
Ing. Michal Valenta, Ph.D.
Head of Department

prof. Ing. Pavel Tvrdík, CSc.
Dean

Prague December 22, 2016

CZECH TECHNICAL UNIVERSITY IN PRAGUE

FACULTY OF INFORMATION TECHNOLOGY

ASSIGNMENT OF BACHELOR’S THESIS

 Title: Tool for metadata extraction from database Netezza

 Student: Boris Laskov

 Supervisor: Ing. Michal Valenta, Ph.D.

 Study Programme: Informatics

 Study Branch: Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2017/18

Instructions

The aim of the thesis is to design and develop a metadata extraction tool for the Netezza database and
integrate the tool into the Manta project.

1. Describe the structure of metadata in the Netezza database and compare it with metadata in the Oracle and
MS SQL Server.
2. Prepare a list of metadata that is necessary to extract from this database for static analysis, verify its
availability, and identify possible ways of its extraction from the database.
3. Based on the analysis design a tool for metadata extraction from the Netezza database.
4. Implement the prototype that extracts metadata into existing data structure in the Manta project. Use the
appropriate architecture to allow integration of this tool into Manta. To access the database, use a suitable
framework.
5. Create a set of test data and automated tests to verify that the implemented solution works correctly.
Create user documentation for this tool.

References

Will be provided by the supervisor.

Czech Technical University in Prague

Faculty of Information Technology

Department of Software Engineering

Bachelor’s thesis

Tool for metadata extraction
from database Netezza

Boris Laskov

Supervisor: Ing. Michal Valenta, Ph.D.

21st April 2017

Acknowledgements

I would like to thank my supervisor, Ing. Michal Valenta Ph.D., for his guid-
ance and valuable advice. Also, I would like to thank the team behind Manta
Flow for their help in understanding the context of this work and the structure
of their software.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 2373 of the Act No. 89/2012 Coll., the Civil Code,
I hereby grant a nonexclusive authorization (license) to utilize this thesis,
including any and all computer programs incorporated therein or attached
thereto and all corresponding documentation (hereinafter collectively referred
to as the “Work”), to any and all persons that wish to utilize the Work. Such
persons are entitled to use the Work in any way (including for-profit pur-
poses) that does not detract from its value. This authorization is not limited
in terms of time, location and quantity, is granted free of charge, and also
covers the right to alter or modify the Work, combine it with another work,
and/or include the Work in a collective work.

In Prague on 21st April 2017 .

Czech Technical University in Prague
Faculty of Information Technology
© 2017 Boris Laskov. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Laskov, Boris. Tool for metadata extraction from database Netezza. Bach-
elor’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2017.

Abstract

In order to perform static analysis of an SQL script we need to have the
information about database objects, which this script works with. The objects
and the information they can be described by may vary depending on the
database.

The aim of this thesis is to explore the environment of Netezza database
and collect knowledge about objects that can be found inside it, their descript-
ive data and ways to extract that data. The resultant theoretical material was
tested on a practical example of designing and implementing a Netezza-specific
extractor module for Manta Flow.

Manta Flow tool is used to statically analyze SQL code and visualize the
structure of a database. Our application contributes to bringing the support
of Netezza databases into it.

The result of the practical part of this thesis is a fully-functional extractor.
Although it does not analyze SQL code by itself, it provides required data for
future processing by other modules. The theoretical part can be useful for
understanding data structures in Netezza.

Keywords Netezza, metadata, database, Java, automatic metadata
extraction

ix

Abstrakt

Pro statickou analýzu SQL skript̊u je třeba źıskat detailńı informaci o objek-
tech, které jsou ve skriptech odkazováné. Této informaci ř́ıkáme metadata.
Struktura metadat se v r̊uzných databáźıch lǐśı.

Ćılem této práce je prozkoumat databázový stroj Netezza, popsat struk-
turu informaćı o objektech (metadata) a zjistit, jak je možné je źıskat. Po-
stup je prakticky ověřen návrhem a implementaćı metadata extraktoru da-
tabázového stroje Netezza pro nástroj Manta Flow.

Manta Flow slouž́ı ke statické analýze SQL kódu a vizualizaci struktury
databáźı a datových tok̊u. Aplikace, která je výsledkem této práce, tedy plně
funkčńı extraktor metadat pro db. stroj Netezza, výzmanmně přisṕıvá k pod-
poře tohoto db. stroje v nástroji Manta Flow. Teoretická část práce je užitečná
pro pochopeńı struktury metadat db. stroje Netezza.

Kĺıčová slova Netezza, metadata, databáze, Java, automatická extrakce
metadat

x

Contents

Introduction 1
Chapter description . 2

1 The aim of the thesis 3
1.1 Manta Flow . 3
1.2 Purpose of this work . 3
1.3 Current state . 4
1.4 Theoretical and practical parts 4

2 Analysis 5
2.1 Definition of terms . 5
2.2 Netezza overview . 6
2.3 Metadata structure . 7
2.4 Comparison with Oracle SQL 12
2.5 Comparison with Microsoft SQL Server 15

3 Design 19
3.1 List of necessary metadata . 19
3.2 Ways to extract metadata . 21
3.3 User privileges . 24
3.4 Requirements . 25
3.5 Use case . 27

4 Realization 29
4.1 Choice of technologies and frameworks 29
4.2 Project structure . 31

5 Testing 39
5.1 Test scenarios . 39
5.2 Test data . 41

xi

6 User documentation 43

Conclusion 45

Bibliography 47

A Acronyms 51

B Data type mappings 53

C Contents of enclosed CD 55

xii

List of Figures

2.1 Netezza Architecture . 6

3.1 Use case diagram . 27

4.1 Class diagram . 31

xiii

List of Tables

2.1 Comparison of executables in Oracle and Netezza 14
2.2 Comparison of triggers in Oracle and Microsoft SQL Server 16

B.1 Data type mappings . 53

xv

Introduction

Nowadays, almost every company uses one or more databases to store vari-
ous documents, information about their sales, customers and other relevant
records. Instead of keeping such things written on paper, it is far more con-
venient to have a computer-based solution that is capable of storing practically
all kinds of data. Moreover, databases ensure its safety and high availability.
They enable companies to automate many routine processes thus saving much
time and human resources. Relatively low costs needed to create and integ-
rate a database and, more importantly, potential expenses reduction for the
business make such storages ubiquitous [1].

However, the longer the company exists, and the bigger it grows, the harder
it becomes to maintain its databases. Due to the continuously increasing
amount of data they store and of people they are used by, if not designed
properly, they start to perform slower, taking more time to process even simple
transactions. So it becomes necessary to update their structure to keep up
with corporate standards. New services offered by the company also imply not
only creating new databases but also changing and extending existing ones. In
addition, while such interventions in their architecture are being performed,
old records must stay intact, because many pieces of information saved in
databases often belong to the most valuable things the company has.

Updating the structure of a large and complex database can be difficult
to do and can take a long time. It is also important to have a clear picture of
what and how is stored inside in order not to lose any data and be sure that
it is kept and managed in a proper way.

Such problems can be made much easier with a good software solution,
which can connect to a database, retrieve the information about its inner
structure, analyze it and provide a clear visualization of it. The purpose of
this thesis is to extend one such tool – Manta Flow – by adding a new module
to it that will bring the support for extracting the descriptive data (metadata)
from Netezza database. The subsequent analysis will be performed by other
modules and is not a part of this project.

1

Introduction

Chapter description

Chapter 1 will contain more details about the aim of the thesis; it will define
it more precisely.

Chapter 2 will give you an overview of Netezza database and explain the
objects that can be found in it. Also, we will compare them to the ones from
Oracle Database and Microsoft SQL Server.

In Chapter 3 we will describe the metadata to extract and the ways to
accomplish it. Then there will be a list of requirements for our extractor and
its main use case.

Chapter 4 will provide the information on technologies used to create our
application and its structure (with a detailed overview of how it works).

In Chapter 5 we will talk about different automated tests we have and the
data they are supplied with.

Chapter 6 will show step-by-step instructions for integrating our extractor
into another project and launching it.

Finally, we will draw conclusions of this thesis.

2

Chapter 1
The aim of the thesis

In this chapter, we will give more details about the objectives of the project
and its desired results. Firstly, Section 1.1 will clarify the conception and
purpose of Manta Flow tool. Then, in Section 1.2 we will define the aim
of this project based on the previous context. Section 1.3 will give you the
picture of the current state of solutions for the problem. Finally, in Section 1.4
we will outline the main topics for the theoretical and practical parts of this
thesis.

1.1 Manta Flow

Manta Flow is a commercial software tool which is designed to visualize data-
base objects and relations between them. With the help of it, administrators
can always have a well arranged graphical representation of the architecture
they are supporting and working with, allowing them to maintain and update
it faster and with fewer mistakes. Manta Flow contains modules called ex-
tractors that are used to pull out the structure of databases – there is no need
to provide the scripts they were constructed with manually.

1.2 Purpose of this work

Database systems from various vendors differ in many ways. Each of them
has its own way of how it represents, keeps and manages information inside.
That is why Manta Flow has separate extractors – each of them is responsible
for dealing with a specific database. The aim of this thesis is to describe the
metadata of Netezza databases, find possible ways to extract it, and then make
use of this knowledge by designing and implementing a prototypical solution –
an extractor, which should meet the requirements of Manta Flow software so
it can be seamlessly integrated with it.

3

1. The aim of the thesis

1.3 Current state

According to the official documentation, there are several ways to get inform-
ation about objects that are defined in the database. They differ in commands
one needs to execute and in privileges one requires to be able to fully retrieve
the relevant info. We need to examine them and make a comparison, so later
we can choose the best one for our extractor.

As for Manta Flow, for now, it does not have any extractor for Netezza.
Nevertheless, it has many extractors for other databases systems. It also has
an interface that every new extractor must implement to become a part of
Manta Flow. It should also work with some predefined structures of this
project, for example, it must be able to fill its dictionary. We will describe
these technical aspects in more detail in the following chapters.

1.4 Theoretical and practical parts

The theoretical part of this thesis will be mainly focused on the describing the
kinds of data structures that can be found in a Netezza database. They will
also be compared to those from Oracle Database and Microsoft SQL Server.
Then, we will discuss the ways of retrieving their metadata and user privileges
needed for it. In the end, we will design a list of requirements and a use case
for our extractor.

The practical part will consist of details about the implementation of our
module. We will give details about what technologies we use, which parts it
has and how it works. We will also provide the information on the automated
tests we will create. Finally, there will be a manual about how to use our
extractor in another project.

4

Chapter 2
Analysis

In this chapter, we will explore the environment of Netezza database and
gather the knowledge to understand and be able to describe objects stored
inside it.

Firstly, in Section 2.1, we will define a few terms, which will help us in
describing objects of a database. In Section 2.2 we will say something about
what Netezza actually is. Then, in Section 2.3 we will see what objects are
there in Netezza and what info we can describe them with. Sections 2.4 and 2.5
will provide a comparison of metadata found in Netezza with that in Oracle
and Microsoft databases.

2.1 Definition of terms

Data definition language (or DDL) is a special category of Structured
Query Language (SQL) commands. It contains commands for defining data-
base objects, for example, tables, views and others [2].

Data manipulation language (or DML) is another category of SQL that
refers to commands for handling data stored in objects which were defined by
DDL queries. DML commands can be divided into two main categories:

• The first one provides a way to actually manipulate data – add, modify,
and remove it. It contains self-explaining INSERT, UPDATE and DELETE
commands.

• The other category enables users to access stored information. In consists
of only one command – SELECT. With the help of it, it is possible to
both output info as is and use conditions, functions and other database
structures to change the final result set [2].

DDL scripts (or create scripts) are files that contain commands written
in data definition language. Each of them can be responsible for defining one

5

2. Analysis

or more database objects. Since the majority of the commands that construct
new objects starts with the keyword CREATE, such files are often referred to as
create scripts. Using them as a source of input in the database shell eliminates
the necessity of manually typing CREATE commands.

Metadata “is data that describes other data” [3]. In our case, by metadata
we mean information that helps us to learn what objects are in the database
and how they were created. When we do not know what the database structure
looks like, its metadata becomes crucial to understanding and visualizing it.

2.2 Netezza overview

Netezza is an American company (acquired by IBM in 2010), the developer of
high-performance data warehouse appliances, which are focused on massively
parallel processing (MPP). It creates solutions that are designed to store and
process petabytes of information. Their distinctive feature is the usage of
FPGAs along with Intel-based CPUs on the nodes where data is processed.

The architecture of appliances consists of two main levels:

Figure 2.1: Netezza Architecture

6

2.3. Metadata structure

• The first level is called the host and is represented by an SMP server. It
receives queries from the client using it and performs the preprocessing –
it creates an optimized execution plan. It breaks each task into subtasks
(snippets), which are then effectively distributed across S-Blades from
the second tier for parallel execution.

• The second level consists of one or more snippet blades (S-Blades). They
are powerful independent servers with lots of RAM, high-performance
CPUs, and FPGAs, which receive subtasks from the host and do the
actual computation on the information, which is stored on one or more
hard disks the S-Blade is connected to. On this machines takes place
the actual data processing [4].

The detailed description of the Netezza appliances goes beyond the scope of
this thesis. The key point is that they use a proprietary database. The analysis
and extraction of its metadata are the purposes of this project. From now on
this database will often be referred to simply as “Netezza”.

2.3 Metadata structure

Please note that this whole section is mostly based on the info from the fol-
lowing sources: [5], [6], [7] and [8].

Also note that it is not a full, definitive guide for metadata in Netezza.
Neither every object nor every object’s parameter is listed here. As we will
see in future sections, for designing and implementing an extractor, we will
not need that amount of information (due to requirements of Manta Flow –
what it demands and what it can make use of). However, all substantial parts
are in place.

2.3.1 Objects in Netezza

On the root level, there are databases (DBs). Each database by default has
one schema. Since release 7.0.3 of Netezza Platform Software (NPS), we can
configure the system to use multiple schemas. The user can switch between
databases with the SET CATALOG command and between schemas in the cur-
rent database with the SET SCHEMA command.

Schemas contain actual database data structures. They are:

Tables
Classical relational database tables, which consist of columns. Every column
has a name and a data type. Tables can have constraints for specifying rules
in them (for example, PRIMARY KEY (PK), FOREIGN KEY (FK), etc.) [9], but
in Netezza, they are not checked. That is why it is user’s responsibility to
ensure that they will not be violated.

7

2. Analysis

From the metadata point of view, a table can be described by its name,
table-level constraints (e.g., PK, FK, etc.) and a list of columns. Each
column has a name, a data type and, sometimes, column-level constraints (e.g.,
NOT NULL, UNIQUE, etc.). Neither table-level nor column-level constraints are
checked. Also, there are some additional parameters:

• DISTRIBUTE ON stands for one to four specific columns (its default value
is RANDOM) based on which the data is split across different processing
nodes (and their hard drives) [10].

• ORGANIZE ON represents one to four columns, values of which are used to
group records within the table.

• ROW SECURITY indicates that this table is secure on row-level – user must
have special permissions to view or change some rows.

Derived tables
The lifecycle of a derived table matches the lifecycle of an SQL query, dur-
ing which it is created. As soon as the request is completed, the table is
removed [11]. They can be used as intermediate containers that have a shape
of a regular table.
Temporary tables
Temporary tables behave like derived tables, but they are local to the current
session rather than for a single request. The name of such table can overlap
with the name of a regular, persistent one – in that case, the latter will be
unavailable until the former exists. The temporary table will be accessed by
default. However, it can be dropped by the user before the session expires [11].
External tables
This kind of tables is stored outside of a database. They can be used for
loading data into the database and unloading it to files on disk. Another
use case of keeping data external is the ability to move it between different
systems or to simply back it up.

External tables do not have an ORGANIZE ON parameter, but they do have
many additional ones. For example, DATAOBJECT shows where the table is
saved in the file system. There are many more parameters, for instance, re-
sponsible for handling the format of how some data types are stored, specifying
delimiters between columns, and so on.
Views
There are two types of views in Netezza database: regular and materialized.

• Regular views are simple structures that are not created physically. Net-
ezza only generates a query rewrite to enable SELECT commands on them.
If we add a column to the table the view is based on, it will not appear
in the view. If we delete a column that was accessible through the view,
future queries will end with an error.

8

2.3. Metadata structure

• Materialized views are physically created (stored in a unique table).
SELECT statements on them can show better performance because often
there are fewer records in views, and this data is sorted on materialized
view creation. Only one base table can be used as a source. Although
making changes straight on views is not allowed, it is possible to do them
on the base table, and they will propagate to the view. To keep data sor-
ted, it is necessary sometimes to refresh materialized views manually or
to set an appropriate threshold, which defines how many percents of un-
sorted records can be present until the view is automatically refreshed
(default value is 20).

A very important descriptive parameter of a view is the query, with the
help of which it is generated from its base table.
Sequences
A sequence is an object based on the integer data type which has minimum and
maximum values, a starting value and a step by which the value is increased
(once returned). Sequences have the GET NEXT VALUE method, which returns
a number from the defined interval. In the majority of cases, it is supposed
to be unique, but if we set the CYCLE property, once we move up to the
maximum value, we will start getting numbers from the beginning of the
interval again. Values returned by a sequence can be used, for example, for
generating artificial primary keys – special values to uniquely identify rows,
which are not a logical part of the rest of the data stored in this table and
should be created aside.
Stored procedures
Instead of building all logic outside of a database (in external applications,
which are connected to it), sometimes it is a better choice to implement parts
of it straight in Netezza. It can save us time because for processing information
in place there is no need to transfer it between systems. For such purposes,
Netezza has special objects called stored procedures. They enable users to
define functionality and save it as a database object.

They are written in NZPLSQL language, can take input values (argu-
ments) and supports return values. Their arguments can be either a pre-
defined list of built-in primitive data types or a special VARARGS parameter for
a varying number (0 to 64) of inputs of different types. Their return value can
be not only a primitive data type but also a REFTABLE(<name_of_table>).
In that case, the procedure returns a result set, which has the same structure
as the specified table. This table must be created before the procedure and
cannot be deleted while it exists.

Procedures can also be obfuscated. It means that once created and saved,
their body (actual code of what they do) appears not as NZPLSQL code (like
it was written), but as a sequence of characters that looks random and does
not mean anything to the person reviewing it. Hiding the original body of
a procedure can be done for legal reasons if it contains some information its

9

2. Analysis

author does not want to be stored or viewed as plain text. In Netezza, proced-
ures can be overloaded. It means that there can exist multiple procedures with
the same name, but with different arguments. When called, an appropriate
one will be picked and executed (considering the arguments caller provided).

As for metadata, the most important parts are the name, arguments, re-
turn type and the body of the procedure.
User-defined functions (UDXs)
This is another type of executable objects. Like procedures, functions can be
overloaded; they have arguments and return values. But the code of UDXs
is written in C++. It is firstly compiled with the nzudxcompile tool and re-
gistered in the system with an appropriate CREATE SQL command. Functions
can then be invoked in queries to compute something based on supplied values.
They can be of several types:

• User-defined aggregates (UDAs): This is an aggregate function – it cal-
culates a single return value based on the given column.

• User-defined functions (UDFs): This is a more generic function, which
can take zero or more arguments. Like a UDA, it is scalar – it produces
only one return value.

• User-defined table functions (UDTFs): These functions return a table-
like object rather than a single value of a primitive built-in data type.
They can be called in a FROM clause of a statement. UDTFs help the
user, for instance, to rewrite input columns in a more verbose form or
instead summarize their info and present it in a more elegant way.

• User-defined shared libraries: Libraries enable the user to use the same
C++ code in different UDXs in a clean and simple way. There is no need
to copy and paste it to every function that uses it.

Metadata of UDXs include their names, arguments and return values.
However, it appears to be impossible to extract their bodies because they are
written in C++ and are stored in a compiled form. Here are more parameters
that describe UDXs:

• [NOT] FENCED indicates if a function is executed in its own process with
protected address space (this mode is called fenced) or not. Fenced mode
negatively affects performance, but in the case of poorly designed UDXs,
it helps the system to avoid crashes.

• [NOT] DETERMINISTIC shows if a function is deterministic or not. If it
is, for the same arguments it must always return the same value.

• MAXIMUM MEMORY represents the possible amount of memory that this
function can use. It can be written as a number together with a letter,
which stands for the units used (’b’ for bytes, ’k’ for kilobytes, ’m’ for
megabytes or ’g’ for gigabytes).

10

2.3. Metadata structure

• TABLE [[, TABLE] FINAL] ALLOWED represents invocation options
of a UDTF. For example, if TABLE FINAL ALLOWED is specified, and the
user calls it with TABLE WITH FINAL(udtf()) command, then this func-
tion will be invoked once more after all input values are processed.

• LOGMASK specifies the level of logging applied to the function.
• STATE defines data types of state variables. This is a UDA-only para-

meter. Aggregates use these variables to save their state externally while
running.

• [NO] DEPENDENCIES shows if the UDX is dependent on one or more
shared libraries.

• EXTERNAL CLASS NAME specifies the name of the main class in C++ (the
entry point of the function).

• EXTERNAL HOST OBJECT and EXTERNAL SPU OBJECT point to the corres-
ponding files with compiled sources created by the nzudxcompile com-
mand.

Synonyms
Synonyms act as “nicknames” for other objects. They can be used to refer-
ence objects in different schemas and databases. Interestingly, when the user
creates a synonym, NPS does not check if such object exists at all. It is also
possible to create a single synonym for an overloaded procedure or function
and then use it just like the original executable’s name calling appropriate tar-
get object depending on the supplied arguments. One synonym can reference
another one.

Synonyms can be described by the name and by the information about
their target objects. However, this info contains only the location (the name
of the database and the schema) and the name of the object. Its data type,
for example, is not provided. If we would like to find it out, we will have to
search for this object explicitly. Moreover, there are two main namespaces in
Netezza: the first one keeps names of tables, views and sequences, and the
second one – names of procedures, functions, and aggregates. Considering the
fact that a synonym only knows the whereabouts and the name of its target,
but not the target object itself, if we have, for instance, a sequence and a
procedure with the same name, it is possible to create such a “nickname” for
both of them. It will be stored as a single object, and its target will be resolved
based on the syntax of the invocation command.

2.3.2 Fully qualified names

All objects have complete versions of their names called fully qualified names.
It has three levels separated by dots:

• The first level denotes the database the object is located in.

11

2. Analysis

• The second level represents the schema.

• The third level is the actual name of the object.

Let’s imagine we have a table CUSTOMERS in SALES schema of STORE data-
base. If we are inside that schema, we can refer to it simply as CUSTOMERS.
If we are in that database, but in a different schema, we can access our table
by the SALES.CUSTOMERS two-level qualified name. Finally, if we are in an-
other database, we can still reach our table with its fully qualified name –
STORE.SALES.CUSTOMERS.

2.3.3 SQL identifiers

Netezza supports two kinds of identifiers:

• Regular: they are case-insensitive, transformed to uppercase or lower-
case depending on the global system settings. They cannot match words
reserved by Netezza, they must start with a letter and contain letters,
digits, underscores and a few other characters.

• Delimited: such identifiers are written in quotation marks. Unlike regu-
lar ones, they are case-sensitive. They can be constructed with the same
symbols, but also the can have inner spaces (not leading or trailing, those
are truncated) and special characters.

It is worth noting that it is possible to take a regular identifier in the
appropriate system case and use it like a delimited one surrounding it with
quotation marks.

2.4 Comparison with Oracle SQL

Oracle Database is an object-relational database management system
(ORDBMS) created by Oracle Corporation. It was one of the first commer-
cially available solutions of its kind. Unlike many others, it has support for
user-defined objects.

Oracle database has a few objects that Netezza does not. When creating
an extractor for it, it is necessary to correctly deal with a larger amount of
metadata of even more kinds. Objects that are present in both database
systems can differ too.

Information in this chapter is based on this source: [12].

2.4.1 Objects

Just like in Netezza, in Oracle we have databases, which contain schemas,
which contain objects. There are two notable differences though:

12

2.4. Comparison with Oracle SQL

• Firstly, a schema in Oracle is essentially a set of database structures
owned by the particular user. It is not a simple container for objects; it
is designed to be more like a user’s workspace.

• Secondly, to switch to a different database one should use a special link
to it – so it is not as easy as Netezza’s SET CATALOG command.

Triggers
In contrast to Netezza, Oracle does have these objects, which are common
in many other databases, called triggers. They are a special kind of stored
procedures that, instead of being launched explicitly by the user, are fired
automatically by the DB whenever a certain event occurs (so-called triggering
event). Triggers can be useful, for instance, to calculate some derived values
or refresh aggregation results based on issued INSERT, UPDATE or DELETE com-
mands, or to control and modify transactions. There are three types of events
a trigger can respond to:

• DML statements: triggers operate on the table or view level.
• DDL statements: triggers react to changes in the DB structure, for in-

stance, to other objects being created, modified or deleted.
• Database: among triggering events there are global database operations

like STARTUP, SHUTDOWN, LOGON and LOGOFF.

From the metadata point of view, triggers can be described by their defin-
ition and body. The definition consists of two parts:

• The triggering statement denotes the event and the object it is called on.
• The trigger restriction provides an additional condition that has to be

true for the trigger to be executed.

The body is written in PL/SQL (PL here stands for Procedural Lan-
guage) – Oracle’s procedural extension for SQL. It contains the actual code
that is executed once the trigger is fired.
Cursors
A cursor is another SQL concept that is missing in Netezza but is present in
Oracle. It is a special structure through which the user can gain access to the
information of DML statements being processed. Strictly speaking, cursors
are not database objects – they cannot be declared independently. But they
can be passed from one procedure to another as input parameters. That is
why it is necessary to be able to distinguish them from other inputs (such as
primitive data types) when parsing and processing metadata.
Functions and procedures
Executable objects in Oracle and Netezza have a few differences listed in
Table 2.1.

13

2. Analysis

Table 2.1: Comparison of executables in Oracle and Netezza

Netezza Oracle SQL
Functions are written in C++.

Both functions and procedures are
written in PL/SQL.Procedures are written in

NZPLSQL.
Procedures can return one value or
result set with a RETURN statement.

Procedures return multiple values
with OUT and IN OUT parameters.

Packages
As opposed to Netezza, Oracle provides a convenient approach to putting
together related procedures, functions, variables, cursors and some other ob-
jects. It is achieved with the data structure called a package. It has two major
parts:

• The package specification contains declarations of objects that can be
accessed from outside of the package.

• The package body has the actual queries of cursors and code of procedures
and functions declared in the package specification. It can also contain
declarations and definitions of objects that are not supposed to be pub-
lic – that way they cannot be referenced from the outside. The body
sometimes is not needed – for instance, when we want to have only pub-
lic constants. They do not need a body and can be fully defined in the
specification part.

As for metadata, the two parts listed above can be used to describe a
package and its contents.
User-defined types
Unlike Netezza, Oracle supports not only built-in data types but user-defined
ones as well. Such type can have the following components:

• A name, which uniquely defines that type in a schema.
• Attributes, which can be of both built-in primitive types and other user-

defined ones.
• Methods that are presented by procedures and functions written in PL/

SQL. They should be declared in the main CREATE TYPE query, but their
implementation can be moved away, to the CREATE TYPE BODY part. This
separation of declaration and implementation is similar to specification
and body parts of a package.

Indexes
An index is a structure that can possibly speed up retrieving data from a
table. It can be described by the table it is associated with and by one or
more columns it is built on. Indexes are not compulsory.

14

2.5. Comparison with Microsoft SQL Server

Netezza does not support indexes, but similar functionality can be partially
achieved with a materialized view (because data in it is sorted and saved
separately from the table it is based on).
Database links
In order to access another database, the user must create a link to it. This link
is a special object that has info such as the location of other DB and login
credentials. Links are defined inside schemas with CREATE DATABASE LINK
commands.

2.4.2 Fully qualified names

The full version of the name of an object in Oracle is SCHEMA.OBJECT@LINK.
So if we take our previous example from Netezza (we had a table CUSTOMERS
in SALES schema of STORE database), in Oracle referencing this table will look
like SALES.CUSTOMERS@STORELINK, where STORELINK is a database link that
points to the STORE database (if it is not the DB we are currently in).

2.4.3 SQL identifiers

Just like in Netezza, identifiers in Oracle can be of two types: here they are
called quoted and nonquoted. The key differences between them are similar
to those between Netezza’s regular and delimited ones: nonquoted identifiers
allow fewer character classes than quoted ones, but latter must be escaped
with quotation marks.

• Nonquoted identifiers: case-insensitive, interpreted as uppercase, must
start with a letter, can include alphanumeric characters, dollar and
pound signs, cannot be reserved words.

• Quoted identifiers: case-insensitive, can begin with any character, can
include any characters and symbols (except for double quotation marks
and the null character), can match reserved words.

2.5 Comparison with Microsoft SQL Server

Microsoft SQL Server is another relational database management system solu-
tion. When compared to Netezza, it has a few more data structures (like
Oracle does). Information in this chapter is based on these sources: [13], [14]
and [15].

2.5.1 Objects

Like in both Netezza and Oracle, in SQL Server there are objects, which are
inside schemas, which are inside databases. To switch between DBs located

15

2. Analysis

on the same host, we can take advantage of the USE command (providing it
with the name of the database we want to connect to).

Triggers
Unlike Netezza, SQL Server supports defining and using triggers. This concept
is the same as in Oracle; however, a few differences take place. Some of them
are listed in Table 2.2.

Table 2.2: Comparison of triggers in Oracle and Microsoft SQL Server

Oracle SQL Server
Regular DML triggers can be fired
before or after a specific command. Only AFTER behavior is available.

Recursive calls is a commonplace. Recursion is supported but must be
enabled explicitly.

Per-statement and per-row triggers. Only per-statement, no analog for
Oracle’s FOR EACH ROW.

BEFORE triggers have access only to
the initial image of the table, AFTER
triggers – only to the modified one.
Both initial and modified images are
available only in FOR EACH ROW trig-
gers and only in the context of one
row.

Both BEFORE and AFTER images of
the table are available to any trigger.

Cursors
Cursors, which are missing in Netezza, are here as well. Akin to the Oracle
ones, they can be passed between procedures. The concept is roughly the
same, but in details, there are some differences. For example, cursors in
Oracle are always local to the context they are defined in, whereas in SQL
Server they can be global; Microsoft’s cursors do not support parameters; etc.
Functions and procedures
In contrast to Netezza, both functions and stored procedures in SQL Server
are written with Transact-SQL (T-SQL) – Microsoft’s proprietary extension
of SQL. Functions can be of two types:

• Scalar, which return exactly one value.
• Table-valued, which return a result set and can be used in SELECT state-

ments just like a table or a view.

Stored procedures can return multiple values through OUTPUT parameters,
while in Netezza they provide only one result with RETURN statement and do
not support any but INPUT parameters.

16

2.5. Comparison with Microsoft SQL Server

In both executable types in SQL Server parameters can be DEFAULT (with
a value assigned during creation) or OPTIONAL (not compulsory for launching
a function or procedure).
User-defined types
Another feature that is not implemented in Netezza. Unlike Oracle’s user-
defined data types, Microsoft’s one cannot be considered objects – they are
simple aliases to the system types that already exist in the database with
optional DEFAULT, NOT NULL or CHECK constraints [16].
Indexes
SQL Server allows defining indexes on tables and views to speed up data
retrieving from them. In Netezza, there are no indexes, but their functionality
can be emulated with a materialized view, which keeps its data sorted.
Linked servers
To access SQL Server databases located on remote machines or to work with
other than SQL Server data sources, user must define them as linked servers.
Microsoft’s OLE DB API is used here. It offers a uniform data access between
various sources.

2.5.2 Fully qualified names

In SQL Server a fully qualified name consists of 4 parts: the name of the
server, the name of the database, the name of the schema and the name of the
object. For instance, it can look like MAINSERVER.STORE.SALES.CUSTOMERS
(taking our previous example and extending it with a link to another server
called MAINSERVER).

2.5.3 SQL identifiers

Following Netezza’s and Oracle’s path, Microsoft offers two types of identifiers:
regular and delimited. Considering the fact that we have already described
them in previous sections, it is a little bit pointless in going through this
info again. The keypoint is that we can use a wider variety of characters in
delimited ones, but in that case, we must add quotation marks or, in SQL
Server, square bracket around them. The complete set of rules goes beyond
the scope of this work; it can always be found in the official documentation.

17

Chapter 3
Design

In the first part of this chapter, we will describe which metadata we need to
extract and choose a way to do so. In the second part, we will provide some
formal details on the specification of the application. Section 3.1 will list all
the data that is supposed to be pulled out. In Section 3.2 we will discuss
the ways to accomplish it and choose the most suitable one. Section 3.3 will
provide the information on privileges that we need to perform the extraction.
In Section 3.4 we will put together functional and non-functional requirements
the application should meet. In Section 3.5 there will be a use case of our
extractor.

3.1 List of necessary metadata

3.1.1 Extracted metadata

According to the requirements and capabilities of Manta Flow tool, the meta-
data of the following objects should be extracted:

• Database
– Name
– List of schemas inside it

• Schema
– Name
– List of objects inside it

• Table
– Name
– Columns:

∗ Name
∗ Data type

19

3. Design

For external tables it will be nice to have the names of the files they are
stored in and paths to them.

• View
– Name
– Columns:

∗ Name
∗ Data type

– Definition
– Type (regular or materialized one)

For generating create scripts, it is necessary to know the definition of
the view – the query which it was constructed with. To save a view for
Manta Flow internally, we must have the names and the data types of
its columns. In case the list of columns will not be present, we can parse
the definition to find out these attributes.

• Sequence
– Name
– Data type

For now, simply knowing about the sequence will be enough. Later, its
data type may also be useful.

• Procedure
– Name
– Arguments
– Return type
– Body

• Function
– Name
– Arguments
– Return type

Due to the fact that user-defined functions in Netezza use compiled C++

sources, it is impossible to retrieve the code of their bodies. Nevertheless,
we can still get their declarations to keep a record of existing functions.

• Synonym
– Name
– Location of the target object
– Target object itself

In order to create DDL scripts, we must know the database, the schema
and the name of the object our synonym is pointing to. To save the
synonym in Manta Flow, we must have the whole target object already
saved in its dictionary.

20

3.2. Ways to extract metadata

3.1.2 Ignored metadata

The following metadata is not supposed to be extracted:

• Constraints

• User-defined shared libraries

3.2 Ways to extract metadata

There are several ways of how to get the information about objects that already
exist in the Netezza database. Information in this chapter is based on the
source [17].

3.2.1 The nzdumpschema command

The nzdumpschema command generates create scripts for all objects in a given
database. It works only with object definitions – no data is extracted or saved.
Here is an example:

nzdumpschema -R STORE nzdumpschema_result.sh

It outputs one shell script to the current folder. It contains DDL commands
to recreate the whole STORE database from the start. This would be an ideal
choice for us, but there are some limitations:

• Firstly, it requires ADMIN privilege. In practice, it is highly unlikely that
a third-party software will be given such permissions (let’s not forget
that Manta Flow is a commercial product used by various clients, and
databases it works with contain very precious data that can be easily
destroyed by someone with such level of access).

• Secondly, according to the official documentation, it uses so much mem-
ory that the server can potentially run out of it and crash. This is
inacceptable in production environment.

• Thirdly, in the documentation it is also stated that nzdumpschema is not
supposed to be used regularly. It is designed to find and correct possible
bugs in the DB.

That is why we cannot use it to get metadata for our extractor. Thankfully,
there are some other options.

21

3. Design

3.2.2 The nzbackup command

The nzbackup command is used to back up the entire database. It can save
both definitions of objects and their data. For instance:

nzbackup -db STORE -dir /export/home/nz/nz_backup \
-u flowuser -pw pswd -noData

The line above issues a backup command with credentials of the user
flowuser. It backs up STORE database to the nz_backup folder. The -noData
parameter states that the actual data should not be copied, so as a result we
will have only object definitions (they are stored in XML files). This particular
command does everything we need, but in our case we cannot use it either,
here is why:

• Just like the nzdumpschema, the nzbackup is memory-consuming, but
here instead of a crash and reboot we can run into a “memory limitation”
error.

• The command requires a BACKUP privilege. Even if a user does not
have appropriate permissions to see some objects in the DB, with this
right he/she can back up these objects together with their data, even
if -noData option is specified. That is why this privilege might not be
granted to us.

So we have to move to another way of extracting metadata, which, by the
way, is common in other extractors used by Manta Flow.

3.2.3 System views and tables

Netezza database has a set of system tables and views that are designed to
provide information about existing objects and their properties. Those views
that are most useful to us are listed below:

_v_database
All the databases present in the system.
_v_schema
All schemas in the current database.
_v_table
Names of all tables. It also has a column with the name of the schema the
table is located into, so by adding a WHERE clause to the SELECT statement we
can extract only the schema we want.
_v_extobject
Info specific to external tables. It can be joined with _v_table on OBJID
column. We will extract EXTOBJNAME value that specifies a full path to the file
on disk where our external table is saved.

22

3.2. Ways to extract metadata

_v_view
Names of all regular and materialized views. Their definitions are also here.
Even if a view is created with a SELECT * FROM query, Netezza will rewrite it
with a full list of columns, which, as the author tested, will not be truncated
even if there are many of them. Different view types can be distinguished by
specifying an appropriate OBJTYPE in WHERE clause.
_v_relation_column
Names and data types of all columns of tables and views. It can be joined on
OBJID with _v_table or with _v_view.
_v_sequence
Names of all sequences in the current datatabse.
_vt_sequence
Additional information about sequences (such as data type, minimum and
maximum values, etc.). It can be joined with _v_sequence on SEQ_ID (which
is really an OBJID). Unlike all other sources listed here, it is not a system view
but a management table.
_v_procedure
All information about stored procedures, including names, arguments, return
values and bodies. To tell a procedure with a visible body from an obfuscated
one, we will have to take a look at the first word of the body, which, according
to the syntax, should be either DECLARE or BEGIN. If, instead, it is something
meaningless, then it is obfuscated. However, it will not stop us from making
create scripts, because supplying an obfuscated version of the body is a valid
option from the DDL point of view.
_v_function
Names, argument lists and return types of UDFs and UDTFs.
_v_aggregate
Names, argument lists and return types of UDAs.
_v_synonym
Names of synonyms and locations of their target objects.

Views from the previous list give information about objects that are in all
schemas in the current database. If we want to extract metadata from one
particular schema, we can add an appropriate WHERE clause, because every
view has a column the value of which represents the schema the object belongs
to.

It appears that every object has an ID, which is unique in the database.
When we need to join two or more views together to get complete info about
some DB structure, we can do this by equating the columns with IDs. Almost
everywhere they are called OBJID, only in _vt_sequence it is SEQ_ID. As far
as the author has tested, it is just another name for a DB-global object ID,
and the JOINs are working correctly.

23

3. Design

Note, that the task is to extract only user-defined items. The extractor
should not pull anything predefined or built-in. To achieve this, we have
to introduce additional restrictions. For example, when selecting table-like
structures, we can add the following WHERE clauses:

• WHERE UPPER(OBJTYPE) = 'TABLE' when retrieving tables

• WHERE UPPER(OBJTYPE) = 'EXTERNAL TABLE' for external tables

• WHERE UPPER(OBJTYPE) = 'VIEW' for regular views

• WHERE UPPER(OBJTYPE) = 'MATERIALIZED VIEW' for materialized views

• WHERE BUILTIN = false for UDXs and procedures

This way we will only get user objects, not system ones. There is still a
problem: metadata of databases and schemas does not have anything that
would help telling if they are defined by a user or by the system. It was found
experimentally, that there is one built-in DB called SYSTEM and two predefined
schemas in every database: DEFINITION_SCHEMA and INFORMATION_SCHEMA.
They are special system objects that one cannot run extraction on, so we have
to remove them explicitly from the result set.

3.3 User privileges

This method of pulling information from the system views requires a very
small set of rights. To be able to connect to a database, one must have LIST
privilege on it. It can be given like this:

GRANT LIST ON STORE TO flowuser;

Now the user flowuser can see the STORE database in the _v_database
system view and connect to it. Together with this permission our user also
automatically gains LIST right on the default schema of STORE, otherwise
he/she would not be able to connect to that database at all.

It is not strictly necessary to have a permission to connect to an other-
than-default schema to see objects from it in the system views. However, it
is better to have it, because some names will look shorter and better. For
instance, if we are in the DB and schema with a view we want to extract,
and this view was created from a table from the same DB and schema, its
definition (the inner part of the SELECT query found in _v_view) will contain
one level column names (like CUSTOMERS.ID, CUSTOMERS.NAME) instead of two
level ones (like SALES.CUSTOMERS.ID, SALES.CUSTOMERS.NAME) – if we are in
the same place, it is not necessary for Netezza to explicitly specify the name
of the schema.

24

3.4. Requirements

To see objects in system views, we need LIST permission for every one
of them (that is, for every table, view and any other user-defined item). We
do not require anything else for them, not even SELECT privilege, so the data
inside will not be viewed or modified.

Naturally, to be able to get metadata for an object which we have LIST
privilege for, we need SELECT permission on every system view listed in Sec-
tion 3.2.3. Obtaining those rights should not be a problem because every new
user gains them by default to have the ability to learn what objects are in the
database.

3.4 Requirements

Here we describe the set of requirements our extractor has to fulfill.

3.4.1 Functional requirements (FRs)

FR1: Connecting to and switching between databases
The extractor is supposed to connect to a Netezza host and extract metadata
from databases available on it. A potential problem here is to find a way
to switch between different databases in runtime. Luckily, in Netezza, it is
possible to do it with the SET CATALOG command. All we need is an “entry
point” – a DB to start with.

FR2: Choosing databases and schemas to extract
The extractor must have a setting to choose what locations it should ex-
tract (from all those it sees among accessible DBs and schemas). As we
will see in the next chapter, it will be solved with a helper class called
DatabaseSchemaFilter, which is included in Manta Flow.

FR3: Generation of simplified create scripts
The first of the two main features this project should have is the generation of
DDL scripts. Based on gathered metadata, it must build scripts in a simplified
yet grammatically correct manner. Later they will be analyzed and processed
by other modules of Manta Flow.

FR4: Writing create scripts on disk
The user should be able to choose where the generated create scripts will be
saved. A proper folder structure has to be maintained: on the root level,
there should be folders representing databases. In them (on the second level)
directories denoting extracted schemas must be placed. Finally, on the third
level, there should be individual scripts; every one of them must contain info
necessary to build one object (a table, for instance).

Also, every file must be given a proper name valid in both Windows and
Linux. In the former OS names are more restrictive than those in the latter
one, so we will focus on providing compatibility with Windows.

25

3. Design

In Netezza, tables with identifiers MYTABLE and MyTable are distinct ob-
jects, but Windows does not see a difference in file names that vary only in
their case. Another limitation is that file names in this OS allow fewer types
of characters than identifiers of Netezza objects. To sum up, every Netezza
name should be unambiguously mapped to a valid Windows one.

FR5: Filling Manta Flow dictionary
The second of the two main features of this extractor should be the ability
to fill a special Manta Flow internal structure – a dictionary. The dictionary
keeps records of available objects. It is slightly more complicated to properly
put items in this data structure than to generate regular create scripts. For
example, to save a synonym to it, we must firstly ensure that the target
object is already present in it; then we retrieve it and save a pointer to it in
the dictionary record of the synonym.

FR6: Choosing objects to extract by type
The user should be able to choose which objects are supposed to be extracted
and saved to the dictionary by their type. In the case of procedures returning a
result set and synonyms, their reference tables and target objects respectively
should be extracted too (no matter if their types are set for extraction or not).

FR7: Choosing objects to save on disk by type
The user should be able to choose which objects are supposed to be saved as
create scripts on disk by their type. If some particular type specified here is
not among the types which are set for extraction, then such objects will be
ignored. In other words, the set of object types to save DDL scripts for must
be a subset of the set of object types to extract.

3.4.2 Non-functional requirements (NFRs)

NFR1: Integration with Manta Flow
The extractor is supposed to be a part of Manta Flow tool – it should be
able to be seamlessly integrated into it. This can be achieved by creat-
ing a class that will implement InputReader generic interface passing it a
NetezzaDataDictionary type – they are both predefined in this software.

NFR2: Lower memory consumption (sequential approach)
Because production databases can have a huge amount of defined objects, it
will pay off to work with them sequentially. If we firstly read all of them and
only then start the processing, our program will consume an unnecessarily big
amount of memory. That is why we will rather perform the extraction step
by step: for instance, we can select all distinct names of all stored procedures,
then for every name we can get all lists of arguments (let’s not forget execut-
ables in Netezza can be overloaded), then for every signature formed of the
name and the arguments we can finally get the body and the return type. Of
course, with such an approach we will need many more SQL requests (and

26

3.5. Use case

more time for all of them all to complete), but it is still better to have it this
way, so our extractor can run even on lower-end computers.

3.5 Use case

Use cases represent possible interactions that involve our software; they are
sets of actions and scenarios, which are linked to certain goals that we can
achieve by using our program.

Launch extractor
There is only one main self-explaining use case: launch extractor. However,
it supports setting some additional parameters:

• Set dictionary: the user can give our extractor a dictionary, to which
database objects will be saved. If it is not done explicitly, a new empty
in-memory dictionary will be created automatically before the extraction.

• Set output folder: the user must choose where the generated create scripts
will be placed. It may seem that this setting is absolutely necessary and
it should be marked with an include label rather than with an extend
one in the diagram; but if the user sets no object types for generation of
DDL scripts, this parameter will not be checked, so strictly speaking it
is not compulsory.

• Choose locations to extract: see functional requirement #2.
• Set objects to extract: see functional requirement #6.
• Set objects to create DDL scripts for: see functional requirement #7.

User

Launch extractor

Set dictionary

Set output folder

Set objects
to extract

Set objects to create
DDL scripts for

Choose locations
to extract

<<extend>> <<extend>>

<<extend>>

<<extend>>

<<extend>>

Figure 3.1: Use case diagram

27

Chapter 4
Realization

In this chapter we will talk about the implementation of our extractor. Firstly,
in Section 4.1, we will list technologies and libraries we have chosen. We will
also describe their usage in this project. Then, in Section 4.2, we will outline
the main parts of the application and how they work together.

4.1 Choice of technologies and frameworks

4.1.1 Programming language

As the main programming language we chose Java. The major parts of Manta
Flow are implemented with the help of it, so it will be easy to integrate a
module written in it into this software. Another reason is that the author has
certain experience in Java programming and sees no major disadvantages of
this choice for this work.

4.1.2 Libraries

MyBatis
As stated in section 3.2, we will extract metadata from system views. For
this, we need a convenient library to access the database. Our choice here is
MyBatis. It is not an ORM framework – instead, it is oriented towards the
SQL-first approach. It requires us to write SQL queries and then just maps
their results onto objects. Considering the fact that our SELECTs are relatively
simple, using plain SQL is going to be intuitive and will save us time setting
up and configuring a fully-fledged (and sometimes overcomplicated) ORM
solution.

MyBatis uses so-called mappers – special objects designed to run queries
in a database. A mapper is defined as Java interface, every method of which
has an SQL query associated with it. Queries can be written either in-place

29

4. Realization

(in annotations above method definitions) or in a separate XML file. We will
use the second approach because it is more flexible and less messy.

Maven
In order to be easily included as a dependency into the bigger piece of soft-
ware and to manage our own dependencies (such as, for instance, MyBatis or
NetezzaDataDictionary, which is defined in another artifact of Manta Flow)
we require a good dependency manager. We chose Maven – it is a tool for
build automation. It enables us to not only configure dependencies of our pro-
ject but also to get control over how the extractor will be built and deployed.
Moreover, we can set different properties, such as the name of the artifact, its
version, etc.

JUnit
JUnit is a framework to write tests for Java programs. It provides a simple
mechanism for creating and running tests on different parts of software, which
will be run (by Maven) every time we build the project. Firstly, we can use
them to demonstrate that our extractor is working properly. Secondly, when
its source code is modified, and these tests are run again, we will see if the
extractor still functions correctly (all tests are successful) or something was
broken (one or more tests fail). We will create separate tests both for the
application as a whole and its individual parts.

Spring
Spring Framework (or simply Spring) is a framework for Java applications.
It is modular and has many different packages with different functionality
that make building more flexible and functional software easier. We will use
several:

• spring-core and spring-context are among the main parts of Spring. The
most important thing we will use from them is the inversion of control
(IoC) container. We will have one or more XML configuration files that
will help us put different parts of the extractor together (another way to
do it is to use annotations or special configuration classes in Java, but
because Manta Flow uses XML it will be easier to integrate the extractor
in it if we choose this strategy).
That way we will take advantage of loose coupling – various functional
parts of our application will know as little as possible about each other,
so it will be simpler to manage, test and, if needed, correct or even
replace them. “Loose coupling . . . enables us to write more maintainable
code” [18].

• spring-mybatis will integrate MyBatis with Spring (since Spring will be
the main framework of our extractor). It will simplify the creation of
mappers, let MyBatis use Spring transactions, and much more [19].

30

4.2. Project structure

• spring-test will make the context of our application available in JUnit
tests – in several cases it is required to correctly wire beans we want to
test. A bean is one of the main objects in the program that is taken care
of by Spring IoC container [20].

Netezza JDBC
To access the database from a Java application, we can use a Java Database
Connectivity (JDBC) implementation designed to work with Netezza – Net-
ezza JDBC driver. It can be downloaded from IBM website (together with
Netezza documentation and some other utilities). It will allow MyBatis to run
SQL statements and get data in response.

4.2 Project structure

4.2.1 Classes

Here is the class diagram that shows the main parts of our extractor.

Figure 4.1: Class diagram

NetezzaExtractorImpl
This is the main class of our application. It contains the major part of the
logic of the program. It controls and makes use of nearly all other classes.

31

4. Realization

Apart from different setters that help configuring its flow, it has a public
method extract() that launches the extractor. Firstly, it checks if the set
called outputDdlTypes is empty. If it is not (the user wants to generate create
scripts for objects of at least one type, see FR7), it checks that a File object
denoting the root folder was given before the start of extract(). If it was,
then this folder is ensured to be empty (created if it does not exist or cleared
if it had some files already). If the folder is null or if an error occurs during
creating or clearing it (for the lack of permissions or if there is a regular file
occupying its name instead), an error is logged and the process is stopped.

Then it retrieves all databases and all their schemas it can see. The system
ones (discussed in Section 3.2.3) are removed explicitly. So are removed the
locations that are not set for extraction by the user – this is done with the
help of includeFilter and excludeFilter of DatabaseSchemaFilter type.
This helper class is defined within Manta Flow and enables us to choose what
databases and schemas on the host server we want to extract. A list of only
relevant locations is logged into the info channel.

Now, for every database and schema it extracts metadata of all objects of
types from the set named extractedDdlTypes (see FR6). Data structures of
different type can be found in different system views, and if they happen to
be in the same one (like tables and external tables), they can be additionally
filtered with an appropriate WHERE clause (as described in Section 3.2.3). It
means that no redundant SELECT statements are executed. The process goes
sequentially (see NFR2).

Every retrieved object is checked against outputDdlTypes set and, if the
user wants to save it, the extractor generates a DDL script for it and places
it on disk. Then it is also put to the dictionary – this process is not supposed
to be always successful on the first try. The thing is, there are two kinds of
dependencies in Netezza:

• Stored procedures that return a result set: as a return type they have a
fully qualified table name. The result set by its structure will be akin this
table, so the latter must be already saved in the dictionary. We must get
it from it and copy inside the dictionary record of the procedure. If the
table is in the DB or schema which are not supposed to be extracted, a
dummy table type will be created and saved instead. If it is in a “valid”
location that was simply not yet processed, then a dependency will be
generated and left until the end of the extraction.

• Synonyms: similar to the case above, saving a synonym requires its target
to be present. If it is not yet in the dictionary, but its location is “valid”,
a normal dependency is generated and left for later. But if we are not
going to extract it, we do not want to save such a synonym at all (and
all other objects that are dependent on this one). That is why a special
kind of relation is generated – a dead dependency (the term is probably
arguable, but this is how it is called in this project implying that it will

32

4.2. Project structure

never be satisfied). It is used to block the extraction of objects that can
possibly depend on this synonym.

Dependencies are kept in the class DependencyManager in a graph-like
structure.

It is worth noting that, according to the documentation, there can be only
one-level dependencies. But in practice, for instance, we can create a chain of
synonyms up to the depth of 16. For that reason we cannot just skip writing
a synonym with an unknown target to the dictionary – we must block every
other synonyms dependent on it. However, it does not prevent us generating
and saving DDL scripts.

In the very end of the extraction process, objects (or, more precisely, the
info about their locations) that have dependencies will be one by one removed
from our internal graph and selected from the DB explicitly.

If during the process a one-level dependency is added and later, but before
the end of the extraction, while pulling out metadata from some other place,
it is successfully retrieved, it will not be queried again: after the extraction
of every object, we check, if it is not an “opened node” of our graph (an
independent object by itself). If it is, we simply mark it as extracted by
removing it from the graph.

If there were any unsatisfied dependencies left, like those dead ones or
cycles (with Netezza’s synonyms it is indeed possible), they will be listed
through the warn channel of the logger.

MetaDaoImpl
MetaDao stands for metadata access object. Its primary purpose is to query
databases and get info from them. As private members, it has MyBatis map-
pers – Java interfaces with SQL statements (written in separate XML files)
corresponding with their methods. Every mapper is designed to handle object
of one particular type, that is why they are called TableMapper, ViewMapper,
etc.

Most methods of MetaDaoImpl rather straightforwardly conform to those
of different mappers. However, there are a few places that implement slightly
more complicated logic:

• getAllDatabasesWithSchemas(): this method not only pulls out every
visible database with its schemas but also removes items that we do not
want to extract from the list.
There is one special mapper, which is used only in the constructor of
MetaDaoImpl, – HelperMapper. By executing its only SELECT statement,
it returns the current default system case (upper or lower one). With the
help of it, we can correctly identify and remove unwanted system items
(i.e. if we have uppercase, we will remove the database called exactly
SYSTEM, not system or System, because in an uppercased Netezza the
former is a system database and the latter two can be user-defined ones).

33

4. Realization

After removing system items, the method checks every database and
schema against filters and removes those the user has marked as not
to be processed. Finally, in the returning list, there are only “valid”
locations that will later be extracted.

• determineObjectsTypes(): this auxiliary private method is called when
we select a synonym. Because from Netezza’s synonym metadata it is
impossible to deduce what type is the target object of, we perform SELECT
requests on all system views in its location. We also need to keep in mind
that a synonym can point to an overloaded executable, so if the target is
a procedure or a UDX, we also select and save all argument lists of it to
be able to unambiguously identify the target (to get it from a dictionary
or to firstly retrieve it later without scanning for it).
If the target of the synonym is non-existent or located in a DB or schema
we are not supposed to extract, we set its target type as UNDEFINED, so
later it will not be saved to the dictionary and will block other synonyms
that could possibly be dependent on it.

When synonyms are already retrieved but not yet given to the method
discovering their target type(s), they are sorted by the database they point
into. We made it to reduce the number of switching between different DBs.

CreateScriptWriterImpl
This class is used to saving DDL scripts to files on disk. When writing one,
methods of this class make sure that all necessary directories exist. The path
is given as a list of strings: the last one of them is treated as the name of the
future file with the script, all others preceding it – as names of folders relative
to the base folder (the root which the user must provide before running the
extractor). This class also converts all Netezza identifiers to their Windows-
friendly analogs with the help of an instance of AliasKeeper.

AliasKeeper
AliasKeeper is designed to generate Windows-friendly names from Netezza
identifiers and keep track of them. For every new identifier it creates a valid
filename and, if it is already occupied, adds a suffix like _2, _3 and so on
until a free option is found. For example, if we have tables named My*Table
and My?Table, both of them will be transformed into the My_Table (characters
that are illegal in Windows are replaced with underscores) and then the second
one will be given a suffix turning it into My_Table_2.

The position of the suffix depends on whether we have a file name that
also ends with .sql or something else. If it is the first case, we add it right
before the .sql extension (like table_2.sql). Otherwise, we put it simply at
the end of the name (a folder like schema_2).

This mechanism enables us to map every required Netezza identifier to a
Windows-friendly one unambiguously.

34

4.2. Project structure

After every extraction, all aliases are cleared so the database can be
changed in any way before the next launch of the extractor.

CreateScriptGenerator
This class has only static methods. They take objects that internally rep-
resent real objects extracted from Netezza and generate appropriate DDL
scripts. These scripts are simplified and cannot be used to completely restore
the database because they can possibly lack some information (like column
constraints, for example, – for the current version of Manta Flow we do not
extract any constraints at all), but they conform to the Netezza syntax and
can be processed with other modules for their code to be statically analyzed.

A note related to UDXs – create scripts for them are not generated. They
are written in C++, and it is impossible to retrieve their source code, so there
is nothing to work with later. Still, UDXs are saved to the dictionary.

DictionaryWriterImpl
The main purpose of DictionaryWriterImpl is to write extracted metadata
to the special structure of Manta Flow called a dictionary. When parsing DDL
scripts, it is used to look up objects defined in the database to see if they exist
and what properties they have.

The way that this class operates with the dictionary is given by the built-
in API of the latter. It was designed to be database-independent and to work
with various solutions; however, when it came to Netezza, it appeared to have
certain limitations. Unfortunately, they cannot be quickly resolved without
significant interventions in the structure of the dictionary module, which will
probably break other existing parts of the software that use it.

One such limitation is the impossibility of saving two overloaded execut-
ables with the same number of arguments (arguments themselves are of course
different, otherwise these executables could not be considered overloaded). So
when saving a procedure or a function, we always check if something with the
same name and number of arguments is already in the dictionary. If it is, we
do not save it again; instead, we log the info about this event to the warn
channel and immediately leave the method.

Another limitation is that we cannot set multiple targets to one synonym.
In that case, we create as many synonyms as there are targets (minus those
overloaded executables that themselves cannot be placed in the dictionary).

Despite the drawbacks described above, it is absolutely possible to work
with the dictionary in a correct way and fill it with the majority of objects
that are present in the database. Items that will not be written to it will be
at least logged. In future, this situation will likely to change for the better.

ParsingUtils
This class has a few static methods that come in handy when we need to parse
something. For example, we can get a list of Column objects from their raw
definitions (in case we need to create a table type as a return value while saving

35

4. Realization

a UDTF to the dictionary). Or we can generate a list of data types without
parameters from a single string (for instance, if an executable has a string
"(NUMERIC(5,2), VARCHAR(50))" representing the list of its arguments, we
will obtain an array of strings with two items – "NUMERIC" and "VARCHAR").

ParsingUtils is mainly used by the DictionaryWriterImpl class. Also, its
ability to remove parameters from a single data type definition is utilized in
DataTypeNameSimplifier class, described below.

DataTypeNameSimplifier
Our extractor should work well with other parts of Manta Flow, so it needs
to conform to some special requirements. One such requirement is to con-
vert all data types to the six main ones currently supported by resolver (see
Appendix B). For example, all integer types must be converted to NUMERIC
(before saving them to the dictionary), all string types (such as NCHAR, TEXT,
VARCHAR) – to CHARACTER and so on. Here our simplifier comes to help.

Actually, there is only a single map encapsulated in this class (and a
method, which accepts a data type, then with the help of ParsingUtils
removes parameters from it, and returns a value that represents a simplified
type name from the map). The reason to create a separate class for this func-
tionality is the long initialization of the map: every data type as a key and
every its simplified analog as a value must be put inside it.

4.2.2 Predefined structures

In our project, we have three classes which are not written by the author of
this thesis. They assist in the integration of the extractor into Manta Flow.

NetezzaExtractorReader
As we discussed earlier (see NFR1), in order to integrate the extractor into
Manta Flow, we must create a class implementing InputReader interface. So
there is one more class, not present in the diagram, that does exactly this.
It has the NetezzaExtractor as a private member (given through a setter),
and its read() method, which should be implemented by us, simply checks
if there is a dictionary (and generates a new in-memory empty one, if there
is not), launches the extractor by calling its main extract() method, and
finally returns the dictionary filled with metadata.

DdlType
This is simply an enum with all possible object types that we want to distin-
guish in our extractor. It also has a special UNDEFINED value, which is used
when we cannot find out the type of the target object of a synonym.

NetezzaExtractor
This is the main interface we need to implement. It defines all necessary
methods our extractor should have. It is realized by NetezzaExtractorImpl
class.

36

4.2. Project structure

4.2.3 Configuration

The main framework of the application is Spring. As in other modules of
Manta Flow, the configuration of the extractor is written in XML. It is divided
into two main files:

• The first one is located in the main package. It has bean definitions of:

– MetaDaoImpl
– CreateScriptWriterImpl
– DictionaryWriterImpl
– All the mappers
– SqlSessionFactoryBean
– DataSourceTransactionManager

The last two classes are additional helper elements necessary for our
module to be able to access the database.

• The second one is in the test package. It contains bean definitions of:

– NetezzaExtractorImpl
– BasicDataSource

The last class, for example, assists in establishing a connection to the
database by sending the details about it (such as user credentials) to the
DB server.

This way, when used as a standalone application, the extractor has all
needed configurations to run, they are just in two places. This is useful for
development and testing purposes. When it is connected to Manta Flow, the
second configuration file is not used; instead, the data source and the main
class are set up differently, according to the production environment. Beans
from the first XML do not require any special attention, so there is no point
in changing them. It allows us to import the first file as is and then add only
two bean definitions ourselves.

37

Chapter 5
Testing

In this chapter, we will describe the tests our application has.
To create automated tests, we use JUnit library (as described in Sec-

tion 4.1.2). They are run by Maven automatically on every build. This way
we can have some reassurance that if, after any changes to the code, they still
complete successfully, the whole application will most likely work properly.

5.1 Test scenarios

Here is a list of tests we have:

AliasKeeperTest
The main purpose of AliasKeeper is to generate Windows-friendly file names
for all Netezza identifiers unambiguously. That is why in this test we supply it
with several potentially troublesome object names that differ from each other,
but not too much. Moreover, if to convert them straight to their Windows
analogs, they will collide. So we give them to AliasKeeper, take the results
it produces and put them in a set (which will not accept duplicates). We
compare the size of this set to the number of the original names. If they are
equal, then our AliasKeeper works correctly as (with the help of suffixes) it
does not generate colliding values.

CreateScriptGeneratorTest
In this set of tests we check the rightness of generated create scripts. We give
different objects to our generator, take its output and compare it with the
hardcoded values, which are considered the right ones. In order to eliminate
problems with different indentation and number of whitespace characters in
the scripts, we firstly normalize both of them by replacing every sequence of
any white spaces in them with only one space. Then we compare the output of
the generator with the hardcoded alternative, and if they are equal, everything
is in order.

39

5. Testing

CreateScriptWriterTest
Here we test the correctness of our writer of DDL scripts. We use a temporary
folder from JUnit not to litter the file system and not to think of real paths
and permissions for them (also applies in an environment of a continuous
integration system). We ask our writer to ensure there is an empty folder,
which will later be filled with scripts. Then we check if it exists and is empty.
We fill it with some garbage files, then ask the writer once again to provide a
free place for us. It should delete the contents of the given folder. Finally, we
ask it to create a file for us with a script. We check that the file was created,
its path is correct, and its contents are the same that we provided.

DependencyManagerTest
To test how our program manages dependencies we create several possible
graphs of dependent objects by adding edges one by one. Then we remove
objects (also stepwise) and check the order in which our DependencyManager
returns them. If it is correct, then it works as expected.

DictionaryWriterTest
In this set of tests, we check the correctness of how the extracted objects are
written into the dictionary of Manta Flow.

We use a method with @BeforeClass annotation to statically initialize the
dictionary for all future test cases, and after each one, we call forgetChanges()
to clear it. This is done because creating a new instance of this structure is a
relatively expensive procedure, and there is no point in generating a new one
for every test.

We save objects of various types to the dictionary and then retrieve them
from it to check their attributes. We look at their names, types, and some
other properties. If they are equal to those from original objects, then the
saving mechanism works properly.

MetaDaoTest
Here we test how metadata is selected from the database. A running copy of
Netezza is required to perform those cases. We retrieve different structures
from our test database and then compare the objects they are mapped to by
MyBatis with the hardcoded ones – they should be equal.

ExtractorTest
This test targets the whole application – it checks the job done by the real-
ization of NetezzaExtractor interface. After the extraction is complete, we
compare both generated create scripts and objects saved to the dictionary
with their hardcoded versions. Similarly to MetaDaoTest, a running copy of
Netezza is necessary.

As you can see, we have several tests targeting individual components of
our application and one big test for the extractor on the whole. It enables us
to test our software much more granularly, so we have more confidence that

40

5.2. Test data

everything is working how it should, and if it is not, we can find and fix bugs
earlier.

5.2 Test data

We have two files with data necessary for our test scenarios:

TestResources
Here we have all hardcoded data. We have objects of different database struc-
tures and DDL scripts for them, which are considered to be correct. During
tests, we compare real outputs of the program to them. This class extends
ExternalResource from JUnit library and is instantiated only once for every
test file using it with the help of @ClassRule annotation.

TestDatabaseDdlScript
This is a script that can be used to recreate our test database on which tests
of NetezzaExtractorImpl and MetaDaoImpl are run. Although it is easier
to simply disable these scenarios than to install Netezza and keep it running
during every build of the extractor, we highly recommend not doing this. The
script contains all required DDL statements and can prepare the database
with all objects in one run.

41

Chapter 6
User documentation

Here is a user’s manual, which will describe the actions one needs to perform
to use our project.

The steps are as follows:

1. Create a new Java project, which will use the extractor as a module.

2. Add the extractor as a dependency (either through IDE or with the help
of a build system, such as Gradle or Maven).

3. Add spring-core and spring-context as dependencies (our application
uses XML Spring configuration to wire up its parts together, but you
will need to extend it by defining two more beans yourself).

4. Import NetezzaExtractorBase.xml file with the main parts of the con-
figuration.

5. Define DataSource as a bean with ID “dataSource”. The extractor was
tested with BasicDataSource from Apache’s DBCP, but other imple-
mentations can potentially work too.

6. Define NetezzaExtractorImpl as a bean. The beans with following IDs
should be provided as arguments to the constructor.

• metaDao

• scriptWriter

• dictionaryWriter

7. Use setters to give NetezzaExtractorImpl additional parameters, such
as an empty dictionary (required), root folder for DDL scripts, etc.

8. Now you can launch the module by running its extract() method.

43

6. User documentation

On the attached CD you can find a folder extractor-test-project – this
is a little program that shows a concrete example of how to add our extractor
to another project.

Both pieces of software can be compiled (firstly the extractor, then the
demo) using the following Maven command:

mvn clean install

Please note, that there is not so much use of our application this way
(without Manta Flow). For example, the dictionary will be filled for nothing
unless your program knows how to use it. Generated create scripts are de-
signed to conform to the requirements of Manta Flow, so, to you, they can
appear slightly incomplete.

Note also that the application on the CD attached to this thesis cannot be
compiled without several dependencies, which were developed by Manta team
and legally belong to it (the dictionary, for example). We cannot distribute
them freely, so these modules are not on the CD. The source code of the
extractor itself, however, is fully present.

44

Conclusion

The aim of this thesis was to gain knowledge about the kinds of metadata in
Netezza and ways to retrieve them in order to design, implement and test a
new Netezza-specific extractor module for Manta Flow. The author considers
these targets fully achieved.

In the first part, we explored the environment of the given RDBMS: we
got familiar with the objects that can be found there, the data that can be
used to describe them and the possibilities of extracting it. Then, we designed
the requirements for our application, chose technologies for it and used this
information to put it into life. Finally, we created automated tests for it and a
user manual, which can help including the extractor into a third-party project
and launching it.

Although this work does not complexly solve the problem of analysis and
visualization of the structure of Netezza databases, it lays the foundations for
it: other modules can use the outputs of the extractor as a source of data
to work with. And even if they had been developed in advance, the whole
solution would still be incomplete without our project. The results of the
theoretical part can help to better understand the objects that are present in
Netezza and ways to get their descriptive info while designing other software.

There are several ways to enhance our application in future. Firstly, the
set of extracted metadata can be extended. For now, there is no such neces-
sity, but later, if Manta Flow needs (or can process) something else, parts of
currently ignored information can be put to use. Secondly, our module can
be redesigned to work with another complex software solution. It will most
likely mean big changes to the code, but it is possible, especially if a good and
simple API is provided.

45

Bibliography

[1] Reference. Why do companies use database? [online].
IAC Publishing, LLC, ©2017 [viewed 17 February 2017].
Available from: https://www.reference.com/technology/
companies-use-database-e0c5d2ba994c2360

[2] Kreibich, J. A. Using SQLite. Sebastopol: O’Reilly Media, Inc., August
2010, ISBN 9780596521189.

[3] WhatIs.com. Metadata [online]. TechTarget, ©1999–2017 [viewed 19
February 2017]. Available from: http://whatis.techtarget.com/
definition/metadata

[4] Sampagar, V. Netezza TwinFin Architecture [online]. 2 July 2016,
DWgeek.com, ©2016 [viewed 24 February 2017]. Available from: http:
//dwgeek.com/netezza-twinfin-architecture.html/

[5] IBM [online]. IBM Netezza Database User’s Guide. Revised: 16 Septem-
ber 2014. IBM Corporation, ©2011, 2014 [viewed 28 February 2017].
Available from: https://www-01.ibm.com/marketing/iwm/iwm/web/
reg/download.do?source=swg-im-ibmndn&lang=en_US&S_PKG=d12&
cp=UTF-8&&&dlmethod=http

[6] IBM [online]. IBM Netezza Data Loading Guide. Revised: 15 Septem-
ber 2014. IBM Corporation, ©2011, 2014 [viewed 28 February 2017].
Available from: https://www-01.ibm.com/marketing/iwm/iwm/web/
reg/download.do?source=swg-im-ibmndn&lang=en_US&S_PKG=d12&
cp=UTF-8&&&dlmethod=http

[7] IBM [online]. IBM Netezza Stored Procedures Developer’s Guide. Re-
vised: 16 September 2014. IBM Corporation, ©2009, 2014 [viewed 28
February 2017]. Available from: https://www-01.ibm.com/marketing/
iwm/iwm/web/reg/download.do?source=swg-im-ibmndn&lang=en_US&
S_PKG=d12&cp=UTF-8&&&dlmethod=http

47

https://www.reference.com/technology/companies-use-database-e0c5d2ba994c2360
https://www.reference.com/technology/companies-use-database-e0c5d2ba994c2360
http://whatis.techtarget.com/definition/metadata
http://whatis.techtarget.com/definition/metadata
http://dwgeek.com/netezza-twinfin-architecture.html/
http://dwgeek.com/netezza-twinfin-architecture.html/
https://www-01.ibm.com/marketing/iwm/iwm/web/reg/download.do?source=swg-im-ibmndn&lang=en_US&S_PKG=d12&cp=UTF-8&&&dlmethod=http
https://www-01.ibm.com/marketing/iwm/iwm/web/reg/download.do?source=swg-im-ibmndn&lang=en_US&S_PKG=d12&cp=UTF-8&&&dlmethod=http
https://www-01.ibm.com/marketing/iwm/iwm/web/reg/download.do?source=swg-im-ibmndn&lang=en_US&S_PKG=d12&cp=UTF-8&&&dlmethod=http
https://www-01.ibm.com/marketing/iwm/iwm/web/reg/download.do?source=swg-im-ibmndn&lang=en_US&S_PKG=d12&cp=UTF-8&&&dlmethod=http
https://www-01.ibm.com/marketing/iwm/iwm/web/reg/download.do?source=swg-im-ibmndn&lang=en_US&S_PKG=d12&cp=UTF-8&&&dlmethod=http
https://www-01.ibm.com/marketing/iwm/iwm/web/reg/download.do?source=swg-im-ibmndn&lang=en_US&S_PKG=d12&cp=UTF-8&&&dlmethod=http
https://www-01.ibm.com/marketing/iwm/iwm/web/reg/download.do?source=swg-im-ibmndn&lang=en_US&S_PKG=d12&cp=UTF-8&&&dlmethod=http
https://www-01.ibm.com/marketing/iwm/iwm/web/reg/download.do?source=swg-im-ibmndn&lang=en_US&S_PKG=d12&cp=UTF-8&&&dlmethod=http
https://www-01.ibm.com/marketing/iwm/iwm/web/reg/download.do?source=swg-im-ibmndn&lang=en_US&S_PKG=d12&cp=UTF-8&&&dlmethod=http

Bibliography

[8] IBM [online]. IBM Netezza User-Defined Functions Developer’s Guide.
Revised: 16 September 2014. IBM Corporation, ©2007, 2014 [viewed 28
February 2017]. Available from: https://www-01.ibm.com/marketing/
iwm/iwm/web/reg/download.do?source=swg-im-ibmndn&lang=en_US&
S_PKG=d12&cp=UTF-8&&&dlmethod=http

[9] W3Schools. SQL Constraints [online]. Refsnes Data, ©1999–2017 [viewed
5 March 2017]. Available from: https://www.w3schools.com/SQl/sql_
constraints.asp

[10] Birmingham, D. Distribution – what’s up with that? In: IBM de-
veloperWorks [online]. 6 July 2011, IBM Corporation, ©2012 [viewed 6
March 2017]. Available from: https://www.ibm.com/developerworks/
community/blogs/Netezza/entry/distribution_what_s_up_with_
that13?lang=en

[11] Coffing, T.; Nolan, J. The Brilliance of Netezza. Coffing Publishing, April
2014, ISBN 9781940540276.

[12] Murray, C. Oracle Database 2 Day Developer’s Guide [online]. January
2017, Oracle and/or its affiliates, ©1996, 2017 [viewed 12 March 2017].
Available from: https://docs.oracle.com/database/122/TDDDG/toc.
htm

[13] h wiedey. Comparison of Triggers in MS SQL and Oracle. In:
Code Project [online]. 29 July 2013, [viewed 19 March 2017].
Available from: https://www.codeproject.com/articles/621532/
comparison-of-triggers-in-ms-sql-and-oracle

[14] LeBlanc, P. Microsoft SQL Server 2012 Step by Step. Microsoft Press, 25
February 2013, ISBN 9780735663862.

[15] SQL Server Database Engine [online]. Microsoft, ©2017 [viewed 20
March 2017]. Available from: https://technet.microsoft.com/en-us/
library/ms187875(v=sql.110).aspx

[16] Tolpeko, D. CREATE TYPE – User-Defined Types – SQL Server
to Oracle Migration [online]. October 2013, SQLines, ©2010–2017
[viewed 26 March 2017]. Available from: http://www.sqlines.com/
sql-server-to-oracle/create_type

[17] IBM [online]. IBM Netezza System Administrator’s Guide. Revised: 15
September 2014. IBM Corporation, ©2001, 2014 [viewed 28 February
2017]. Available from: https://www-01.ibm.com/marketing/iwm/iwm/
web/reg/download.do?source=swg-im-ibmndn&lang=en_US&S_PKG=
d12&cp=UTF-8&&&dlmethod=http

48

https://www-01.ibm.com/marketing/iwm/iwm/web/reg/download.do?source=swg-im-ibmndn&lang=en_US&S_PKG=d12&cp=UTF-8&&&dlmethod=http
https://www-01.ibm.com/marketing/iwm/iwm/web/reg/download.do?source=swg-im-ibmndn&lang=en_US&S_PKG=d12&cp=UTF-8&&&dlmethod=http
https://www-01.ibm.com/marketing/iwm/iwm/web/reg/download.do?source=swg-im-ibmndn&lang=en_US&S_PKG=d12&cp=UTF-8&&&dlmethod=http
https://www.w3schools.com/SQl/sql_constraints.asp
https://www.w3schools.com/SQl/sql_constraints.asp
https://www.ibm.com/developerworks/community/blogs/Netezza/entry/distribution_what_s_up_with_that13?lang=en
https://www.ibm.com/developerworks/community/blogs/Netezza/entry/distribution_what_s_up_with_that13?lang=en
https://www.ibm.com/developerworks/community/blogs/Netezza/entry/distribution_what_s_up_with_that13?lang=en
https://docs.oracle.com/database/122/TDDDG/toc.htm
https://docs.oracle.com/database/122/TDDDG/toc.htm
https://www.codeproject.com/articles/621532/comparison-of-triggers-in-ms-sql-and-oracle
https://www.codeproject.com/articles/621532/comparison-of-triggers-in-ms-sql-and-oracle
https://technet.microsoft.com/en-us/library/ms187875(v=sql.110).aspx
https://technet.microsoft.com/en-us/library/ms187875(v=sql.110).aspx
http://www.sqlines.com/sql-server-to-oracle/create_type
http://www.sqlines.com/sql-server-to-oracle/create_type
https://www-01.ibm.com/marketing/iwm/iwm/web/reg/download.do?source=swg-im-ibmndn&lang=en_US&S_PKG=d12&cp=UTF-8&&&dlmethod=http
https://www-01.ibm.com/marketing/iwm/iwm/web/reg/download.do?source=swg-im-ibmndn&lang=en_US&S_PKG=d12&cp=UTF-8&&&dlmethod=http
https://www-01.ibm.com/marketing/iwm/iwm/web/reg/download.do?source=swg-im-ibmndn&lang=en_US&S_PKG=d12&cp=UTF-8&&&dlmethod=http

Bibliography

[18] Seemann, M. Dependency Injection is Loose Coupling. In: Ploeh
blog [online]. 7 April 2010, Mark Seemann, ©2017 [viewed 2
April 2017]. Available from: http://blog.ploeh.dk/2010/04/07/
DependencyInjectionisLooseCoupling/

[19] MyBatis-Spring: Introduction [online]. MyBatis.org, ©2010–2017 [viewed
8 April 2017]. Available from: http://www.mybatis.org/spring/

[20] TutorialsPoint. Spring – Bean Definition [online]. ©2017 [viewed 9 April
2017]. Available from: https://www.tutorialspoint.com/spring/
spring_bean_definition.htm

49

http://blog.ploeh.dk/2010/04/07/DependencyInjectionisLooseCoupling/
http://blog.ploeh.dk/2010/04/07/DependencyInjectionisLooseCoupling/
http://www.mybatis.org/spring/
https://www.tutorialspoint.com/spring/spring_bean_definition.htm
https://www.tutorialspoint.com/spring/spring_bean_definition.htm

Appendix A
Acronyms

API Application programming interface

CD Compact disc

CPU Central processing unit

DB Database

DDL Data definition language

DML Data manipulation language

FPGA Field-programmable gate array

FR Functional requirement

ID Identifier

IDE Integrated development environment

IoC Inversion of control

MPP Massively parallel processing

NFR Non-functional requirement

NPS Netezza Platform Software

NZPLSQL Netezza procedural language (extension for SQL)

OLE DB Object Linking and Embedding, Database

ORDBMS Object-relational database management system

ORM Object-relational mapping

OS Operating system

51

A. Acronyms

PL/SQL Procedural Language/Structured Query Language

RAM Random-access memory

RDBMS Relational database management system

SQL Structured Query Language

T-SQL Transact-SQL

XML Extensible markup language

52

Appendix B
Data type mappings

Here is a complete list of mappings used to reduce the amount of data types
in the dictionary:

Table B.1: Data type mappings

Source type Resulting type

BYTEINT | DEC
INT1 | INT2VECTOR
SMALLINT | REGPROC
INT2 | OID
INTEGER | TID
INT | XID
INT4 | CID
BIGINT | OIDVECTOR
INT8 | SMGR
DECIMAL | _INT4

NUMERIC

FLOAT | DOUBLE
FLOAT4 | DOUBLE PRECISION
REAL | FLOAT8

FLOAT

CHAR | VARCHAR
CHARACTER | UNKNOWN
BPCHAR | CHAR VARYING
TEXT | CHARACTER VARYING

CHARACTER

53

B. Data type mappings

NATIONAL CHARACTER
NATIONAL CHAR
NCHAR
NATIONAL CHARACTER VARYING
NATIONAL CHAR VARYING
NVARCHAR

CHARACTER

BOOLEAN | BOOL BOOLEAN

DATE | DATETIME
TIME | TIMESTAMP
TIMETZ | TIMESPAN
DATE | DATETIME

TIME WITH TIME ZONE
TIME WITHOUT TIME ZONE

DATETIME

VARBINARY | BINARY
ST_GEOMETRY | BYTEA
UNKBINARY | BINARY VARYING

BINARY

54

Appendix C
Contents of enclosed CD

readme.txt the file with CD contents description
thesis.......................................the folder with the thesis

BP Laskov Boris 2017.pdf................ the thesis in PDF format
src.............................. source codes of the thesis in LATEX

apps......................................the folder with Java projects
netezza-dictionary-extractor sources of the extractor
extractor-test-project.................sources of the test project

55

	Introduction
	Chapter description

	The aim of the thesis
	Manta Flow
	Purpose of this work
	Current state
	Theoretical and practical parts

	Analysis
	Definition of terms
	Netezza overview
	Metadata structure
	Comparison with Oracle SQL
	Comparison with Microsoft SQL Server

	Design
	List of necessary metadata
	Ways to extract metadata
	User privileges
	Requirements
	Use case

	Realization
	Choice of technologies and frameworks
	Project structure

	Testing
	Test scenarios
	Test data

	User documentation
	Conclusion
	Bibliography
	Acronyms
	Data type mappings
	Contents of enclosed CD

