N} . (3.1)

Horizontally sampled ensembles are routinely used in classification: classical ex-
amples are Bootstrap Aggregating [35] and Random Forests [36]. They have not,
however, found use in outlier ensemble models. Intuitively, this is understandable:
horizontal sampling leads to dilution of dense groups of data points which signifi-
cantly hampers our ability to identify outliers. To be able to utilize the literature

32

CHAPTER 3. PROPOSED ALGORITHM

Figure 3.1: Horizontally and vertically sampled ensemble illustration. In the case of
the horizontally-sampled ensemble (left), we treat each network as a sampling Hn

of a set of hostnames H. In the case of the vertically-sampled ensemble (right), we
treat each network as a dimension Dn in a feature space of hostnames. Sampling is
then over the dimensions of the feature space, one dimension at a time, and values
are missing whenever a hostname was not observed in a given network.

around outlier ensembles we re-define the reputation model as an ensemble with
vertical sampling by allowing the existence of missing values. The ensemble is now

Ev = {[fn (h) | n ∈ N] | h ∈ H} , (3.2)

where [fn (h) | n ∈ N] is an ordered set of the anomaly scores of h in all networks.
Since not all of the hostnames are observed in every network (the domain of fn is
a subset of H), there are missing values in the ensemble. The difference between
these two representations is illustrated in Figure 3.1.

If we view the reputation model as a vertically-sampled ensemble, we must explicitly
deal with missing values. The shortcomings of existing algorithms designed for
estimation with missing values (discussed in Section 2.2) motivate the design of a
novel ensemble normalization algorithm described later in this chapter.

3.2 Normalization

Based on the experiments conducted in [30], the best-performing normalization vari-
ant across a wide array of scenarios was Gaussian scaling:

Normgauss (o) = max {0, 2 · cdfgauss (S (o))− 1} , (3.3)

where o is a network flow, S is an outlier score cdfgauss is the cumulative distribution
function (CDF) of a Gaussian distribution with parameters estimated from the data.

33

3.2. NORMALIZATION

Figure 3.2: Error function decay illustration. The blue line is the first term of
the Taylor expansion of erf (z) . When used as a transformation function, the linear
approximation better preserves values far from zero than the erf (z) function.

This can be rewritten using the Gauss error function erf :

Normgauss (o) = max

{
0, erf

(
S (o)− µ√

πσ

)}
, (3.4)

where µ, σ are the estimated mean and standard deviation. For our purposes, how-
ever, a change to this equation is warranted. As the models in our ensemble are
identical (only the data is not) and we do not require the result to be inside the
[0, 1] interval, we can get rid of the exponential decay towards 1 of the erf function.
This decay (illustrated in Figure 3.2) makes the scores of outliers less pronounced
and could arguably lead to their dilution. When erf is substituted by its linear
approximation around origin and the maximum function is removed1, we get:

Normlin (o) =
2√
π
· S (o)− µ√

πσ
∝ S (o)− µ

σ
· (3.5)

This coincides with the standardization procedure which is a frequently used tech-
nique in ensemble outlier detection [31]. We will use this normalization function as
one choice for experimental evaluation. Second choice will be the identity function:
Normid (o) = S (o) . This will provide a baseline so we can evaluate how much (if at
all) the results improve when normalization is employed.

1It does not have any purpose if we do not require the score to be normal (inside the [0, 1]
interval).

34

CHAPTER 3. PROPOSED ALGORITHM

3.3 Combination

As discussed in in Section 2.1.2, only variants of the average function (average,
pruned average, damped average) are suitable for our algorithm. Pruned average
requires a pruning threshold to be set and damped average requires a dampening
function. For neither of those, it is obvious how to choose these parameters in an
unsupervised setting. Therefore, we will use a simple average as our combination
function, consistently with much of the prior art on outlier ensembles.

3.4 Missing values

Among the methods useful for dealing with missing values described in Section 2.2,
we choose for evaluation both complete-case analysis and available-case analysis.
Because of the large proportion of missing values, we will not pursue data imputation
approaches. To have enough complete cases for complete-case analysis, we will use
only a subset of networks in experiments with this technique.
In addition to the standard methods of complete-case and available-case analysis,
we propose a novel method that is designed to enable ensemble normalization with
higher tolerance to missing values than either of the methods above. We call this
method pairwise optimization of normalization error and we describe it in detail in
the next section.

3.5 Pairwise optimization of normalization error

This method is similar to pairwise deletion (available-case analysis) when used to
estimate a correlation matrix. In that case, pairwise deletion would use pairs of net-
works ni, nj to compute correlation coefficients ci,j and build a correlation matrix
[ci,j] . For each pair of networks ni, nj , a set of common hostnames would be used
to compute the correlation; hostnames missing from either of them would be dis-
carded. Much greater proportion of samples is utilized in this way than is the case
with complete-case analysis and only identical sets of hostnames are ever compared
together in contrast to available-case analysis. However, the resulting correlation
matrix [ci,j] is not guaranteed to be positive-semidefinite.
Since our goal is not estimating the correlation matrix, but normalizing outlier
scores, we build a normalization error function instead of a correlation matrix, but
we do it in much the same pairwise manner. This error function encompasses the
statistical differences of all pairs of networks and by minimizing it, we can estimate
the parameters that minimize said differences.

3.5.1 Derivation

Let N be a set of all networks. Each network n ∈ N contains a set of hostnames,
Hn. Let fn : Hn → R be an anomaly score of a hostname h ∈ Hn in network n. Let

35

3.5. PAIRWISE OPTIMIZATION OF NORMALIZATION ERROR

gθn : R → R be a normalization function parameterized by θn. We wish to arrive
at the parameters θn that normalize best the anomaly scores fn (·). Using these
parameters, it is possible to compute the normalized anomaly scores qn,h :

qn,h = gθn (fn (h)) , h ∈ Hn. (3.6)

We can now use the least squares optimization method to find the best parameters
θn. For every pair of networks n,m, the normalization error function En,m is:

En,m =
∑

h∈Hn∩Hm

(gθn (fn (h))− gθm (fm (h)))2

=
∑

h∈Hn∩Hm

(qn,h − qm,h)
2 , (3.7)

where we substituted in the normalized anomaly scores qn,h for simplicity. By min-
imizing En,m over θn, θm, we arrive at the normalization parameters θn, θm for net-
works n,m. To compute the global error function E, we can sum the errors En,m

over all pairs (n,m):

E =
∑

n,m∈N,

En,m =
∑

n,m∈N,

∑
h∈Hn∩Hm

(qn,h − qm,h)
2 . (3.8)

This can be re-arranged to sum over hostnames last. If we do that, the descriptions of
the summation sets would get quite hairy, so we will no longer print them and simply
assume that a summand is present only if its value is defined. After re-arranging we
get:

E =
∑
h

∑
n

∑
m

(qn,h − qm,h)
2 , (3.9)

where according to the stated convention, n and m are summed only over the net-
works that observe the hostname h. It is now visible that the influence of a sin-
gle hostname h is quadratic to the number of networks it is present in (there is
a quadratic number of summands referencing this hostname). This is caused by
using a pairwise error function instead of an error function comparing to a single
baseline. This is certainly not desired; due to the nature of the dataset, we can
expect the differences between the number of occurrences of different hostnames to
be large. Were they quadratically exacerbated, the influence of less frequent host-
names would vanish. To alleviate this issue, we introduce a weighting parameter
wh = |{n|h ∈ Hn}| (the number of networks that h is observed in) and use it to
weight the error function:

E =
∑
h

∑
n

∑
m

1

wh
· (qn,h − qm,h)

2 . (3.10)

The resulting error function E = E
(
gθ1 , gθ2 , . . . , gθ|N|

)
contains only sums and

multiplications of gθn , so it is differentiable with respect to gθn and it is differentiable
with respect to θn whenever gθn is differentiable, so it can in principle be optimized
by a first-order iterative optimization algorithm.

36

CHAPTER 3. PROPOSED ALGORITHM

It should be noted that this error function may not be useful when the scale of the
error function depends on parameters θn. For example, if we choose e.g. mean and
scale parameters: gµn,σn (x) =

x−µn

σn
, the optimal solution E = 0 would be for the

degenerate case of σn = 0, n ∈ N. In cases like this, a more involved error function
or a limited domain of parameters would be necessary to get useful solutions. For
simplicity, we will use a shift normalization function gµn (x) = x− µn that does not
suffer from these problems. This simple normalization function should eliminate the
biggest calibration errors and improve the ensemble classification. We leave more
involved normalization functions gθ for future research.

After substituting for qn,h and using the shift normalization, we get the final nor-
malization error function:

E (µ) =
∑
h

∑
n

∑
m

1

wh
(fn (h)− fm (h) + µm − µn)

2 . (3.11)

After differentiating with respect to µn, we get

∂E

∂µn
=

∑
h

∑
m

4

wh
(fm (h)− fn (h) + µn − µm) . (3.12)

This gradient function can be used to minimize E by any first-order optimization
method such as gradient descend. In Appendix A, we prove that function E is
convex, implying that convergence is possible and any minimum found will be global.

3.5.2 Time Complexity

In the worst case scenario where all the hostnames H are present in all the networks
N , the gradient function ∇E has |N | dimensions and |H|·|N | summands. Combined
with the number of iterations I required to get to the minimum, the time complexity
t of our algorithm is:

t ∈ O
(
|N |2 · |H| · I

)
, (3.13)

using the Big O notation. That is, complexity is linear to the number of hostnames
and the number of iterations and quadratic to the number of networks in the ensem-
ble. In practice, this complexity did not pose problems; for approx. 300 networks,
6.5 million unique hostnames and 50 iterations, optimization using gradient descent
took approx. 2 minutes. In our case, the computation was not parallelized, so this
solution is very scalable.

3.6 Reputation model usage scenario

In this section, we propose a way to use a global reputation model to improve
detection in participating networks.

37

3.6. REPUTATION MODEL USAGE SCENARIO

Firstly, enough data must be gathered to compute a meaningful global reputation
model. If the time period is too long, the reputation model would suffer from
modeling facts that may no longer be valid2. If the time period is too short, the
estimate of a reputation model could be noisy. We propose and evaluate the use of
three days worth of network data. After this time period elapses, a global reputation
model is computed and distributed among networks. The networks can than use
the reputation model to improve the subsequent network traffic anomaly detection.
Simultaneously, they gather data to build a new global reputation model. After
any set time period, the newly gathered data can be used to re-build the reputation
model and the cycle continues. For simplicity, we evaluated the once-built reputation
model for another three days in experiments. It would also be possible to refresh
the system much more frequently to ensure maximum freshness of the reputation
model.

The global reputation model in effect provides each network with a table of per-
hostname anomaly scores. These anomaly scores can be used to improve anomaly
detection in a network by performing a weighted average with the flow-specific
anomaly scores. In our experiments, we strive to maximize the impact of the global
reputation model on anomaly detection to achieve maximum contrast between the
methods and to be able to better discern any differences between the two. Therefore,
for every hostname for which we have a record in the reputation model, we replace
its anomaly score with the one from the reputation model. In the case no record
in the reputation model is present, we use the original anomaly score of the flow,
normalized accordingly.

2Malicious actors could have for example moved their C&C servers to avoid blacklisting.

38

Chapter 4

Experimental evaluation

In this chapter, we evaluate the algorithms proposed in Chapter 3 on real-world
network traffic captures. We start by describing the dataset and methods used for
evaluation. Then, we use these to evaluate the proposed algorithms. Finally, we
discuss the results.

We perform two experiments. The first one, global reputation table evalua-
tion, is targeted at evaluating the classification performance of the global reputation
models produced by the algorithms proposed in Chapter 3. The second experiment,
improvement of per-flow anomaly scores, is aimed at evaluating possible im-
provements that can be attained by using the global reputation models to strengthen
the anomaly scores in individual networks.

4.1 Dataset description

The dataset used for experimental evaluation consists of network communication
of client networks that employ Cisco Cognitive Threat Analytics IDS. Data was
gathered over the first week of January, 2017. There were in total 622 networks, but
only 310 of these networks were chosen at random to produce a size-able dataset
that simulates a realistic use-case while still being reasonably comfortable to work
with (541 GB of raw data). Important characteristics of the dataset are shown in

Collected over 2017-01-03 ... 2017-01-10 (inclusive)
Number of networks 310

Total number of flows 12 932 245 944
Total number of malicious flows 394 951

Proportion of malicious flows 1 : 32 744
% of HTTPS connects in background flows 43.2%
% of HTTPS connects in malicious flows 7.3%

Table 4.1: Characteristics of the dataset used for experimental evaluation.

39

4.1. DATASET DESCRIPTION

0 50 100 150 200 250 300
Company ID

101

103

105

107

109

Nu
m

be
r o

f f
lo

ws

Background HTTP
Background HTTPS
Malicious HTTP
Malicious HTTPS

Figure 4.1: Flow counts per network. Networks are sorted independently for each
line in order to make the lines monotonous. There are 310 companies in total, out
of which 143 contain at least one malicious HTTP flow and 97 contain at least
one malicious HTTPS flow. 6 networks contain zero HTTP flows, 16 contain zero
HTTPS flows.

Table 4.1. The dataset entries were labeled by an expert at Cisco as being either
legitimate or malicious. These labels are available both at the level of individual
flows and at the level of individual hostnames. We will use these labels as ground
truth in all of our experiments.

Companies vary wildly in the number of flows. To illustrate, 50% of the biggest
companies serve 99.0% of the total number of flows. This is something that we
need to pay attention to when we analyze the results. Detailed visualization of the
company sizes is in Figure 4.1.

In order to test the deployment scenario described in Section 3.6, we must split
our dataset chronologically into two parts. The first part is used to create and
test a global reputation table while the second part is used to evaluate the possible
improvements of per-flow anomaly scores using a reputation table. Coupled with
the fact that there must be a warm-up period in which the anomaly detectors are
learning the characteristics of network traffic and do not provide useful output, we
arrive at the following split of the 7 days’ worth of data:

• The first day is discarded as a warm-up period.

• The next 3 days are used to compute the global reputation tables.

40

CHAPTER 4. EXPERIMENTAL EVALUATION

• The last 3 days are used to evaluate the improvements of anomaly scores using
the global reputation tables.

4.2 Evaluation criteria

We use Receiver Operating Characteristic (ROC) curves, and the Area Under ROC
Curve (AUC) as our performance measurement methods. ROC curve is a graphical
plot that illustrates classification characteristics of a classifier as its discrimination
threshold is varied. It is created by plotting the true positive rate (TPR) against the
false positive rate (FPR) for all possible values of discrimination threshold. This
means that we do not have to choose any concrete threshold as the ROC curve
captures all possible choices.

The AUC performance measure is simply the area under an ROC curve. It summa-
rizes classifier performance in one number inside the [0, 1] interval, where 1 is perfect
classification and 0.5 is equivalent to the performance of random guessing. Another
interpretation of AUC is that it is equal to the probability that a classifier would
rank a randomly chosen positive sample higher than a randomly chosen negative
sample. For convenience, AUC scores are often written as percentages.

4.3 Global reputation table evaluation

In this section, we evaluate and compare the classification performance of four global
reputation tables produced by the four algorithms proposed in Chapter 3. All four
of the algorithms use average as their combination function; their normalization
functions and ways of dealing with missing values differ. The evaluated algorithms
are listed below.

1. average: no normalization is performed;

2. norm-isect: X−µ
σ normalization on the intersection of hostnames (listwise

deletion);

3. norm-all: X−µ
σ normalization on all observed hostnames (pairwise deletion);

4. pairwise: pairwise optimization of normalization error (proposed in Section
3.5).

From now on, we will refer to these algorithms by their identifiers that are typeset
in bold above.

For the norm-isect algorithm, we need to have a meaningful intersection of all
networks1. This is not the case when we use all of the networks in the dataset —

1In a sense that the set of hostnames observed from all networks is non-empty

41

4.3. GLOBAL REPUTATION TABLE EVALUATION

Figure 4.2: Network intersection sizes. Horizontal axis indicates the number of
networks in an intersection (the networks with the largest number of hostnames
are taken), vertical axis indicates the number of hostnames in the intersection on
a logarithmic scale. We have chosen to use 100 networks, which correspond to the
intersection size of 1054 hostnames.

Algorithm name AUC score
average 86.6%
pairwise 86.2%
norm-all 80.8%

norm-isect 76.8%

Table 4.2: Global reputation table AUC score comparison on the biggest 100 net-
works. The algorithm average delivered the best performance and pairwise occu-
pies a close second place. The other two algorithms performed significantly worse.

there are even networks that do not have any network flows in the training portion of
the data-set, so the intersection is empty. Therefore, we need to use only a subset of
networks for norm-isect to be applicable. A simple way to choose a reasonable set of
networks is to choose the n networks with the largest numbers of unique hostnames.
The sizes of intersections of the biggest n networks are visualized in Figure 4.2.
Based on this figure, there is no immediately obvious number of companies that
should be chosen. To strike a balance between calibration precision and utility, we
quite arbitrarily choose to use 100 networks; their intersection contains 1054 unique
hostnames. The same set of 100 networks is used for all four algorithms in order for
their ROC curves to be comparable.

The resulting global reputation score ROC curves are shown in Figure 4.3 and the
corresponding AUC values are listed in Table 4.2. The best-performing algorithms
are average and pairwise, nearly tied in their AUC scores and ROC curve shapes.

42

CHAPTER 4. EXPERIMENTAL EVALUATION

Algorithm
average
pairwise
norm-all
norm-isect

Figure 4.3: Global reputation table ROC curve comparison on the biggest 100 net-
works. The ROC curves were computed using the per-hostname anomaly values in
the reputation tables.

Norm-all is in the third place and norm-isect performed the worst.

As expected, norm-isect didn’t perform particularly well. It was able to exploit
only a tiny fraction of available information to perform normalization: only 1054
hostnames were used compared to roughly 6.1 million hostnames utilized by norm-
all. This probably caused substantial noise in the estimation of normalization pa-
rameters, degrading the ensemble performance. While norm-all exploits all of the
available data, it suffers from a different problem: it standardizes every network out-
put in isolation. The sets of observed hostnames are different for different networks,
which then translates to different statistical characteristics of the individual network
anomaly detection outputs. Even if networks were perfectly normalized (returning
identical anomaly scores for each hostname), statistical differences between their
outputs would exist and get erroneously corrected by the norm-all algorithm.

The pairwise algorithm utilized2 1.2 million hostnames (18% of total) and per-
formed on par with the average algorithm. The pairwise algorithm could have
improved upon average by performing normalization and thus removing spurious
calibration differences. On the other hand, it could have decreased performance by
removing meaningful calibration differences, or by making an inaccurate estimate
of the normalization parameters due to noisy data. The positive and negative ef-
fects have canceled out to leave the performance of pairwise and average nearly

2All hostnames that were observed in at least two networks were utilized.

43

4.4. IMPROVEMENT OF PER-FLOW ANOMALY SCORES

equivalent.

As we will see in the next section, there are benefits to using pairwise normaliza-
tion over a simple average, but the positive effect manifests mainly for the worst-
performing networks. This improvement likely got diluted in the mostly-unchanged
performance of typical networks and did not manifest in the global reputation table
AUC scores discussed above.

4.4 Improvement of per-flow anomaly scores

In this section, we explore the possibility of using a global reputation table to improve
the anomaly scores in individual networks (the third arrow in Figure 1.2). We use
the reputation model in the manner described in Section 3.6. There are two ways
in which this procedure might improve classification.

1. Smoothing. Since many values are averaged together to arrive at the repu-
tation score, much of the noise of the detectors will be filtered out.

2. Information sharing. Many different networks participate in the creation
of the reputation table, which is beneficial as discussed in Section 1.4.

If smoothing is the main benefit of the reputation table, it may be possible to simply
build a network-local reputation table and use that — no information sharing is
necessary. Because of this, we must evaluate smoothing and information sharing
separately to tell whether information sharing is beneficial. We evaluate three types
of anomaly detection algorithms:

1. plain: the anomaly scores corresponding to individual flows; no reputation
table is used.

2. local: anomaly scores are enhanced by a network-local reputation table. Since
this reputation table is built using only one network, there are no normaliza-
tion, combination or missing data issues and this reputation table is a simple
per-hostname average of anomaly scores.

3. global: anomaly scores enhanced by a global reputation table. The global
reputation table can be generated by either of the four different algorithms
described in Section 4.3. Due to the poor performance of norm-all and norm-
isect, we will not attempt to use them and will instead focus only on average
and pairwise. Since we decided to discard the norm-isect algorithm, we can
now use the full set of 310 networks. We recomputed the reputation models
global and pairwise using all 310 networks and utilized these updated models
in the following experiments.

The rationale behind evaluating local versus global is that most of the smoothing
effect will be present in both of them; we can assess the strength of information

44

CHAPTER 4. EXPERIMENTAL EVALUATION

sharing (mostly) alone by comparing their performance. If the global algorithms
significantly improves classification strength over both plain and local, information
sharing is beneficial.

In order to test the effect of information sharing on HTTP and HTTPS flows sep-
arately, we will test the performance of the algorithms on both in isolation as well
as combined. We call the three resulting datasets HTTP, HTTPS and All.

This gives us four different classification algorithms over three distinct data-sets
per network, for a total of 3720 distinct performance measures. This number of
different results makes the ROC curves too granular; instead, we will use only the
AUC scores to evaluate classification strengths. More than half of the networks
do not contain even a single flow labeled as anomalous. For these, the AUC score
is not meaningful and they are excluded from the comparison, leaving just 1432
performance measures.

We expect the classification performance of plain to be significantly worse for
HTTPS traffic than for HTTP traffic because of lower information content dis-
cussed in Section 1.3. The reputation table should then improve on HTTPS traffic
more than on HTTP traffic because of the sharing of information gathered by MiTM
attacks in some networks (Section 1.4).

The performance of all tested algorithms is visualized as a box plot in Figure 4.4 and
compared numerically in Table 4.3. It is visible from both the figure and the table
that the largest differences between different algorithms are in the lowest percentiles.
The 5th percentile (displayed in the figure as lower whiskers) is a robust indicator of
the behavior of networks with poor classification strength. In this percentile, both
global reputation algorithms improve substantially upon the base case plain with
pairwise offering the best performance. Local improves the 5th percentile too, but
not nearly as much as the global algorithms. Median does not differ very consider-
ably or predictably between algorithms with the exception of HTTPS traffic where
local and average give inferior results. Interestingly, the pairwise algorithm did
not suffer from this effect nearly as much. Another interesting feature of the results
is the distribution of outliers (displayed as circles in Figure 4.4). The pairwise algo-
rithm eliminated all outliers with AUC < 88%, but every other algorithm suffered
from at least some networks with severely degraded performance. This indicates the
high robustness of the pairwise reputation model.

Of all the tested algorithms, the algorithm pairwise exhibited the best AUC mean,
minimum, 5th and 10th percentiles, and its standard deviation was smallest for all
data sets. Other performance characteristics (including the global reputation table
ROC curve) were never substantially worse than for other algorithms. These results
suggest that pairwise is an effective algorithm for building a global reputation
model.

Surprisingly, not much difference is immediately obvious between HTTP and HTTPS
results despite the very different characteristics of their underlying data. We used
the Wilcoxon signed-rank test [37] to test the significance of differences between all
pairs of HTTP and HTTPS measurements: plain, local, global and pairwise.

45

4.4. IMPROVEMENT OF PER-FLOW ANOMALY SCORES

plain (all)
local (all)

average (all)
pairwise (all)

plain (HTTP)
local (HTTP)

average (HTTP)

pairwise (HTTP)

plain (HTTPS)

local (HTTPS)

average (HTTPS)

pairwise (HTTPS)
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

AU
C

sc
or

e

A.

plain (all)
local (all)

average (all)
pairwise (all)

plain (HTTP)
local (HTTP)

average (HTTP)

pairwise (HTTP)

plain (HTTPS)

local (HTTPS)

average (HTTPS)

pairwise (HTTPS)

0.88

0.90

0.92

0.94

0.96

0.98

1.00

AU
C

sc
or

e

B.

All HTTP HTTPS

Figure 4.4: Comparison of AUCs of per-flow anomaly scores. Plot A. differs from
plot B. only in the scale of the y-axis to highlight different parts of the plots. Boxes
span between the 25th and 75th percentiles, whiskers span between the 5th and 95th
percentiles, and circles represent all the networks outside the range of the whiskers.
Median is marked by a horizontal line.

46

CHAPTER 4. EXPERIMENTAL EVALUATION

data All (HTTP + HTTPS)
algorithm plain [%] local [%] average [%] pairwise [%]

mean 97.3 97.4 97.3 98.1
standard deviation 4.4 4.0 4.8 2.0

minimum 69.1 65.2 51.9 88.2
5th percentile 88.5 91.3 92.8 94.7
10th percentile 94.0 94.3 94.5 96.4
25th percentile 97.4 97.0 96.6 97.5

median 98.6 98.2 98.4 98.5

data HTTP traffic
algorithm plain [%] local [%] average [%] pairwise [%]

mean 97.1 97.2 98.3 98.4
standard deviation 4.8 6.4 2.4 2.2

minimum 72.7 32.8 85.9 86.3
5th percentile 88.2 91.3 94.1 94.9
10th percentile 91.9 94.6 95.9 96.3
25th percentile 97.0 96.9 98.1 98.0

median 98.7 98.7 99.2 99.1

data HTTPS traffic
algorithm plain [%] local [%] average [%] pairwise [%]

mean 97.9 97.8 96.3 98.1
standard deviation 3.3 2.1 7.8 1.3

minimum 74.8 87.6 44.1 94.3
5th percentile 92.0 93.9 93.7 95.2
10th percentile 96.1 95.5 94.3 96.2
25th percentile 97.9 96.9 96.5 97.5

median 98.9 98.3 97.9 98.3

Table 4.3: Comparison of AUCs of per-flow anomaly scores. The AUCs are expressed
as percents. The highest value in each row is bold with the exception of standard
deviation. Note however, that the differences are very small in some rows (median)
while being very large in others (minimum, 5th percentile). Higher percentiles are
not displayed because the differences were mostly negligible for them. Maximum
was in all cases equal to 100.0%.

47

4.4. IMPROVEMENT OF PER-FLOW ANOMALY SCORES

106 107 108 109

network traffic size [number of flows]

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

AU
C

sc
or

e

plain

106 107 108 109

network traffic size [number of flows]

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

AU
C

sc
or

e

pairwise

Figure 4.5: Network AUC score vs. network traffic size on all input data (HTTP
and HTTPS). The top chart contains AUCs computed by the plain algorithm, the
bottom chart contains AUCs computed by the pairwise algorithm. In neither of
the cases, the AUC scores are not (obviously) linearly dependent on the amount of
network traffic. Networks with both great and poor performance are found in all
the parts of the size spectrum.

For neither of these were there any significant differences between their population
mean ranks (p < 0.01).

Based on the considerations in Section 1.4, one would think that primarily small net-
works would exhibit low AUC scores: AUCs would be correlated with the amount
of network traffic because small networks have less information to train their clas-
sifiers on. Surprisingly, this is not the case as illustrated in Figure 4.5. Similarly,
AUC improvement by the reputation tables was not visibly correlated with network
size. Even big networks can obviously exhibit bad classification characteristics and
benefit from the improvement by global reputation tables.

48

Chapter 5

Conclusions

The main goal of this thesis was to improve the detection efficacy of the existing
Cognitive Threat Analytics (CTA) anomaly-based network IDS (described in Section
1.3) on malware that uses network traffic encryption to avoid detection. Since the
amount and quality of features that can be extracted from HTTPS network traffic
is low, we proposed to utilize the fact that the CTA IDS is used in a large number
of various networks and share threat information between them.

We created global threat intelligence and shared it among all the CTA IDS systems
that are monitoring the individual enterprise networks to improve the anomaly de-
tection efficacy on both encrypted and non-encrypted network traffic. Several varia-
tions of the method were developed, including one that incorporates a novel method
for outlier ensemble normalization in presence of large numbers of missing values.

Experimental evaluation performed on a large amount of real-world network traffic
showed that the proposed algorithm performs only marginally better than the state-
of-the-art methods in average-case, but outperforms all of the the compared methods
in the worst case scenario. Additionally to the efficacy improvements that were
measured on the HTTPS communication, the proposed algorithm improved also the
detection capability on HTTP network traffic.

Apart from improving detection accuracy in participating networks, the gathered
intelligence can also be used on its own to help better understand global statistics of
network threat behavior, to help network analysts assess threat severity, determine
the scale of an attack or analyze command and control mobility patterns.

49

Bibliography

[1] Stephen Northcutt, Lenny Zeltser, Scott Winters, Karen Kent, and Ronald W
Ritchey. Inside Network Perimeter Security (Inside). Sams, 2005.

[2] K Scarfone and P Mell. NIST SP 800-94: Guide to Intrusion Detection and
Prevention Systems (IDPS), Februar 2007.

[3] Alexandros Kapravelos, Yan Shoshitaishvili, Marco Cova, Christopher Kruegel,
and Giovanni Vigna. Revolver: An Automated Approach to the Detection of
Evasive Web-based Malware.

[4] Manos Antonakakis, Roberto Perdisci, Yacin Nadji, Nikolaos Vasiloglou II,
Saeed Abu-Nimeh, Wenke Lee, and David Dagon. From Throw-Away Traf-
fic to Bots: Detecting the Rise of DGA-Based Malware. In USENIX security
symposium, volume 12, 2012.

[5] Google. Transparency Report: HTTPS Usage. https://www.google.com/
transparencyreport/https/metrics/?hl=en, 2017. Accessed: 2017-03-05.

[6] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A
survey. ACM computing surveys (CSUR), 41(3):15, 2009.

[7] Martin Grill. Combining Network Anomaly Detectors. PhD thesis, Czech Tech-
nical University in Prague, 2016.

[8] Robin Sommer and Vern Paxson. Outside the closed world: On using machine
learning for network intrusion detection. In Security and Privacy (SP), 2010
IEEE Symposium on, pages 305–316. IEEE, 2010.

[9] Stefan Axelsson. The base-rate fallacy and the difficulty of intrusion detection.
ACM Transactions on Information and System Security (TISSEC), 3(3):186–
205, 2000.

[10] Inc. Cisco Systems. Cisco Cognitive Threat Analytics Data Sheet.
https://www.cisco.com/c/en/us/products/collateral/security/
cognitive-threat-analytics/datasheet-c78-736557.html. Accessed:
2017-03-09.

50

https://www.google.com/transparencyreport/https/metrics/?hl=en
https://www.google.com/transparencyreport/https/metrics/?hl=en
https://www.cisco.com/c/en/us/products/collateral/security/cognitive-threat-analytics/datasheet-c78-736557.html
https://www.cisco.com/c/en/us/products/collateral/security/cognitive-threat-analytics/datasheet-c78-736557.html

BIBLIOGRAPHY

[11] Atilla Özgür and Hamit Erdem. A review of kdd99 dataset usage in intru-
sion detection and machine learning between 2010 and 2015. PeerJ PrePrints,
4:e1954v1, 2016.

[12] Kevin S Killourhy and Roy A Maxion. Toward realistic and artifact-free insider-
threat data. In Computer Security Applications Conference, 2007. ACSAC
2007. Twenty-Third Annual, pages 87–96. IEEE, 2007.

[13] Scott E Coull, Charles V Wright, Fabian Monrose, Michael P Collins, Michael K
Reiter, et al. Playing devil’s advocate: Inferring sensitive information from
anonymized network traces. In NDSS, volume 7, pages 35–47, 2007.

[14] Information and Computer Science University of California, Irvine. KDD Cup
1999 Data. http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.
Accessed: 2017-05-07.

[15] Information and Computer Science University of California, Irvine. KDD Cup
1999 Data. http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html,
2007. Accessed: 2017-05-07.

[16] Inc. Cisco Systems. Cisco Cognitive Threat Analytics. https://www.cisco.
com/c/en/us/products/security/cognitive-threat-analytics/index.
html. Accessed: 2017-03-09.

[17] CIA Information Operations Center. Development Tradecraft DOs and
DON’Ts. https://wikileaks.org/ciav7p1/cms/page_14587109.html. Ac-
cessed: 2017-03-09.

[18] Martin Grill, Tomáš Pevný, and Martin Rehak. Reducing false positives of
network anomaly detection by local adaptive multivariate smoothing. Journal
of Computer and System Sciences, 83(1):43–57, 2017.

[19] Audun Jøsang, Roslan Ismail, and Colin Boyd. A survey of trust and reputation
systems for online service provision. Decision support systems, 43(2):618–644,
2007.

[20] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pager-
ank citation ranking: Bringing order to the web. Technical report, Stanford
InfoLab, 1999.

[21] David Opitz and Richard Maclin. Popular ensemble methods: An empirical
study. Journal of Artificial Intelligence Research, 11:169–198, 1999.

[22] Thomas G. Dietterich. Ensemble Methods in Machine Learning, pages 1–15.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2000.

[23] Lars Kai Hansen and Peter Salamon. Neural network ensembles. IEEE trans-
actions on pattern analysis and machine intelligence, 12(10):993–1001, 1990.

51

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://www.cisco.com/c/en/us/products/security/cognitive-threat-analytics/index.html
https://www.cisco.com/c/en/us/products/security/cognitive-threat-analytics/index.html
https://www.cisco.com/c/en/us/products/security/cognitive-threat-analytics/index.html
https://wikileaks.org/ciav7p1/cms/page_14587109.html

BIBLIOGRAPHY

[24] Anders Krogh and Jesper Vedelsby. Neural network ensembles, cross validation,
and active learning. In Advances in Neural Information Processing Systems,
pages 231–238. MIT Press, 1995.

[25] Richard Maclin and David Opitz. An empirical evaluation of bagging and
boosting. AAAI/IAAI, 1997:546–551, 1997.

[26] Charu C Aggarwal and Saket Sathe. Outlier Ensembles: An Introduction.
Springer, 2017.

[27] Charu C Aggarwal. Outlier ensembles: position paper. ACM SIGKDD Explo-
rations Newsletter, 14(2):49–58, 2013.

[28] Aleksandar Lazarevic and Vipin Kumar. Feature bagging for outlier detec-
tion. In Proceedings of the eleventh ACM SIGKDD international conference on
Knowledge discovery in data mining, pages 157–166. ACM, 2005.

[29] Jing Gao and Pang-Ning Tan. Converting output scores from outlier detection
algorithms into probability estimates. In Data Mining, 2006. ICDM’06. Sixth
International Conference on, pages 212–221. IEEE, 2006.

[30] Hans-Peter Kriegel, Peer Kroger, Erich Schubert, and Arthur Zimek. Interpret-
ing and unifying outlier scores. In Proceedings of the 2011 SIAM International
Conference on Data Mining, pages 13–24. SIAM, 2011.

[31] José Ramón Pasillas-Díaz and Sylvie Ratté. An unsupervised approach for
combining scores of outlier detection techniques, based on similarity measures.
Electronic Notes in Theoretical Computer Science, 329:61 – 77, 2016.

[32] Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jörg Sander.
Lof: identifying density-based local outliers. In ACM sigmod record, volume 29,
pages 93–104. ACM, 2000.

[33] Paul D Allison. Missing data. Sage Thousand Oaks, CA, 2012.

[34] Roderick JA Little. Regression with missing x’s: a review. Journal of the
American Statistical Association, 87(420):1227–1237, 1992.

[35] Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

[36] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[37] Frank Wilcoxon. Individual comparisons by ranking methods. Biometrics bul-
letin, 1(6):80–83, 1945.

[38] Olga Taussky. A recurring theorem on determinants. The American Mathe-
matical Monthly, 56(10):672–676, 1949.

52

Appendix A

Convexity of the error function
E

In this chapter, we prove that the error function E proposed in Section 3.5.1 is
convex:

E (µ) =
∑
h

∑
n

∑
m

1

wh
(fn (h)− fm (h) + µm − µn)

2 , (A.1)

where all the used symbols are defined in Section 3.5. Function’s convexity is equiv-
alent to positive-semidefiniteness of its Hessian matrix. We compute the Hessian
matrix by differentiating E twice. We start from the first derivative (Equation
3.12):

∂E

∂µi
=

∑
h

∑
m

4

wh
(fm (h)− fi (h) + µi − µm) . (A.2)

The second derivatives must be computed separately for two cases: differentiation
by the same parameter twice or by two different parameters:

∂2E

∂µ2
i

=
∑
h

∑
m̸=i

4

wh
· 1, (A.3)

∂2E

∂µiµj
=

∑
h

4

wh
· (−1) , i ̸= j (A.4)

This gives us a Hessian matrix of dimensions N ×N (N is the number of networks
in the ensemble):

Hi,j =

[
∂2E

∂µi∂µj

]
, (A.5)

53

where Equation A.3 gives the diagonal elements and Equation A.4 gives the non-
diagonal elements of H. By Sylvester’s criterion, H is positive-semidefinite if all
its principal minors are non-negative. We show their non-negativity by first proving
that all principal minors are diagonally dominant and their diagonal entries are
non-negative, then proving that these properties imply their non-negativity.

A diagonally dominant matrix a is a matrix where the sum of moduli of its non-
diagonal elements in every row is smaller than the modulus of the diagonal element
in the same row:

|ai,i| ≥
∑
j ̸=i

|ai,j | for all rows i. (A.6)

A strictly diagonally dominant matrix is analogous, but a strict inequality (>) is
required. By substituting A.3 and A.4 into A.6, we get∑

h

∑
m̸=i

4

wh
· 1 ≥

∑
j ̸=i

∑
h

∣∣∣∣−4

wh

∣∣∣∣ , (A.7)

∑
h

∑
m ̸=i

4

wh
≥

∑
h

∑
j ̸=i

4

wh
, (A.8)

which holds and H is diagonally dominant. It is easy to see that the same is true for
all principal minors of H : the largest principal minor is H and for smaller principal
minors, there are less summands on the right side of A.8, which only loosens the
requirement. The diagonal elements of each principal minor are non-negative since
they are a subset of diagonal elements of H which are themselves non-negative
(equation A.3).

The last step is to show that diagonal dominance and non-negativity of diagonal
elements together imply a non-negative determinant. Let H ′ be a principal minor
of H and D be a diagonal matrix containing the diagonal entries of H ′. Let M (t)
be a smooth transition between D + I and H ′ (I is the identity matrix):

M (t) = (t− 1) (D + I) + t ·H ′, t ∈ [0, 1] . (A.9)

M is strictly diagonally dominant, except maybe for the case where t = 1 (M (1) =
H ′). According to the Lévy-Desplanques theorem1, a strictly diagonally domi-
nant matrix has a non-zero determinant. Coupled with the positive determinant
of M (0) = D + I (implied by the non-negativity of diagonal elements of H ′) and
the intermediate value theorem, this shows that

det H ′ ≥ 0, (A.10)

which completes our proof of the convexity of the error function E.

Note that for the full matrix H, both sides of the equation A.8 are equal. Moreover,
a row sum

∑
j Hi,j is equal to zero for every row i, implying det H = 0. Although

1This is a recurring theorem that has been independently proved a number of times. A very
simple proof along with a brief history of the theorem is given in [38]. Lévy and Desplanques may
have written some of the first articles about the theorem in 1881 and 1887.

54

APPENDIX A. CONVEXITY OF THE ERROR FUNCTION E

H is positive-semidefinite, it is not positive-definite, and the minimum of E is not
unique. This is not surprising, since for every minimum E ([µ1, . . . , µN]) there exist
other minimums E ([µ1 + c, . . . , µN + c]) , c ∈ R. It is not a problem in our case as
we are not interested in the absolute value of E, but if it was, we could introduce a
regularization term to the error function:

E′ = E + ϵ
∑
i

µ2
i ,

with some ϵ > 0 close to zero. It is not difficult to show, analogously to the proof
above, that E′ is convex and its global minimum is unique.

55

Appendix B

CD Contents

All paths are expressed relative to the root. Due to the size of the datasets and due
to privacy concerns, the data that was used in this thesis is not present on the CD.

/thesis.pdf The final thesis in PDF format

/report The sources of the thesis

/report/thesis.lyx The main thesis project file written in LYX1

/netflow A Rust2 command-line program doing much of the computations needed
for the thesis (ROC and AUC computations, data pre-processing, etc.)

/npy-rs A Rust library for type-safe binary data interchange using *.npy files3.

/python A collection of data analysis and data visualization scripts using NumPy,
Pandas, Matplotlib, Tensorflow and other packages.

/python/viz Scripts used to generate many of the graphs in the thesis.

/jupyter/ Jupyter notebooks4 used to generate many of the results (normalization
weights, global reputation table evaluation, etc.) and several graphs.

/remote-control Data traffic preliminary analysis using WireShark-collected data.

/R A collection of data analysis and data visualization scripts in the R
language. These are from the time before I switched to Python-based
workflow.

1http://www.lyx.org/
2Rust is a systems programming language that prevents segfaults and guarantees thread safety

without the need for a garbage collector. https://www.rust-lang.org/
3A simple format for NumPy Arrays. https://docs.scipy.org/doc/numpy/neps/npy-format.html
4The Jupyter Notebook is an open-source web application that allows you to create

and share documents that contain live code, equations, visualizations and explanatory text.
https://jupyter.org/

56

http://www.lyx.org/
https://www.rust-lang.org/
https://docs.scipy.org/doc/numpy/neps/npy-format.html
https://jupyter.org/

APPENDIX B. CD CONTENTS

/matlab A collection of data analysis and data visualization scripts in the Mat-
lab language. These are from the time before I switched to R-based
workflow.

/java/NpyExporter.java A Java class for introspection-based binary export to the
*.npy file format.

57

	Introduction
	Challenges in anomaly-based IDS
	Thesis Outline
	Cognitive Threat Analytics IDS
	Thesis goals
	Proposed architecture

	Related Work
	Outlier Ensemble Models
	Model normalization
	Model combination

	Dealing with missing values

	Proposed Algorithm
	Global reputation model as an outlier ensemble
	Normalization
	Combination
	Missing values
	Pairwise optimization of normalization error
	Derivation
	Time Complexity

	Reputation model usage scenario

	Experimental evaluation
	Dataset description
	Evaluation criteria
	Global reputation table evaluation
	Improvement of per-flow anomaly scores

	Conclusions
	Bibliography
	Convexity of the error function bold0mu mumu EEwilcoxon-1945EEEE
	CD Contents

