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Abstrakt

Tato bakalářská práce se zabývá automatickým rozpoznáváńım znak̊u z tex-
tových CAPTCHA obrázk̊u. Jej́ım ćılem je porovnáńı mělkých a hlubokých
umělých neuronových śıt́ı spolu s jejich dopadem na výslednou přesnost. Je
navrhnut a implementován algoritmus využ́ıvaj́ıćı dvě umělé neuronové śıtě,
techniku posuvného okénka a k–means shlukováńı. Přesnosti přepis̊u jsou
změřeny na 11 r̊uzných schématech se zaměřeńım na porovnáńı mělkých a
hlubokých architektur.

Kĺıčová slova CAPTCHA, strojové učeńı, neuronová śı̌t, konvolučńı neu-
ronová śı̌t, optické rozpoznáváńı znak̊u, hluboké učeńı, poč́ıtačové viděńı, po-
suvné okénko, lokalizace, Torch7

Abstract

This bachelor’s thesis studies automatic character recognition from textual
CAPTCHA images. Its aim is to compare shallow and deep artificial neural
networks together with their impact on the resulting accuracy. An algorithm
utilizing two artificial neural networks, the sliding window technique and the
k–means clustering is designed and implemented. The transcription accuracies
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are measured on 11 different schemes with the emphasis on the comparison of
shallow and deep architectures.

Keywords CAPTCHA, machine learning, neural network, convolutional
neural network, optical character recognition, deep learning, computer vision,
sliding window, localization, Torch7
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Introduction

The ability to automatically distinguish between a real human–user and a
computer software performing automated tasks has become increasingly im-
portant during the last decade. To carry out this differentiation, special chal-
lenge–response tests were designed and deployed. They are known under
the acronym CAPTCHA (Completely Automated Public Turing test to tell
Computers and Humans Apart), and are now present throughout the whole
Internet – whenever there is a need to deny access of non-human users.

Lack of such limitations could result in computer bots performing various
malicious actions:

• Bot can post spam messages from automatically created user profiles
in message boards [5], which can potentially contain backlinks to the
intended website. This way the website can be promoted among users
as well as have increased rank for search engines, which can make it
more likely to be displayed higher in search results.

• Advertisers are paying for their advertisement being displayed to people
visiting websites. However, without testing no distinction can be made
whether the visitor is human or not. This in turn means that advertisers
are paying for “displaying” their advertisement to computer bots [6].

• Automated scraping of content such as email addresses [7] is an issue
as well because email addresses can be abused by targeted spam. The
sole act of content scraping is resource demanding on the server’s side,
resulting into degraded performance.

• Bots can be used for buying up good seats for various events (such as
concerts, sport matches, etc.) [8], which can lead to unfulfilled demand.
Therefore, brokers can resell those tickets for much higher prices.

From the list above is obvious that such actions have to be prevented and
therefore, is important to have CAPTCHA that is capable of distinguishing
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Introduction

humans and computer bots. However, as technology advances and computers
are gaining human-like or even superhuman capabilities, this becomes gradu-
ally harder to achieve.

In this thesis I will address the task of automatic character recognition
from multiple text-based CAPTCHAs schemes using artificial neural networks
(ANNs) and a simple clustering algorithm (k-means). The goal is to take a
CAPTCHA challenge as an input while outputting transcription of the text
presented in the challenge. This approach should be general across multiple
text-based CAPTCHA schemes with no need to modify any part of the algo-
rithm. In the experimental part of this thesis I will compare the performance
of the shallow (only one hidden layer) and deep (multiple hidden layers) ANNs.

This thesis is structured into five main chapters. The first chapter presents
CAPTCHA types and introduces three CAPTCHA generators. The second
chapter provides insight into artificial neural networks. The third chapter
analyses current state of the art of textual CAPTCHA recognition. The fourth
chapter describes the algorithm used to transcribe CAPTCHA challenges.
Finally, the fifth chapter introduces performed experiments and evaluates the
accuracy achieved by various ANN architectures.
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Chapter 1

CAPTCHA Analysis

In this chapter, I will briefly go through some of the types of CAPTCHA
used today, discuss different textual CAPTCHA generating software available.
Finally, I will present the chosen CAPTCHA schemes which I will attempt to
transcribe.

1.1 CAPTCHA Types

The abbreviation CAPTCHA is usually used when referring to a visual test
consisting of transcribing obscured text from an image, however other types
of CAPTCHA exist as well. In the following subsections I will present the
most prominent ones.

1.1.1 Text-based CAPTCHA

Text-based CAPTCHA used to be the most common [4] and still is present
on certain websites either as the primary means of testing or as a backup.
It is based on the AI problem of recognizing characters from an image. It is
now being replaced by another type of CAPTCHA, which is based on much
harder, computer vision problem and thus is more secure (see section 1.1.3).
I will attack this type of CAPTCHA in this bachelor thesis. For additional
analysis, see Section 1.2. Figure 1.1 gives examples of such CAPTCHA.

(a) Secureimage PHP Captcha [9] (b) captchas.net [10]

Figure 1.1: Text-based CAPTCHAs
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1. CAPTCHA Analysis

1.1.2 Speech-based CAPTCHA

This type of CAPTCHA is based on speech recognition – it is required from
the testee to recognize spelled characters or spoken words over usually noisy
background. It is an alternative to any visual CAPTCHA for visually impaired
people, therefore it is generally available as a secondary option together with
the primary CAPTCHA. Figure 1.2 shows a waveform visualization of such
CAPTCHA.

Figure 1.2: A speech-based CAPTCHA [1] spelling numbers “21261”

1.1.3 Image-based CAPTCHA

Another type of CAPTCHA is the image-based one. As of right now, they rely
on the AI problem of either pattern recognition or localization, which is much
harder task compared to the text recognition in text-based CAPTCHA [11].
It is required to select images which are of a certain type or containing certain
objects in order to pass the test. The widely used example of this type of
CAPTCHA is the reCAPTCHA [1]. Apart from fulfilling its goal, it also
positively uses the effort put into solving the challenges by using the results
to annotate images and create machine learning datasets. This is useful for
building the next generation of Artificial Intelligence solutions [1]. Please refer
to Figure 1.3 for examples.

1.2 CAPTCHA Generating Software

Large companies usually develop their own CAPTCHA schemes to protect
their websites. This approach has the advantage of the source code not being
available to the potential attacker, however a lot of caution is necessary in
order to avoid known weaknesses and to make the scheme secure.

Another option is to use an open–source CAPTCHA service such as Se-
cureimage PHP Captcha [9], or paid services such as BotDetect CAPTCHA [12]
or captchas.net [10], which I will discuss more in the following subsections.

1.2.1 Secureimage PHP Captcha

This is an open-source CAPTCHA service, which means it poses no guarantees
on the safety and the source codes are inherently available to all. That is a
huge advantage on attacker’s side as it opens the possibility to generate as
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1.2. CAPTCHA Generating Software

(a) A localization CAPTCHA (b) A pattern recognition CAPTCHA

Figure 1.3: Image-based CAPTCHAs [1]

many examples as desired while knowing correct transcriptions. To avert this
possible weakness, it is designed to be highly customizable.

Default security of this CAPTCHA consist of image distortion, random
lines and added noise. It is also supports any TTF font. An example of a
challenge generated by this service can be seen in Figure 1.1a.

1.2.2 Captchas.net

Captchas.net is a service ran on its dedicated server, which provides generated
challenges. Therefore, its source codes are not needed to be available. Still
an attacker can generate thousands of examples with known transcriptions by
sending enough requests to the server.

This CAPTCHA heavily relies on noise as the main security feature, while
each character is rotated as well. A challenge generated by this service can be
seen in Figure 1.1b.

1.2.3 BotDetect CAPTCHA

BotDetect CAPTCHA is a paid, up–to–date service supposedly used by many
government institutions and companies all around the world [12]. It features
as many as 60 different schemes with different security features.

Its base price starts at $99 per year however for my experimenting I have
used the free version which comes with limitations such as:

• a watermark in the generated CAPTCHA image 50 % of the time,
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1. CAPTCHA Analysis

• obfuscated source codes, and

• a permanent link to the source webpage.

As I was able to modify its obfuscated source codes, I removed the free version
limitations and also altered the challenge generation process to suit my needs.
This way I am able to generate as many challenges with any specific properties
as needed.

Given the reasons above I have chosen this CAPTCHA service for my
experiments in this bachelor thesis.

Scheme suite The BotDetect CAPTCHA is able to generate challenges in
60 schemes, out of which I have deliberately chosen 11 to be as much different
as possible. See Figure 1.4 for examples of the chosen schemes.

(a) Snow (s04) (b) Stitch (s08) (c) Circles (s10)

(d) Mass (s14) (e) BlackOverlap (s16) (f) Overlap2 (s18)

(g) FingerPrints (s25) (h) ThinWavyLetters (s30) (i) Chalkboard (s31)

(j) Spiderweb (s41) (k) MeltingHeat2 (s52)

Figure 1.4: Schemes generated by the BotDetect CAPTCHA

The BlackOverlap scheme acts as a baseline as it should be the easiest to
solve. It has almost no protection against character recognition. It contains
clear, only slightly rotated and barely touching characters.

Other schemes display various security features such as random lines and
other objects occluding the characters, jagged or translucent character edges
and global warp. The Circles scheme stands out with its color inverting ran-
domly placed circles. This property could make it harder to recognize than
others, because the solver somehow needs to account for random parts of
characters and their background switching colors.
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Chapter 2

Artificial Neural Network

The Artificial Neural Network (ANN) is a computational model based on
large collection of simple, highly interconnected units (called artificial neu-
rons) inspired by biological nervous systems, such as human brain, process
information [13].

These artificial neurons each perform simple computation based on its
inputs to produce an output – an activation. Nevertheless, an ANN can
compute very complex functions by layering these simple computations.

ANNs in general are self-learning and trained instead of being explicitly
programmed. This is a vital property in tasks where the solution is difficult or
even impossible to express as a traditional computer program. Unfortunately,
it comes at a price of ANNs being inherently very opaque when trying to in-
terpret their inner computation processes. And without the ability to explain
ANN’s outputs, it is hard to be confident in the reliability of an ANN that
addresses a real-world problem [14].

Even though other types of ANNs exist as well, I will solely use the feedfor-
ward ANNs, because they are well-suited for the task of character recognition
from images. For example they achieve as low error rate as 0.21 % on the
test set of the MNIST database of handwritten digits [11]. Given the task of
character recognition, I will also only consider the use of ANNs for the task
of multinomial classification.

2.1 Feedforward Neural Networks

A feedforward neural network is the simplest type of ANN. Its units are or-
ganized in layers. Data in this type of network simply flow through it from
layer to layer, until they reach the output layer – which provides the output
of the network. In this thesis I will study (and use) two types of feedforward
ANNs:

• a multi-layer perceptron (MLP), and

7



2. Artificial Neural Network

• a convolutional neural network (CNN).

Another categorization used among feedforward ANNs is whether they are
shallow or deep. The shallow ANN is defined as having only single hidden
layer (therefore having two layers at most in total), while the deep ANN as
having at least two hidden layers.

2.2 Artificial Neuron

A real neuron is the basic building block of the human brain. It weights its
incoming signals in its dendrites, its soma accumulates potential from these
weighted signals and when a certain threshold is met, it fires its own signal.
The signal is transmitted in a form of spikes in temporal domain.

An artificial neuron is for ANNs the same as a real neuron is for our brains;
it is very vaguely based on it. Specifically, in feedforward ANNs an artificial
neuron computes a weighted sum of its inputs, adds its bias and conveys this
value through its activation function forward to neurons connected to it. This
process can be expressed by the following equation:

h(x) = g

(∑
i

wixi + b

)
= g (w · x + b) (2.1)

where x is vector of neuron’s inputs, w is vector of corresponding weights, b
is neuron’s bias and g is the neuron’s activation function.

2.3 Activation Function

Real neuron transmits its information in the rate in which it fires discrete
spikes in time. The more strongly it is “excited” about something, the more
frequently it can fire.

Artificial neurons in the feedforward setting, on the other hand, do not
have the option of firing in time. Their input signals come, they perform
some calculations and forward just a single value – their output. The intuition
behind this value is that it resembles the rate of fire of the real neuron.

An activation function in artificial neuron gives it the possibility to have
a nonlinear output. Figure 2.1 shows examples of commonly used nonlinear
activation functions.

2.3.1 Output Activation Function

Specifically to the multiclass classification task, it is desirable of the ANN’s
output to be a probability distribution over classes. The softmax function σ
(a multiclass generalization of the sigmoid function [15]), when applied to a
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2.3. Activation Function
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Figure 2.1: Activation functions used in artificial neurons

vector z of neurons’ output values, serves exactly this purpose. For the j-th
value of the resulting vector, it is defined as:

σ(z)j =
ezj∑
i e

zi
(2.2)
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2. Artificial Neural Network

2.4 Single-layer Perceptron

A single-layer perceptron ANN is the simplest type of feedforward ANN in the
sense that it consists of just one layer of neurons. This means it can solve only
linearly separable tasks (recall equation 2.1) no matter its activation function.
It can be thus seen as a linear classifier.

The original perceptron uses the Heaviside step activation function (see
Figure 2.1a) and the intuition behind its learning process is that it simply
tries to adjust its weights in such a way that fixes all errors occurred in the
training set. As a result, the training process of a perceptron ANN effectively
stops whenever there are no more classification errors in the training set.

The perceptron unit can be also used with with any other reasonable ac-
tivation function, its limitations however persist.

2.5 Multi-layer Perceptron

A Multi-layer perceptron (MLP) is an extension to the single-layer percep-
tron model. It consists of at least two layers of neurons. Typically each
neuron has a connection to all neurons in the preceding layer. This is why
a MLP is also known as the fully-connected ANN, Figure 2.2 depicts this
fully-connectedness.

Layer 0
input layer

Layer 1
hidden layer

Layer 2
output layer

x2

x3

x1

y1

y2

Figure 2.2: A fully-connected feedforward ANN

Each subsequent layer of neurons thus gets outputs of the previous layer,
which, thanks to the activation function’s nonlinearity, computes some nonlin-
ear function given its inputs. This potentially results in computing gradually
more and more complex function of the network’s inputs.
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2.6. Convolutional Neural Network

Although a MLP with a nonlinear activation function under mild assump-
tions consisting of even just two layers (a shallow MLP) with finite number of
neurons was proven to be universal approximator [16], just two layers might
not be the most efficient MLP architecture. For example in order to repre-
sent certain decision surfaces with a shallow MLP, one would be forced to use
exponentially more neurons then it would be required using a deep MLP [17].

2.6 Convolutional Neural Network

A Convolutional neural network (CNN) is a type of feedforward ANN that
makes the explicit assumption that its input data are images. It is not much
different from a standard MLP, however this assumption allows it to greatly
reduce number of parameters of the network and therefore be more efficient
in computation.

The first CNN called was introduced in 1980 by K. Fukushima under the
name Neocognitron. It was developed with inspiration taken from the visual
input processing part of mammalian brain – the visual cortex, whose structure
it tries to mimic. Thanks to this the Neocognitron was able to achieve position-
invariant pattern recognition [18].

Modern CNNs usually consist of layers of three types:

• the convolutional layer,

• the pooling layer, and

• the fully-connected layer.

Figure 2.3 gives an overview of an CNN architecture, which is using all three
types of layers.

Figure 2.3: A convolutional neural network architecture [2]
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2. Artificial Neural Network

2.6.1 Convolutional Layer

Artificial neurons in this layer still perform the same operation as described in
Equation 2.1, however now the structure in which neurons are laid out within
each layer is very important – they create stacks of activation maps. Also,
each neuron has only spatially local connections, which form its receptive field
of the previous layer. Please refer to the Figure 2.3 for illustration.

Moreover, all neurons within one activation map share their weights and
bias. This is done to greatly reduce the number of parameters to be learned,
with the motivation of it being useful to have a feature detector applied at
every position of the image – it serves the position-invariance.

Figure 2.4: A convolutional layer [3]

The name of this layer comes from the fact, that it can be thought of
as a set of kernels (one for each activation map) being convolved across the
width and height of the layer’s input, computing the dot product between the
kernel’s values (the neuron’s weights) and the input’s values. Afterwards the
respective biases are added and all values are passed through an activation
function. Figure 2.4 illustrates this computation. A convolutional layer thus
needs these hyper-parameters to be set:

• the width and height of its kernel (the receptive field),

• the step size among both width and height axes, which specifies how far
apart are the receptive fields’ centers,

• the number of kernels, and

• the activation function.

2.6.2 Pooling Layer

A pooling layer is usually used within a CNN in between convolutional layers to
reduce dimensionality of the CNN’s intermediate activations, while (hopefully)
keeping the most salient ones [2]. It has no trainable parameters and works
by performing some general function of its receptive field. The usual function
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2.6. Convolutional Neural Network

of choice is the maximum or the average of its input values [2]. It also helps
with position- and rotation-invariance, as it gradually discards (when used
multiple times within a CNN) exact spatial location [2].

Figure 2.5 gives on example of a max pooling with the receptive field of
2× 2 and a step size of 2 in both axes.

Figure 2.5: Max pooling illustration [2]

2.6.3 Fully-connected Layer

After some number of convolutional and pooling layers, a small number of
fully-connected layers (a MLP) usually gets appended to facilitate classifica-
tion [19], as can be seen in Figure 2.3. The intermediate activations just need
to get flattened from a three-dimensional matrix into a vector in order to
become valid as an input to a MLP.

2.6.4 The All Convolutional Net

It is also possible to create a CNN using convolutional layers only [19]. A
convolutional layer is able to replace a pooling layer by using larger steps
between receptive fields’ centers; a fully-connected layer with n neurons can
be replaced by a convolutional layer with n kernels of size 1× 1.

2.6.5 Generalization of a Convolutional Layer

CNN’s usage is not bounded only to images – to two-dimensional convolutions,
It is also being used in one- and three-dimensional convolution setting:

• one-dimensional convolution for text understanding [20], and

• three-dimensional convolution for human pose estimation in space and
time [21]).
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2. Artificial Neural Network

2.7 ANN Learning

ANN learning is a process of adjusting ANNs parameters in such a way that
when it is finished, the trained ANN preforms the intended transformation
of the input data. For example, when an ANN is trained for the task of
classifying images (e.g. dogs, cats, . . . ), it performs a transformation from an
input image to a vector containing a probability distribution over all classes
with the correct class’s probability preferably being close to one.

An ANN can be viewed as a function fθ : X → Y given its parameters θ,
where X is the input space and Y is the output space. Because it is not known
how to determine the ANN’s parameters θ explicitly for the task at hand, an
alternative approach is needed – the ANN learns them itself by a process of
optimization. For such process to work, the ANN needs sample data called
the training dataset.

The process of learning can be divided into two categories based on whether
the target classes for the training inputs are provided to the network or not:
in the supervised learning setting the target classes are provided, while in the
unsupervised learning setting they are not.

Since the task of CAPTCHA recognition (as well as the above described
example) falls within the category of supervised learning, I will study only
this type of ANN learning.

2.7.1 Supervised learning

The supervised version of ANN learning requires a set of n training example
pairs of the form {(x(1),y(1)), . . . , (x(n),y(n))}, where x(i) is the input feature
vector of the i-th example and y(i) is its target class. Supervised learning is
then the process of adjusting the ANN’s parameters by optimizing its per-
formance (by some appropriate algorithm) on the training data, based on a
performance evaluation function, often called the loss function.

2.7.2 Loss Function

Loss function allows the evaluation of the ANN’s performance on each example
it is presented with. The higher the resulting loss value is, the worse the
performance.

Common choices for loss functions include: the mean squared error (MSE)
and the cross-entropy loss. As per [22]: “the cross-entropy is nearly always
the better choice, provided the output neurons are sigmoid neurons”. Since
for a classification task the output neurons have a softmax function (as briefly
discussed in Section 2.3.1), which is just a multiclass generalization of the
sigmoid function, I will further consider only the cross-entropy loss.
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2.7. ANN Learning

Cross-entropy Loss Let y be a vector containing the target probability
distribution for the training example x, and ŷ be an ANN’s output probability
distribution for the example x. Then, the cross-entropy loss can be computed
as:

L(y, ŷ) =
∑
j

yj ln ŷj (2.3)

Just for the sake of completeness, ŷ can be computed using function fθ
(as defined in Section 2.7) of the training input x:

ŷ = fθ(x)) (2.4)

2.7.3 Backpropagation Algorithm

In order for an ANN to learn to perform a classification task, it is needed to
define an objective function, minimization of which will result in learning the
intended task.

Given a supervised training dataset S consisting of n example pairs {x,y}
(as defined in Section 2.7.1), an objective function using a cross-entropy loss
can be defined as:

O(S) =
1

n

n∑
i=1

L(y(i), fθ(x
(i))) (2.5)

Such function is differentiable w.r.t the parameters θ, however, only the
gradients of the ANN’s output layer can be estimated directly. Therefore, the
backpropagation algorithm was invented to estimate gradients of the previeus
layers.

A loss (an error) value is computed in the forward pass. Then, in the
backward pass, the loss value is distributed among neurons, layer by layer
(in the opposite direction to the forward pass – from the output layer all the
way to the first hidden layer). While distributing the loss values for each
neuron (which roughly corresponds to the neuron’s contribution to the final
loss value), the neuron’s gradients w.r.t. to its parameters are estimated. And
since the network’s gradients can be estimated, a gradient-based optimization
can be applied to train the network.

2.7.4 Stochastic Gradient Descent

The stochastic gradient descent (SGD) is an iterative algorithm for first-order
gradient-based optimization of stochastic objective functions. The true gradi-
ent of the objective function w.r.t. its parameters is estimated by a gradient
at a single example. This estimated gradient in then used to update the ob-
jective function’s parameters in the direction proportional to the negative of
the estimated gradient. A less noisy estimation is generated by taking an
average of a gradient at some number of examples – a gradient of a minibatch
of training data.
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2. Artificial Neural Network

As it is possible to estimate gradients for all parameters of a feed-forward
ANN (using the backpropagation algorithm), a SGD algorithm can be used to
update its parameters with the goal to minimize the objective function with
the side-effect of the ANN being trained for the task for which the objective
function measures performance. See Figure 2.6 for an example of optimization
using the SGD algorithm.
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Figure 2.6: 2000 iterations of the SGD optimization
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Chapter 3

State of the Art

The common approach applied in text-based CAPTCHA breaking is to use a
pipeline consisting of several steps out of which only one – character recogni-
tion – is done by a general machine learning algorithm. This more algorithm-
based, scheme-specific approach rose in the early 2000s and has proven to
work quite well. I will discuss this approach in section 3.1.

To fix discovered vulnerabilities, more advanced CAPTCHA schemes were
developed, which in turn meant new challenges for CAPTCHA solver devel-
opers. To get rid of the need for new scheme-specific algorithms, an attempt
for more general CAPTCHA solver was made (sec. 3.2) and only the latest
advancements in technology allowed for approaching the visual CAPTCHA
transcription problem in completely general way, feeding (normalized) raw
pixel data into a machine learning algorithm and expecting a transcription on
the output (sec. 3.3).

3.1 Scheme-specific Approach

One can find multiple examples of the scheme-specific approach [4, 23, 24, 25]
and they all share the same inherent drawback – being more or less specialized
in solving only one scheme.

For example the most recent work (out of the four mentioned) [4] suggests
using this five–stage pipeline (Figure 3.1 illustrates the first three stages):

1. Pre-processing: Background removal, line detection and removal, noise
reduction, binarization.

2. Segmentation: Creating segments containing characters using various
techniques, the most common being the Color Filling Segmentation [23].

3. Post-segmentation: Processing individual segments to make the recog-
nition easier. Segments’ sizes are always normalized in this stage.
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3. State of the Art

4. Recognition: Character recognition using a classifier of choice (kNN
or SVM in this case).

5. Post-processing: Improving the overall output when possible, for ex-
ample spell checking can be performed when dictionary words are used
to generate the CAPTCHA challenge.

Figure 3.1: An example of first three stages of a scheme-specific pipeline [4]

Measured precision varies from CAPTCHA scheme to scheme. Their algo-
rithm was not able to transcribe certain schemes at all, on others the accuracy
of transcription was as high as 93%.

Thus this approach has been proven to work, however each CAPTCHA
scheme might require different method to exploit different invariant(s) present
in order to segment and recognize correctly.

3.2 General Approach

A more recent work [26] tries to address this issue by jointly performing the
task of segmentation as well as character recognition by a machine learning
algorithm. It consists of several parts as well:

1. Cut-points detector finds all possible cuts which segment a CAPTCHA
into individual characters.

2. Slicer builds a graph of potentially meaningful segments.

3. Scorer traverses this graph applying OCR and assigns a recognition
confidence score to each potential segment.

4. Arbiter selects the final value for the CAPTCHA challenge using voting
weighted by the recognition score confidence.

Authors use what they call the “reinforcement learning process” where hu-
man provides important insight during training. A set of labeled CAPTCHAs
is processed and all unsuccessfully classified examples are collected. For the
failed CAPTCHAs, human is asked for feedback when a segment surrounded
by two correctly classified segments is misclassified, because the misclassifica-
tion could happen due to improper segmentation, or to bad recognition and
the algorithm is unable to tell them apart by itself. The number of cases
requiring manual intervention was small enough for the researchers to per-
form them themselves. The number of training examples was small as well –

18



3.3. General Approach Using Deep Learning

26 examples per character, which in turn meant a training set of under 1000
CAPTCHAs.

3.3 General Approach Using Deep Learning

Another approach [27] arose from the need to recognize arbitrary multi-digit
street numbers from the Google’s Street View [28]. Their approach is fairly
straight-forward and works on raw pixel data. Their only pre-processing step
is to subtract the mean of each image and downscale it to a fixed square size.
This image is then fed into a deep convolutional neural network (consisting of
as much as 11 layers), which works as a feature extractor, on top of which sit
6 independent softmax classifiers:

• One classifying length of the number sequence present in the image; 7
classes: 0 through 5 plus an extra class representing “more then 5”.

• Five classifying its corresponding number in the sequence; 10 classes
(i.e. classifier 1 always classifying the 1st digit in the sequence, classifier
2 always classifying the 2nd, and so on).

The same approach was as an experiment used on a Google’s (old) re-
CAPTCHA [29], which was at that time considered the most secure [27]. The
feature extracting convolutional neural network has 9 hidden layers and is
able to handle CAPTCHAs with length of up to 8 (thus having 9 independent
softmax classifiers). In this experiment a remarkable accuracy of 99.7% was
achieved. The drawback is the need of millions of training images and days of
training time even on high performance GPUs.
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Chapter 4

Algorithm Overview

My algorithm can be viewed as a three-stage pipeline consisting of these steps:

1. Create a heatmap of character locations using the sliding window tech-
nique paired with an ANN, which classifies whether there is a character
in the center of its input or not.

2. Use the k-means algorithm to determine the most probable locations of
characters from the heatmap.

3. Recognize the characters using a different specifically trained ANN.

4.1 Heatmap Generation

I decided to use the sliding window technique to localize characters within
a CAPTCHA image. This approach is well known in the context of general
object localization [30]. It allows us not only to classify individual characters
but also to decide which parts of an image contain characters.

4.1.1 Sliding Window

A sliding window is a rectangular region of fixed width and height that slides
across an image, from left to right, row by row, from top to bottom. It can
be used at various scales and with various step sizes. However, no scaling is
required for the challenges generated by the schemes which I will attempt to
transcribe (see Figure 1.4), since the sizes of characters do not vary much. I
expand the range by padding the input image with black pixels with a strip of
width equal to half of the window’s size. As a result the sliding window can
slide out of the image by as much as half of its size in both axes.
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4. Algorithm Overview

4.1.2 Classifier

A feed-forward ANN with a single output neuron with the sigmoid activa-
tion function is used. Its output values (ranging from 0 to 1) resemble the
probability of its input image having a character in the center of the image.

(a) Scheme s16 (b) Scheme s10

Figure 4.1: CAPTCHA examples with their heatmaps underneath

4.2 Clustering

I decided to use the k-means clustering algorithm to determine windows with
characters close to their center. It is a simple clustering algorithm that seemed
like a good choice to start with.

All points from a generated heatmap with value greater or equal to 0.5 1

are added to a list of points to be clustered.

As there is always a constant number of characters present in all schemes,
the k in the k-means (the number of centroids) is known. Also, I choose to
initialize the centroids uniformly from left to right, vertically in the middle, as
this provides a good initial estimation. Figure 4.2 illustrates the whole idea.

(a) Initial centroids

→
(b) Final centroids

Figure 4.2: Heatmap clustering using k-means

It is also worth noting that this localization pipeline does assume the loca-
tion of characters in any way whatsoever. It depends solely on the classifier’s
accuracy. Figure 4.3 demonstrates this property.

Moreover, a different clustering algorithm which would be capable of in-
ferring the number of clusters, could effortlessly extend capabilities of this
pipeline to work with any number of characters.

1according to the classifier there is at least a 50% chance that the window contains a
centered character
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4.3. Recognition

(a) Initial centroids

→

(b) Final centroids

Figure 4.3: Heatmap clustering on random character locations

4.3 Recognition

Assuming that the character localization part worked well, windows containing
characters are now ready to be recognized. This task is known to be easy for
computers to solve; in fact, they are even better than humans [31].

Again a feed-forward ANN is used, this time with an output layer con-
sisting of 36 neurons paired with the softmax activation function to provide
probability distribution over classes: numbers 0–9 and upper-case letters A–Z.

Finally, a CAPTCHA transcription is created by writing the recognized
characters in the ascending order of their x coordinates (i.e. from left to right).
Figure 4.4 shows the example of a window with the character inside and its
corresponding class probability distribution produced by an ANN.

(a) Input image
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Figure 4.4: Classification of a character
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Chapter 5

Experiments

In this chapter, I will discuss the way the training data were generated. Then,
I will briefly introduce the framework I have programmed in. And finally, I
will demonstrate that the chosen CAPTCHA schemes are indeed vulnerable to
such attack. I will do so by evaluating accuracy of multiple ANN architectures,
including a shallow MLP as well as a deep CNN.

5.1 Training Data Generation

Training an ANN usually requires a lot of training examples (in the order
of millions in the case of a very deep CNN, such as the one described in
Section 3.3). The number of examples needed to train an ANN goes lower
with decreasing number of layers. But still it is advised to have at least
multiple times the number of all parameters in the network [32].

Manually downloading, cropping and labeling such high number of exam-
ples is infeasible. That is why I opted for an alternative of altering the freely
available (obfuscated) code in such a way that it generates directly usable
examples together with their target class. Therefore, the whole process can
be automated and thus thousands of examples can be generated effortlessly.

5.1.1 Localization Data

The localization ANN, used as the classifier in the sliding window approach,
has to classify images into two classes – whether a character is in the center
of the image or not. Training examples thus have to be images taken from
various locations of CAPTCHA images with their appropriate labels.

Moreover, it is needed to pay more attention to locations in between char-
acters, as it is hard to tell apart cases when the window is located in between
two characters and when the window is spot on a character. On the other
hand an easily classifiable example is a window located above or below a char-
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5. Experiments

acter as it does not contain any character-like pixels in its top or bottom part.
Figure 5.1 shows examples of such training data.

(a) Class: centered character (b) Class: character off-center

Figure 5.1: Examples used to train a localization ANN

5.1.2 Classification Data

A character recognition ANN needs enough training examples of each char-
acter. This time, however, they must be floating around across the whole
window. The reason is that the inferred locations of characters are almost
never perfect and the characters may therefore occur anywhere within or even
slightly outside the window. Therefore, the character recognition ANN must
account for such cases. Otherwise, it might fail to recognize the off-center
ones.

(a) Class: character I (b) Class: character H

Figure 5.2: Examples used to train a character recognition ANN

5.2 Setup

I have used the Torch7 framework for all my experiments. As per [33]: “Its
goal is to provide a flexible environment to design and train learning machines.
Flexibility is obtained via Lua, an extremely lightweight scripting language.
High performance is obtained via efficient OpenMP/SSE and CUDA imple-
mentations of low-level numeric routines.” Creation of a MLP can be achieved
in just a few lines of code, as can be seen in Listing 1.

All experiments were run on my personal laptop on its Intel Core i5-
3210M CPU, on which training of even the most complex models did not
take more than half an hour. The reported accuracies represent a percentage
of correctly transcribed 5-letter challenges out of a set of 300. Moreover,
all four combinations of shallow/deep and localization/recognition ANNs are
tested to reveal more specifically the source of accuracy improvement.

All ANNs were trained on training sets of 100 000 examples using the
ADAM optimizer, which is a better performing extension of the SGD opti-
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5.3. Determining ANN Architecture

mizer [34]. The ReLU activation function is used after each fully-connected or
convolutional layer, as it performs better than the conventional Tanh activa-
tion function [35]. The training stops whenever the validation accuracy does
not improve for 2 consecutive iterations through the whole training dataset.

1 local nn = require ’nn’

2 local mlp = nn.Sequential() -- make a multi-layer perceptron

3

4 mlp:add(nn.Linear(2, 20)) -- 2 inputs, 20 (hidden) neurons

5 mlp:add(nn.ReLU()) -- ReLU activation function

6 mlp:add(nn.Linear(20, 4)) -- 20 inputs, 4 (output) neurons

7 mlp:add(nn.SoftMax()) -- softmax activation function

8

9 local input = torch.rand(2) -- vector of 2 norm. dist. values

10 local output = mlp:forward(input)

Listing 1: Creation and usage of a shallow MLP in Torch7

5.3 Determining ANN Architecture

Once trained, the architecture of feed-forward ANNs is not modular anymore.
Each neuron within each layer is heavily dependent and specialized on its
preceding neurons. Therefore by removing one, the ANN’s performance can
be degraded severely. Adding a neurons to an already trained ANN may not
be beneficial as well, because complex relations between neurons have already
been formed, and to include a new neurons into those relations constructively
might require to retrain the whole network from scratch. Attention thus needs
to be paid when designing and creating ANNs.

5.3.1 Shallow ANN

I tried different architectures for both localization and character recognition
ANNs to see which combination works the best. The only possible variation
in shallow, fully-connected ANN is changing the size of their hidden layer
(the number of neurons within this layer). I have tried sizes of {15, 30, 60, 90}
for the localization ANN and sizes of {30, 60, 120, 180, 250} for the character
recognition ANN. The scheme s10 seemed like a good choice for this task,
since it has a security feature which (in my opinion) should be difficult to
overcome.

The results presented in Figure 5.3 suggest that the size of the localization
ANN is not that important. What greatly affects the overall accuracy is the
size of the recognition ANN. Regardless of this observation, I will use the best
performing combination: the localization ANN with hidden layer of size 60 and
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Figure 5.3: Comparison of different shallow ANN architectures on the s10
scheme

character recognition ANN with hidden layer of size 180. This combination
achieves the accuracy of 63.667 % on the scheme s10.

5.3.2 Deep ANN

The LeNet-5 [36] is the main source of inspiration for both my localization
and recognition deep ANNs. It is a fairly old architecture that was created for
the task of handwritten digit recognition. Therefore, it is rather lightweight.
Newer architectures usually focus on the more difficult task of (large-scale)
image recognition and are ever so resource demanding (e.g. AlexNet [35],
VGGNet [37]).

My deep localization ANN consists of the following layers:

• two convolutional layers with six and sixteen 5× 5 kernels respectively,

• two 2× 2 max-pooling layers, and

• a fully-connected output layer with 36 neurons.

The deep character recognition ANN contains an additional fully-connected
hidden layer with 120 neurons, which is placed right before the output layer.
Figure 5.4 illustrates this architecture.

5.4 Single Scheme Accuracy

This experiment corresponds to the situation of someone trying to attack a
scheme of a certain website. The transcribing algorithm would typically be
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Figure 5.4: Deep CNN architecture for character recognition

designed/trained just for the targeted scheme. The same applies to the ANNs
used in this experiment. They are trained and tested on just a single scheme.
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Figure 5.5: Testing accuracies for the single scheme experiment

60+180 63.727 % ± 15.587

conv+180 +4.788 % ± 5.128

60+conv +18.788 % ± 10.916

conv+conv +21.788 % ± 13.464

Table 5.1: Summarized average accuracy gains from Figure 5.5

Table 5.1 shows that the biggest impact has the usage of the deep CNN in
the character recognition part of the pipeline. Figure 5.6a visualizes a subset
of neuron’s parameters of the character recognition shallow ANN trained on
the s08 scheme (the s08 scheme was chosen because the difference between
shallow and deep architecture seems to be the most pronounced). Generally,
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5. Experiments

(a) A subset from the hidden layer of the shallow ANN

(b) The first convolutional layer of the deep CNN

Figure 5.6: Visualization of neuron’s parameters of a character recognition
ANNs; trained on the s08 scheme; blue represents the negative weights, red
the positive ones, brightness indicates magnitude

various pairwise location-specific line detectors can be seen. The location-
specificity is very important here as it means that the ANN needs to learn the
same detectors multiple times at various locations. This is ineffective, and on
top of that the training data might fail to contain examples of all characters at
all locations. Therefore, whenever a character occurs at a previously unseen
location, the shallow ANN may easily misclassify it.

On the other hand, the deep character recognition CNN needs to learn its
detectors only once, as they get applied (convoluted) over each spatial location
of the input image. This makes the deep CNN much more neglectful of the ex-
act location of the character and thus achieves better accuracy. Visualization
of its parameters of the first layer can be seen in Figure 5.6b.

This argument is further supported by the low accuracy differences ob-
served when shallow/deep ANN is used for localization. The localization task
is quite opposite to the character recognition task in the sense that the loca-
tion is very important for it. In other words, the usage of a shallow ANN for
localization does not degrade the overall accuracy as much, because location-
specificity is something it is good at. Still, the deep CNN adds a few percentage
points to the overall accuracy when employed for the localization task.

5.5 All Schemes Accuracy

The training dataset of this experiment contains examples of all 11 schemes.
Its size, however, remains the same. Therefore, each scheme is represented
by only 1/11 of the dataset size. As all schemes are trained jointly, only four
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5.6. Leave-one-out Scheme Accuracy

ANN instances (one for each architecture) are needed for this experiment. This
experiment should test their ability to learn a common abstract representation
of each class across all schemes.
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Figure 5.7: Testing accuracies for the all schemes experiment

60+180 25.455 % ± 16.881

conv+180 +8.818 % ± 6.845

60+conv +29.576 % ± 12.333

conv+conv +40.697 % ± 10.441

Table 5.2: Summarized average accuracy gains from Figure 5.7

Table 5.2 summarizes the average accuracy improvements against the shal-
low baseline. The pipelines using the character recognition CNN perform bet-
ter by approximately 30 % on average. This is even a bigger improvement
than the previous experiment showed.

The ability of deep CNNs to abstract from a scheme and focus on the im-
portant shapes seems to emerge even more in this experiment. This time also
with the localization CNN, as the accuracy gain is on average approximately
10 %.

5.6 Leave-one-out Scheme Accuracy

This experiment simply performs the leave-one-out cross-validation. It basi-
cally pushes the previous experiment even further, as the generalization ca-
pabilities of the ANNs are explicitly tested. The ANNs are trained on 10
schemes and the one left out is used for testing.
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Figure 5.8: Testing accuracies for the leave-one-out scheme experiment

60+180 15.121 % ± 16.380

conv+180 +3.939 % ± 7.395

60+conv +24.636 % ± 13.679

conv+conv +31.545 % ± 20.070

Table 5.3: Summarized average accuracy gains from Figure 5.8

The deep CNNs confirm their ability to generalize better then the shallow
ANNs (see Table 5.3). The only exception occurs for the scheme s41. Not a
single challenge was transcribed correctly from this scheme by pipelines with
the deep CNN(s). The probable reason is that the scheme uses very different
protection which is, moreover, always present. The same reasoning goes for
the results on the s10 scheme.

This all suggests that even though the pipeline with deep CNNs is capable
of transcribing schemes it has never seen before, its span is still limited only
to schemes fairly similar to the ones it was trained for.
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Conclusion

This thesis aimed to evaluate the accuracy of shallow and deep ANNs used for
the task of text-based CAPTCHA recognition. The main goal was to design
and implement an algorithm capable of transcribing challenges generated by
various schemes.

First, several CAPTCHA types were discussed and three different text-
based CAPTCHA solutions were presented. The BotDetect CAPTCHA so-
lution was selected as the most appropriate. Also, principles of ANNs were
studied.

Then, to gain insight in the relevant area, state of the art solutions were
analysed. As none of them seemed usable, an algorithm utilizing two artificial
neural networks, the sliding window technique and the k–means clustering was
designed and implemented.

Finally, the properties of generated training datasets for both localization
and classification tasks were explained. The proposed algorithm was success-
fully implemented and suitable architectures for both shallow and deep ANNs
were chosen. Three performed experiments facilitate the comparison of accu-
racies between shallow and deep architectures. An average accuracy of 63.7 %
and 85.5 % was achieved using shallow and deep ANNs respectively.

The algorithm can be further extended to work with challenges containing
unknown number of characters. This would require a clustering algorithm
capable of inferring the number of clusters.
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Appendix A

Acronyms

AI Artificial Intelligence

ANN Artificial Neural Network

CAPTCHA Completely Automated Public Turing test to tell Computers
and Humans Apart

CNN Convolutional Neural Network

CUDA Compute Unified Device Architecture

ELU Exponential Linear Unit

kNN k–Nearest Neighbors

MLP Multi Layer Perceptron

MNIST a database of handwritten digits

MSE Mean Squared Error

OpenMP Open Multi-Processing

ReLU Rectified Linear Unit

SGD Stochastic Gradient Descent

SIMD Single Instruction, Multiple Data

SSE Streaming SIMD Extensions

SVM Support Vector Machine

TTF True Type Font
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Appendix B

Contents of enclosed CD

readme.txt....................the file with CD contents description
src....................................the directory of source codes

impl.....................................implementation sources
thesis...........the directory of LATEX source codes of the thesis

text.......................................the thesis text directory
BP Nikl Matej 2017.pdf...........the thesis text in PDF format
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