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Abstract
Recent advances in technology have generated extensive amount of spatial trajectories which
contain a lot of information about movement. In my bachelor thesis I propose a method for
classifying user's movement into two modes using GPS trajectory data. I focused on distin-
guishing between trajectories recorded while riding a bicycle and trajectories recorded while
not riding a bicycle. I de�ne this problem as a trajectory bicycle classi�cation. My thesis
also maps the present knowledge in data mining �eld focused on trajectory classi�cation
problem. Accordingly to state of the art I used methods as stay point segmentation for
partitioning of a trajectory into single modal segments. For classi�cation I used Random
forest, SVM and Neural network models. From these methods Random forest shows the
best results with accuracy of 90,5% when testing on perfectly segmented data. However, it
was outperformed by SVM on data segmented with method I used where SVM had the best
result with accuracy of 75,9%. To test the scalability of used method I perform evaluation
on unlabeled dataset of bike rides, where SVM model performed the best. I also compared
method I used with other methods and they perform better. However, I tested di�erent
�lters and their combinations. I also evaluated segmentation performance based on di�erent
thresholds which is something not mentioned in available literary sources.

Keywords: trajectory classi�cation, GPS, bicycle, SVM, Neural network, Random forest

Abstrakt
Pokrok v technologii umoºnil vytvá°ení velkého mnoºství prostorových trajektorií, které ob-
sahují mnoho informací o pohybu. Ve své bakalá°ské práci navrhuji metodu, která klasi�kuje
uºivatel·v pohyb do dvou mod· s pouºitím GPS trajektorií. Soust°edil jsem se na rozli²ení
mezi trajektoriemi nahranými na kole a nahranými jinde neº na kole a de�noval jsem problém
jako classi�kaci cyklistických trajektorií. Dále práce mapuje aktuální situaci v oboru data
miningu s d·razem na klasi�ka£ní problémy. Pouºil jsem segmentaci na základ¥ stay point·
pro rozd¥lení trajektorií na jednotlivé zp·soby dopravy. Pro klasi�kaci jsem pouºil klasi-
�kátory Náhodný les, SVM a Neuronovou sí´. Z t¥chto klasi�kátor· m¥l nejlep²í výsledky
Náhodný les pro ru£n¥ segmentovaná data dosahující p°esnosti 90,5 %, ale jeho výkon byl
hor²í pro data segmentovaná mojí segmentací. Na techto datech m¥l nejlep²í výsledek SVM
s p°esností 75,9 %. Abych otestoval ²kálovatelnost metody, otestoval jsem jí na datasetu cyk-
listických trajektorií bez ozna£ení, kde SVM m¥l nejlep²í výsledek. Porovnal jsem metodu
s ostatními metodami a zjistil, ºe n¥které mají vy²²í p°esnost neº mnou pouºitá metoda.
Já jsem ale otestoval r·zné typy �ltr· a ukázal, jak se li²í kvalita segmentace na základ¥
r·zných prah·, coº je n¥co, co jsem v ºádném jiném £lánku nena²el.

Klí£ová slova: klasi�kace trajektorií, GPS, kolo, SVM, Neuronová sí´, Náhodný les
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Chapter 1

Introduction

The advances in technology have generated extensive amount of spatial trajectories. A
spatial trajectory is a trace generated by a moving object in space. This trajectory is usually
represented by a series of chronologically ordered points. Each point consists of a coordinate
and a time stamp.

Trajectories can be di�erent and can contain a vast amount of useful informations. These
informations must be somehow extracted from them. This is a goal of a trajectory data
mining. For example from a mouse movement trajectory I could create a model identifying
what is user doing on his computer. Another example can be from life of animals where
trajectories can be used to determine where to build bridges over highways or how migration
routes change over time.

Sub�eld of a trajectory data mining is a trajectory classi�cation. A goal of the trajectory
classi�cation is to classify a trajectory into di�erent modes of transportation. First step
would be to classify a trajectory as generated by stationary or moving object. A more
complex problem is to classify a trajectory into modes like car, bike, walk or run. With
the information about user's modes of transportation advertisement can be targeted better
e.g. gas station recommendations for car users or sport shops for runners. Also some
helpful information about closures based on his mode of transportation can be send. Those
informations can also be used to show where new bus lines are needed and where it would
be wise to build new transportation infrastructure.

There are applications that can be used for a bicycle trip planning and also collect bicycle
trajectories. One of those applications is Urbancycler1 where cyclist can upload trajectories
and earn badges and rewards. To prevent upload of trajectories recorded in car or while
walking, method that can detect trajectories recorded on bicycle is needed. To create such
method I use GPS trajectories recorded by people. Next use can be creating a bicycle pro�le
from GPS trajectories in one city and using that information to match bicycle infrastructure
of the city to the needs of people.

In this work I cover research done in �eld of trajectory classi�cation in Chapter 2. In
Chapter 3 I formally specify trajectory classi�cation problem as supervised learning problem
and de�ne used terms. Next I cover my approach to the problem and all steps needed in

1http://urbancyclers.com/app.php
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2 CHAPTER 1. INTRODUCTION

Chapter 4. In Chapter 5 I show how my method is implemented and in Chapter 6 I evaluate
my method and show results.



Chapter 2

Related Work

2.1 Machine learning

Trajectory classi�cation uses machine learning which is a computer science �eld that lets the
computer learn without being speci�cally programed [9]. It evolved from study of pattern
recognition and arti�cial intelligence. Machine learning constructs algorithms that can learn
from data and make predictions on data.

There are two types of learning algorithms, supervised learning and unsupervised learn-
ing. Unsupervised learning tries to infer a function from unlabeled data to describe its
unknown structure. I will use supervised learning, which is type of learning that uses input
data labeled with desired output and goal of the algorithm is to �nd general rule mapping
inputs to outputs.

Dataset is needed in a supervised machine learning. It is set of entries which will be used
as inputs and every entry have its label, which will be used as desired output. To use each
entry I need some signi�cant values from it. Those values are called features and on those
features algorithm learns.

2.2 Solutions used

In trajectory classi�cation a wide range of methods have been used [5, 10, 19, 18]. Those
methods even use di�erent sensors. First sensor used is WiFi receiver that measures only
strength of received signal. Next GSM mobile signal sensor also measures strength of signal
but its range is much bigger. Last sensor employed is GPS receiver and it is most common
nowadays.

2.3 Solutions based on sensor data

In this section I mention methods that use WiFi and GSM signal.
First article [5] tries to infer location of the user and whether the user is in motion or

not. For this goal authors use WiFi receivers. This method uses WiFi signal strengths from
di�erent transmitters and applies a Hidden Markov model. This system computes user's

3



4 CHAPTER 2. RELATED WORK

location with median error of 1,53m and can infer whether the user is in motion or not
with accuracy of 87%. Disadvantage of this method is requirement for calibration for exact
building and WiFi transmitters which prevents it from being easily used.

Next paper uses an approach [12] that tries to infer user's complex goals in indoor envi-
ronment from WiFi signals using Dynamic Bayesian networks. Inferring people goals when
moving could be used for automation. E.g. powering up of electronic devices when incoming
person is detected and monitoring of people without cameras could be possible. But this
method also has some disadvantages. First, on site calibration is required. Another inconve-
nience is that �rstly the computing of a location from WiFi signal is needed and only after
that the goal inferring method can be employed. Thus using trajectories with location would
be much easier and that is why GPS inference dominates WiFi methods. However, it can
not be used indoor.

The article [10] aims to classify moving or stationary user and then to distinguish moving
between driving and walking. Sensor used is a cell phone showing signal strength from
di�erent GSM cells and also cell's IDs. From this, seven di�erent features are extracted
and used in two stage classi�cation. First to classify moving or stationary and after that
to distinguish moving between driving and walking using a boosted logistic classi�er. Main
advantage of this method is that only a mobile phone is needed. The method also computes
approximate number of steps with accuracy comparable to commercial pedometers. Main
reason for this method was low GPS coverage. However, nowadays GPS coverage improved
a lot and is comparable to GSM coverage. First disadvantage of this method is that it is
not as accurate as GPS inference. And second disadvantage lies in taking into account cell
densities in metropolitan area where it was tested and created therefore it would not work
in di�erent areas.

2.4 Solutions based on GPS data

In this section I mention methods that use GPS trajectories for the classi�cation.

In [19] authors attempt to classify a taxi status from its GPS trajectory as occupied
or unoccupied. This method used density based clustering algorithm to detect the parking
places and uses parking places as points where status of taxi can change. It also uses
minimum bounding ratio to road segment from cluster to distinguish a parking lot and a
tra�c jam. It also uses a map matching which is algorithm that tries to project each point of
trajectory into corresponding road segment. Finally, it uses a Hidden Markov model to make
the inference. Disadvantage of this method is that it uses road graph and map matching
algorithm so if road graph does not exist for the area it cannot be employed. This method
proposes combination of Decision tree and Hidden Markov model. It is better than simple
models and advantage of this method is that it can be used in real life taxi monitoring.

Authors in [6] use data to infer the mode of transportation and user's current goal which
is target location of the user. It also predicts his places of interest like a home and work
places. Using all of this the method can track and predict user's movement even with noise
or loss of a GPS signal. Inference mode used a Dynamical Bayesian network. This method
not only focuses on inferring mode of transportation but also user's goals which is something
not much methods does. Method also su�ers from needing road graph. Last described
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disadvantage is that goals are detected as GPS signal loss thus goals that are outdoors or
generally somewhere with good GPS coverage will not be detected. But advantage is that
the method is less prone to noise in GPS signal or even its loss because of movement goal
tracking and map matching.

Other methods use GPS data to infer the mode of transportation using variety of tech-
niques. In [8] Bayesian �ltering is used to estimate a state from GPS data creating Gaussian
mixtures for di�erent mode of transportation and using EM algorithm to �nd optimal model
parameters. This method also predicts future user's movement with accuracy of 50% for �ve
city blocks. An accuracy for more blocks drops to 30% for twelve city blocks. It also requires
a road graph.

In [15] authors experimented with di�erent type of segmentation. Segmentation is process
which creates shorter trajectories from a trajectory. Three types of segmentation are done,
based on time window, distance window and stay points. Conclusion is that a stay points
segmentation outperforms both time based segmentation and distance based segmentation.
Time based segmentation and distance based segmentation was done with multiple di�erent
lengths and time intervals. Stay point segmentation uses idea that for changing a mode
of transportation a person must stop so stay points should segment trajectory perfectly.
Conditional random �eld is proposed as a classi�er but it falls behind SVM and Decision
tree. Thus, in �nal method, segmentation by stay points is used and extracted features are
learned by Decision tree to do the inference afterwards. After inference post processing is
employed which takes into account probability of transitions between two modes to further
improve accuracy.

Method proposed in [14] is also mode classi�cation method but in this method authors
experiment with using even more features than other methods. Apart from features like
speed, distance and acceleration they also extract heading change rate, stop rate and velocity
change rate. After that a graph based on change points is built with probabilities of each
mode on edges of the graph. A graph post processing is employed to further increase accuracy.
They also compare extracted features and show that stop rate is most discriminative feature
when used alone. Also these enhanced features furthermore improve classi�cation accuracy
which implies that there is almost no correlation between basic and enhanced features.
This method trades higher accuracy achieved by more features for time and computational
complexity.

Method [18] uses GPS data and tries to infer walking, cycling, driving, bus and subway.
For this purpose it uses a stay point segmentation and basic features which are average
speed, distance, average acceleration, heading change rate. Authors also tried to use multiple
di�erent classi�ers from which their own custom classi�er based on deep learning is better
than others and, apart from that, a Random forest is better than a SVM, a Decision tree and
a Bayesian network. This method uses road network and as features bus stop closeness and
subway stop closeness are added to standard features to improve accuracy. Disadvantage of
using road graph and extracting more features is rewarded with the best accuracy amongst
all other methods I have found in this �eld of work.

Testing multiple approaches leads always to e�cient results and this could be �nd in [11]
because authors employ also GIS apart from inferring modes of transportation from GPS
data. They also try to use extracted features with di�erent methods such as a Naive Bayes,
a Bayesian network, a Decision tree and a Multilayer perceptron from which the Decision
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Method Accuracy Year Article Notes
KNN (11) with PCA 86,00% 2015 [7]
Dynamic Bayes net 84,00% 2003 [8]
Naive Bayes 91,60% 2011 [11] with GIS
Bayesian network 92,50% 2011 [11] with GIS
Decision tree 92,20% 2011 [11] with GIS
Random forest 93,70% 2011 [11] with GIS
Multilayer perceptron 83,30% 2011 [11] with GIS
Bayesian network 91,16% 2016 [18]
Decision tree 90,65% 2016 [18]
Random forest 92,45% 2016 [18]
SVM 91,67% 2016 [18]
Based on deep learning 93,32% 2016 [18]
Moving window SVM 88,00% 2012 [1]
Deep network 67,90% 2016 [3]

Table 2.1: Methods overview showing accuracy, year of publication and source.

tree outperforms other methods. This article interestingly compares di�erent methods and
also it is �rst article using not only bus and subway stops but takes into account features
that are proximity to rail lines and also a real time location of buses to increase accuracy.
Disadvantage lies in necessity of having GIS information to determine real time bus locations.

Other method [7] in this �eld uses a KNN. As almost any other methods it starts by
segmentation by change points, extracting features and after that is uses PCA and a KNN-11
to infer transportation modes. This approach focuses on extreme generality so it can be used
on GPS data of di�erent disaggregation level with almost the same accuracy. Employing PCA
with KNN allows to drop some restrictions on assumptions about trip structures resulting
in very general method.

The last method [3] is di�erent from any other previous method because it uses deep
networks. Authors want to use the strength of convolution networks, which lays in learning
from images. Therefore, for each trajectory, image is created and network extract features
from it. I mentioned this method to show that approaches can be surprisingly di�erent and
that methods does not have to be similar. This method is also almost only modern method
that does not use any information from outside like road graph resulting in pretty poor
accuracy of 67,9%. Also there is no need for segmentation because deep network creates
image of trajectory classi�cation corresponding which itself segments the trajectory.

In Table 2.1 is overview of some methods used with their accuracy and year they were
published. As articles show by using multiple common methods wide range of them can be
used on the task with not so big di�erence in accuracy. But it can also be seen that random
forest is at the top in both articles only outperformed by custom classi�er based on deep
learning in [18]. An article [18] and [3] uses the Geolife dataset and others use data they
gathered by themselves.



Chapter 3

Problem Speci�cation

In this section I specify bicycle trajectory classification problem as supervised learning
problem on set of trajectories. In order to do that I need to specify few terms �rst.

3.1 Trajectory

GPS trajectory T is represented by ordered set of points pi:

T = (p1, p2, ..., pn), pi = (xi, yi, ti)

where (xi, yi) are coordinates in a plane coordinate and ti is timestamp. Trajectory can have
label l that indicates whether trajectory was recorded while riding a bicycle or not. Label
can have one of the values {bike, not bike}.

3.2 Feature extraction

Furthermore, I need to extract features from each trajectory. Next I have to choose which
features to use. Each feature is a real number fj derived from trajectory T for classi�cation
purposes using extraction function gj(T )→ fj .

3.3 Classi�er training

Next step is training of the classi�er. Process of classi�cation is displayed in Figure 3.1. First,
classi�er C is provided with a set of trajectories S = (T0, . . . , Tn) and a set of corresponding
labels L = (l0, . . . , ln) where n is number of trajectories in set S. From each trajectory
Ti ∈ S vector of features F = (f0i , . . . , f

k
i ), where k is number of features. Classi�er C was

trained using those feature vectors.

7
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3.4 Segmentation

Segmentation is required for classi�cation because trajectory can contain multiple modes
of transportation. It is partitioning P (T ) → U that takes trajectory T and creates set of
subtrajectories U = (T0, . . . , Tl) such that Ti ∩ Tj = ∅ for i 6= j, i, j ∈ 0, . . . , l.

3.5 Prediction

Last step is prediction of labels. Trained classi�er C is provided with a set of trajectories
S = (T0, . . . , Tn) where n is number of trajectories. Using segmentation new set of seg-
mented trajectories is created. Ssgm = (T sgm

0 , . . . , T sgm
m ) where m is number of segmented

trajectories. From each segmented trajectory Ti ∈ Ssgm vector of features F = (f0i , . . . , f
k
i ),

where k is number of features. Trained classi�er then generates a set of predicted class labels
L = (l0, . . . , lm).

Figure 3.1: Diagram of supervised classi�cation problem



Chapter 4

Solution Approach

This chapter shows how bicycle trajectory classification problem is solved and describes
all steps required to do so.

Every method of bicycle trajectory classification consists of four vital steps shown
in Figure 4.1. Skipping any of these steps can lead to signi�cant reduction in resulting
accuracy. First step described in Section Preprocessing is �ltering of data to minimize noise
and detect outliers. Second step is segmentation described in Section Segmentation which
tries to partition trajectories into segments where is only bicycle or not bicycle. Third step
in Section Feature extraction is extraction of important features for classi�cation. This is
the most computationally expensive part because of large amount of data being processed.
Last part is choosing and training classi�er in Section Classi�cation model.

Figure 4.1: Model

4.1 Preprocessing

First step in a preprocessing is modifying data for use that I need so that it can be loaded
and used by segmentation and classi�cation.

9
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4.1.1 Noise �ltering

4.1.1.1 Introduction

GPS trajectories are never perfectly accurate, due to sensor noise. This is displayed in
Figure 4.2. Noise is present when working with almost any sensors. Occasional poor GPS
signal mostly in a big cities can create extreme outliers. Sometimes the noise is acceptable
and recorded point di�erence from the point's original location is only few meters. In other
scenarios with really poor signal the point noise can be more that hundred meters which
can be problem for deriving useful information from it, e.g. speed of moving object. To
minimize noise I need to �lter noise points from the trajectory. [13] Next I will talk about
�lters commonly used in trajectory �ltering.

Figure 4.2: Trajectory noise

4.1.1.2 Filters

Mean and Median �lter

In Mean and Median �lter approximation of a true point p position is calculated as mean
or median of point p and points that come before p and after p in time. How much points
will be used is determined by size of sliding window that is used. A bigger sliding window
is required when dealing with consecutive noise points but results in bigger error between
approximation and point's true position. A median �lter is more robust and can handle
extreme errors better because in a mean �lter one extreme error can move right points
around him far from true position. When dealing with trajectories where sampling rate is
very low, mean and median �lters are not a good choice.

Kalman and Particle �lter

Kalman and particle �lters model both measurement noise and dynamics of the trajectory.
Kalman �lter assumes linear model and Gaussian noise and the particle �lter drops those
assumptions for a more general algorithm.

Particle �ltering starts by generating P particles from the initial distribution. The second
step is "importance sampling," which uses the model to simulate how the particles change



4.2. SEGMENTATION 11

over one timestamp. Third step computes weight for all particles. Larger weights correspond
to particles that are better supported by the measurement. Weight are then normalized to
sum up to one. Then new set of particles is selected proportional to weights and �nally a
weighted sum is computed to get the point's approximate position.

The Kalman and Particle �lters are harder to implement than other mentioned �lters and
depend very much on the measurement of the initial location. When �rst point in trajectory
is noisy, the e�ectiveness of �lter can drop signi�cantly. [13]

Heuristic based �lter

All previously mentioned �lters replace the measurement with some approximation of point's
true position. Heuristic based �lter is di�erent. It employs outlier detection using speed. If
speed to some point is over some set threshold this point is regarded as outlier and therefore
removed from the trajectory. This �lter can �lter very well extreme noise points but setting
the threshold is based on heuristics.

4.2 Segmentation

Next step in bicycle trajectory classification is segmentation. It consist of cutting the
trajectory in smaller parts preferably so that the part would correspond to only one mode
of transportation.

First the trajectory is cut into smaller trips by time or distance. Next I cut the trajectory
between points where time di�erence is over one minute and after that I can segment the
remaining trajectory that can still contain multiple modes of transportation.

To do this I employed segmentation based on stay point detection. Stay point shown
in Figure 4.3 is region bigger than distance threshold Dt where user stayed for time bigger
than time threshold Tt. In trajectory it is set of consecutive points T = (pi, . . . , pj) and
∀t : i < t < j,Distance(pi, pk) < Dt, Distance(pi, pj) > Dt and T ime(pi, pj) > Tt. Stay
point divides trajectory into two non overlapping segments.

Based on [15] a stay point segmentation outperformed other methods as time window
segmentation and distance window segmentation.

I made method that detects stay points based on distance and speed between individual
points and tested multiple distance and speed thresholds. However, this did not work. Later
I added feature that stay point begins only after multiple consecutive points satisfy the
threshold but it was even worse. New stay point detection is based on checking whether
distance between points that is over some threshold is travelled in time over some threshold.

4.3 Feature extraction

From segmented trajectories I need to extract features that I use to train my model. More
features means better accuracy but also higher time complexity. In formulas used in feature
extraction n is the length of trajectory and p0 is starting point of trajectory and pn is ending
point of the trajectory. Features that I extracted are:
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Figure 4.3: Stay point

4.3.1 Distance

Distance of recorded trajectory can help identify bicycle because it is not possible to cover
large distances on bicycle in single trajectory. I compute a distance simply as a sum of
distances between neighbouring points in a trajectory.

Distance =

n−1∑
i=0

Distance(pi, pi+1)

4.3.2 Time

Time of a trip is also a feature that can determine if bicycle is chosen. Of course bicycle
trip for multiple hours is possible but when using bicycle as transportation device time of
trajectory will be smaller. I compute time as di�erence between a time at the start and a
time at the end of the trip.

Time = Time(p0, pn)

4.3.3 Average speed

An average speed is also a great feature to distinguish bicycle. It is true that a car and a
bus can have a small average speed because of tra�c jams and bus stops but despite that it
will be mostly higher than speed of a bicycle. An average speed is computed from a distance
and a time of a trajectory.

Average speed =
Distance

T ime



4.3. FEATURE EXTRACTION 13

4.3.4 Maximal speed

An another feature that can exclude bicycle because its maximal speed is very limited.
There is one big disadvantage of this feature though. It can be very prone to noisy data so
preprocessing is very much advised when using this feature. Maximal speed is computed as
maximum of partial speeds between two consecutive points.

pi.v =
Distance(pi, pi + 1)

Time(pi, pi + 1)
, Maximal speed =Max(pi.v),∀i : 0 < i < n− 1

4.3.5 Average acceleration and deceleration

Big objects accelerate much slower than small and light objects thus an acceleration is
another feature used to our advantage. A bicycle can accelerate much faster than than a
train or bus. An acceleration is computed as sum of partial acceleration divided by their
count.

pi.t = Time(pi, pi+1), pi.c =
pi+1.v − pi.v
pi+1.t− pi.t

pi.c+ =

{
pi.c if pi.c >= 0

0 if pi.c < 0
pi.c− =

{
0 if pi.c >= 0

pi.c if pi.c < 0

Acceleration =

∑n−1
i=0 pi.c+

count(pi.c+)
, Deceleration =

∑n−1
i=0 pi.c−

count(pi.c+)

4.3.6 Altitude changes upward and downward

Feature that can be helpful to discriminate walking and running from bicycle because on
foot the altitude changes can be much more extreme than on bicycle. On the other hand
it can also discriminate bicycle from other type of transports because on bicycle changes of
altitude can be bigger than in car, bus or even train. It is computed as change in altitude
between two nodes divided by distance between them.

pi.a = Altitude(pi, pi+1), pi.a+ =

{
pi.a if pi.a >= 0

0 if pi.a < 0
pi.a− =

{
0 if pi.a >= 0

pi.a if pi.a < 0

pi.d = Distance(pi, pi+1), pi.d+ =

{
pi.d if pi.a >= 0

0 if pi.a < 0
pi.d− =

{
0 if pi.a >= 0

pi.d if pi.a < 0

Altitude change up =

∑n−1
i=0 pi.a+∑n−1
i=0 pi.d+

, Altitude change down =

∑n−1
i=0 pi.a−∑n−1
i=0 pi.d−
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4.3.7 Change of heading rate

Change of heading rate represent how fast the traveling object turned during the trajectory.
It can be used again for distinguishing between big heavy transportation vehicles and bicycle.
It is computed as average angle between three consecutive points.

a = Distance(pi−1, pi), b = Distance(pi, pi+1), c = Distance(pi−1, pi+1)

pi.h = arccos((a2 + b2 − c2)/(2ab)), Change of heading rate =

∑n−1
i=1 pi.h

n− 2

4.3.8 Proximity of bicycle infrastructure

Last feature that I used is Proximity of bicycle infrastructure. In every point of the trajectory
a distance to closest bicycle infrastructure is computed and feature is average over all points
in trajectory. I believe that this feature should help greatly with classi�cation of bicycle
parts of trajectory because bicycle trajectories will surely be much closer on average to
bicycle infrastructure.

pi.b = BikeIntrastructureDistance(pi.b), P roximity =

∑n
i=0 pi.b

n

4.4 Classi�cation model

For classi�cation model I chose three classi�ers. Random forest because for most cases as
shown in Chapter 2 it outperformed other learning algorithms. I will also try SVM because
it is known to perform well in two-class classi�cation problems. Last classi�er is basic Neural
network because it does not tend to over�t that much compared to random forest which can
make it better when working with data gathered in di�erent places.

4.4.1 Random forest

A random forest is an estimator that uses multiple decision trees. A decision tree is classi�er
that in phase of learning builds a tree graph. In nodes of a graph it puts rules based on
features that distinguish most of the data and proceeds from top to bottom. Trees are trained
with sub samples of a dataset and with random features selected. This practice is used to
prevent over �tting and increase accuracy with respect to the decision tree. In a random
forest the depth can be limited to prevent over �tting. In classi�cation phase decision tree
simply takes features given and apply rules from top to bottom and when it reaches leaf it
gives prediction based on what is in the leaf. In random forest every tree gives a decision
and �nal decision is average of all decisions made as shown in Figure 4.4.
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Random forest can be learned on any data without any kind of metric known. Because
my features have no common metric it is a big advantage. It is very fast in decision time
and very robust to outliers. Disadvantages of random forest is over �tting but it is much
more robust than decision tree. Also there is no well justi�ed learning algorithm backed up
by mathematical proofs and theory as are other classi�ers that in learning phase target e.g
training error. Later Rfc will be used for Random forest classi�er.

Figure 4.4: Random forest

4.4.2 Support Vector Machines

Support Vector Machines (SVM) is machine learning method that tries to �nd hyperplane
that separates feature space such that training data from di�erent classes lies in di�erent half-
spaces. Optimal hyperplane is one from which minimal feature distance is the highest. This
can not be used on any data but only on data that can be separated by hyperplane. Those
data are called linearly separable. To extend this to work with data that are not linearly
separable kernel transformations are used. This transforms feature space to mostly higher
dimensional space in order to achieve linear separability as shown in Figure 4.51. Commonly
used kernels are linear: 〈x, x′〉, polynomial: (γ〈x, x′〉) + r)d, sigmoid: tanh(γ〈x, x′〉) + r)
and rbf: exp(−γ|x, x′|2)) where γ, r and d are constant parameters that can be tuned.
Sometimes even kernel trick does not make the data linearly separable and SVM is allowed
to misclassify data points but for each misclassi�ed point penalty is added. This version is
called soft-margin SVM.

I am interested in SVM because it can handle two class problems very well. Also SVM
has regularization parameter which can set how much I want to push down training error in
trade for more general solution. Secondly with kernel trick with enough knowledge about the
problem it is possible to build custom kernel for the problem. Also SVM optimization prob-
lem can not get stuck in local minimum and can be computed by known e�cient methods.

1https://github.com/nicolaspanel/node-svm
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Figure 4.5: SVM Kernel trick

Lastly SVM is built on huge amount of theory. Disadvantages of SVM are that data needs
to be normalized and also big part is choice of kernel and it may be hard to tune parameters
for the optimal result. In following text Svc is used to refer to the SVM classi�er.

4.4.3 Neural network

Idea behind Neural network is inspired by human brain which is really good at learning.
Neural network can very well handle problems with multiple classes and it can do both
classi�cation and regression. It can be tuned for good generalization but it requires huge
amount of data. Also, there is no guarantee to reach global minimum while learning.

Basic building blocks of Neural network are neurons as shown in Figure 4.6 [4]. Neurons
have inputs x = (x1, . . . , xn) ∈ Rn, weights w = (w1, . . . , wn) ∈ Rn and bias b ∈ R.
Activation function f : R → R in neuron produces output y ∈ R based on input which is
computed from given weights w, bias b and the input x.

Figure 4.6: Neuron

One layer of neural network consists from unconnected neurons. When more layers
connect together it creates neural network. Inputs are connected to all neurons of the �rst
layer and all layers are connected this is architecture that I used and it is called Feed-forward
neural network. I used two and three layer fully connected network. As activation function
I used Recti�ed linear unit (ReLu): ReLu : f(x) = max(0, x). In next text Nnc is used for
Neural network classi�er.
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Learning of Neural network is done by setting weights wi with backpropagation algo-
rithm. Other algorithms for extreme searching can be used but backpropagation is used in
almost all cases. This algorithm computes outputs and then computes gradients and using
gradient descent it updates weights. To avoid getting stuck in local minimum not all training
samples are used in each step of gradient descent. Number of samples used is called batch
size.
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Chapter 5

Implementation

In this chapter I cover programming language that I used and explain why. I describe
datasets I had and show its computed statistics. I also describe data that I gathered without
using trajectories and how I gathered them. Finally, I show how I implemented all steps
from preprocessing to classi�cation.

5.1 Language

As programming language I chose python because of its simplicity and great versatility.
Python is also very popular in scienti�c circles. Furthermore, many great machine learning
libraries exists for python.

5.2 Datasets

For my research, training and testing I had two datasets available.

5.2.1 Geolife

First one is Geolife, dataset collected by Microsoft Research Asia during Geolife project
[17, 14, 16]. It was collected by 182 users over �ve-year period. 73 users also provided labels
containing modes of transportation for their trajectories such as car, train, bike or walk.
Trajectories are recorded in few major cities around the world but most of them take place
in Beijing. In this dataset labels are separate �les pointing inside trajectory �les. From that
I made two datasets one with trajectories corresponding to one mode of transportation by
cutting the original dataset based on labels. Second dataset I made are original trajectories
but with a tag of transportation mode in every GPS point.

5.2.2 DPNK

DPNK dataset was provided to me by my supervisor and it is dataset that was recorded
mostly by cyclists in the Czech Republic.

19
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Feature Geolife (bike) Geolife (Not bike) DPNK

Distance [m] 3237.537 6230.102 8365.907
Time [s] 1488.879 1875.695 2406.706
Max speed [m/s] 15.434 16.026 11.559
Average speed [m/s] 2.665 3.630 4.242
Acceleration [m/s2] 0.214 0.177 0.115
Deceleration [m/s2] -0.223 -0.178 -0.115
Altitude up 0.802 0.858 0.111
Altitude down -0.790 -0.827 -0.112
Angle [deg] 0.019 0.029 0.029
Proximity [m] 3.700 7.009 25.126

Table 5.1: Datasets average trajectory features

5.2.3 Datasets statistics

Table 5.1 shows statistics of average trajectory features of both datasets. From Geolife only
part of trajectories recorded in Beijing is used and also Geolife is separated to bike part
and not bike part. In statistics it can already be seen that some feature averages are very
di�erent in bike part of Geolife dataset and DPNK dataset.

5.2.4 Altitude data

Geolife dataset contains altitude data from GPS but this altitude data is extremely inaccu-
rate. DPNK does not contain any altitude data at all. To get altitude data I used elevation
Api and added required data to the dataset. Elevation Api returns elevation for GPS po-
sition. Because of elevation API request limit this process took about four days. When I
needed to replace elevation data in Geolife which is much bigger than DPNK dataset I in-
stead used SRTM elevation data. SRTM is short for Shuttle Radar Topography Mission and
contains topographical data collected by NASA from satellites1. SRTM provided me with
data that is less accurate than elevation API but much more accurate than data previously
contained in the dataset.

5.2.5 Bicycle data

For Proximity feature I needed way to get closest point of bike infrastructure. First I tried
to use Open street maps API2 but requesting for every point in trajectory was extremely
slow and could not be used. I needed to get the data in some �le that my program could
later use. I decided to extract trajectories from Geolife that were recorded in Beijing. After
that I downloaded Beijing cycle map data from OpenStreetMap3 using Overpass Turbo4 and
modi�ed its data structure to single lines entries so it could be loaded faster.

1https://github.com/tkrajina/srtm.py
2http://wiki.openstreetmap.org/wiki/API_v0.6
3https://www.openstreetmap.org/
4https://overpass-turbo.eu/
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For DPNK dataset I needed data from whole Czech Republic which was too much for
Overpass Turbo to handle so I downloaded map osm �le for Czech republic and used OSM-
Filter5 to extract bike infrastructure from the data. I also modi�ed data structure to single
line entries to reduce size.

5.2.6 K-D tree

For fast computing of nearest neighbour I used K-D tree. K-D tree, which is short for
K-dimensional computation tree, is space partitioning structure used to organize points in
k-dimensional space. In my case the space is two dimensional. K-D tree is binary tree where
every node is a point. Every non-leaf point can be viewed as splitting hyperplane and all
nodes in left subtree are on one side of the hyperplane and all points in the right subtree are
on the other side of the hyperplane. Nearest neighbour searching complexity in K-D tree is
O(log n).

5.3 Preprocessing

For preprocessing I implemented both heuristic and median �lters myself. For heuristic �lter
I used speed threshold 50 m/s and tested every two consecutive nodes against this threshold.
If speed was above the threshold I removed node from trajectory and tested new neighbor
node with the old one. For median �lter I used window of size 21 and implemented it as �lter
applied to trajectory which is passed as array of lines. Filter computes median of points in
the window and then replaces the old point with the newly computed values. All �lters are
implemented in module preprocessing.py.

5.4 Feature extraction

I have class Node in module node.py for GPS points. Node has methods to compute basic
features like distance and time. I also included function to compute angle of three Nodes and
distance to closest bicycle infrastructure using given K-D tree with infrastructure points.

Next I have module feature_extraction.py where I have functions for creating feature
�le from trajectories in speci�ed folder.

5.5 Classi�cation

First I used labeled trajectories and features extracted from them to train my classi�ers.
When I have trained classi�ers all I have to do is extract features and feed them to the
classi�ers for prediction. For Rfc I used scikit-learn [2] implementation of random forest. For
Svc I used scikit-learn implementations of LinearSVC, NuSVC and SVC modules. Finally
for building of Nnc I used Keras 6.

5http://wiki.openstreetmap.org/wiki/Osm�lter
6https://github.com/fchollet/keras
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Chapter 6

Evaluation

In this chapter I will evaluate segmentation and cover problems I encountered. Next I will
evaluate all classi�ers that I used and show how di�erent parameters can in�uence their
performance. Next is comparison of results and testing of preprocessing and features using
learned classi�ers.

6.1 Segmentation

For segmentation quality I used metric:

M = 1− not_split
all_splits

where not_split are changes in transportation mode not detected by segmentation and
all_splits are all changes of transportation modes in trajectories. When I tested segmen-
tation using method described in Chapter 4 I realized that metrics M I chose is not that
good. Problem is that for stay points containing more trajectory points less non detected
stay points are in trajectory but also less points are in the resulting segments. As can be
seen in graph shown in Figure 6.1 as M rises less and less points are kept in the trajec-
tory. I multiplied M and fraction of points left to get the method that has good quality but
leaves enough points in the trajectory. I used multiplication instead of addition to receive
well balanced method. As shown in Table 6.1 when I increase Tt with the same Dt M is
decreasing and Points left are increasing. When I increase Dt with same Tt M is increasing
and Points left are decreasing. Best results are for segmentation with Dt = 14 and Tt = 18.
This segmentation has M 0,767 while still leaving 75,9% points in the trajectory.

6.2 Classi�cation

To compare di�erent methods I need to measure method's performance. This is done by
comparing output labels with ground truth labels. By comparing ground truth with labels
predicted by my method, I can measure quality of the predictions. All measures are based
on number of True and False positives (TP and FP), meaning a number of correctly and

23
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Dt Tt M Points left Multiplied

14 10 0,834 0,633 0,528
14 12 0,821 0,656 0,539
14 14 0,803 0,705 0,566
14 16 0,781 0,731 0,571
14 18 0,767 0,759 0,582

14 20 0,755 0,77 0,581
14 22 0,728 0,791 0,576
14 24 0,721 0,797 0,574
14 26 0,693 0,812 0,562
14 28 0,686 0,817 0,561
10 18 0,722 0,802 0,579
12 18 0,732 0,78 0,571
16 18 0,774 0,737 0,57
18 18 0,774 0,71 0,549
20 18 0,793 0,686 0,544
22 18 0,821 0,661 0,543
24 18 0,832 0,642 0,534

Table 6.1: Segmentation results

Positive ground truth Negative ground truth
Positive prediction TP FP
Negative prediction FN TN

Table 6.2: Outcomes of binary classi�er
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Figure 6.1: Dependency of segmentation quality metric M and points left in dataset after
performing segmentation.

incorrectly predicted positives. True and False negatives (TN and FN), meaning a number
of correctly and incorrectly predicted negatives. It is illustratively showed in Table 6.2.

With these terms I can de�ne metrics used for classi�cation as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
, Precision =

TP

FP + TP
, Recall =

TP

FN + TP

6.2.1 Random forest

I tested Rfc with di�erent number of trees and computed not only accuracy but also time
required for learning and classi�cation. Results are shown in Table 6.3. From the results
it is obvious that because of rising classi�cation time for real time classi�cation programs
getting over 1000 trees can be a problem. Also, the increase in accuracy is not that big to
warrant the trouble. In the following text I use Rfc with 100 trees.

6.2.2 SVM

I tested SVM because it is known to be good classi�er for two-class problems which is exactly
what I am dealing with. I tried di�erent models from scikit-learn [2]. I tested di�erent kernels
and parameters and created Table 6.4 where I show my best results for each kernel and it's
parameters. C is regularization parameter. For NuSVC it is not possible to set it because
it instead controls number of support vectors. For polynomial kernel number in brackets is
degree of polynomial and Cf is independent term in kernel function. For next computation
I use SVC with rbf kernel as described in Chapter 4 and C = 1000000.
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Trees Accuracy Learn time [s] Class time [s]

10 0.893 0.125 0.107
20 0.902 0.131 0.106
30 0.903 0.138 0.107
40 0.906 0.150 0.107
50 0.903 0.155 0.107
60 0.904 0.162 0.106
70 0.903 0.187 0.107
80 0.904 0.175 0.106
90 0.906 0.286 0.107
100 0.905 0.291 0.108
200 0.906 0.467 0.108
300 0.905 0.645 0.109
400 0.906 0.837 0.108
500 0.905 1.010 0.209
600 0.906 1.204 0.209
700 0.906 1.414 0.210
800 0.908 1.844 0.274
900 0.906 1.797 0.210
1000 0.906 1.978 0.312
5000 0.906 9.841 1.157
10000 0.906 20.083 2.283
50000 0.907 101.676 11.005
100000 0.907 220.128 23.561

Table 6.3: Comparison of di�erent number of trees in Rfc using Geolife data segmented by
hand with �ve fold cross validation.

Module Accuracy Learn Class Kernel C Cf

LinearSVC 0.760 0.174 0.001 linear 100
NuSVC 0.407 0.073 0.008 linear
NuSVC 0.811 0.163 0.011 polynomial(8) 1
NuSVC 0.631 0.141 0.020 sigmoid 0
NuSVC 0.798 0.179 0.014 rbf
SVC 0.775 52.229 0.009 linear 1000000
SVC 0.822 2.707 0.007 polynomial(3) 1000000 3
SVC 0.794 0.164 0.007 sigmoid 100000 0
SVC 0.835 9.025 0.012 rbf 1000000

Table 6.4: Comparison of di�erent Svc con�gurations using Geolife data segmented by hand
with �ve fold cross validation.
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First Second Third Batch Epochs Accuracy Learn time Class time

32 32 0 128 50 0.810 2.580 0.073
32 32 32 128 250 0.834 10.936 0.074
128 128 0 128 500 0.851 31.008 0.093
128 128 128 128 500 0.827 35.409 0.114
128 128 128 256 1000 0.844 64.207 0.130
128 128 128 64 500 0.821 52.965 0.097
256 256 0 128 1000 0.851 107.996 0.127
256 256 256 512 1500 0.858 144.377 0.120

Table 6.5: Comparison of di�erent Nnc con�gurations using Geolife data segmented by hand
with �ve fold cross validation.

6.2.3 Neural networks

I also experimented with neural networks and tried to construct simple one to test it's
performance on my data. I spend some time setting di�erent number of neurons, epochs and
reached results that are not that far from random forest results and are in Table 6.5.

6.2.4 Results

From my tests it can be shown that best classi�er for my problem is Rfc with best accuracy
90,6%. Next was Nnc with best accuracy 85,8% and last Svc with accuracy 83,5%. This is
tested with �ve fold cross validation and without segmentation.

6.2.5 Classi�cation results with segmentation

After using segmentation that I chose based on it's performance I tested di�erent classi�ers
with it. I also measured precision and recall in order to be able to compare with prior art.
Results with segmentation are shown in Table 6.6. Point-wise results compare predictions for
each point and its ground truth. Trajectory-wise scores compares prediction for trajectory
with ground truth in each point of trajectory. Only if each point's ground truth corresponds
to trajectory prediction the trajectory is classi�ed correctly. When comparing Table 6.6 with
previous results it can be seen that using segmentation decreases accuracy. Even though
Rfc was best at perfectly segmented test data it is worst when dealing with non perfect
segmentation and Svc and Nnc give better results. In points-wise experiments best accuracy
of 87,9% was achieved by Nnc 87,9% and best precision of 83% by Svc. Best recall of 93,6%
is achieved by Rfc while lacking on precision as it is only 73%. Trajectory-wise best accuracy
and precision was achieved by Svc with values 75,9% and 79,6%. Highest recall 87,5% again
by Rfc and this time precision is only 6,2% worse than Svc compared to Point wise where
the di�erence was 10,3%.

Compared to results without segmentation where Rfc dominated in this case of segmented
trajectories Svc is the best. It can be because Rfc over �tted for perfect segmentation values.
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Point wise Trajectory wise

Classi�er Accuracy Precision Recall Accuracy Precision Recall

SVM 0.865 0.833 0.871 0.759 0.796 0.794
Neural network 0.879 0.830 0.916 0.745 0.747 0.854
Random forest 0.817 0.730 0.936 0.741 0.734 0.875

Table 6.6: Results on Geolife data segmented by my segmentation method.

Filter Improvement
Mean 1,95%
Median 4,33%
Heuristic 3,03%
Mean + Median 1,95%
Mean + Heuristic 3,9%
Median + Heuristic 5,19%

Table 6.7: Filter improvement

6.2.6 DPNK dataset

I also tested classi�cation on DPNK dataset to evaluate generality and scalability of my
classi�ers. First attempt of only using Rfc ended with 25% of trajectories classi�ed as
bicycle. Considering almost all of the trajectories in DPNK should be bicycle this result was
very unsatisfactory. I also tried Nnc on this because it should be more generalizing and it
got to 42,1% which is much better but still not the result I would like to and Svc classi�ed
45,3% as a bicycle. I computed di�erence between averages in datasets and modi�ed dataset
without labels to have same averages as training dataset by subtracting the di�erence and
with that I had 73% bike trajectories. This result is still not that good but compared to
starting 25% it is much better. After using tree with 300 minimum samples in leaf in order
to generalize more I classi�ed 85,6%.

6.3 Preprocessing

When choosing which �lter to use I tested Mean, Median and Heuristic based �lters to
remove noise from the data. I have chosen not to use Kalman and Particle �lter because of
harder implementation and also because of their disadvantages which can be reduce quality
when handling GPS trajectories which often start with noisy point.

I tested di�erent �lters to see how much the classi�cation will improve. Results obtained
with Rfc are shown in 6.7. From these measurements it can be seen that Median + Heuristic
�lter performed the best in this testing and therefore I used this �ltering in my method.
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6.4 Feature extraction

I tested di�erent feature combinations to determine which features are best for distinguish-
ing between bicycle and not bicycle and tried classi�ers with di�erent amount of di�erent
features. Results are shown in a Table 6.8. I put there all single feature classi�cations
from which the best is Average speed and also all nine feature classi�cation. It can be seen
that the worse is the one without bicycle infrastructure Proximity. From other number of
features I only selected the one combination that had the best accuracy. I tested all three
classi�ers and results show that Svc has problem with only one feature classi�cation and Rfc

can classify 73,8% right using only average speed Nnc even 80,9%. Results show that when
using only nine features Rfc has worse result without average speed which is also best feature
alone for Rfc. Nnc and Svc have worse result without distance and Svc accuracy di�erence
from testing with all features is 24,1% which is signi�cant. Overall increasing tendency of
accuracy with more features is noticeable.

6.5 Conclusion

As can be seen from the results Rfc outperformed other types of classi�ers for hand made
segmentation even though Neural network was not that far behind. With more tweaking it
could probably get even closer. Using my method of segmentation made the results worse,
with Svc outperforming other classi�ers. With Svc accuracy of 75,9%, precision of 79,6%
and recall of 79,4% my method is worse than best method in the research �eld. I think
that it is because competing algorithms use more map extracted features. I see room for
improvement in segmentation method.

Classi�er trained on dataset from Beijing had very bad result when used with data from
Czech Republic and data had to be modi�ed to increase classi�cation accuracy. In this
direction more research can be done to discover how to modify dataset or classi�ers in order
to classify data from di�erent places.
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Dst Tme Max Avg Acc Dcc Aup Adw Ang Pro Rfc Svc Nnc

Yes No No No No No No No No No 0.651 0.529 0.650
No Yes No No No No No No No No 0.589 0.529 0.537
No No Yes No No No No No No No 0.565 0.529 0.586
No No No Yes No No No No No No 0.738 0.529 0.809

No No No No Yes No No No No No 0.556 0.529 0.565
No No No No No Yes No No No No 0.552 0.530 0.578
No No No No No No Yes No No No 0.641 0.560 0.719
No No No No No No No Yes No No 0.615 0.559 0.704
No No No No No No No No Yes No 0.543 0.529 0.589
No No No No No No No No No Yes 0.595 0.529 0.654
Yes No No Yes No No No No No No 0.865 0.563 0.670
Yes No No Yes No No Yes No No No 0.881 0.619 0.602
Yes No No Yes No Yes Yes No No No 0.889 0.618 0.663
Yes No No Yes No Yes Yes No No Yes 0.897 0.600 0.703
Yes No Yes Yes No Yes No Yes No Yes 0.906 0.627 0.775
No Yes Yes Yes No Yes Yes Yes No Yes 0.905 0.600 0.749
Yes Yes Yes Yes Yes Yes Yes Yes Yes No 0.896 0.831 0.817
Yes Yes Yes Yes Yes Yes Yes Yes No Yes 0.905 0.832 0.784
Yes Yes Yes Yes Yes Yes Yes No Yes Yes 0.902 0.831 0.759
Yes Yes Yes Yes Yes Yes No Yes Yes Yes 0.901 0.827 0.798
Yes Yes Yes Yes Yes No Yes Yes Yes Yes 0.901 0.827 0.812
Yes Yes Yes Yes No Yes Yes Yes Yes Yes 0.902 0.828 0.802
Yes Yes Yes No Yes Yes Yes Yes Yes Yes 0.882 0.826 0.770
Yes Yes No Yes Yes Yes Yes Yes Yes Yes 0.902 0.828 0.751
Yes No Yes Yes Yes Yes Yes Yes Yes Yes 0.903 0.638 0.728
No Yes Yes Yes Yes Yes Yes Yes Yes Yes 0.901 0.594 0.695
Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 0.905 0.835 0.858

Table 6.8: Feature accuracy of classi�cation, shortcuts used are Dst for Distance, Tme
for Time, Max for Maximal speed, Avg for Average speed, Acc for Acceleration, Acc for
Deceleration, Aup for Altitude change upward, Adw for Altitude change downwards, Ang
for Change of heading rate, Pro for Proximity of bicycle infrastructure.



Chapter 7

Conclusion

In my work I tried to create a program that could detect whether a trajectory was recorded
on bicycle or not. To do this, I used methods found in the literature and combined them
with a novel method described in this thesis. Basis of this method is the use of a new feature
that to my knowledge has not been used before in trajectory classi�cation. This feature is
proximity of bicycle infrastructure and is extracted from map data.

Using my novel feature, I trained classi�ers and compared their results. Rfc detected
correct trajectories with accuracy 90,5%, Svc with accuracy 83,5% and Nnc with accuracy
85,8%. After �rst round of testing I employed segmentation that I chose based on seg-
mentation metrics and points left in dataset. Then I tested all three classi�ers in second
round of experiments this time also with precision and recall while using point-wise and
trajectory-wise metrics. In the experiments with point-wise metric best accuracy of 87,9%
was achieved by Nnc. Trajectory-wise best accuracy of 75,9%, precision of 79,4% and recall
of 79,4% were achieved by Svc. This shows that when dealing with segmented trajectories
Svc can be better than both Rfc and Nnc.

When testing classi�ers on DPNK dataset that should only contain bicycle trajectories
Rfc classi�ed 25% of trajectories as bike. Nnc classi�er 42,1% of trajectories as bike and Svc

classi�ed 45,3% of trajectories as bike. After comparing feature averages for both datasets I
moved features space of DPNK dataset to match that of Geolife. After that, Rfc with with
300 minimum samples in leaf classi�ed 85,6% of trajectories as bicycle trajectories.

Overall results show that my method is working. However, best method in the �eld [18]
classi�ed trajectories with precision 93,58% and recall 93,32% which is much better than my
method. I see room for improvement in segmentation. More work can be done in researching
how to modify datasets or classi�ers so it can be used on dataset from di�erent parts of the
world.
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Appendix A

User Guide

In this work I created program that is on CD with my work and can be started.

A.1 Program usage

A.1.1 Requirements

Program uses python modules that are not present in common python distributions. Those
modules are scipy, numpy and scikit-learn.

A.1.2 Data

When using own data it must be in right format. For trajectory format is:

longitude, latitude, 0, altitude, time1, time2, time3

on every line, where altitude is in feet and time1 is number of days (with fractional part)
that have passed since 12/30/1899. time2 is YYYY-MM-DD and time3 is hh:mm:ss.

Example: 39.977781,116.333398,0,817,39728.4313888889, 2008-10-07,10:21:12,subway

A.1.3 Running program

Program can be executed from cmd by "python main.py" but requires arguments to do
something.

A.1.4 Arguments

First argument engages di�erent modes. p for preprocessing, c for classi�cation, s for seg-
mentation and f for feature extraction
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A.1.4.1 Preprocessing

When using preprocessing next argument de�nes �lter used and it can be med for median,
mean for mean and heu for heuristic. Third argument for preprocessing is folder from which
trajectories are loaded and fourth argument is folder to which �ltered trajectories are saved.
For mean and median �lter optional argument can be used at the start -wnumber de�nes
sliding window size.

Example: python main.py -w10 p med ../data/un�ltered some_folder

takes trajectory data from un�ltered folder on CD, performs median �ltering and saves
results in "some_folder".

A.1.4.2 Segmentation

When using segmentation next arguments are distance_threshold, time_threshold, folder_in
and folder_out where distance and time thresholds are parameters of segmentation and folder
in and out are folder from which trajectories are loaded for segmentation and folder to which
are trajectories then saved.

Example: python main.py s 10 20 ../data/tosegment some_folder

takes trajectory data from tosegment folder on CD, performs segmentation with distance
threshold 10 and time threshold 20 and saves result into "some_folder".

A.1.4.3 Feature extraction

When using feature extraction second argument is input folder for features extraction and
third argument is name of feature �le created.

Example: python main.py f ../data/un�ltered path/features

creates feature �le "path/features.f" from trajectory data in un�ltered folder on CD.

A.1.4.4 Classi�cation

When using classi�cation next argument is classi�er type, nn for neural network, rf for
random forest and svm for SVM. Next argument is classi�cation mode selection. tr for
training, pr for prediction, ts for testing and tn for testing segmented trajectories.

Training

Training has two more arguments, �rst is feature �le from which will classi�er learn and
second is name of classi�er that will be saved.
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Testing

In testing �rst argument is name of classi�er (neural net only name and svm and random
forest with extensions) second argument is feature �le used for testing. Output is accuracy,
precision and recall of classi�cation.

Prediction

In prediction �rst argument is name of classi�er (neural net only name and svm and random
forest with extensions) and second argument is feature �le used for prediction. Output
prediction will be saved to �le with same name as feature �le but with extension .pr. -1 is
bike and 1 is not bike.

Segmented classi�cation

Last mode is classi�cation of segmented. There I cannot create feature �le so �rst argument
is again classi�er name (neural net only name and svm and random forest with extensions)
and second argument is folder in which segmented trajectories are. Output is point vise
accuracy, precision and recall and trajectory vise accuracy, precision and recall. This mode
can run for very long time based on number of segments.

Examples: python main.py c svm tr ../data/features.f path/svm

creates new svm classi�er "path/svm.svm" learned on feature �le in data folder.

python main.py c rf ts ../data/rf.rf ../data/features.f

loads learned random forest from ../data/rf.rf and uses it to classify feature �le ../data/features.f
and then outputs accuracy, precision and recall of classi�cation.

python main.py c rf pr ../data/rf.rf path/features.f

loads learned random forrest from ../data/rf.rf and predicts trajectories saved in path/features.f
creates �le path/features.pr with prediction if possible else prints predictions to console

python main.py c rf tn ../data/rf.rf ../data/tosegment

loads classi�er from ../data/rf.rf and data from ../data/tosegment and outputs classi�cation
results for segmented trajectories.

tosegment data is not segmented but can be used for demonstration how it works. Or
segmented data can be created with segmentation.
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Appendix B

CD Structure

Figure B.1: List of CD structure
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