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Abstrakt

Ve formátu RDF je ukládán rostoućı objem hodnotných informaćı. Relačńı
databáze však stále přinášej́ı výhody z hlediska výkonu a množstv́ı pod-
porovaných nástroj̊u. Představujeme RDF2X, nástroj pro automatický dis-
tribuovaný převod RDF dat do relačńıho modelu. Poskytujeme srovnáńı
souvisej́ıćıch př́ıstup̊u, analyzujeme měřeńı převodu 8.4 miliard RDF trojic
a ilustrujeme př́ınos našeho nástroje na dvou př́ıpadových studíıch.

Kĺıčová slova Linked Data, RDF, RDB, Relačńı model, Bio2RDF

Abstract

The Resource Description Framework (RDF) stores a growing volume of
valuable information. However, relational databases still provide advantages
in terms of performance, familiarity and the number of supported tools. We
present RDF2X, a tool for automatic distributed conversion of RDF datasets
to the relational model. We provide a comparison of related approaches, report
on the conversion of 8.4 billion RDF triples and demonstrate the contribution
of our tool on case studies from two different domains.

Keywords Linked Data, RDF, RDB, Relational model, Bio2RDF
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Introduction

This thesis presents the design and development of RDF2X, a tool for auto-
matic distributed conversion of RDF datasets to the relational model.

Both RDF and the relational model have their specific advantages and
disadvantages. When automatic data conversion between different represent-
ations is possible, we can freely decide which representation is best fit for our
use case and exploit its specific properties. We believe that our conversion
tool is the missing piece of the interoperability puzzle between Linked Data
and traditional formats, allowing for new opportunities in RDF usage and
therefore contributing to its expansion.

RDF data is often created from relational databases and other sources. An
integral part of converting data to RDF is mapping it to a common ontology,
connecting corresponding entities and properties from different sources. Using
our tool, such integrated datasets can be converted back to the relational
model. This creates a new range of possibilities for using RDF as a stepping
stone in relational database data integration.

Thesis structure

In the first chapter, we provide an introduction to the problem domain. In
the second chapter, we summarize and compare related approaches. In the
third chapter, we propose requirements and design of the RDF2X tool. In the
fourth chapter, we describe the implemented features. In the fifth chapter, we
report on the conversion of datasets from the Bio2RDF project1. In chapter
six, we provide a high-level demonstration of our tool by converting and visu-
alizing the ClinicalTrials.gov RDF dataset2. Finally, in chapter seven, we
provide a low-level demonstration by converting a subdomain of Wikidata3

and exploring the result with SQL queries.
1http://bio2rdf.org
2http://download.bio2rdf.org/release/3/release.html
3http://wikidata.org
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Chapter 1
Background

In this chapter, we provide an introduction to the problem domain: the Re-
source Description Framework, relational databases and the Apache Spark
computing platform.

1.1 RDF: Resource Description Framework

The Resource Description Framework (RDF) is a framework for representing
information in the Web [1]. Since its publication in 2004, RDF has become
a widely used standard for the integration of heterogeneous data sources, intro-
ducing repositories in various domains including life sciences [2][3], government
[4], finance [5] and general knowledge [6][7][8].

"Spiderman"

Spiderman Green Goblin

name

"???????-????"@ru

name

"Green Goblin"

name

Person

is a
is a

enemy of

enemy of

Figure 1.1: Visualization of a simple RDF graph, inspired by Example 1 in [9].
Ovals represent resources, rectangles represent literal values, arrows represent
relationships.

RDF describes resources and their relationships in the form of a graph. An
example of a RDF graph can be found on figure 1.1. Each graph is constructed
by a collection of RDF triples, each triple consists of a subject, a predicate
and an object:

3



1. Background

• the subject is an IRI or a blank node
• the predicate is an IRI
• the object is an IRI, a literal or a blank node

IRIs are globally unique strings that identify resources and properties.
Blank nodes are resource identifiers valid only in the context of a single docu-
ment. Literals are values such as strings, numbers, and dates. Each triple can
therefore express either a literal property of a resource (when the object is a
literal) or a relationship between two resources (when the object is an IRI or
a blank node). In both cases, the type of the relationship is specified by the
predicate.

1.1.1 Serialization formats

The RDF concept itself defines only an abstract syntax, not a specific serial-
ization format. There are multiple popular formats that are commonly used
to represent RDF statements.

Turtle Turtle is a textual representation of RDF written in a compact and
natural text form, with abbreviations for common usage patterns and data-
types [9]. An example of Turtle serialization of the graph on figure 1.1 can be
found on figure 1.2.

@base <http://example.org/> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix rel: <http://www.perceive.net/schemas/relationship/> .

<#green-goblin>
rel:enemyOf <#spiderman> ;
a foaf:Person ;
foaf:name "Green Goblin" .

<#spiderman>
rel:enemyOf <#green-goblin> ;
a foaf:Person ;
foaf:name "Spiderman", "Человек-паук"@ru .

Figure 1.2: Turtle RDF serialization representing the graph on figure 1.1.

N-Quads and N-Triples N-Quads and N-Triples are line-based, plain text
representations of RDF [10][11]. Their advantage over Turtle is that since
they store one statement per line, they can be read one line at a time without
storing intermediate information such as abbreviations. This also implies that
they can be parsed in parallel without the need for any communication.

4



1.2. Relational databases

1.1.2 RDF Schema

To introduce structure into RDF documents, RDF Schema[12] was designed.
It introduces a vocabulary that makes it possible to describe special types of
resources called classes and properties.

Classes define groups of RDF resources. Classes themselves are RDF re-
sources, instances of rdfs:Class. To state that a resource is an instance of
a class, the rdf:type property may be used. To state that all instances of
class A are also instances of class B, an A rdfs:subClassOf B statement can
be used.

Properties define relationships between RDF resources. Properties them-
selves are RDF resources, instances of the rdf:Property class. To state that
all pairs of instances related by property A are also related by property B, an
A rdfs:subPropertyOf B statement can be used.

To further describe and augment the meaning of classes, properties
and their relationships, Web Ontology Language (OWL) [13] can be used.
OWL enables creation of ontologies, formal definitions of a common set of
terms that are used to describe and represent a domain [14]. For example,
owl:equivalentClass states that two classes are equivalent, owl:sameAs
states that two resources represent the same individual, enabling integration
of data and schema from different sources.

1.1.3 SPARQL

SPARQL is a query language for RDF, introducing capabilities for graph pat-
tern matching, aggregation, subqueries and other functionality [15]. Many
Linked Data sources such as Wikidata1, DBpedia2 or Bio2RDF3 maintain a
public SPARQL endpoint that provides immediate access to billions of RDF
triples. An example SPARQL query can be seen on figure 1.3. We demonstrate
more complex SPARQL queries and their SQL equivalents on a subdomain of
Wikidata in chapter 7.

1.2 Relational databases

Relational databases are databases storing data in the relational model [16].
Data in a relational database is organized into tuples, grouped into relations:

• Tuple is an ordered set of attribute values. Each attribute is defined by
a name and a type. In database terms, tuples are called rows, attributes
are called columns.
• Relation is a set of tuples. In database terms, relations are called tables.
1http://query.wikidata.org
2https://dbpedia.org/sparql
3http://bio2rdf.org/sparql
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1. Background

PREFIX example: <http://example.org/#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX rel: <http://www.perceive.net/schemas/relationship/>

SELECT ?person ?personName
WHERE {

?person rel:enemyOf example:spiderman .
?person foaf:name ?personName .

}

# Result
?person ?personName
example:green-goblin "Green Goblin"

Figure 1.3: SPARQL query example on RDF graph on figure 1.1.

Relations can be connected using joins, operations that join tuples of two
relations based on a condition on one or more attributes of each relation. An
example of a relational database with two relations can be seen on figure 1.1.
Systems that maintain a relational database are called relational database
management systems (RDBMS).

Person
ID Name Name ru
1 Spiderman Человек-паук
2 Green Goblin NULL

Person Enemy Person
From ID To ID

1 2
2 1

Table 1.1: Simple example of a relational database with two tables represent-
ing the same information as the graph on figure 1.1.

Entity–relationship model The Entity–relationship (ER) model de-
scribes schema of a relational database in terms of entities and relationships
[17]. Entities are types of instances with specific properties, each entity type
is stored in one table, rows representing one of its instances. Relationships
are associations between instances, each relationship type is stored in one
table, rows representing one relationship between two instances.

Entity-Attribute-Value model The Entity-Attribute-Value (EAV) model
is a data model used to avoid sparse tables created by the ER model when
instances of an entity define values for a different subset of attributes. Instead
of storing attributes as columns in the entity table, an additional table is
created, storing attribute values as rows. Each row in an EAV table stores four
fields: a numeric identifier of the instance, an attribute name, an attribute
type and finally a value, most commonly cast to string. The disadvantage
of the EAV model is the increased number of joins needed to select entity
attributes and the need for casting attribute values to the correct type.

6



1.2. Relational databases

1.2.1 SQL

SQL is a query language for relational databases, introducing capabilities for
selecting table rows, joining tables, aggregation, data manipulation and other
functionality. Each RDBMS implements an SQL execution engine that cre-
ates, optimizes and executes a query plan, producing the desired result in
an efficient fashion. An example SQL query can be seen on figure 1.4. We
demonstrate more complex SQL queries and their SPARQL equivalents on a
subdomain of Wikidata in chapter 7.

SELECT Name FROM Person INNER JOIN Person_Person ON
Person.ID = Person_Enemy_Person.From_ID
AND Person_Enemy_Person.To_ID = 1

Figure 1.4: SQL query example producing an equivalent result as 1.3.

1.2.2 Benefits

In this section, we summarize the benefits of relational databases, demonstrat-
ing the potential motivation of our future users.

Widespread support Since their introduction in the 1970s, RDBMS have
secured a strong and stable position as the most used database management
system [18]. Based on the number of mentions of different DBMS engines on
the internet, RDBMS take up more than 80% of the DBMS market, compared
to RDF stores which cover only 0.3% [18]. Relational databases are used in
diverse production environments including web applications [19], data ware-
housing, OLAP and predictive analytics [20]. Many database administrator
tools for RDBMS are available [21], allowing for straightforward development
and support. With minimal differences in SQL dialects, users can easily switch
between different RDBMS without the need for major updates.

Query speed As we show in section 2.2, many RDF stores use a RDBMS
as a database engine for performance reasons. When an application is using
such a RDF store, the added layer of SPARQL abstraction enables for richer
semantics and graph queries. However, when the application is designed to
work directly with the relational database, the knowledge of the structure,
datatypes, indexes and volume of data allow for direct optimization with pre-
dictable query times.

1.2.3 Disadvantages

In this section, we summarize the disadvantages of relational databases when
compared to RDF, presenting some of the challenges of RDF data conversion
to the relational model.

7



1. Background

Schema limits As opposed to RDF, data in relational databases is schema-
first in the sense that schema has to be defined in order to store the data. In
RDF, schema is defined rather as a layer on top of the data, enabling more
flexibility, complex semantics and the ability to easily integrate data from
different sources.

Data representation Data in relational databases is stored in tables, each
table with a defined set of columns. The number of cells in a table is the
product of the number of its columns and its rows. When instances of an entity
specify different subsets of attributes, the produced table can be very sparse,
requiring an order of magnitude more memory than the RDF representation.

RDBMS-specific limits Each RDBMS has its own specific properties in
terms of the maximum allowed number of columns and tables, maximum
lengths of identifiers and other limits. When creating a relational schema and
loading the data, these limits need to be considered.

1.3 Apache Spark

Apache Spark1 is a general-purpose cluster computing system. It enables
distributed processing of data using a set of basic operations. Spark builds on
the fault-tolerant approach of Apache Hadoop MapReduce, outperforming it
more than 10x in many types of tasks [22]. Spark can be used through APIs
for Java, Scala, Python and R.

1.3.1 Architecture

A diagram of Spark architecture can be seen on figure 1.5. An application
running on a Spark cluster is coordinated by a driver program, connecting to
executors on worker nodes of the cluster using a SparkContext. SparkContext
can connect to several types of cluster managers such as Spark’s own cluster
manager, Mesos or YARN, which allocate resources across applications.

1.3.2 Resilient Distributed Datasets

Resilient Distributed Datasets (RDD) are read-only collections of objects par-
titioned across nodes of a Spark cluster. Operations can be performed on
RDDs, resulting in local computation by each executor and sometimes in
communication between nodes. There are two types of operations on Spark
datasets – actions and transformations.

1http://spark.apache.org/
1http://spark.apache.org/docs/latest/cluster-overview.html
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1.3. Apache Spark

Figure 1.5: Spark cluster architecture1.

Actions Actions return a value to the driver program after running a com-
putation on the dataset. Actions include:
• count() which returns the number of elements.
• collect() which returns all elements as an array at the driver program
• reduce(f) which aggregates the elements into one value using a func-

tion f. The function performs a commutative and associative operation,
reducing two values into one. This operation is repeated on pairs of
elements until a single value is remaining.

Transformations Transformations create a new dataset from an existing
one. They are not computed right away. Instead, they are chained and finally
computed all at once when an action is performed to return a result to the
driver program. Transformations include:
• map(f) which returns a new dataset by passing each element through

a function f.
• filter(f) which returns a new dataset with only those elements for

which a function f returns true.
• reduceByKey(f) which can be performed on (key, value) elements,

performing a reduce(f) operation separately for each key.
• join(dataset) which can be performed on (key, value) elements of

two datasets, joining elements with equal keys.

Input and output RDDs can be read from multiple storage systems includ-
ing relational databases, ElasticSearch or HDFS (Hadoop distributed filesys-
tem). HDFS is a distributed file system designed to reliably store very large
files across machines in a large cluster [23]. It enables fast distribution of
workload by storing each file as a sequence of blocks, which are replicated for
fault tolerance on multiple nodes of the cluster.

9





Chapter 2
Related work

In this chapter, we summarize related work, focusing on three categories –
converting relational data to RDF, using RDBMS for RDF storage and con-
verting RDF to the relational model.

2.1 Converting relational data to RDF

Due to their popularity, relational databases are one of the biggest potential
sources to enrich the Web of data. Moreover, mapping different relational
databases to RDF using a common ontology enables data integration. There-
fore, there has been a substantial amount of effort put into the research and
development of tools and mapping languages for the conversion of relational
data to RDF. This initiative is therefore parallel to our efforts, in the oppos-
ite direction. We can safely say that converting data in this direction is well
researched and technologically mature. A recent comprehensive survey of ex-
isting tools was published by Michel et al. [24], providing their classification
based on mapping description and mapping implementation.

2.1.1 Mapping description

The first conversion step is defining mappings from the relational represent-
ation to an RDF representation. This includes generating IRIs from IDs,
detecting relations from foreign key constraints, adding rdf:type and more
complex mappings to existing OWL ontologies. The various approaches were
studied by the W3C RDB2RDF Working Group [25]. Their work resulted
in two recommendations published in 2012, ”A Direct Mapping of Relational
Data to RDF” [26] and ”R2RML: RDB to RDF Mapping Language” [25].

11



2. Related work

People
PK FK Address(ID)
ID fname addr
7 Bob 18
8 Sue NULL

Addresses
PK
ID city state
18 Cambridge MA

Table 2.1: Simple example of input relational data for mapping to RDF [26].
PK and FK are primary and foreign key constraints.

2.1.1.1 Direct Mapping

The Direct Mapping [26] defines a simple transformation, automatically map-
ping relational concepts to a newly generated OWL ontology. Tables become
classes, table rows become sets of triples with a common subject. All res-
ulting IRIs begin with a common base prefix. Direct mapping can be used
when no suitable ontology exists, or when the goal is to rapidly make a data
source available. It is also frequently used as a starting point to more complex
domain-specific mappings [24]. A direct mapping of table 2.1 produces the
following RDF output [26]:

@base <http://foo.example/DB/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

<People/ID=7> rdf:type <People> .
<People/ID=7> <People#ID> 7 .
<People/ID=7> <People#fname> "Bob" .
<People/ID=7> <People#addr> 18 .
<People/ID=7> <People#ref-addr> <Addresses/ID=18> .
<People/ID=8> rdf:type <People> .
<People/ID=8> <People#ID> 8 .
<People/ID=8> <People#fname> "Sue" .

<Addresses/ID=18> rdf:type <Addresses> .
<Addresses/ID=18> <Addresses#ID> 18 .
<Addresses/ID=18> <Addresses#city> "Cambridge" .
<Addresses/ID=18> <Addresses#state> "MA" .

Figure 2.1: Direct mapping output of table 2.1. The mapping generates IRIs
for resources based on their primary keys and detects the 1:n relationship
based on the foreign key constraint.

2.1.1.2 R2RML

R2RML [25] is a generic language to describe a set of mappings that translate
data from a relational database into RDF. It supports direct mapping as a
default setting and provides a vocabulary for specifying custom transforma-
tions into existing ontologies. An R2RML mapping defines how to convert a
row in a logical table to a number of RDF triples. A set of rules expressed in

12
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RDF statements enables generation of type statements, properties and rela-
tionships. The source of a mapping can be defined by a table, a view or an
SQL query, enabling the use of aggregation and SQL functions. An example
of an R2RML mapping of table 2.1 and the resulting triples can be seen on
figure 2.2.

@prefix rr: <http://www.w3.org/ns/r2rml#>.
@prefix ex: <http://example.org/ns#>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

<#AddressTableView> rr:sqlQuery """
SELECT Addresses.ID, city, state,

(SELECT COUNT(*) FROM People WHERE People.addr=Addresses.ID)
AS inhabitants

FROM Addresses; """. # count number of city inhabitants

<#TriplesMap1>
rr:logicalTable <#AddressTableView>;
rr:subjectMap [ # create an IRI from the ID, define type (1)

rr:template "http://data.example.org/address/{ID}";
rr:class ex:Address; ];

rr:predicateObjectMap [ # map the city name column to a statement (2)
rr:predicate ex:city;
rr:objectMap [ rr:column "city" ]; ];

rr:predicateObjectMap [
rr:predicate ex:inhabitants; # map the number of inhabitants to a statement (3)
rr:objectMap [ rr:column "inhabitants" ]; ].

# Result of mapping

<http://data.example.org/address/18> rdf:type ex:Address . # (1)
<http://data.example.org/address/18> ex:city "Cambridge" . # (2)
<http://data.example.org/address/18> ex:inhabitants 1 . # (3)

Figure 2.2: R2RML mapping of table 2.1 and its output. An aggregated result
is used to compute the number of inhabitants on each address.

Currently, R2RML is a widely adopted standard implemented in several
production tools such as Morph-RDB1, DB2Triple2, Ontop3, RDOTE4, Ul-
trawrap5, Virtuoso6 and Oracle 12c7.

2.1.2 Mapping implementation

Mapping implementation describes whether the database tuples are translated
virtually (on demand) or by materialization (producing a whole RDF dataset).

1https://github.com/oeg-upm/morph-rdb
2https://github.com/antidot/db2triples
3http://ontop.inf.unibz.it/
4https://sourceforge.net/projects/rdote/
5https://capsenta.com/ultrawrap/
6https://virtuoso.openlinksw.com
7https://www.oracle.com/database/
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Virtual converters provide a SPARQL endpoint or follow the Linked Data
paradigm to publish resource information via HTTP. Each request to these
endpoints is mapped to a corresponding SQL query, returning a converted res-
ult. Similar to the RDBMS-based RDF stores described in section 2.2, virtual
converters use a RDBMS as a backend, converting SPARQL queries to SQL
queries. The difference between these approaches is that virtual converters
use an external relational database that can also be used by other applica-
tions in other contexts, RDF stores merely use an internal RDBMS to store
the data in their own representation. The advantage of virtual converters is
that they enable real-time data integration without the need for a continu-
ously updated centralized warehouse that would replicate all the relational
data. From the tools mentioned earlier, virtual conversion is supported by
Morph-RDB, Ontop, Ultrawrap, Virtuoso and Oracle 12c.

Data materialisation is a static conversion of the whole relational database
into a RDF dataset. This approach may be used to provide periodic RDF
dumps that are published directly or loaded into any triple store that publishes
the data via a SPARQL endpoint. This is often referred to as the Extract-
Transform-Load (ETL) approach [24]. Materialization can be performed using
built-in functionality or using a SPARQL endpoint with a query that selects
all triples.

2.2 Using RDBMS for RDF storage

There are many approaches to storing RDF datasets, each having its benefits
and disadvantages in the complexity of implementation, flexibility, storage
efficiency and performance. This variety in RDF Stores resulted in multiple
surveys comparing their architecture and their features [27] [28] [29].

Many RDF stores actually use RDBMS to store and query data, their con-
tribution is therefore related to our efforts. However, the underlying motiva-
tion is very different, since they employ a database schema that is optimized
exclusively for performance, not for readability. The different approaches are
compared in various surveys [30] [31] [32] focusing mainly on the employed
database schema.

2.2.1 Vertical table schema

The earliest implementations such as Sesame [33] employ the vertical (triple)
table schema, storing all triples in a single table with the corresponding three
columns for subject, predicate and object [27]. An example can be found
on figure 2.3. This implementation requires many self-joins when querying –
one per SPARQL triple pattern, resulting in high query times even for simple
queries. To reduce the impact, extensive indexing can be used, creating an
index for multiple permutations of subject, predicate and object columns [32],
each addressing a different type of SPARQL query.
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Figure 2.3: Vertical table schema example. IRIs can be stored directly or
replaced by a numeric identifier joined on an IRI table.

2.2.2 Horizontal table schema

To save space and increase query performance, other architectures make use
of regularities in data by grouping related information together [30]. The
first such category is the horizontal (binary) table store, creating a table for
each property. An example can be found on figure 2.4. Since the value of a
single property is often of the same datatype, column-based compression can
significantly reduce storage requirements.

Figure 2.4: Horizontal table schema example. Triples not conforming to the
schema are stored in a fallback vertical triple table.

2.2.3 Property table schema

The second category making use of regularities in data is the property (n-ary)
table store which represents resources and their multiple properties as single
rows, just as the traditional relational model. Approaches using this schema
are therefore most related to our work. An example can be found on figure
2.5. Since each resource can have different properties, storing all resources in a
single table would result in many null values, resources are therefore divided
into different tables based on similarity. The challenge of implementing a
property table store is considerably higher that of the other approaches since
changes in data (and therefore in resource properties) have to be propagated
to the schema.

This approach was demonstrated in Jena [34], creating a table for each
rdf:type, making use of the fact that resources of the same type often use
the same set of properties. Another example is 3XL [35], a PostgreSQL-based
store using a relational model based on OWL ontology.
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Figure 2.5: Property table schema example. Triples not conforming to the
schema are stored in a fallback vertical triple table.

A recent work on relational RDF stores was introduced by Pham et al.
[36] who define emergent schemas, a method of grouping RDF resources to
relational tables based directly on their set of properties – characteristic sets.
The goal of this approach is to reduce table sparsity (number of null values)
compared to grouping resources by type. The schema generation process is
automatic and configurable by several parameters including maximum number
of tables and minimum number of rows of a table. Statements that cannot be
expressed in the resulting schema are stored in a triple table. Based on analyz-
ing several public Linked Data datasets (including noisy data such as WebData
Commons and DBpedia), the authors conclude that the schema explains more
than 95% of triples. Their method was implemented into MonetDB1 column-
store database and into the existing RDBMS backend of Virtuoso, resulting
in 3-10x increase in query performance [37].

2.3 Converting RDF to the relational model

As opposed to converting relational data to RDF, there is not much research
published on conversion in the opposite direction. While there is a large body
of research on converting OWL to the relational schema, it does not cover
the conversion of the data itself, which is often implemented exclusively for a
given ontology or dataset. In this section we review both the methodologies
for ontology to relational schema conversion and the specific and generic tools
for converting RDF datasets to the relational model.

2.3.1 Ontology conversion

Since the publication of OWL [13] in 2004 and OWL 2 [38] in 2009 many
public ontologies were created for different application domains. For example,
Friend of a Friend (FOAF)2 is an ontology that describes people and social
networks, the Semanticscience Integrated Ontology (SIO) 3 is designed for
biomedical knowledge integration and is used in projects such as Bio2RDF

1https://www.monetdb.org/
2http://xmlns.com/foaf/spec/
3http://sio.semanticscience.org
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[39] and PubChemRDF [3], whereas DBpedia 1 and YAGO 2 ontologies are
designed to represent general knowledge.

When these ontologies are used in the production environment, the de-
scribed data can be stored in different types of databases, especially relational
databases, making use of their robustness, performance, maturity, availab-
ility and reliability [40]. Therefore, many methods were designed to trans-
late the ontologies to their relational schema counterparts, using their com-
mon semantics where possible and representing the remaining concepts using
metadata and application logic [41]. A study comparing the benefits and dis-
advantages of ontologies and relational schemas was published by Martinez-
Cruz et al. [42], providing references to various mapping approaches. A recent
survey of some of the approaches was published by Humaira et al. [40].

One of the first approaches was proposed by El-Ghalayini et al. [43] who
describe converting DAML+OIL (predecessor of OWL) ontologies to the con-
ceptual model. Classes are mapped to tables (incorporating subclass informa-
tion as entity generalization/specialization), datatype properties are mapped
to columns and object properties are mapped to relations. Another early
approach is proposed by Gali et al. [44] who describe an automated map-
ping of OWL ontologies to relational tables based on methods to store XML
documents.

Based on the work of [44], Vysniauskas et al. propose a mapping that
preserves OWL concepts not natively supported by RDMBS by using meta
tables [45]. The authors further extend their research and introduce a map-
ping algorithm that preserves full OWL2 semantics [41], demonstrating usage
on SQL equivalents of sample SPARQL queries. An implementation of their
algorithm is published 3 in the form of a plugin for Protégé4, a popular onto-
logy modeling tool. The plugin enables exporting an OWL ontology to DDL
queries that create tables and constraints as well as DML queries that insert
existing instances present in the ontology.

A different approach is taken by Teswanich et al. [46] who present
a straightforward overview of the requirements for a RDF to RDB mapping
system. Although no conversion algorithm is introduced, the presented map-
ping served as reference for multiple future implementations [47][48][49][50],
including ours. The requirements can be summarized as follows:

• Instances of rdfs:Class are mapped to tables.
• All resources are mapped to rows in each of their rdf:type class table

and its superclass tables, identified by a unique numeric primary key in
each table.

1http://mappings.dbpedia.org/server/ontology/classes/
2http://www.yago-knowledge.org/
3OWL2ToRDB, https://protegewiki.stanford.edu/wiki/OWL2ToRDB
4http://protege.stanford.edu/
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• Subclass tables specified with rdfs:subClassOf property contain its
superclass ID column linked to the superclass table with a foreign key.
• Instances of rdf:Property whose rdfs:range is a rdfs:Class are

mapped to relations between the rdfs:domain class and the rdfs:range
class.
• Instances of rdf:Property whose rdfs:range is a rdfs:Literal are

mapped to columns in their rdfs:domain class table.

2.3.2 RDF data conversion

This section introduces existing approaches to automatic RDF data conversion
to the relational model, referencing scientific literature and publicly available
tools.

Since SPARQL produces naturally tabular results, a naive conversion ap-
proach is to design a number of SPARQL queries, each producing contents
of an entity table, or to design a single query that focuses on one rdf:type
and aggregates all related information into a single table. One of the latter
approaches is described by Mynarz et al. [51] who create a single aggregated
CSV table for the purpose of knowledge discovery and predictive modeling.
Another approach is presented by Allocca et al. [50] who introduce a tool for
converting RDF datasets back to their CSV source using the original RML1

mapping that was used to generate the set of RDF triples.
A virtual conversion approach was explored by Ramanujam et al. [47]

who introduce R2D, a tool that enables SQL access to a triple store. This
is achieved using a custom JDBC driver that converts SQL queries into their
SPARQL equivalents. A relational schema is extracted automatically from
RDF data, mapping RDF concepts to their relational counterparts – cardinal-
ity of relationships is detected to produce either one-to-many or many-to-many
relations, blank nodes are included by mapping their properties to columns of
resources that reference them. In their next work [52] the authors add support
for RDF reification, a concept of providing additional information about RDF
statements. Their goal is to reuse existing relational tools on RDF data, which
is demonstrated on a data visualization platform. Unfortunately, 1) due to
virtual conversion the tool does not provide any performance improvements
over triple stores, 2) the relational schema mapping extraction was reported
only on data of 60K triples, taking 250 seconds (with linear extrapolation,
processing only 1 million triples per hour), 3) no public software was released.

Though not originally intended as converters, RDF stores with a RDBMS
backend described in section 2.2 can be used for RDF conversion. One of these
is 3XL [35], a PostgreSQL-based triple store that uses a relational schema
based on an OWL ontology. The database is populated in bulk by converting
an RDF dataset into a set of CSV files which are loaded using the COPY

1An extension of R2RML mapping language, http://rml.io

18

http://rml.io


2.3. Converting RDF to the relational model

command. The tool uses PostgreSQL inheritance to express rdfs:subClassOf
relationships and array columns for relations and multivalued properties. The
3XL store is available in a public GitHub repository1. In our experiments with
the tool, we encountered two issues, 1) a complete OWL ontology describing
all classes, property ranges and property domains is required in order to create
the corresponding tables and columns, which is not available in many public
RDF datasets (including Wikidata and Bio2RDF), 2) table and column names
are formatted from IRI suffixes without sanitization, resulting in errors when
illegal characters are present.

(a) Input LD dataset.
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(d) Star/snowflake Schema.

Figure 6: An overview of TPTS approach. Firstly, from (a) to (b), the LD dataset is converted into TPTS including several
type-partitioned tables. Secondly, from (b) to (c), each type-partitioned table is converted into PT. Finally, from (c) to (d),
star/snowflake schema is extracted from the PTs by specifying several predicates as measures and others as dimensions.

Table 4: A type-partitioned table of umbel-rc:University from the LD dataset in Figure 3.

subject predicate object object type

dbr:Harvard University dbp:students 21000 xsd:integer
dbr:Harvard University dbp:calendar Semester xsd:string
dbr:Harvard University dbp:type dbr:Private university resource

dbr:University of Tsukuba dbp:established Oct. 1973 xsd:string
dbr:University of Tsukuba dbp:type dbr:National university resource
dbr:University of Tsukuba dbp:students 16584 xsd:integer

Table 5: A property table of umbel-rc:University converted from the type-partitioned table in Table 4.

subject dbp:students dbp:calendar dbp:type dbp:established
(xsd:integer) (xsd:string) (resource) (xsd:string)

dbr:Harvard University 21000 Semester dbr:Private university null
dbr:University of Tsukuba 16584 null dbr:National university Oct. 1973

Table 6: Relationship examples of PT in Table 5.

PTx PTx.attr PTy

umbel-rc:University dbp:type yago:PrivateUniversities
umbel-rc:University dbp:type yago:NationalUniversities

where PTx.attr ∈ PTx.P refers an attribute attr of PTx

which has URIs for subjects in PTy. 2

Table 6 shows an example of relationships related to the ex-
ample in Figure 3. There are two resources in the property
table of umbel-rc:University (Table 5), namely, dbr:Private
_university and dbr:National_university (Table 6 only
shows only two of them).

4.1.2 Schema Generation and Table Construction
Star/snowflake schemas for OLAP are generated using

property tables and relationships. In order to generate star/s-
nowflake schemas, measures must be specified. There are
several options for determining measures; (1) a user speci-
fies predicates from a list of candidate predicates, and (2) a
system automatically decides appropriate predicates. Since
the option (2) is challenging and out of scope for this paper,
this paper chooses the option (1). Therefore, in the assump-
tion, predicates to be measures are given. For a given mea-
sure, predicates in the same property table are extracted as
dimensions. In addition, if any relationship exists with the
property table, predicates in the related property tables are

used as dimensions. The procedure to generate a star/s-
nowflake schema is summarized as follows:

1. Given a predicate p as measure and its property table
PTx, find property tables Y in relation with PTx.

2. Join all property tables in X with PT by the join con-
ditions kept in the relationships, that is∧

PTy∈Y

PTy.subject = PTx.attr

where PTx.attr is a predicate which is connected with
PTy by referring the relationships. The joined prop-
erty table is referred to as Jx.

3. Predicates in Jx.P except the measure p are derived as
dimensions and form dimension tables. If a subset of
the predicates forms a dimension hierarchy, the subset
forms a dimension Table Note that extracting dimen-
sion hierarchies from a flattened table is not straight-
forward and there are lots of choices to extract dimen-
sion hierarchies such as Subsumption [23], so SPOOL
constructs dimension hierarchies if there exists any
specification about the dimension hierarchies.

4. Fact table is formed as a tuple of the measure p and
dimensions keys.

Take the property table in Table 5 and the measure as
dbp:students as an example. For simplicity, suppose that no

Figure 2.6: Star/snowflake schema production based on TPTS approach in-
troduced in [53]. Firstly, the RDF dataset is loaded to type-partitioned triple
tables in a relational database, each table storing triples of subjects of one
rdf:type. Secondly, each type-partitioned table is converted into a property
table (described in section 2.2.3) directly in the database by generated SQL
queries. Finally, properties are classified as measures or dimensions and the
star/snowflake schema is extracted.

In recent years, Semantic Web technologies were exploited for Online
Analytical Processing (OLAP), an approach to compactly storing multi-
dimensional data for fast visualization and analytics. OLAP systems produce
a virtual OLAP cube that stores pre-computed values (facts) in multiple
dimensions. In most cases, OLAP cubes are stored in relational databases in
the form of star or snowflake schemas [20]. A survey of OLAP approaches
based on Semantic Web technologies was published by Abelló et al. [54]. A
semi-automatic method of generating mappings from RDF to star/snowflake
schemas is introduced by Nebot et al. [55]. A fully automated method is
introduced by Inoue et al. [56], extracting all properties and relationships
from a RDF dataset. The star/snowflake schema is produced and populated
automatically by a three-step process called Type-Partitioned Triple Store
(TPTS) described in Figure 2.6. In their next work the authors propose
SPOOL [53], a framework that produces OLAP cubes using SPARQL
without the need to download the whole RDF dataset. The framework is
demonstrated on two public SPARQL endpoints – CIA World FactBook and
DBPedia. Unfortunately, neither of the tools was released publicly.

An approach to converting RDF-archived relational databases back to their
relational form was presented by Stefanova et al. [49]. The input for their

1https://github.com/xiufengliu/3XL
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conversion method is a data archive file and a schema archive file, both in
RDF format, produced from a relational database by a proprietary archiving
software. Two approaches are proposed, the naive Insert Attribute Value
(IAV) approach and the Triple Bulk Load (TBL) approach. The IAV approach
produces SQL INSERT and UPDATE statements for each triple. The TBL
approach first sorts the dataset in subject-predicate-object order, making it
possible to collect all information for one resource at a time in one pass over
the data. The resources are saved in CSV files and loaded into the database
with a bulk load command. The authors measure the performance of the
two approaches on datasets containing up to 200 million triples, concluding
that the TBL approach can achieve 18-25 times better performance than IAV,
being able to reconstruct 36 million triples per hour on a single machine.
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Figure 2.7: Number of SQL queries produced by the RDF2RDB conver-
sion tool in our experiment with the first 100 thousand statements from the
Bio2RDF ClinicalTrials.gov dataset (roughly 0.1%). More than 850 thousand
queries were produced in total, averaging at more than 85 queries per RDF
statement. The conversion process took 170 minutes, converting 300 times less
statements per minute compared to our tool running on the same machine.

Most related to our approach is RDF2RDB[57]. To the best of our
knowledge, it is the only publicly available tool that is able to convert RDF
datasets into entity and relation tables and persist them in a database of
choice. RDF2RDB conversion is fully automated, extracting the relational
schema from RDFS statements as well as from the relationships present in
the data. The tool also handles name collisions (adding numeric suffixes),
multi-valued properties (storing them in separate tables) and properties with
multiple datatypes (adding a datatype suffix). The differences between our
approaches are 1) RDF2RDB is able to apply entailment information in-
cluding rdfs:subPropertyOf or owl:equivalentClass statements, our tool
currently only applies rdfs:subClassOf statements 2) RDF2RDB converts
one RDF triple at a time, executing multiple SQL queries and persisting
the result on the fly, while our method first collects the whole relational
schema and then populates the database in batches of rows 3) thanks to the
incremental approach, RDF2RDB is able to add additional RDF triples into
an existing database produced by the tool, while our approach is only able
to convert the whole dataset at once 4) due to the incremental approach,
RDF2RDB produces many SQL queries for a single RDF statement as shown
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on figure 2.7, whereas our approach produces a single INSERT query for
multiple RDF statements describing a single resource, resulting in an order
of magnitude higher performance.

2.3.3 Comparison

To summarize, we provide a classification of RDF-to-RDB conversion ap-
proaches described above. Only those approaches that provided enough in-
formation to be classified are included. The result can be seen in table 2.2.
Approaches are classified using the following dimensions:

• RDF Source – How the RDF statements are obtained. Either RDF
file or SPARQL endpoint.
• Processing – Where the RDF data conversion takes place. Ap-

proaches include loading the whole dataset to memory, executing
SPARQL queries on a triple store, loading the dataset to a relational
database and transforming it using SQL queries, or performing one or
more passes over a file on disk.
• Entity definition – How entity tables are defined. Approaches include

using OWL ontologies, rdf:type statements or grouping instances with
similar sets of properties.
• Property definition – How properties and relations of entity tables

are defined. Approaches include using OWL ontologies, rdf:Property
statements or discovering used properties in RDF data.
• Data insertion – How the database is populated with data. Ap-

proaches include persisting updates to the database one triple at a time,
performing batched INSERT queries or CSV bulk load.
• Increments – Whether new RDF statements can be applied to a

database produced earlier. Some approaches enable inserting new rows
to an existing schema, some also support propagating changes to the
schema itself.
• Published software – Whether any software was released.
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OWL2ToRDB[41] file in memory owl:Class OWL SQL script
file data only yes1

Teswanich et al.[46] file ? rdf:type RDFS +
discovered - - -

Mynarz et al.[51] SPARQL in triple
store

single
table discovered CSV file - -

Allocca et al.[50] file in memory single
table

reverse
RML CSV file - yes2

R2D [47] SPARQL realtime* rdf:type
+ similarity

RDFS +
discovered not needed data and

schema -

3XL [35] file one pass rdf:type OWL CSV
bulk load - yes3

Emergent[58] file one pass in
SPO order** similarity discovered native

bulk load ? yes4

SPOOL TPTT[56] file in relational
database rdf:type discovered ? - -

SPOOL SPARQL[53] SPARQL in triple
store rdf:type discovered ? - -

SAQ[49] file one pass in
SPO order**

archived
schema

archived
schema

CSV
bulk load - -

rdf2rdb.py[57] file one pass rdf:type discovered one triple
at a time

data and
schema yes5

RDF2X file
multiple
passes,

distributed
rdf:type discovered

batch insert,
CSV

bulk load
- yes6

* SQL converted to SPARQL, result processed in triple store
** Subject-predicate-object order
1 Protégé plugin OWL2ToRDB https://protegewiki.stanford.edu/wiki/OWL2ToRDB
2 Conversion tool RML2CSV https://bitbucket.org/carloallocca/rml2csv
3 Triple store 3XL https://github.com/xiufengliu/3XL
4 Experimental RDF branch of MonetDB https://dev.monetdb.org/hg/MonetDB/shortlog/rdf
5 Conversion tool RDF2RDB https://github.com/michaelbrunnbauer/rdf2rdb
6 Conversion tool RDF2X http://davidprihoda.com/rdf2x/

Table 2.2: Comparison of RDF to RDB conversion tools.
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Chapter 3
Design

In this chapter, we introduce functional requirements for our conversion tool,
propose and justify its architecture and describe all steps in a proposed con-
version process.

3.1 Requirements

Based on research of related work summarized in the previous chapter, we
assembled a list of requirements for a functional conversion tool from RDF to
the relational model:

• Common input formats – Common RDF serialization formats are
supported, including N-Quads, N-Triples and Turtle.
• Memory efficiency – Memory requirements are defined only by the

size of the schema, not the size of the data
• Database request efficiency – The output database is not queried

more than necessary
• Entity tables – Entity tables store resources of the same rdf:type

• Numeric IDs – A unique numeric identifier is assigned to each resource
• Efficient properties – Properties are saved as entity columns or in

another efficient fashion
• Datatype preservation – Literal values are stored in columns of cor-

responding data type
• Multiple values – All values of multivalued properties are preserved
• Meaningful names – Tables and columns are assigned unique human-

readable names, each property (predicate) has the same name in all
entity tables
• Relation tables – Many-to-many relations of resources are stored as

rows in relation tables, referencing the resources by their IDs
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• Automation – The whole conversion process is performed without the
need for user intervention
• Increments – Applying additional statements to a database produced

earlier is possible
• Semantic extensions – OWL and RDFS statements defining relation-

ships between schema elements (classes, properties) are mapped to cor-
responding concepts in the relational model where possible

The RDF2X conversion tool will satisfy all except two of these require-
ments. The Increments requirement will not be satisfied, all statements
have to be converted at once. The Semantic extensions requirement will
only be partially satisfied, only the rdfs:subClassOf property will be applied
to the schema. However, the architecture in general makes it possible to im-
plement both of these requirements in future versions after overcoming minor
engineering challenges.

3.2 Architecture

In this section, we propose and justify the architecture of RDF2X. An overview
can be seen on figure 3.1
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Spark 
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Datanode

Spark 
Worker

Datanode

Spark 
Worker

Datanode

HDFS

Spark Driver Cluster 
manager

...

RDF2X
Conversion

task

Figure 3.1: RDF2X architecture. A dataset is converted by specifying a con-
version task using configuration parameters and submitting the configured
RDF2X application to a Spark cluster. Next, tasks are created by the driver
program and distributed to the worker nodes using a cluster manager. Fi-
nally, data is persisted to the database from all nodes at once through JDBC
connections.

We decided to build our tool on the Apache Spark distributed computing
platform. Firstly, this will allow us to process the data in parallel on multiple
machines using a simple set of operations. Secondly, it will provide us with
ready-to-use distributed functions for parsing RDF datasets and persisting the
converted data to a database through JDBC. Using Spark, conversion can also
be executed locally on one machine, the only disadvantage is the unnecessary
overhead for very small datasets.

24



3.3. Conversion process

We decided to obtain RDF statements from RDF dump files instead of
querying a SPARQL endpoint. This will allow the user to simply convert a
downloaded dataset without having to load it to a triple store. Also, it enables
conversion of multiple datasets from different sources into one database. One
downside of this approach is that we miss the opportunity to delegate work to
a triple store with existing datasets. However, this might often be desirable,
since we do not want to put additional workload on production databases.

To load the data to the database, we decided to use two approaches. First,
we use the native Spark SQL functionality of writing data using batched IN-
SERT statements. Next, we will implement a CSV bulk load approach that
will insert the data using PostgreSQL CopyManager.

3.3 Conversion process

This section provides an overview of the RDF2X conversion process, describing
the steps needed to transform RDF triples into entity and relation tables in a
database. A diagram of the conversion process can be seen on figure 3.2.

DB

RDF data
local / hdfs

RDF 
schema

Instances

Entity
schema

Relation 
schema

Relation
rows

Relations -

Metadata-

Entities

subject
filter

instance
extractor

RDF
parser

RDF schema
extractor

type
filter

relation
extractor

relation
schema 
collector

entity schema 
collector

entity writer

met. writer

relation
writer

RDF2X 
Conversion process

Figure 3.2: RDF2X conversion process. RDF data, cached instances, cached
relation rows and the resulting database tables are stored on disk (dark grey
boxes). Schema information is stored in memory (white boxes). Circles rep-
resent different conversion elements that process data using Apache Spark.

3.3.1 Collecting RDF schema

In the first step, a RDF schema storing some necessary information about the
dataset needs to be extracted. First, we collect a list of all distinct predicate
IRIs (representing different types of relations and properties, e.g. foaf:name)
and object IRIs used in rdf:type statements (representing types of resources,
e.g. foaf:Person). These IRIs are mapped to memory efficient numeric
identifiers which are used in the next phases instead of the string values.
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Next, we gather all rdfs:subClassOf statements and store them in a graph
structure. Finally, we gather all rdfs:label statements for given predicates
and types.

3.3.2 Extracting instances

In the second step, we reduce the RDF statements by subject IRI, merging
all information about each single subject into an Instance, a structure stor-
ing every assigned rdf:type, properties and outgoing relationships of a RDF
resource. The input RDF statements can be filtered by a user-specified set
of subject IRIs and a depth parameter that enables related instances to be
included. Additionally, instances can be filtered by a user-specified set of al-
lowed types. Next, each instance is assigned a globally unique numeric ID.
Finally, instances can be persisted to disk or to memory to avoid recomputing
them from the RDF dataset for each of the next phases.

3.3.3 Creating entity schema

In the third step, we use the extracted instances to create an entity schema
that describes the table structure of each rdf:type. First, we generate safe
and unique string identifiers for all the used types and properties from labels
and IRI suffixes. Properties that are used by instances of a type enough to
satisfy a user-defined threshold are stored as its columns, the rest (including
multivalued properties) is stored in a separate Entity-Attribute-Value table
(described in section 1.2). Finally, columns that are already present in a
superclass table can be removed.

3.3.4 Extracting relation rows

In the fourth step, rows of relation tables are extracted from the cached in-
stances. A row in a relation table consists of three values - ID of the source
instance, ID of the target instance and a predicate representing the relation-
ship type.

3.3.5 Creating relation schema

In the fifth step, we use the extracted relation rows to create a relation schema
that describes the table structure of each many-to-many relationship. Differ-
ent schemas of relation tables are implemented, as described in section 4.2.4.

3.3.6 Writing output

Finally, we use the extracted schema and data to create and populate the
database. The process consists of three steps – persisting metadata tables
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storing information about the schema, persisting entity tables along with the
EAV table, persisting relation tables and finally creating keys and indexes.
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Chapter 4
Implementation

In this chapter, we introduce the used tools and libraries, describe the fea-
tures implemented in our tool and provide conversion results of a simple RDF
dataset.

4.1 Tools and libraries

In this section, we describe the libraries we used to implement the RDF2X
conversion tool. The tool itself was written in Java 8, making use of its lambda
functions, streams and other functionality.

Apache Spark 1.6.2 Apache Spark1 is described in section 1.3. There are
currently two maintained branches of Spark – Spark 1.6.x and Spark 2.x. The
2.x branch introduces performance improvements and usability improvements
of the API and other advantages. The 1.6.x branch is maintained for back-
wards compatibility. We decided for the 1.6.x branch because it was deployed
on our existing development cluster. However, if an update to the 2.x version
is desirable, it can be implemented with minor updates.

Apache Jena Elephas Apache Jena2 is a Java framework for building
Semantic Web and Linked Data applications. We use a module of Jena called
Jena Elephas3 for distributed parsing of RDF datasets into Spark RDDs.

JGraphT JGraphT4 is a Java graph library that provides mathematical
graph-theory objects and algorithms. We use JGraphT for storing and query-
ing a graph of rdfs:subClassOf statements.

1http://spark.apache.org/
2https://jena.apache.org/
3https://jena.apache.org/documentation/hadoop/
4http://jgrapht.org/
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4. Implementation

JCommander JCommander1 is a small Java framework for parsing com-
mand line parameters. We use JCommander to parse all configuration para-
meters for the conversion job.

Mockito & JUnit Mockito and JUnit are Java libraries that enable unit
testing. We use both of the libraries to create unit tests for all elements of
the conversion process.

Project Lombok Project Lombok2 is a Java framework that enables boil-
erplate code generation using annotations. We use Project Lombok to inject
a logger and to generate constructors, getters and setters.

4.2 Implemented features

In this section, we provide a summary of all implemented features that influ-
ence the conversion process.

4.2.1 Input parsing

RDF triples are read from one or more RDF dump files using Apache Jena
Elephas. Files in N-Triples and N-Quads format can be read in parallel, each
executor reading one part of the input. This is because each line contains a
full statement, resources are referenced by full IRIs. Other formats such as
Turtle can only be read on the master node and redistributed to the executors.
This is because Turtle is not a line-based format, splitting it would require
translating prefixed IRIs into full IRIs and other preprocessing.

4.2.2 Entity tables

An entity table in the relational database stores instances (RDF resources) of
the same rdf:type (class).

Instance IDs Instances are uniquely identified by their IRI and also by an
ID, a globally unique numeric identifier. A primary key constraint is added
to the ID column, an index is added to the IRI column to enable fast lookup.

Instance types An instance with multiple types is saved to each type’s
table, represented with the same ID and IRI in each one. Instances without a
type are ignored.

1http://jcommander.org/
2https://projectlombok.org/
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@base <http://example.org/resource/> .
@prefix example: <http://example.org/ns/> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

<#Czechia>
a example:Country;
example:name "Czech republic", "Czechia", "Česká republika"@cs;
example:neighborOf <#Germany>;
example:population 10553843.

<#Germany>
a example:Country;
example:name "Germany", "Deutschland"@de;
example:neighborOf <#Czechia>.

<#Vltava>
a example:River;
example:name "Vltava", "Vltava"@cs;
example:basinCountry <#Czechia>.

example:Country rdfs:subClassOf example:Location.

Figure 4.1: Example of a RDF input file in Turtle format. Results of conver-
sion are presented below.

Class hierarchy Class hierarchy expressed with rdfs:subClassOf state-
ments is considered – each instance is stored in its explicitly specified type’s
tables as well as in the tables of all superclass types. Foreign key constraints
are created on the ID column from each child table to its parent table.

Entity names Entity table names are formatted from the suffix of their
type IRI or from their rdfs:label. Names are sanitized to keep only allowed
characters (numbers, letters and underscores). Numeric suffixes are added to
handle non-unique or reserved names.

4.2.3 Literal properties

Literal properties specify literal values such as integers, strings or dates. As
opposed to the relational model, RDF properties are first-class citizens defined
independently of entity types. When converted, properties can be saved either
as columns in one or more entity tables, or as multiple rows in the EAV table,
depending on configurable criteria.

Columns Properties that are common enough for instances of a specific
type are stored directly in its entity table as columns. Formally, for each
property p (of a specific predicate IRI, datatype and language) and entity
type e, we compute nonNullFraction(e, p), the percentage of instances of
type e that contain a non-null value of the property p. Property p satisfying
the nonNullFraction(e, p) >= minNonNullFraction threshold for entity e
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is saved as its column, with null values where no value is specified. If the
threshold is not satisfied, values of property p in instances of type e are saved
in the EAV table. This mechanism is used to control table sparsity. An explicit
limit on the number of table columns can also be given to deal with RDBMS-
specific limits. When persisting an entity table, its columns are sorted either
alphabetically or by nonNullFraction, most frequent columns first.

river country river country
id iri name name_cs id iri id iri name name_cs id iri

2 #Vltava Vltava Vltava 1 #Czechia 2 #Vltava Vltava Vltava 1 #Czechia

location 3 #Germany location 3 #Germany

id iri name* name_cs population name_de id iri name*

1 #Czechia Czechia Česká rep... 10553843 null 1 #Czechia Czechia

3 #Germany Germany null null Deutschland 3 #Germany Germany

(a) minNonNullFraction = 0.0 (b) minNonNullFraction = 1.0

Figure 4.2: Entity tables produced from example 4.1 with two different min-
NonNullFraction thresholds. In case (a) all properties become columns. In
case (b) only properties with 100% filled-in values for a given entity become
columns. In both cases, columns that are already present in table location are
removed from the subclass table country. Column name in the location table
stores one of multiple values.

Property datatype Values of properties can have multiple datatypes. In
RDF2X, values are first converted to native Java objects and then to relational
database datatypes. Currently, RDF2X supports the following datatypes:
boolean, string, float, double, integer and long.

Multi-valued properties Multi-valued properties specify multiple differ-
ent values of the same datatype and language for a single instance, creating
a one-to-many cardinality relationship. If a property p is multivalued in at
least one instance of an entity type e, all values of the property in instances
of e are saved to the EAV table. If a multivalued property is also saved in e
as a column, the cell will contain a randomly chosen value.

Column names Column names are formatted from the suffix of their prop-
erty predicate IRI or from their rdfs:label. Names are sanitized to keep
only allowed characters (numbers, letters and underscores). A language suffix
is added if specified for the given property. Datatype suffixes are added if
multiple datatypes of the same property are present in the table. Numeric
suffixes are added to handle non-unique or reserved names. Properties are
named all at once to guarantee that each property will be saved under the
same column name in different entity tables.
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_attributes
id predicate datatype language value

1 #Czechia ex:name STRING null Czechia
2 #Czechia ex:name STRING null Czech republic
3 #Germany ex:name STRING null Germany
4 #Czechia ex:name STRING cs Česká republika
5 #Germany ex:name STRING de Deutschland
6 #Czechia ex:population INTEGER null 10553843

Figure 4.3: Entity-Attribute-Value table produced from example 4.1 with
minNonNullFraction = 1. Rows 1–3 store a multivalued property from
the location table. Rows 4–6 store properties with nonNullFraction < 1.

Class hierarchy Class inheritance expressed with rdfs:subClassOf state-
ments is considered – columns that are already present in a superclass table
are removed from the subclass tables, marking their location in the column
metadata table.

Property hierarchy and constraints Property inheritance expressed
with rdfs:subPropertyOf statements is not considered. In the future, an
additional metadata table could be introduced to store this information.
Property constraints expressed with rdfs:range (representing the possible
types of the object – target) and rdfs:domain (representing the possible
types of the subject – source) are not used. Instead, the occurring types are
extracted from the data.

4.2.4 Relation tables

A relation expresses an existing property between two instances. All relations
are considered to have many-to-many cardinality. Relations are converted
to rows in relation tables, linking the two instances using their numeric IDs.
Multiple strategies of creating relation tables were implemented, as seen on
Figure 4.4.

Single table strategy Store all relations in a single table. This is possible
because all instances have globally unique IDs.

Type strategy Create a relation table for each pair of entity tables that
contain related instances. When the related instances have multiple types, a
relation table can be created for all pairs of types or only for the root types
(types that do not have a specified superclass). Another approach would be to
use rdfs:domain and rdfs:range statements to infer pairs of types for which
we should create relation tables – this feature is not yet implemented in our
tool, however, it will be considered for a future version.

33



4. Implementation

_relations river_country neighborof
id_from id_to predicate river_id country_id predicate id_from id_to

#Vltava #Czechia ex:basinCountry #Vltava #Czechia ex:basinCountry #Czechia #Germany

#Czechia #Germany ex:neighborOf river_location #Germany #Czechia

#Germany #Czechia ex:neighborOf river_id location_id predicate basincountry
↑ Single table ↑ #Vltava #Czechia ex:basinCountry id_from id_to

location_country #Vltava #Czechia

river_location location_id country_id predicate ↑ Predicates ↑
river_id_from location_id_to predicate #Czechia #Germany ex:neighborOf

#Vltava #Czechia ex:basinCountry #Germany #Czechia ex:neighborOf location_neighborof_location
location_location country_location location_id_from location_id_to

location_id_from location_id_to predicate country_id location_id predicate #Czechia #Germany

#Czechia #Germany ex:neighborOf #Czechia #Germany ex:neighborOf #Germany #Czechia

#Germany #Czechia ex:neighborOf #Germany #Czechia ex:neighborOf river_basincountry_location
↑ Types (root only) ↑ + country_country, location_location river_id_from location_id_to

↑ Types (all) ↑ #Vltava #Czechia

↑ Type+Predicate (root only) ↑

Figure 4.4: Relation tables produced from example 4.1 with different
strategies. Instance IDs and predicate indexes were replaced with IRI suffixes
for readability. The corresponding schema is created automatically based on
requested strategy.

Predicate strategy Create a relation table for each relational property
(predicate), storing all relations of the same type between any instances.

Type+Predicate strategy Create a relation table for each relational prop-
erty between two entity tables. This approach most closely resembles the tra-
ditional relational model. The pairs of related types can be filtered same as
in the Type strategy.

4.2.5 Filtering

The tool enables filtering the input RDF dataset to convert only a subset of
the data. The dataset can be filtered in two ways.

Filtering by resource IRI The input dataset of triples can be filtered dir-
ectly by a set of resource IRIs. Additionally, a depth parameter can be used to
include resources related to the specified resources in depth steps. Related re-
sources can be found either exclusively in the direction of the relations (adding
resources that are referenced by the existing set) or in both directions (also
adding resources that are referencing the existing set). This is accomplished
by maintaining an in-memory set of IRIs. For each of depth steps we perform
one pass over the dataset to find resources that are related to our in-memory
set.

Filtering by rdf:type The dataset can also be filtered by a set of allowed
rdf:types. Since we do not know which statements will represent the reques-

34



4.2. Implemented features

ted types, all the triples need to be aggregated to instances before filtering
can occur.

Figure 4.5: Schema of metadata tables.

4.2.6 Metadata

Along with the RDF data, four metadata tables are stored, describing the
entities, properties and relations. Schema of the metadata tables can be seen
on figure 4.5.

4.2.7 Output formats

Finally, the converted data is written to one of supported outputs:

• Database via JDBC Creates the corresponding schema, populates
it with data and adds primary keys, foreign keys and indexes. When
using PostgreSQL, data can be loaded via CSV COPY bulk load. Other
drivers are handled by native Spark JDBC functionality, producing bulk
INSERT statements. Finally, primary keys, foreign keys and indexes are
added.
• CSV / JSON Creates one folder for each entity and relation table.

Provided by native Spark functionality and the Spark CSV1 extension.
• ElasticSearch2 Writes rows of entity and relation tables as documents

of corresponding type in an ElasticSearch index. Provided by Elastic-
search Spark 3 extension.

4.2.8 RDF2X Flavors

Each RDF dataset may require custom adjustments to the conversion process
to produce desired output. However, making direct modifications to the core

1https://github.com/databricks/spark-csv
2https://www.elastic.co/products/elasticsearch
3https://www.elastic.co/products/hadoop
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of the conversion tool would introduce undesired complexity. Therefore, we
introduced RDF2X Flavors, a system based on a Java interface that is called
at several important points in the conversion process. A custom Flavor can
be created by implementing the interface and performing custom modifica-
tions where needed. This system is demonstrated on the Wikidata Flavor
introduced in chapter 7.

4.3 RDF2X Library

RDF2X also serves as a Java library, providing general processing capabilities
for each part of the conversion process – parsing and filtering RDF data,
aggregating RDF statements into instances, extracting entity and relation
schemas and persisting to several outputs.

Usage of our library can be demonstrated on this instance aggregation ex-
ample in Java. First, we parse a folder of RDF files, then we select statements
about a specified resource and resources related to it in one or two steps, and
finally we aggregate the statements into Instance objects and print the result:

// parse RDF file into a Spark dataset
QuadParser parser = new ElephasQuadParser(sparkContext);
JavaRDD<Quad> quads = parser

.parseQuads("/path/to/input/folder");

// collect RDF schema describing the dataset
RdfSchemaCollector rsc = new RdfSchemaCollector(sparkContext);
RdfSchema schema = rsc.collectSchema(quads);

// filter by statements related to a specific subject
QuadFilterConfig filterConfig = new QuadFilterConfig()

.setRelatedDepth(2)

.addResources("http://example.com/Prague");
quads = new QuadFilter(filterConfig).filter(quads);

// aggregate the RDF statements into instances
new InstanceAggregator(schema)

.aggregateInstances(quads)

.collect()

.forEach(instance -> {
System.out.println(instance);

});

The library can also be used to run the whole conversion job program-
matically from Java or Scala code, persisting the output to database, disk or
a collection of Spark DataFrames:
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ConvertConfig config = new ConvertConfig()
.setInputFile("/path/to/input.nq")
.setOutputConfig(

OutputConfig.toJSON("/output/folder")
);

ConvertJob job = new ConvertJob(config, sparkContext);
job.run();

Documentation of the RDF2X library can be found on our website1.

1http://davidprihoda.com/rdf2x/

37

http://davidprihoda.com/rdf2x/




Chapter 5
Bio2RDF Conversion Statistics

In this chapter, we report on our conversion experiments of RDF datasets
provided by the Bio2RDF1 project. We provide statistics on the conversion
performance on a small Spark cluster, on the size of converted datasets com-
pared to the resulting relational representation and on table sparsity based on
configurable criteria.

5.1 Introduction

In the past decade there has been a major increase in the number of public
life science data sources, such as PubMed, providing citations for biomedical
literature, or ClinicalTrials.gov, a database of clinical studies of human parti-
cipants conducted around the world. These data sources are available in vari-
ous formats, using different schemas and namespaces. Following the Linked
Data initiative, there has been significant effort to integrate these data sources,
providing a single interface and interlinking corresponding concepts. One of
the successful leaders in these efforts is Bio2RDF, an open-source project that
provides a consistent RDF representation of open life science datasets [2].

The main contribution of Bio2RDF is a library of scripts that convert data
into RDF in a process called RDFization. Each script is written specifically
for one of the supported life science data sources available in various formats
such as HTML, relational database or XML. An essential component of the
RDFization process is the Bio2RDF API for generating validated IRIs. Each
resource in a dataset is assigned a unique IRI on the bio2rdf.org domain and is
connected to equivalent resources in other datasets. This enables querying for
concepts across multiple data sources. Bio2RDF data can be accessed through
the SPARQL endpoint2 or through downloadable RDF datasets 3.

1http://bio2rdf.org/
2http://bio2rdf.org/sparql/
3http://download.bio2rdf.org/
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5.2 Explored datasets

In our experiments we focused on the following datasets with descriptions
provided at the Bio2RDF website:

• PubMed1 is a service of the U.S. National Library of Medicine that
includes citations from MEDLINE and other life science journals for
biomedical articles.
• ChEMBL2 is a database of bioactive compounds, their quantitative

properties and bioactivities.
• CTD3 (Comparative Toxicogenomics Database) includes manually

curated data describing cross-species chemical-gene/protein interactions
and chemical/gene-disease relationships.
• ClinicalTrials.gov4 is a registry and results database of publicly and

privately supported clinical studies of human participants conducted
around the world.
• GOA5 provides high-quality Gene Ontology annotations to proteins in

the UniProt Knowledgebase and International Protein Index.
• DrugBank6 is a bioinformatics and chemoinformatics resource that

combines detailed drug data with comprehensive drug target inform-
ation.

5.3 Data preparation

The datasets were downloaded directly from the Bio2RDF dataset reposit-
ory7. All datasets were provided as one or more gzipped N-Quads files, except
ChEMBL, which was provided in Turtle format. As we explained in section
4.2.1, Turtle files cannot be split and have to be read by a single thread.
Therefore, in order to be able to test full power of our cluster, we converted
the ChEMBL Turtle files into N-Quads format using rdf2rdf8. Finally, the
datasets were loaded to HDFS.

5.4 Conversion

The datasets were converted using RDF2X on a small Spark cluster of 5
executor nodes, each executor was assigned 8GB of memory and two cores.

1https://www.ncbi.nlm.nih.gov/pubmed/
2https://www.ebi.ac.uk/chembl/
3http://ctdbase.org/
4https://clinicaltrials.gov/
5http://www.geneontology.org/
6https://www.drugbank.ca/
7http://download.bio2rdf.org/
8https://github.com/knakk/rdf2rdf
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The result was persisted in a PostgreSQL database. For each dataset (except
PubMed) we compared two methods of data insertion – batched inserts, using
Spark JDBC writer, and PostgreSQL COPY, using our custom extension ex-
ploiting the PostgreSQL CopyManager. Results can be seen on figure 5.1. On
average, the COPY method reduces the conversion time by 35%. In the next
paragraphs, we will therefore report on conversion using the COPY method.
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Figure 5.1: RDF2X conversion time of selected Bio2RDF datasets.

The conversion process can be divided into seven phases, each producing
one or more Spark jobs. We measured the duration of each phase by inspecting
the application logs, the result can be seen on figure 5.2.

Figure 5.2: Duration of each conversion phase as percentage of total conver-
sion time. Workload of phases 1–3 is handled by the Spark cluster, work-
load of phase 4 and 6 is handled by both the Spark cluster (filtering Spark
DataFrames, preparing statements) and the database (executing statements),
workload of phases 5 and 7 is handled exclusively by the database.

More than 8.4 billion triples were converted in total, processing 92 million
triples per hour on average. Since not enough total memory was available to
process the data directly in memory, the intermediate results had to be cached
on disk. This suggests that there is a large potential for improvement if the
user has access to more memory and processing power.
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5. Bio2RDF Conversion Statistics

5.5 Content statistics

Finally, we compare the original and the converted representations of the RDF
datasets. A summary can be seen in table 5.1. On average, size of the resulting
database is 68% the size of the uncompressed RDF dataset in N-Quads format.

Database

RDF Total Entity tables Relation tables

Dataset
Conversion 
Time Triples Gzipped

Raw N-
Quads Size Rows

Table 
size Index size Rows

Table 
size

Index 
size

Drugbank 16 min 4,215,954 44.9 MB 1.0 GB 1.2 GB 886,602 359.8 MB 98.9 MB 5,513,564 298.8 MB 397.3 MB

ClinicalTrials 1 h 32 min 159,001,344 1.8 GB 46.2 GB 29.9 GB 42,598,182 15.9 GB 4.7 GB 71,646,514 4.1 GB 5.3 GB

GOA 50 min 159,251,919 767.9 MB 31.6 GB 16.1 GB 12,511,020 3.5 GB 1.1 GB 96,052,043 5.0 GB 6.5 GB

ChEMBL 5 h 9 min 430,271,708 2.7 GB 66.2 GB 29.9 GB 52,416,746 9.4 GB 6.2 GB 120,016,262 6.3 GB 8.1 GB

CTD 3 h 37 min 486,080,314 3.3 GB 97.5 GB 83.0 GB 87,983,063 21.9 GB 7.9 GB 421,665,772 23.2 GB 30.0 GB

PubMed 80 h 26 min 7,221,791,590 77.3 GB 1.6 TB 809.2 GB 2,472,787,243 454.9 GB 244.2 GB 763,818,337 48.1 GB 62.1 GB

Total 91 h 52 min 8,460,612,829 86.0 GB 1.9 TB 969.3 GB 2,669,182,856 506.0 GB 264.2 GB 1,478,712,492 86.9 GB 112.3 GB

Table 5.1: Size of selected Bio2RDF datasets.

Properties that are common enough for a given entity type are saved as
columns, the rest is saved in the Entity-Attribute-Value table. This is con-
trolled by the minNonNullFraction configuration parameter, which defines
what percentage of cells has to be non-null.
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Figure 5.3: Influence of minNonNullFraction on table sparsity. The left
chart demonstrates how increasing the threshold slowly reduces the ratio of
property values saved in columns while sharply reducing the ratio of null-
valued cells. The right chart shows the direct influence between the number
of property values in columns and the percentage of null cells.

To measure the influence of this parameter on table sparsity, we converted
all datasets with minNonNullFraction set to zero. This saves all properties
in columns (except multivalued properties, which are saved both in the EAV
table and in columns, saving one arbitrary value). The percentage of non-null
cells of each column is saved in the metadata table, we can therefore easily
determine how would table sparsity change with the parameter set to a higher
value. The result can be seen on figure 5.3, averaging results from all datasets.
When 0% non-null cells are requested, 92% of all values are saved in columns
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5.6. Conclusion

(the remaining 8% are multivalued), while producing sparse tables with 54%
null-valued cells. When 100% non-null cells are requested, 64% of values are
saved in columns, while all cells are non-null.

5.6 Conclusion

In this chapter, we demonstrated the RDF2X conversion tool on public
datasets provided by the Bio2RDF project. More than 8.4 billion triples
were converted. The conversion took approximately 92 hours on a Spark
cluster of 5 executors with 8GB memory and two cores, converting 92 million
triples per hour on average. Finally, we demonstrated the influence of the
minNonNullFraction threshold on table sparsity.
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Chapter 6
Case study I:

Visualizing clinical trials

In this chapter, we provide a high-level demonstration of our tool by converting
the ClinicalTrials.gov RDF dataset provided by the Bio2RDF project and
visualizing the converted database using Tableau visualization platform. We
guide our potential user through the whole process: downloading the RDF
dataset, setting up the RDF2X conversion tool, running the conversion job
and finally visualizing the schema and the data.

6.1 Introduction

ClinicalTrials.gov1 is a database of publicly and privately supported clinical
studies of human participants conducted around the world. In this case study,
we use its RDF representation created by the Bio2RDF2 initiative from pub-
licly provided XML files. In this case study, we will focus on the following
topics, as described by the ClinicalTrials.gov Glossary3:

• Clinical study A research study using human subjects to evaluate bio-
medical or health-related outcomes.
• Eligibility criteria The key standards that people who want to par-

ticipate in a clinical study must meet or the characteristics they must
have.
• Condition The disease, disorder, syndrome, illness, injury or other

health-related issue that is being studied.
• Intervention A process or action that is the focus of a clinical study.

Interventions include drugs, medical devices, procedures, vaccines, and
1https://clinicaltrials.gov
2http://bio2rdf.org
3https://clinicaltrials.gov/ct2/about-studies/glossary
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6. Case study I: Visualizing clinical trials

other products that are either investigational or already available.
• Term An entity that unifies names of drugs, conditions and other con-

cepts related to a clinical study.
• Country Country where a clinical study takes place.
• Location Site where a clinical study takes place.

6.2 Data preparation

The ClinicalTrials.gov RDF dataset can be downloaded from the official
Bio2RDF repository, we will use the latest version from Release 41 of
December 2015. The data is provided as a single gzipped N-Quads file,
which can be read in parallel by the Jena parser. Therefore, no further
preprocessing is needed.

6.3 Conversion

We will use Maven to run RDF2X locally from source. First, the tool can be
downloaded from our website2. Then, we need to install required dependen-
cies: Java Development Kit 83, Maven4 and Spark 1.6.25.

Configuration parameters are passed as program arguments. To get a
schema supported by visualization tools, we will use the Type predicates re-
lation schema strategy, which will produce a separate relation table for each
pair of related entity tables and the type of relationship (predicate). Secondly,
we enable instance repartitioning by type, this will bring instances of the
same type together in the same partition. When converting on one machine,
this produces no communication overhead and makes persisting substantially
faster. We start the conversion with the following command:

mvn exec:java -Dexec.args="convert \
--input.file /path/to/input/ \
--output.target DB \
--instances.repartitionByType true \
--db.url jdbc:postgresql://localhost:5432/db \
--db.user user \
--db.password password \
--relations.schema TypePredicates"

1http://download.bio2rdf.org/release/4/
2http://davidprihoda.com/rdf2x
3http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-

2133151.html
4https://maven.apache.org/
5http://spark.apache.org/releases/spark-release-1-6-2.html
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6.4. Schema visualization

The conversion process took 9 hours and 10 minutes on a laptop with
a 2GHz 4-core processor and 8GB RAM. The data was loaded to a PostgreSQL
database running on the same machine.

6.4 Schema visualization

To get an overview of the converted data, we can first look at the schema
of our created database. In total, 63 entity tables and 491 relation tables
were created. Therefore, a traditional UML schema would be too complex
to present here. Instead, we can visualize the schema using Gephi1 graph
visualization platform. The nodes (entities) and edges (relations) of our graph
can be extracted easily from the entity and relation metadata tables. The
result can be seen on figure 6.1.

Figure 6.1: Graph visualization of ClinicalTrials.gov entity relationships.
Nodes represent entities, edges represent many-to-many relationships, node
sizes and edge weights correspond approximately to numbers of rows. Entit-
ies and relationships that will be visualized in the next sections are highlighted
in blue.

6.5 Data visualization

To visualize the data, we will use Tableau2, a data visualization platform that
will allow us to connect directly to the database and create visualizations
simply by dragging and dropping table fields.

1https://gephi.org
2https://www.tableau.com/
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6.5.1 First look

First, we will look at basic information about clinical studies. We create
a Data Source by providing our database credentials and selecting relevant
tables that we will be focusing on. Thanks to the foreign keys, Tableau will
join our tables automatically. The result can be seen on figure 6.2.

Figure 6.2: Definition of our first Data Source in Tableau with three entities:
Clinical Study, Country and Eligibility.

Each study has a Start Date field, we can therefore plot the number of stud-
ies per year. We will also include the Is FDA regulated field which determines
whether the study is regulated by the U.S. Food and Drug Administration.
The result can be seen on figure 6.3. We can see that most recorded studies
started in the past two decades and that roughly one third is FDA regulated.
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Regulated. The data is filtered on Start Date, which ranges from 6/1/1980 to
12/31/2017.

Figure 6.3: Number of clinical studies per start year.

Most clinical studies also define a Completion Date, we can therefore look
at their duration. The distribution of study durations in months can be seen
on figure 6.4. The distinct peaks are located at 12-month intervals, since it is
apparently common that a study is scheduled in terms of years.
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The plot of distinct count of Id for Duration. The view is filtered on Duration, which ranges from 0 to 150.
Figure 6.4: Distribution of clinical study duration.
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6.5. Data visualization

Next, we can look at countries where the clinical studies were conducted.
The result is presented on figure 6.5, we can see that almost half of all studies
were conducted in the United States.
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Figure 6.5: Number of clinical studies by country.

6.5.2 Eligibility criteria

Next, we will focus on four eligibility criteria for participation – Minimum
Age, Maximum Age, Gender and Healthy Volunteers. The last field indicates
whether the study allows people who do not have the condition or related
conditions or symptoms to participate in that study.

The minimum and maximum age criteria can be visualized together using
a highlight table, the result can be seen on figure 6.6. The most frequent com-
bination is minimum age between 10 and 20 years and no limit on maximum
age. By further inspection using a custom SQL query, we see that 34.2% of
all eligibility criteria define a minimum of 18 years and no maximum age.
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Figure 6.6: Percentage of studies by minimum and maximum required age.
Age limits are grouped to bins of ten years.
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Next, we can look at which gender is requested and whether healthy vo-
lunteers are accepted. The result can again be visualized using a highlight
table, the result can be seen on figure 6.7. In most studies, only volunteers
with related conditions or symptoms are accepted. Most studies accept any
gender.
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Figure 6.7: Percentage of studies by two eligibility criteria – gender and
whether healthy volunteers are accepted

6.5.3 Conditions

Next, we examine conditions, the focus of each clinical study. The conditions
of each clinical study are defined in two ways - by specific free-text labels and
by one or more unified terms. The free-text labels are stored in the Condition
entity table, most labels are rather specific and referenced only by one clinical
study. The unified terms are stored in the Term entity table.

An overview of the most used condition labels and terms can be seen on
figure 6.8. We see that there is a significant overlap between the two entities
– some condition labels such as HIV Infections or Hypertension have corres-
ponding term identifiers. However, some common condition labels such as
Healthy, Obese, Breast Cancer or Prostate Cancer do not have corresponding
terms. Therefore, we decided to focus on the label from the Condition entity
in the next visualizations to determine the most studied conditions.
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6.5. Data visualization

We can examine the development of the most frequent conditions by plot-
ting number of their studies by year. The result can be seen on figure 6.9.
For example, we see that the number of clinical studies of HIV Infections
apparently dropped substantially in the last decade.
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Figure 6.9: Number of studies per year for the most frequent condition labels.

6.5.4 Interventions

Finally, we will focus on clinical study interventions. Just like conditions,
interventions are defined in two ways - by specific free-text labels and by one
or more unified terms. The free text labels are saved in multiple entities based
on intervention type, for example Drug, Procedure and Biological. The unified
terms are stored in the Term entity table. To see the distribution of the
number of times a label or a term is referenced, we defined a custom SQL
datasource using the following SQL queries:

SELECT drug.title_en, COUNT(*)
FROM clinical_study_intervention_drug
INNER JOIN drug ON drug_id=drug.id
GROUP BY drug.title_en

SELECT term.title_en, COUNT(*)
FROM clinical_study_intervention_browse_term
INNER JOIN term ON term_id=term.id
GROUP BY term.id, term.title_en

Plot of the distribution can be seen on figure 6.10. We see that the vast
majority of drug labels are only used once. This is due to the fact that
drug labels often contain the dosage and other specific information. Only
183 distinct drug labels are referenced by more than 100 studies. On the
other hand, most intervention terms are reused, 436 of them by more than
100 studies. Therefore, we decided to focus on the intervention terms. For
example, we can plot the number of studies per year for the top five most
frequent ones, the result can be seen on figure 6.11. All five of the interventions
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Figure 6.10: Frequency of drug labels and intervention terms.

are chemotherapy drugs approved for medical use by the FDA. The most
recent drug is Bevacizumab, approved in 20041, explaining the visible increase
in the following years.
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Figure 6.11: Number of clinical studies per year for the five most frequent
intervention terms.

Finally, we can look at the most frequent interventions for each one of the
most studied conditions by looking at the number of times they are referenced
together by the same study. The result can be seen on figure 6.12.

6.6 Conclusion

In this chapter, we provided a high-level demonstration of our tool by con-
verting the ClinicalTrials.gov RDF dataset provided by the Bio2RDF project.
We visualized the converted database using Tableau visualization platform,
demonstrating one of the possible benefits of automatic conversion of RDF
data to the relational model.

1https://www.drugs.com/monograph/bevacizumab.html
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Figure 6.12: Top 3 most frequent interventions for the top most frequently
studied conditions
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Chapter 7
Case study II:

Querying Wikidata with SQL

In this chapter, we provide a low-level demonstration of our tool by converting
a music subdomain of Wikidata into the relational model. The resulting data-
base is explored using multiple SQL queries compared with their SPARQL
equivalents. We guide our potential user through the whole process: down-
loading and preprocessing the RDF dataset, configuring the RDF2X conver-
sion tool, running the conversion job on an existing cluster and finally explor-
ing the data using SQL queries.

7.1 Introduction

In attempt to represent general human knowledge, several initiatives have
emerged, extracting structured information from public sources such as Wiki-
pedia and providing the result in RDF.

The first representative is DBpedia, introduced in 2007 [6]. It is a com-
munity effort to periodically and automatically extract structured information
from Wikipedia. The project remains active and growing, currently represent-
ing 9.5 billion statements about millions of entities1. DBpedia can be accessed
through a SPARQL endpoint and through periodic RDF dumps.

Parallel to DBpedia, Freebase was introduced in 2007 [7]. It was based
on initial data harvested from Wikipedia, MusicBrainz and other sources and
was subsequently managed separately by public crowdsourcing. In 2010 it was
acquired by Google. In 2016 it was officially shut down in favor of two of its
successors – Google Knowledge Graph and Wikidata [59].

Wikidata was founded directly by Wikimedia Foundation in 2012 [8]. In
contrast to DBpedia, which periodically extracts information from Wikipedia,
the approach of Wikidata is opposite – creating a structured collaboratively

1http://wiki.dbpedia.org/dbpedia-version-2016-04
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edited knowledge base of information that can be included in Wikipedia pages
and other applications. Currently, Wikidata stores billions of statements
about more than 26 million entities1. Wikidata can be accessed through a
SPARQL endpoint and through database dumps in RDF and JSON.

7.2 Data preparation

The current version of the RDF dataset can be downloaded from the Wiki-
media Downloads2 site updated several times per week. Until May 2017, the
dataset was provided in gzipped Turtle format, which can only be parsed in
one thread. This can be solved by the rdf2rdf3 converter, first decompressing
the Turtle file and then converting it to the N-Triples format:

# Decompress the Turtle file
gunzip wikidata-20170417-all-BETA.ttl.gz

# Convert it to the N-Triples format
rdf2rdf -in=wikidata-20170417-all-BETA.ttl -out=wikidata.nt

# Optionally, compress it again to reduce disk I/O of our job
gzip wikidata.nt

Luckily, since April 2017, the dump is published in N-Triples format, this
preprocessing step is therefore not needed anymore.

7.3 Wikibase data model

The Wikidata RDF dump is based on the Wikibase data model. A resource
in Wikibase is either an Item or a Property. The model does not make an
explicit distinction between resources that represent classes and resources that
represent instances. A resource can represent both of these concepts at the
same time. An example is given on figure 7.1.

Wikidata does not follow the convention of human-readable IRIs. Rather,
each resource is assigned a numeric suffix. Therefore, it is not desirable to
use the IRIs for name formatting. Instead, we will use the RDF2X feature of
generating entity and property names from their RDFS labels.

Property values of Wikidata entities can either be assigned directly or
through a Statement node that stores the value as well as qualifiers that specify
additional information. For example, a statement about a city’s population
might include a qualifier specifying the point in time. Statement nodes are
assigned ranks that determine which statement should be prioritized. In this

1https://www.wikidata.org/wiki/Wikidata:Statistics
2https://dumps.wikimedia.org/wikidatawiki/entities/
3https://github.com/knakk/rdf2rdf
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case study, we focus only on so-called truthy statements. These statements
have the best rank for a given property and are assigned directly as seen
on figure 7.1. For semantic reasons, different IRI prefixes are used for the
same property in different contexts. For example, to refer to the property
as an entity, the entity prefix wd is used. When used as a predicate in a
truthy statement, the direct statement prefix wdt is used. This is an issue for
generating property names from labels, since the RDFS label is only assigned
to the entity IRI.

@prefix wd: <http://www.wikidata.org/entity/> .
@prefix wdt: <http://www.wikidata.org/prop/direct/> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

# Assigning labels
wd:Q5 rdfs:label "human"@en .
wd:Q254 rdfs:label "Wolfgang Amadeus Mozart"@en .
wd:Q5994 rdfs:label "piano"@en .
wd:Q52954 rdfs:label "keyboard instrument"@en .
wd:P1303 rdfs:label "instrument"@en .
# Mozart is an instance of Human
wd:Q254 wdt:P31 wd:Q5 .
# Mozart plays the piano
wd:Q254 wdt:P1303 wd:Q5994 .
# The piano is a subclass of keyboard instruments
wd:Q5994 wdt:P279 wd:Q52954 .

Figure 7.1: Example of Wikidata RDF statements. An item is assigned a
type using the custom instance of statement. Wikidata does not define any
distinction between classes or instances, each item can be used in both con-
texts, as demonstrated by the Piano entity, which is a subclass while it is also
referenced by another instance in a many-to-many relationship.

To handle the presence of multiple IRIs for the same entity and other spe-
cific Wikidata concepts, we implemented a custom RDF2X Flavor. Firstly, it
replicates RDFS labels to all the different IRI prefixes of a property. Secondly,
it selects the following default settings:

• formatting.useLabels is enabled.
• relations.schema is set to Predicates to create one relation table for

each property.
• rdf.subclassPredicate is set to the subclass of property wdt:P279.
• rdf.typePredicate is set to the instance of property wdt:P31 and also

to the subclass of property to include subclasses as rows in the table of
their superclass. This is not semantically correct, but usually provides
meaningful results. For example, it includes the piano entity in the
music instruments table.
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7.4 Conversion

We will submit the conversion job to our existing cluster managed by Apache
YARN. Therefore, our dependencies will be installed automatically, we only
need the RDF2X executable JAR file that can be downloaded from our web-
site1. We will use the following configuration parameters:

• flavor selects the implemented Wikidata flavor
• input.acceptedLanguage is set to ’en’ to allow only English texts
• filter.type is set to IRIs of entities whose instances we want to persist:

band, country, human, music genre, musical instrument and song.
• entities.minColumnNonNullRatio is set to 0.1 so that only properties

specified for at least 10% instances of a given type are stored in columns,
the rest will be stored in the Entity-Attribute-Value table
• rdf.cacheFile provides a location for caching the collected RDF

schema file. This is useful if we want to run the conversion multiple
times on different filtered types without having to recollect the schema.

The conversion took approximately 2 hours and 20 minutes on a Spark
cluster of five executors with 8GB memory and two cores. When running
again with a cached RDF schema, the conversion time was 50 minutes shorter.
With each conversion, 2.3 billion triples were processed.

7.5 Produced schema

The resulting database contains 3.8 million entity table rows, vast majority
of them stored in the human table (3.4 million). It is not yet possible to
filter properties during conversion, therefore, all relation tables were created
for all 246 occurring relational properties. We removed the unwanted tables
manually, reducing the schema to its final form visible on figure 7.2.

7.6 SQL experiments

Now, we can explore the created database. For each topic, we first provide
a SPARQL query that can be executed at the Wikidata SPARQL endpoint2

to produce the desired result. Next, we introduce an equivalent SQL query,
demonstrating how Linked Data concepts are naturally translated to the re-
lational model.

1http://davidprihoda.com/rdf2x
2https://query.wikidata.org/
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Figure 7.2: Schema of selected entity tables. Relations between tables are
illustrative, since Predicate relation tables are not restricted to two specific
entity types. Rather, each one stores all relations of a given property type.

7.6.1 Songs by The Beatles

First, let’s consider a simple example of gathering all songs by The Beatles,
sorted by date of creation. This can be achieved with the following SPARQL
query:

PREFIX wd: <http://www.wikidata.org/entity/>
PREFIX wdt: <http://www.wikidata.org/prop/direct/>
PREFIX wikibase: <http://wikiba.se/ontology#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

SELECT (year(?date) as ?year) ?songLabel
WHERE
{

?song wdt:P31 wd:Q7366 . # is a song
?song wdt:P175 wd:Q1299 . # song is performed by The Beatles
?song wdt:P577 ?date . # song has publication date
SERVICE wikibase:label { bd:serviceParam wikibase:language "en" }

}
ORDER BY ?date

year title
1953 No Other Love
1959 Till There Was You
1961 Please Mr. Postman
1962 Love Me Do
1963 Ask Me Why

A corresponding SQL query can be designed simply by selecting from the
song table and joining with the band table through the performer relation:
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SELECT
date_part(’year’,song.publication_date) as year,
song.label_en as title

FROM band
INNER JOIN performer ON band.id = performer.id_to
INNER JOIN song ON performer.id_from = song.id
WHERE band.label_en = ’The Beatles’

ORDER BY song.publication_date;

In a real-world application, we would reference the Beatles instance by
its ID, the join could therefore be performed directly on the performer table.

7.6.2 Members of The Beatles

Next, we can demonstrate the aggregation functionality of SPARQL by fetch-
ing all instruments played by members of The Beatles. We will group the
result by the person’s name and use the GROUP CONCAT aggregate to concat-
enate names of all instruments into a single list:

SELECT
?beatleLabel
?born
(GROUP_CONCAT(?instrumentLabel; separator=’, ’) AS ?instruments)

WHERE
{

?beatle wdt:P463 wd:Q1299 . # member of The Beatles
?beatle wdt:P569 ?born . # beatle has date of birth
?beatle wdt:P1303 ?instrument . # beatle plays an instrument
?instrument rdfs:label ?instrumentLabel . # request label explicitly
FILTER((LANG(?instrumentLabel)) = "en") . # to be able to aggregate

SERVICE wikibase:label { bd:serviceParam wikibase:language "en" }
}
GROUP BY ?beatleLabel ?born

beatle born instruments
Ringo Starr 1940-07-07 drum, drum kit, percussion instrument
John Lennon 1940-10-09 harmonica, bass guitar, piano, guitar
Pete Best 1941-11-24 drum kit
Sir Paul McCartney 1942-06-18 bass guitar, piano, guitar
George Harrison 1943-02-25 violin, guitar

We can achieve the same result using SQL by selecting from the human
table, joining with the band table through the member of relation and with
the musical instrument table through the instrument relation. The instru-
ments can be concatenated using the string agg function:

60



7.6. SQL experiments

SELECT
human.name_en AS beatle,
human.date_of_birth AS born,
string_agg(musical_instrument.name_en, ’, ’) as instruments

FROM band
INNER JOIN member_of ON member_of.id_to = band.id
INNER JOIN human ON member_of.id_from = human.id
INNER JOIN instrument ON instrument.id_from = human.id
INNER JOIN musical_instrument

ON instrument.id_to = musical_instrument.id
WHERE band.name_en = ’The Beatles’
GROUP BY human.name_en, born;

7.6.3 Relatives of The Beatles

Next, let’s look at the Wikidata concept of property inheritance. This can
be demonstrated on fetching all relatives of members of The Beatles. The
Wikidata property relative (wd:P1038) has multiple subproperties such as
mother, father and child, which are used for direct family members. To get
our result, first, we define all subproperties using the subproperty of prop-
erty chained with the * path operator that defines a path of zero or more
occurrences. Then, we collect all values for the defined properties:

SELECT
?beatleLabel
?familyPropertyLabel
(GROUP_CONCAT(DISTINCT ?personLabel; separator=’, ’) AS ?relatives)

WHERE
{

# get the direct property for all subproperties of relative
?familyProperty wdt:P1647* wd:P1038 .
?familyProperty wikibase:directClaim ?familyClaim .
# member of The Beatles
?beatle wdt:P463 wd:Q1299 .
# beatle is related to person
?beatle ?familyClaim ?person .
# request labels
?person rdfs:label ?personLabel .
FILTER((LANG(?personLabel)) = "en") .
SERVICE wikibase:label { bd:serviceParam wikibase:language "en" }

}
GROUP BY ?beatleLabel ?familyPropertyLabel
ORDER BY ?beatleLabel
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beatle relative names
George Harrison child Dhani Harrison
George Harrison spouse Pattie Boyd, Olivia Harrison
John Lennon child Sean Lennon, Julian Lennon
John Lennon father Alfred Lennon
John Lennon mother Julia Lennon
John Lennon spouse Yoko Ono, Cynthia Lennon

Paul McCartney child Mary McCartney, Stella McCartney, Beatrice
McCartney, James McCartney, Heather McCartney

Paul McCartney father Jim McCartney
Paul McCartney mother Mary McCartney
Paul McCartney sibling Mike McGear
Paul McCartney spouse Linda McCartney, Heather Mills
Ringo Starr child Lee Starkey
Ringo Starr spouse Barbara Bach

The concept of property inheritance is not natively supported by relational
databases. However, we can achieve the same result by explicitly including all
the requested relation tables, merged using the UNION operator:

SELECT
human.name_en,
rel as relative,
string_agg(person.name_en, ’, ’) as names

FROM band
INNER JOIN member_of ON member_of.id_to = band.id
INNER JOIN human ON member_of.id_from = human.id
INNER JOIN (

(SELECT ’relative’ as rel, * FROM relative) UNION
(SELECT ’father’ as rel, * FROM father) UNION
(SELECT ’mother’ as rel, * FROM mother) UNION
(SELECT ’spouse’ as rel, * FROM spouse) UNION
(SELECT ’child’ as rel, * FROM child) UNION
(SELECT ’sibling’ as rel, * FROM sibling)

) relatives
ON relatives.id_from = human.id

LEFT JOIN human person ON relatives.id_to = person.id
WHERE band.name_en = ’The Beatles’
GROUP BY human.name_en, rel
ORDER BY human.name_en, rel;

This suggests a possible improvement of our conversion tool. For relation
schema created using the Predicate or Type predicate strategy, instances of a
given property could be persisted in all of its parent relation tables, just like
instances of a given type are added to all of its superclass entity tables.
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7.6.4 Bands from the Czech Republic

Next, let’s combine the musical domain with provided geographical inform-
ation. For example, using the following SPARQL query, we can fetch music
genres of the oldest Czech bands that have their Wikidata entry:

SELECT
?bandLabel
(year(?inception) AS ?year)
(GROUP_CONCAT(?genreLabel; separator=’, ’) AS ?genres)

WHERE
{

?band wdt:P31 wd:Q215380 . # is a band
?band wdt:P495 wd:Q213 . # band is from Czech republic
?band wdt:P571 ?inception . # band has inception year
?band wdt:P136 ?genre . # band has genre
?genre rdfs:label ?genreLabel . # request labels
FILTER((LANG(?genreLabel)) = "en") .
SERVICE wikibase:label { bd:serviceParam wikibase:language "en" }

}
GROUP BY ?bandLabel ?inception
ORDER BY ?year

name inception genres
Hradǐst’an 1950 contemporary folk music, folk music
Etc... 1974 rock music
Tichá dohoda 1986 alternative rock
Malignant Tumour 1991 heavy metal music
Peneři strýčka Homeboye 1993 rapping, hip hop

The same result can be achieved using SQL by selecting from the band
table, joining with the country table through the country of origin relation
and with the music genre table through the genre relation.

SELECT
band.label_en as name,
date_part(’year’,band.inception) as inception,
string_agg(music_genre.label_en, ’, ’) as genres

FROM country
INNER JOIN country_of_origin ON country.id = country_of_origin.id_to
INNER JOIN band ON country_of_origin.id_from = band.id
INNER JOIN genre ON band.id = genre.id_from
INNER JOIN music_genre ON music_genre.id = genre.id_to
WHERE country.label_en = ’Czech Republic’

AND band.label_en IS NOT NULL
GROUP BY band.label_en, band.inception
ORDER BY band.inception;
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7.6.5 Number of bands by country

Next, let’s focus on countries in general and generate a simple statistic of the
number of bands that have their Wikidata entry per country. This can be
achieved using the following SPARQL query:

SELECT ?countryLabel (COUNT(?band) AS ?bands)
WHERE
{

?band wdt:P31 wd:Q215380 . # is a band
?band wdt:P495 ?country . # band is from a country

SERVICE wikibase:label { bd:serviceParam wikibase:language "en" }
}
GROUP BY ?countryLabel
ORDER BY DESC(?bands)

name bands
United States of America 14898
Canada 1318
Netherlands 1241
United Kingdom 991
Italy 933

The same result can be achieved using SQL by counting the number of
country of origin relations between the band table and the country table:

SELECT
country.label_en as name,
COUNT(*) as bands

FROM country
INNER JOIN country_of_origin ON country.id = country_of_origin.id_to
INNER JOIN band ON country_of_origin.id_from = band.id

GROUP BY country.label_en
ORDER BY 2 DESC;

7.6.6 Number of bands per capita

Finally, let’s extend the previous query and calculate the number of bands per
million inhabitants. The population of each country is readily available, the
result can be achieved using the following SPARQL query:
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SELECT
?countryLabel
?population
(COUNT(?band) AS ?bands)
(COUNT(?band) * 1000000 / ?population AS ?perMillion)

WHERE
{

?band wdt:P31 wd:Q215380 . # is a band
?band wdt:P495 ?country . # band is from a country
?country wdt:P1082 ?population . # country has population

SERVICE wikibase:label { bd:serviceParam wikibase:language "en" }
}
GROUP BY ?countryLabel ?population
ORDER BY DESC(?perMillion)

name population bands per million
Estonia 1313271 199 151
Faroe Islands 49291 7 142
Finland 5501043 603 109
Sweden 9954420 805 80
Netherlands 17000000 1241 73

To achieve this result in SQL, first we need to check where the population
property is stored. Apparently, less than 10% of countries specify their popu-
lation, the property value is therefore stored as a row in the Entity-Attribute-
Value table. First, we use this SQL query to find the numeric identifier of our
property:

SELECT predicate FROM _meta_predicates WHERE label = ’population’;

Finally, we can achieve the desired result by selecting from the country
table, joining with the band table through the country of origin relation
and with the attributes EAV table directly on the country’s primary key:

SELECT
country.label_en as name,
_attributes.value::int as population,
COUNT(*) as bands,
COUNT(*)*1000000/_attributes.value::int as "per million"

FROM country
INNER JOIN country_of_origin ON country.id = country_of_origin.id_to
INNER JOIN band ON country_of_origin.id_from = band.id
INNER JOIN _attributes ON _attributes.id = country.id

AND _attributes.predicate = 4165 AND _attributes.datatype=’INTEGER’
GROUP BY country.label_en, country.description_en, _attributes.value
ORDER BY 4 DESC;
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7.7 Conclusion

In this chapter, we provided a low-level demonstration of our tool by convert-
ing a music subdomain of Wikidata into the relational model. We explored
multiple SPARQL queries and their SQL equivalents in the produced schema,
demonstrating the natural representation of Linked Data concepts in the re-
lational model created automatically by our conversion tool.
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Conclusion

In this thesis, we introduced RDF2X, a tool for automatic distributed con-
version of RDF datasets to the relational model. We provided a comparison
of related work in three categories – converting relational data to RDF, us-
ing RDBMS for RDF storage and converting RDF to the relational model.
We reported on the conversion of 8.4 billion RDF triples from six datasets
provided by the Bio2RDF project. Our tool converted 92 million triples per
hour on average on a Spark cluster of 5 executors with 8GB memory and two
cores. Finally, we demonstrated the contribution of our tool on two case stud-
ies – visualizing clinical trials from the ClinicalTrials.gov Bio2RDF dataset
and querying a music subdomain of Wikidata with SQL.

Future work

The RDF2X tool introduced in this thesis provides all the necessary features
to automatically convert a RDF dataset to the relational model. However,
there is still a large potential for improvement. First of all, performance could
be improved by switching to the Spark 2.x branch, merging some phases of the
conversion process into one pass over the data (namely the RDF schema collec-
tion) and by implementing the CSV bulk load functionality for other RDBMS
apart from PostgreSQL (SQL Server BULK INSERT, Oracle SQL*Loader,
etc.). Second of all, support for more RDF concepts can be implemented,
such as storing blank nodes and instances without a rdf:type, applying RDFS
and OWL statements such as owl:equivalentClass or owl:sameAs. Thirdly,
appending additional RDF statements to an existing database could be im-
plemented, inserting new instances and relations, updating existing ones and
even modifying the schema. Finally, a graphical user interface could be im-
plemented to provide a more user-friendly experience when running locally on
one machine.
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[59] Pellissier Tanon, T.; Vrandečić, D.; et al. From Freebase to Wikidata:
The Great Migration. In Proceedings of the 25th International Con-
ference on World Wide Web, WWW ’16, Republic and Canton of
Geneva, Switzerland: International World Wide Web Conferences Steer-
ing Committee, 2016, ISBN 978-1-4503-4143-1, pp. 1419–1428, doi:
10.1145/2872427.2874809. Available from: https://doi.org/10.1145/
2872427.2874809

73

https://github.com/michaelbrunnbauer/rdf2rdb
https://github.com/michaelbrunnbauer/rdf2rdb
https://doi.org/10.1145/2872427.2874809
https://doi.org/10.1145/2872427.2874809




Appendix A
Contents of CD

readme.txt ....................... the file with CD contents description
rdf2x usage.pdf.......usage documentation of RDF2X conversion tool
docs ............................................ the Javadoc directory
src....................................the thesis source code directory
thesis........................................the thesis text directory

thesis.zip..................the LATEX source code files of the thesis
thesis.pdf ...................... the Diploma thesis in PDF format
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