CzECH TECHNICAL UNIVERSITY IN PRAGUE
FACULTY OF INFORMATION TECHNOLOGY

ASSIGNMENT OF BACHELOR’S THESIS

Title: Numerical database system

Student: Viacheslav Kroilov

Supervisor: doc. Ing. lvan Sime&ek, Ph.D.

Study Programme: Informatics

Study Branch: Computer Science

Department: Department of Theoretical Computer Science
Validity: Until the end of summer semester 2017/18

Instructions

1) Study and explore the current concept of numerical database system (see [1] and [2]) that stores most
frequent search terms in a weighted search tree.

2) Discuss advantages and drawbacks of different types of weighted search trees in application to the
algorithm.

3) Explore different strategies for storing terms.
4) Implement a parallel version of the described algorithm.

5) Perform a performance measurement (throughput and latency) of the parallel version on a multicore
system. Tests are based on common usage scenarios of this algorithm.

6) Implement a ready-to-use open source library in C++ programming language.

References

[1] S. C. Parkb, C. Bahria, J. P. Draayerb, S. -Q. Zhengb: Numerical database system based on a weighted search tree,
Computer Physics Communications, Volume 82, Issues 2-3, September 1994, Pages 247-264.

[2] CTU FIT Bachelor Thesis 2016, Miroslav MaSat: Numerical database system, Prague, February 4.

doc. Ing. Jan Janous$ek, Ph.D. prof. Ing. Pavel Tvrdik, CSc.
Head of Department Dean

Prague February 11, 2017

CZzECH TECHNICAL UNIVERSITY IN PRAGUE

FacurLTy OF INFORMATION TECHNOLOGY

DEPARTMENT OF THEORETICAL COMPUTER SCIENCE

Bachelor’s thesis

Concurrent Memoization System for
Large-Scale Scientific Applications

Viacheslav Kroilov

Supervisor: doc. Ing. Ivan Simetek, Ph.D.

16th May 2017

Acknowledgements

First of all, I would like to thank my parents, Mikhail Kroilov and Elena Kroilova,
for the constant support they are giving to me.

Also T would like to thank Valerie Bashkirtseva for the warmth she gives
to me and for making the place we are living in the home.

Finally, but not least, I want to thank my thesis supervisor doc. Ing. Ivan
Simecek, Ph.D. for the valuable feedbacks on preliminary versions of this thesis
and for the experience I have gained during the BI-EIA course.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on 16th May 2017 .

Czech Technical University in Prague

Faculty of Information Technology

(© 2017 Viacheslav Kroilov. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Kroilov, Viacheslav. Concurrent Memoization System for Large-Scale Sci-
entific Applications. Bachelor’s thesis. Czech Technical University in Prague,
Faculty of Information Technology, 2017.

Abstrakt

Numericka databaze zrychluje vypocet ukladanim mezivysledkt do paméti.
Kanonicka implementace numerické databaze je zalozend na ohodnoceném
bindrnim stromu — kombinace AVL-stromu a binarni haldy. V této préci je
diskutovana i moznost vyuziti jinych datovych struktur, jak je Splay-strom
a hasovéci tabulka. Navic je zavedena zcela nova datova struktura — CNDC.
Podporuje stejné operace jako ohodnoceny binarni strom, ale je prizpusobend
k pouziti ve vicevlaknovém prostredi.

Vsechny zminéné datové struktury jsou implementovany v programovacim
jazyce C++ v podobé programovaci knihovny NUMDB. Na zavér jsou uvedené
vysledky méreni vykonnosti implementovanych datovych struktur.

Kli¢ova slova numerickd databaze, vypocetni optimizace, splay strom, hasovaci
tabulka, datové struktury pro paralelni zpracovani, vicevldknova synchro-
nizace, fine-grained locking, C++

ix

Abstract

Numerical databases speed up computations by memoizing pairs of an ar-
gument and the result, computed by a function with the argument. The
canonical numerical database is based on the weighted search tree — a combi-
nation of the AVL tree and the binary heap. The application of alternative
data structures, namely the hash table and the splay tree, is discussed in this
thesis. In addition, a new data structure — CNDC — is introduced. It is similar
to the weighted search tree, but all operations are declared as thread-safe.
Data structures, mentioned above, are implemented in the C++ program-
ming language as a programming library, called NUMDB. The performance of
each data structure is measured, and the results are compared and discussed.

Keywords numerical database, computational optimization, splay tree, hash
table, concurrent lookup data structure, thread synchronisation, fine-grained
locking, C++

xi

Contents

Introduction 1
1 Preliminaries 3
1.1 Related Data Structures, 3
1.2 Thread Synchronization 7
2 Numerical Database 9
2.1 Comncept oo 9
2.2 Priority 10
2.3 Weighted Search Tree 11
2.4 Known Implementations 12
3 Numerical Database Variations 15
3.1 Priority 15
3.2 Alternative Eviction Policies 17
3.3 Alternative Sequential Containers 18
3.4 Alternative Concurrent Containers 19
4 Library Implementation 23
4.1 Chosen Technologies 23
4.2 Project Structure Overview 24
4.3 Source Code Overview v v i 25
5 Performance Evaluation 31
5.1 Benchmark 31
5.2 Benchmark Parameters 32
5.3 Analysis of the Sequential Containers 33
5.4 Analysis of the Concurrent Containers 36
Conclusion 39

xiii

Bibliography

A Container Reference
A.1 Sequential Containers
A.2 Concurrent Containers

B Benchmark Results
C Acronyms

D Contents of enclosed CD

Xiv

41

45
45
46

47

55

57

B.1

B.2

B.3
B.4
B.5
B.6

List of Tables

Sequential benchmark (variable memory size, static input distribu-

tion) 48
Sequential benchmark (variable memory size, time-varying input

distribution) Lo 49
Sequential benchmark (variable area-under-curve value) 50
Sequential benchmark (variable mean changing rate) 51

Parallel benchmark (variable memory size, static input distribution) 52
Parallel benchmark (variable memory size, time-varying input dis-
tribution) L 53

XV

5.1
5.2
5.3
5.4
5.5

List of Figures

Sequential containers comparison (variable memory size) 34
Sequential containers comparison (variable area-under-curve value) 34
Sequential containers comparison (variable mean changing rate) . . 35
Concurrent containers comparison (variable thread count) 37
Concurrent containers scalability comparison 37

xvii

=W N =

List of Algorithms

Lookup in BST 4
Numerical database item retrieval 10
W ST priority update 11
W ST priority update with saturation 16

xXix

List of Listings

1 Curiously Recurring Template Pattern 28

xxi

Introduction

There is a strong trend nowadays in scientific computations — the size of data
to be processed increases faster than available computing resources. Different
optimization techniques are used to overcome this problem. For example, a
memoization technique, which is as follows — a result R that has been com-
puted once by a function F’ with the argument A is stored in memory (together
with A). Then on consequent calls of F' with A, R is retrieved from memory,
hence the actual call to F' is omitted. This optimization turns out to be par-
ticularly useful when a result of F' takes a long time to be computed (relatively
to a time needed to retrieve R from memory), and F' is usually called only
with a small subset of arguments. Sometimes this technique is also referred
to as a caching.

A target audience for this kind of memoization systems is scientific application
developers.

The concept of a numerical database, introduced by Park, Draayer, and
Zheng[1], describes one of such memoization systems. Its main purpose is
to “store and retrieve valuable intermediate information so costly redundant
calculations can be avoided.” Authors also presented a possible implementa-
tion, that is based on a weighted search tree.

The main goal of this thesis is to explore different look-up data structures,
especially those supporting a concurrent access, which can be used in place
of the weighted search tree and compare their performance. Then, the most
promising data structures will be packed in a programming library, written in
C++ programming language.

CHAPTER 1

Preliminaries

Essential programming concepts and data structures are described in this
chapter. The rest of the thesis relies on these terms.

1.1 Related Data Structures

1.1.1 Binary Search Tree

A binary search tree is a data structure that implements find(), insert(), and
remove() operations on a set of keys. Key K can be of any type, that has
a total order. Throughout the thesis, trees with distinct keys are discussed,
although of course, it is not the necessary condition.

A binary tree (not to be confused with a binary search tree) consists of nodes.
A node N consists of a key (defined as key(IN)) and two references to other
nodes — left child (defined as left(NN)) and right child (defined as right(N)).
A reference may contain a link to an existing node or a special value nil, that
means that the reference is empty. A node that contains a link to a child
is called a parent of this child node. Nodes may contain other attributes as
well, but those are not substantial for this explanation. A node that has no
children (left(N) = nil A right(N) = nil) is called a leaf.

From the perspective of the graph theory, the binary tree is a simple oriented
acyclic graph, where vertices are represented as nodes and edges are repre-
sented as links between a node and its left and right children. Every vertex in
such graph has at most one incoming edge, i.e. every node can have at most
one parent. Moreover, only one node has no parent — this node is called the
root of a binary tree. The length of the longest path from any leaf to the root
is known as the height of a binary tree. The subtree with a root in N defined
as N and a set of nodes that can be reached from N by child links.

1. PRELIMINARIES

Algorithm 1 Lookup in BST
procedure FIND(root, K) > The node with key = K or nil

1:

2 node < root

3 while node # nil do

4 if K = key(node) then

5: return node

6 else if K < key(node) then
7 node < left(node)

8

9

else > K > key(node)
: node < right(node)
10: end if
11: end while
12: return nil > The node was not found

13: end procedure

A binary search tree (BST) is a binary tree that satisfies the following con-
dition: for each N, subtrees with the root in left(N) and with the root in
right(N) contain only nodes with keys, that are less or equal than key(N)
and larger or equal than key(N), respectively. Using this property, it is pos-
sible to implement a fast lookup of a key K in a binary search tree (see
Algorithm 1).

The complexity of this search algorithm is O(height(T')) (assuming that key
comparison takes O(1)). Furthermore, two remaining operations of a binary
search tree, insert() and remowve(), are implemented in the same fashion,
and both of those operations have complexity O(height(T")) as well. Their
implementation is described in detail in [2, p. 327].

The tree height can vary between O(size(T)), and O(log(size(T))) in case of
a complete binary tree [3], where size(T) is the count of nodes in 7. BST will
maintain optimal operation time only if its structure is close to a complete
binary tree and the height is bounded by ¢xlog(size(T")), where c is a constant
factor greater or equal 1.

To keep the height logarithmic, even in a worst-case scenario, the tree rebal-
ancing has been invented. The idea is that a tree keeps track of its structure
and if it is not optimal, then the rebalancing is applied to restore optimal
structure. The rebalancing can be achieved with the tree rotation[2, p. 435] —
the operation, that swaps a node with its parent in a way, that preserves the
BST property.

1.1. Related Data Structures

1.1.2 AVL Tree

AVL tree was invented in 1962 by Georgy Adelson-Velsky and Evgenii Landis[4].
It is a classic example of a self-balancing BST'. In fact, the height of the AVL
tree is never greater than 1.4405 x log(size(T')) — 0.3277 [5, p. 460].

Self-balancing is achieved with the following approach: every node holds the
difference between the heights of its left and right subtrees; this difference is
called balance factor. AVL property requires the balance factor of every node
to be in range of values —1, 0 and 1.

After every operation, that modifies the tree structure — insert() and remove(),
balance factors are updated. If at any step the balance factor happens to be
—2 or 2, a rotation or a double rotation is applied. The rotation adjusts
the heights of the left and right subtrees and, consequently, restores the AVL
property. The exact AVL tree implementation is described in [5, p. 458].

1.1.3 Splay Tree

Another approach on tree balancing is presented in the Sleator and Tarjan
work[6] — “The efficiency of splay trees comes not from an explicit structural
constraint, as with balanced trees, but from applying a simple restructuring
heuristic, called splaying, whenever the tree is accessed.” Term splaying stands
for the process of using rotations (similar to ones in the AVL tree) to bring
the last accessed node to the root.

Sleator and Tarjan proved that by using this approach, all three basic op-
erations (find(), insert() and remove()) have a logarithmic time bound.
Another benefit of splaying is that the most frequently accessed items tend to
gather near the root, therefore improving access speed, especially on skewed
input sequences — the sequences, in which only a small number of items are
accessed often while other items occur rarer. This property is exploited in the
Splay eviction policy (Section 3.2.3).

Even though splay trees show several interesting theoretical properties, in
practice they are outperformed by more conventional BSTs, like AVL or Red-
Black tree[7] (the performance evaluation of NUMDB (Section 5.3) reaffirms
this statement). This is due to the fact that in the splay tree the structure
of the tree is altered on every operation, including find operation, while AVL,
for instance, modifies the tree only during insertions and removals.

The typical use scenario for those data structures is a scenario, where a vast
majority of operations is the search operation, while updates are not so often.
AVL and Red-Black trees happen to be faster because they execute fewer
instructions per find operation. Moreover, they do not make any writes to

1. PRELIMINARIES

memory during the lookup, and, as a consequence, there is lower load on the
memory bus and the system cache.

Further researches on splay trees were focused in the main on how to reduce
the number of rotations during splaying. An extensive overview of those op-
timizations is provided in [7]. One of the described techniques, the partial
splaying is a modification of a conventional splay tree, where every node con-
tains a counter that denotes a total count of accesses to this node. As usual,
splaying is performed on every access, but the node is splayed only until its
access count is less than the access count of its parent.

W. Klostermeyer showed that this modification does not gain any noticeable
advantage over a standard splay tree [8]. However, partial splaying and other
derived modifications can have some interesting properties specifically in ap-
plication to a numerical database. It will be discussed in Chapter 3.

1.1.4 Hash Table

A hash table is another popular data structure that implements dictionary
abstract data type. It uses the entirely different approach on item stor-
age and lookup. A hash table allocates a contiguous array A, which size
is bounded by the expected number of items to be stored, often multiplied by
the load factor «. The items are stored in A.

Firstly, let’s look at the simplified case: the key K that is used in a hash table
is of an integer type. Having A, K and the value V, associated with K it is
possible to use a remainder of the division of K by the size of A as an index
in A. Then, V will be stored in A at this index. This approach would give
the best performance possible, as the V can be retrieved immediately and
the lookup time does not depend on the total count of items in the hash table.
However, since the modulo operation has been used, there can be several keys
that point at the same index in A. This circumstance is called collision.

To deal with a collision, it is necessary to store K itself together with V', so
that in case of a collision it would be possible to tell if the stored V is actually
associated with the K or another K’, that collides with K. Secondly, one
must pick a strategy on how to deal with the case when two different keys,
K; and K», that point at the same index are inserted. There are two main
approaches:

Separate chaining (open hashing) — each element in A is a linked list (or
another data structure), that stores all pairs (K, V') that collides.

1.2. Thread Synchronization

Linear probing (closed hashing) — if during insertion of K in A at the
index i a collision occurs (z is already occupied), a special function F is
used to determine the second index at which K can be inserted. If it
is also occupied, 3rd and all consequent positions, generated by F', are
used to try to insert the element.

The approach described above can be generalized on keys of any type T It is
achieved with the help of a hash function. This function takes an argument
of type T' and maps it to an integer, called hash. This function must satisfy
two properties:

Determinism — it should always map the same input to the same hash.

Uniformity — if used with a uniformly generated random sequence of objects on in-
put, the hash function should produce a uniformly distributed sequence
of hashes.

In [2, p. 464] Sedgewick and Wayne provide the detailed explanation of col-
lision avoidance strategies as well as general information about hash tables.
More information about hash function properties and hash function construc-
tion is presented in [9].

1.2 Thread Synchronization

1.2.1 Coarse-grained Locking

A trivial way to parallelize a sequential data structure is to eliminate a con-
current access at all. It can be achieved with a single mutual exclusion lock —
muter. While a thread holds a mutex, no other threads can lock the same
mutex.

The sequential data structure is wrapped into the helper type, that locks the
mutex in the beginning of every operation and releases it in the end, so that
only one thread can access the data structure at a time, no matter how many
threads are involved. This approach is called the coarse-grained locking, in
contrast with the fine-grained locking, where many locks are used and each
lock protects only a part of the data structure, so other threads can freely
access other parts.

Pros of this approach is a very trivial implementation and the absence of
any special requirements on the underlying data structure. However, coarse-
grained locking is only suitable when a data structure has a support role in
the program and is used occasionally. If the data structure is the key element

1. PRELIMINARIES

of the application, then a single lock becomes the bottleneck in the software,
drastically decreasing program scalability. In this case one should use more
sophisticated parallelization approaches.

1.2.2 Binning

The evolution of coarse-grained locking is the binning. The main drawback
of the previous approach is that a single lock becomes the main point of
contention between threads. One way to cope with this is to increase the
number of locks. In contrast with the fine-grained locking, the binning does
not involve any modifications of the underlying container.

Firstly, the numbers of bins — independent data structure instances — is chosen.
Then a mapping between the item domain and a bin number is introduced.
The mapping should yield a uniform distribution of mapped values. Every
item is stored only in its assigned bin. Every bin has its own mutex, therefore
the access to every bin is serialized. But since items are mapped uniformly, it
is expected to produce much less contention than in case of a single lock.

1.2.3 Fine-grained Locking

The fine-grained locking usually offers better scalability, than the previously
discussed approaches. Instead of a single lock, many mutexes are used simul-
taneously. Every mutex protects its part of data. The contention between
threads is lower as it is unlikely that several threads will access the same
portion of data at the same time.

However, this is true only if every portion has the same probability of being
accessed (like in a concurrent hash table). In some data structures, typically
binary trees, there are some nodes that are accessed (and are locked before
access) oftener than others, e.g. the root in a binary tree.

Substantial modifications got to be made to the data structure to integrate
the fine-grained locking. Sometimes the overhead added by this approach is
so big, that it brings to naught any potential speed-up. Fine-grained lock-
ing is not a silver bullet, but usually it offers a reasonable trade-off between
implementation complexity and application scalability.

CHAPTER 2

Numerical Database

In this chapter the contributions of [1] — the numerical database system and
the wighted search tree — are explained in detail.

2.1 Concept

In the year 1990 S.C. Park, J.P. Draayer, and S.-Q. Zheng introduced a memo-
ization system, called numerical database[l]. Like every memoization system,
its primary goal is to reduce costly redundant calculation. The main idea
behind this concept is to design a data structure that stores a limited number
of items — key-value pairs — and provide an efficient way to retrieve, insert
and remove items. A value is associated with the key that can be used to
calculate the value by a function. The complete process of the item retrieval
is demonstrated in Algorithm 2.

2. NUMERICAL DATABASE

Algorithm 2 Numerical database item retrieval
1: procedure RETRIEVE(numdb, K)

2 (V, found) < numdb.find(K)

3 if found = true then

4 numdb.update_priority(K) > Can be embedded into find|()
5: return V
6

7
8

9

end if

> The item was not found and must be recalculated
(V, priority) < numdb.call_user_function(K)
if numdb.is_full() then

10: numdb.evict_item() > Remove the item with the lowest priority

11: end if

12: numdb.insert(K,V, priority)

13: return V

14: end procedure

2.2 Priority

Each item has its assigned priority. When accessed, the priority of the node
is updated. Park et. al. define priority as follows — “A good priority strat-
egy should enable the frequency of a data item and its intrinsic value to be
incorporated into its assigned priority.” Initial priority can be supplied by
an external algorithm or computed using some heuristics. For example, the
heuristic can be based on the time it took to compute the value: some items
can take much more time to be calculated than others, then these elements
should be kept in the database even if they are accessed relatively rarely.

When a numerical database reaches its maximum capacity, the item with the
lowest priority is removed from the database prior to the next insertion. This
implies that the database should support queries on the item with the mini-
mum priority. The way it is achieved in the original proposal is discussed in
Section 2.3.

Park et. al. introduced a space-optimal representation of the item priority.
To distinguish this representation from others, it will be called the weighted
search tree priority (WST priority). This representation is stored in a single
32 bits long unsigned integer, but combines both the base priority and the hit
frequency at the same time. The first 8 bits of the number are reserved for
the base priority while remaining 24 bits contains hit frequency, multiplied by
a base priority. Therefore, the actual priority value equals to

hit_frequency x base_priority x 256 + base_priority (2.1)

10

2.3. Weighted Search Tree

Another advantage of the WST priority is a simple adjustment procedure when
the hit frequency is updated (see Algorithm 3). However, this representation
also has some drawbacks that will be discussed in Section 3.1.1.

Algorithm 3 W ST priority update
1: procedure UPDATE(priority) > 4 bytes long unsigned integer
2 base_priority < priority & FFig > Hexadecimal number
3 priority < priority + base_priority x 10014
4: > Multiplication shifts the number 8 bits to the left
5
6:

return priority
end procedure

2.3 Weighted Search Tree

Park et. al. also proposed a data structure, called weighted search tree
(WST), that can be used as a base for the numerical database. The weighted
search tree is a combination of two well-known data structures — the AVL tree
and the binary heap. Each of them fulfills its purpose:

AVL tree is used for a fast item lookup, insertion, and removal in O(log size(T))
time.

Binary heap is used to maintain priorities of nodes. Specifically, it provides an ability
to find a node with the lowest priority in O(1) and can perform insertions
and deletions in O(log size(T")) time.

Weighted search tree holds all its nodes in a single contiguous array. These
nodes are ordered in the same way as in a regular minimal binary heap:

VN € HEAP, priority(N) < priority(heapLeft(N))A

2.2
priority(N) < priority(heapRight(N)) (2.2)

heapLeft(N) and heapRight(N) of N with index i are defined as (2 x i) and
(2 x i + 1) respectively.

The difference is that each node is an AVL tree node at the same time — it
stores links to its left child, right child, and parent node.

11

2. NUMERICAL DATABASE

With a given structure the three basic operations are defined as follows:

find() is the same as in any binary tree — it is begins at the root and then
continues as described in Algorithm 1.

insert() consists of two steps:

1. The node is inserted into the binary search tree, and the tree is
adjusted using AVL rotations. Obviously, these rotations only
change pointers inside nodes. Therefore, they do not affect the
binary heap structure.

2. The node is inserted into the binary heap. It is done using the
heapify() operation[2, p. 346]. Note that heap adjustments would
reorder nodes so that binary search tree pointers would point to
wrong nodes and the whole tree would become ill-formed. To avoid
this, special care should be taken when swapping nodes — one
should also check and adjust tree pointers during swaps.

remowve() is similar to the insertion, but steps are performed in the reverse order —
at first, the element is removed from the heap, then from the tree. Again,
heap adjustments should be performed with respect to the tree structure.

2.4 Known Implementations

The reference implementation was made by Park, Bahri, Draayer, and Zheng.
A complete source code is available at [10]. It was implemented in Fortran
programming language. The source code cannot be compiled with any mod-
ern Fortran compiler[11]. Therefore, this implementation is mentioned here
but cannot participate in the benchmark. The NUMDB library contains the
implementation of the weighted search tree, recreated basing on [1] and [12].

Another implementation has been developed and described by Miroslav Masat
in his bachelor’s thesis [11]. C++ source code is available at [13]. In this
particular implementation item priorities are defined solely by the user and
are not updated afterward. Therefore it is only applicable in scenarios when
the item importance is known beforehand. A canonical numerical database
has a broader field of applications.

Another essential flaw of Masat’s implementation is that his weighted search
tree operates on keys only, providing no facility for storing values, associated
with keys!.

'Practically, it is possible to overcome this limitation. Both the key and the value can
be merged in a single structure, and the overloaded comparison operators would compare
only keys. It is still unclear, why it was not implemented in the library itself.

12

2.4. Known Implementations

What is more, the key is stored twice for each item. The AVL tree and the
binary heap are not incorporated into the single data structure, but are kept
completely separate. And each of them stores its own copy of keys. This
fundamentally violates the original WST design.

Considering these flaws, Masat’s work is excluded from the performance eval-
uation. It seems, that there is no advantage compared to the WST implemen-
tation, provided in NUMDB.

Both of the implementations are designed for a single-threaded environment
only. It is a huge drawback since it is natural to run scientific applications on
many-core systems. Therefore, a memoization system must support concur-
rent access in order to be usable in real-world applications. It was achieved
in the NUMDB library.

13

CHAPTER

Numerical Database Variations

All of the main contributions of this thesis are presented in this chapter.
Specifically, a variation of eviction policies, other than what have been pro-
posed in [1], and alternative data structures, that can be used as the container
for the numerical database, are discussed.

3.1 Priority

3.1.1 Improved WST Priority

The weighted search tree priority representation, discussed in Section 2.2,
has some drawbacks that probably were irrelevant at the time when [1] was
published. The problem is that keeping the hit counter in only 24 bits (even
more, the hit counter multiplied by the base priority) would result in an integer
overflow sooner or later.

For example, imagine the case when the base priority is the maximum possi-
ble — 255. Binary representation is 000000FF 4. After 65793 hits, the priority
will have its maximum value — FFFFFFFF1g. If another hit counter adjust-
ment is made an overflow occurs, producing the value 000000FE;g. Therefore,
the maximum priority becomes very low, and even the base priority has been
changed. There are at least two possible solutions:

Use larger counter — store the WST priority in a 64-bit integer. An over-
flow of a 56-bit counter is unlikely, not to say impossible — even with the

maximum base priority, an overflow will occur only after the 282578800148737th

insertion. It would take days to make so many adjustments, even if the
processor performs only these adjustments and nothing else (which is
at least impractical). Nevertheless, a certain disadvantage is that the
memory overhead per each node is increased by 4 bytes.

15

3. NUMERICAL DATABASE VARIATIONS

Algorithm 4 W ST priority update with saturation

1: procedure UPDATESATURATED(priority)> 4 bytes long unsigned integer
2 base_priority < priority & FFig

3 new_priority <— base_priority > 8 bytes long unsigned integer
4: new_priority < new_priority X 10014

5: > Maximum possible result is FFFFFFFF0014
6 if new_priority < FFFFFFFF15 then > Maximum value for 4 bytes
7 priority < new_priority + base_priority

8 else

9: priority <— FFFFFF0016 + base_priority

10: end if

11: return priority

12: end procedure

Perform a saturated addition when adjusting the hit counter (Algorithm 4).
The saturated addition is the addition that yields the expected result if
no overflow occurs during the operation and the maximum number for
the given operand size otherwise. The drawback of this method is the
slightly increased computation time.

The difference between these two methods is the common trade-off between
time and space. Since the total count of items that can be stored in a database
with the limited memory available is the crucial characteristic of a database,
the preference is given to the saturated addition method.

3.1.2 Priority Aging

The WST priority has one more drawback — it is suitable only for static
input distributions — distributions, which mean remains constant during the
execution. However, if the mean is known beforehand it is possible to construct
a static optimal BST[5, p. 442], that will be more efficient than any dynamic
lookup data structure.

A numerical database with the WST priority performs poorly on the time-
varying distribution — a distribution which mean changes over time — while
this type of distributions is more common in the real world applications. The
problem arises from the fact that the priority does not reflect when an item
was accessed for the last time.

The worst-case scenario is the following: an item is added to a database, then
it is accessed frequently hence its priority rises to the maximum, and then is
not used over a long time. During the runtime, several items like this can
appear. Even though at some point they are not accessed anymore they are

16

3.2. Alternative Eviction Policies

still the most valuable items from the perspective of the database hence they
will be kept much longer than other items. This pollutes the database with
elements that are stored but not used.

There are several ways to cope with the problem. First of all, it is possible to
use an entirely different eviction policy, the one that is not based on the item
priority. Some of these policies are described in Section 3.2.

Another solution is to adjust a priority not only when the corresponding node
is accessed but also when it is visited (during the lookup of another item).
For example, when searching in a binary search tree, the priority of the node
N that is being searched is increased while priorities of the nodes, lying on
the path between the root of the tree and N, are degraded.

This mechanism may not be effective with the AVL tree because in the AVL
tree the order of the nodes does not correlate with node priorities. However,
it seems very promising in application to the splay tree — by applying this
mechanism, the nodes near the root can stay there if only they are constantly
accessed.

3.2 Alternative Eviction Policies

The canonical weighted search tree always chooses the node with the minimum
priority for the deletion. However, it is only one of many possible eviction
policy. Some other policies are presented in this section. From general ones,
like LRU, to those exploiting the lookup data structure internals to find the
least valuable item.

3.2.1 LRU Policy

The Least-Recently-Used policy tracks every access to the items and sorts
them by the access order. Then it evicts the item that was not accessed for
the longest time. The common implementation is based on a doubly-linked
list. When an item is accessed its corresponding node in the LRU list is moved
into the head of the list. Then the least-recently-used node is the one in the
tail of the list. When a new item is added, it is inserted in the head of the
LRU list.

3.2.2 LFU Policy

The Least-Recently-Used item policy fulfills the same purposes as the LRU
policy. But when it decides which item should be evicted, the access frequency
is also taken in account in addition to the last access time (LRU uses the latter

property only).

17

3. NUMERICAL DATABASE VARIATIONS

3.2.3 Splay Policy

A splay tree tends to keep the most frequently accessed items near its root. By
relying on this property, it is possible to eliminate a separate data structure
that manages item priorities. When an eviction is performed, one of the
bottom nodes is chosen for eviction. Even though this strategy may not
choose the optimal node every time, it is expected to perform effectively on
average. Moreover, this approach has the lowest memory overhead per node
among all tested data structures.

3.3 Alternative Sequential Containers

3.3.1 Hash Table

One of the data structures that can be used in place of the weighted search
tree is the hash table. Hash tables have faster than balanced BSTs lookup
time under most workloads. What is more, a node in a hash table has lower
memory overhead than a binary tree — with open hashing (based on a doubly
linked list) every node stores only 2 pointers compared to 3 in a binary tree
node and using closed hashing implies that no pointers are stored at all.

However closed hashing can not be used because when the hash table is al-
most full, a lot of unsuccessful probes occur before a suitable index is found.
Usually, this problem is solved by rehashing — if the count of probes exceeds
the certain limit, the hash table is expanded. However, it is impossible in
the numerical database since the amount of available memory is preset and
cannot be exceeded.

On the other hand, limited memory is rather an advantage for the open hash-
ing. If the total amount of memory available is known beforehand, then a
hash table with open hashing can be preallocated to its maximum size and be
never rehashed after. This, in turn, allows a concurrent version of a hash table
to be simplified as the concurrent rehashing is one of the hardest problems to
cope with.

3.3.2 Splay Tree

Another data structure that looks promising is the splay tree. As it was
mentioned in Section 1.1.3, usually splay trees tend to be slower than AVL.
However, in application to the numerical database, it is possible to exploit
the fact that the least valuable nodes are usually gathered in leaves of the
tree. Therefore it is is possible to eliminate a binary heap from a numerical
database and to use the splay policy, as described in Section 3.2.3. What is
more, it is possible to implement a concurrent numerical database using the
concurrent splay tree[14].

18

3.4. Alternative Concurrent Containers

3.4 Alternative Concurrent Containers

3.4.1 Coarse-grained Lock Adapter

The NUMDB library provides a universal adapter, that wraps a sequential
container and adapts it to the concurrent environment by using the coarse-
grained locking approach (Section 1.2.1). It has the same interface, as a usual
numerical database container. All methods follow the same structure:

1. the mutex is locked
2. the call is forwarded to the underlying container

3. the mutex is released

3.4.2 Binning Adapter

The binning adapter class realises the binning concept (described in Sec-
tion 1.2.2). It is similar to the coarse-grained lock adapter, however, it encap-
sulates several instances of a container, each with own mutex.

The number of bins is passed in the class constructor. The mapping is de-
fined as hash(K) mod bin_count. Every bin is represented by a sequential
container, e.g. the weighted search tree. In order to preserve the memory
limit, all available memory is equally divided between all bins.

3.4.3 CNDC

For the purposes of the NUMDB library, the original concurrent container,
called Concurrent Numerical Database Container — CNDC, has been developed.
It defines 3 thread-safe operations — find(), insert(), and removeMin().
Thread-safeness is achieved through the fine-grained locking approach. CNDC
is based on concurrent versions of the hash table and the binary heap. Sequen-
tial benchmarks (Section 5.3) proved that the combination of a hash table and
a binary heap outperforms numerical databases, that are based on the LRU
and LFU eviction policies.

Fine-grained locking hash table implementation is much simpler compared to
a similar concurrent BST. A lock is assigned to every hash table bucket (or
every k buckets) and every operation inside the bucket locks the corresponding
mutex. Since an operation in one bucket never interferes with any other
bucket, only one lock is needed per operation, while other threads can operate
on other buckets at the same time. Therefore, the overhead added by locking
is smaller, than in a concurrent BST, where up to log height(T) mutexes has
to be locked on every operation.

19

3. NUMERICAL DATABASE VARIATIONS

There are several known binary heaps with a fine-grained locking ([15], [16]
and more). The CNDC is based on the CHAMP binary heap, developed by
Tamir, Morrison, and Rinetzky [16]. Unlike the majority of concurrent binary
heaps, CHAMP allows priorities to be updated after the insertion.

In the following section, two types of locks are distinguished — the bucket
mutex (the one, that protects a single bucket in a hash table) and the heap
mutex (the one, that protects a single item in a binary heap. Every hash
table node has a link to the corresponding heap node and vice versa. CNDC
operations are defined as follows:

find() consists of the following steps. At first, calling thread locks the corre-
sponding bucket mutex. The requested item is searched in the bucket.

If the item is found, its priority is updated. Before updating the priority
the corresponding heap mutex must be locked. After locking the heap
mutex the link to the heap node is checked again. If it has changed,
the heap lock is released and the operation is repeated. Double check
is required, because another thread can change the link even in case it
does not hold the bucket mutex.

However, the heap mutex is required to be locked prior to the link up-
date. Therefore, when a thread holds a heap mutex it is guaranteed,
that no other thread can change the link between the heap node and the
hash table node.

When the node is locked, the priority is updated and the bubble Down|()
operation (as defined in [16]) is performed. bubbleDown() internally
releases the heap and bucket locks.

insert() has a structure, similar to find(). The corresponding bucket mutex
is locked. New item is inserted into the hash table. After that, the item
is inserted in the binary heap (at the last index). Before the insertion is
performed, the heap lock of the last index is locked.

The bucket mutex is released. It is possible to do this so early, because
the heap lock will be held till the end of the operation. While it is locked,
no other thread can execute any operation on the same node.

Finally, bubble Up()[16] is performed. It propagates the node down until
the heap invariant is restored.

20

3.4. Alternative Concurrent Containers

removeMin() evicts the item with the lowest priority. This operation is decomposed
into three independent parts.

1. The item is evicted from the heap.

2. The hash table node is marked as deleted. Otherwise, another
thread can access the item and start the priority update routine.
Since the node does not exist in the heap anymore, the thread will
enter into an infinite loop. Marking solves the problem as follows —
the marked node can still be accessed by other threads, however,
they will skip the priority update stage for the node.

3. The item is removed from the hash table.

21

CHAPTER 4

Library Implementation

In the following chapter the NUMDB library is described. This library provides
the implementation of several containers (including concurrent containers),
discussed in Chapters 2 and 3.

At first, global design decisions are explained. Then the most important
classes are analyzed and the particular tricks and code optimizations used in
the implementation are described.

4.1 Chosen Technologies

The library is written in the C4++ programming language. It has been chosen
by the following criteria:

e C++ is a compiled language. Dynamic and managed languages have
a huge runtime overhead, that significantly affects general application
performance, while not providing any serious advantage (at least from
the perspective of scientific applications).

e Modern C++ compilers applies lots of advanced code optimizations, in-
creasing the performance gap between compiled and dynamic languages
even further.

e C++ has an advanced template system that helps to write highly reusable
and extendable code, while adding no overhead in runtime.

The library uses some language and standard library features that have been
introduced in the C++14 standard. Therefore, the compiler must be C++14
conformant.

23

4. LIBRARY IMPLEMENTATION

The build process is managed by the CMake software, one of the most popular
tool in this category. A great number of other projects also use CMake for
managing the build process. It is trivially to embed a one CMAKE-based
project into another.

CMake uses CMakeLists.txt file, that contains the project definition, to gen-
erate a make file (other generators are also supported). Then, a program or a
library can be built by invocating the GNU make utility.

4.2 Project Structure Overview

4.2.1 Library

The project consists of the following folders:

include/numdb folder containing header files

1ib folder with source files (that can be compiled separately and merged
with the user program during the linkage stage)

test folder containing unit tests

benchmark folder with the benchmarking program, that has been used to perform
performance evaluation (Chapter 5)

Since the library heavily relies on templates, the majority of code is placed in
the header files.

4.2.2 External Libraries

This library relies on several additional libraries. They are distributed along
with the sources (except BOOST.MATH) in the 3rdparty folder in the form
of the git submodules. Since all of them use CMake software for building
process, they are natively integrated into the main project and are compiled
automatically when needed.

FUNCTION_TRAITS extends C++ standard library metaprogramming capabilities by
defining the type trait that can deduce argument types of a pro-
vided functor object.

MURMURHASH2FUNCTOR library contains murmurhash2 hash function[17] implementation
and wraps it into the interface, similar to the std: :hash.

The demand for the std::hash replacement is dictated by the
fact that the standard hash is not suitable for the hash table —

24

4.3. Source Code Overview

std: :hash for an integer is defined as the number itself (at least
on some compilers[18]); under certain circumstances, this can lead
to a high number of hash collisions.

GOOGLE BENCHMARK framework is used as a benchmark starter. Its responsibility is to
run functions that are to be benchmarked, measure their running
time and other metrics, and encode the result into a structured
data format (e.g. JSON).

GOOGLE TEST framework enables unit testing. It provides some helper function
and macros to simplify writing of unit tests as well as a common
facility to run and evaluate tests.

BoosT.MATH provides some statistical functions that are required by the bench-
mark program. This is the only library that is not bundled with
the project and must be installed separately.

FUNCTION_TRAITS and MURMURHASH2FUNCTOR are required by the library
itself. Other libraries are needed for testing/benchmarking only.

4.3 Source Code Overview

In the following section individual parts of the library are analyzed. The
numerical database is called function cache in this implementation because it
has a cleaner meaning than the less known numerical database term.

All classes, presented in NUMDB, are declared in the numdb namespace.

4.3.1 numdb.h

This is the main entry point of the NUMDB library. Users need to include this
file into their project to gain access to the data structures provided by the
library.

4.3.2 function_cache.h

FunctionCache is the main class that realizes the numerical database concept.
It does not determine how items are stored — it takes a container as a template
type parameter and stores all items in the instance of the provided container.

This class defines helper function and type definitions, that are common for
all numerical database implementations, e.g. args_tuple_t — a tuple that can
store arguments of a function call. What is more, the item retrieval operation,
as described in Algorithm 2, is implemented with actual calls to the lookup
and insertion routines forwarded to the underlying container.

25

4. LIBRARY IMPLEMENTATION

FunctionCache is responsible for calling the provided user function in case
the requested item was not found in the container. All invocations are timed
with a system clock; then the duration is converted into the initial priority
that is assigned to new item (initial priority generator is used).

4.3.3 initial priority_generator.h

This header file contains classes that are responsble for computing the initial
item priority basing on the duration of the current user function call and
durations of previous calls.

MinMaxPriorityGenerator calculates the priority as a linear interpolation
between the minimum and the maximum values. RatioPriorityGenerator
calculates it as a proportion to the current average value. The latter scheme
proved to be fairer and is used in the final implementation.

What is more, both schemes have an adaption mechanism — the average is
divided by 2 every N iterations, so that the latest input has bigger influence
on the final result than data from previous periods. At the same time, the
historic data is not discarded completely.

4.3.4 fair_Iru.h and fair_Iru.cpp

FairLRU class implements the alternative eviction policy — the item accessed
the least recently among all items is always chosen for eviction. It is achieved
by maintaining a doubly linked list of all nodes. When a node is inserted, it
is placed in the tail (end) of the list. When a node is accessed, it is extracted
from its current position, then inserted in the tail of the list. Therefore, the
least recently used node appears in the head (start) of the list. All mentioned
operations — insertion at the end, extraction (with a known pointer to a node),
extraction from the head — have O(1) time complexity.

To embed FairLRU in a container, an instance of FairLRU should be added as a
class member and container nodes should be derived from the FairLRU: : Node
class (it contains data members that are required for a doubly linked list
implementation). Then all basic operations, namely find(), insert(), and
remove(), should call corresponding methods on the FairLRU instance.

4.3.5 fair_lfu.h and fair_lfu.cpp

FairLFU external interface and usage scenario are similar to the ones in
FairLRU. However, it differs in the way it choses items for eviction (see Sec-
tion 3.2.2).

26

4.3. Source Code Overview

Internally, the implementation is based on the two-level linked list, as de-
scribed by Shah, Mitra, and Matani[19]. This implementation has been chosen
because it guarantees O(1) time complexity on all basic operations. Another
well-known LFU implementation is based on a binary heap, but it achieves
only O(log N) time complexity.

The implementation used in the library differs from the original one. When
a new item is inserted, the original implementation always assigns 1 to the
node hit count. This yields a very ineffective behavior as the LFU tends to
evict nodes that have just been added and preserves older ones, even those
that have been accessed only twice.

The solution of this problem, presented in the library, is to calculate the initial
hit counter value as a hit count of the least frequently accessed node (the one
that is in the list head and may be evicted in the next step) incremented by
one. This approach ensures that a new node is never inserted at the list head.

As a side effect, this adds the priority aging process (the approach is inverted —
priority of new items is boosted instead of decreasing priority of older ones).

4.3.6 weighted_search_tree.h

Basing on [1] and [12], the original weighted search tree has been reimple-
mented. Unlike the original implementation, the priority aging (see Sec-
tion 3.1.2) is also implemented — while traversing over the AVL tree (during
item lookup), priorities of all visited nodes are decreased, and the binary heap
is adjusted accordingly.

The improved WST priority scheme (as discussed in Section 3.1.1) is used for
the node priority representation. Another optimization is the elimination of
the AVL balance factor as a separate structure member (in this case it takes at
least 1 byte). It is embedded into the priority component — 2 bits are reserved
for the balance factor, and remaining 30 are used for the priority (8 bits for
the base priority and 22 bits for the accumulated priority). It is achieved with
the C++ bit field feature.

4.3.7 hash_table/

hash_table folder contains FixedHashtableBase, FixedHashtableBinaryHeap,
and FixedHashtableFairLU classes.

FixedHashtableBase defines hash table implementation, that is common for
all derived classes. However, it contains no logic for choosing a node to be
evicted — FixedHashtableBase forwards the call to its derived class, where
this operation is implemented.

27

4. LIBRARY IMPLEMENTATION

Listing 1 Curiously Recurring Template Pattern
template <typename DerivedClass>
struct Base {
void callFoo() {
static_cast<DerivedClass*>(this)->foo();

};
struct Derived : public Base<Derived> {
void foo() {
std::cout << "Derived foo" << std::endl;

}
};
int main() {
Derived d;
d.callFoo(); //prints "Derived foo"
return O;

Normally, this polimorhic behavior can be achieved with a virtual method call.
However, virtual invocation brings additional overhead. Another drawback is
that a virtual call can not be inlined by a compiler. Note, that we are dealing
with the static polymorphism — all functions that can be called are known at
compile time and are never changed in runtime, in contrast to the dynamic
polymorphism.

To simulate the static polymorphism, Curiously Recurring Template Pattern
is often used[20]. The base class (that needs to call a function which imple-
mentation is provided only in the derived class) takes its derived class as a
template argument. When a polymorphic method needs to be called, base
class object casts this pointer to the derived class and then calls the desired
function. Name lookup mechanism finds the implementation of the method
in the derived class and performs a call to it (see Listing 1). It is a regular
call, so a compiler can apply call inlining and other optimizations.

Two other classes, FixedHashtableFairLu and FixedHashtableBinaryHeap,
derive FixedHashtableBase and supply the implementation of the method,
that searches for the least valuable item, that is to be evicted. To choose the
node, FixedHashtableFairLu uses FairLRU or FairLFU manager (actually,
the manager is passed as a template parameter, so it is possible to extend
the implementation with a custom manager). FixedHashtableBinaryHeap
maintains a binary heap for item priorities. In fact, it very very similar to the
weighted search tree, but with the hash table used in place of the AVL tree.

28

4.3. Source Code Overview

4.3.8 splay_tree/

splay_tree folder contains different variations of the splay tree. Practically
the complete tree implementation is in the SplayTreeBase class. Similarly
to the hash table implementation, the code for determining the least valuable
item is excluded from the base class. Again, the derived classes are responsible
for implementing it.

This splay tree implementation does not rely on the parent pointer in any
way. Therefore, it could be excluded from the node declaration. This would
decrease the memory overhead per node. However, for some item eviction
policies (LRU and LFU), a pointer to the parent is an inevitable requirement
(for other policies it is not). To support both types of policies, a wrapper
over a parent pointer is introduced. The wrapper interface consists of get and
set operations. Two implementations of the wrapper are provided — an actual
implementation, that encapsulates a real pointer, and a mock one, that stores
no value.

Derived classes tell SplayTreeBase (through a trait class) which wrapper
implementation they require and SplayTreeBase embeds the chosen wrapper
into the SplayTreeBase: :Node structure.

Even though the mock wrapper contains no data members, the size of an
empty structure can not be zero in C++-[21]. Therefore, if the wrapper is em-
bedded into a node, it takes at least one byte while not containing any valuable
information. This unnecessary overhead is eliminated using the Empty Mem-
ber Optimization[22].

There are two derived classes, that are responsible for the item eviction policy:
SplayTreeFairLu is similar to the HashTableFairLu class — it reuses LRU and LFU
node eviction policies.

SplayTreeBottomNode realizes the Splay eviction policy, as described in Section 3.2.3.

4.3.9 Concurrent containers

NUMDB contains 2 concurrent adapters, namely CoarseLockConcurrentAdapter
and BinningConcurrentAdapter, and CNDC data structure implementation,
described in Section 3.4.

29

CHAPTER 5

Performance Evaluation

This chapter describes the benchmarking program, its input parameters, and
the specification of the machines, that were used for the performance evalua-
tion. Additionally, the results of the benchmark runs are analyzed (the results
itself are presented in Appendix B) .

5.1 Benchmark

The performance evaluations is done with the benchmarking program. For
each tested data structure (presented in Chapter 2 and Chapter 3), the bench-
mark runs for a specified amount of time. Then the throughput (operations
per second) is calculated as the total count of iterations divided by the total
time.

Instead of separately measuring the performance of every basic operation
(find(), insert(), remove()), the overall numeric database performance is
evaluated. The numeric database retrieval operation consists of either lookup
(in case the item with the specified key is in the database) or lookup, user func-
tion invocation, item removal and item insertion. The user function is much
slower than the database operations. Therefore, the most effective numerical
database is the one that calls the user function as rarely as possible.

The recursive computation of the Nth Fibonacci number is chosen as the user
function. The algorithm implementation is trivia and, having the exponential
time complexity, it is extremely inefficient. This is the advantage from the
perspective of the benchmark as its task is to simulate a very computational-
heavy function. What is more, the time it takes to compute the function can
be easily adjusted by the function argument.

31

5. PERFORMANCE EVALUATION

Generally, cache systems perform well only on skewed inputs, when there is a
small subset of items that are accessed most of the time while other items are
accessed much less often. In this benchmark, a numerical database is tested
with a random input sequence that has normal distribution of values. The
parameters of the distribution are as follows:

Mean u equals zero. The data structures presented in this library are ag-
nostic to the particular argument values and their performance is only
affected by the frequency of items in the input sequence. So u can be
any number. Zero is any number.

Standard deviation o is derived from Area-under-curve parameter and
the available memory. Capacity is calculated as the available mem-
ory divided by the size of a single item. Area-under-curve is a value
from the interval (0,1). It defines the ratio of accesses to the Capacity
most valuable items to the total count of accesses. With given Capacity
and Area-under-curve, o is calculated as follows:

Capacity
o = . Area-under-curve
2 X Quantile(0.5 4 SrEURIEICUTLE)

(5.1)

5.2 Benchmark Parameters

The benchmark has several input parameters:

minval, maxval — the range of values the Fibonacci function is called with.
It is defined as a range to simulate functions which execution time de-
pends on its arguments.

available memory —the maximum amount of memory the numerical database
uses.

thread count — relevant for concurrent numerical databases. Sets the num-
ber of threads to run in parallel.

mean changing rate — adjusts the rate at which the mean of the distribu-
tion is changed. If larger than zero, it simulates input sequences with
non-static distribution. It is measured in the delta-per-iteration units —
its value is added to the mean at every iteration, e.g. if the rate is ! /1o,
than after 1000 iteration the mean will move by 10.

area-under-curve — the parameter that affects the standard deviation of the
distribution.

32

5.3. Analysis of the Sequential Containers

5.3 Analysis of the Sequential Containers

The performance evaluation of the sequential containers has been done on the
following machine:

CPU Intel® Core " i5-6200U 2.30GHz (2.80 GHz2)x 2 cores
Memory 8 GB DDR3 1600 MHz
OS Linux® Ubuntu® 16.04 LTS 64-bit

Compiler GCC 5.4, compilation flags: -03 -std=c++14

In this chapter there are several graphs (Figure 5.1, Figure 5.2, Figure 5.3),
that visualises data presented in Appendix B. The graphs do not include all the
data from the tables, e.g. there is no graph for LRU and LFU based numerical
databases; only the most representative candidates have been chosen. The
outcomes have confirmed some assumptions, stated in the previous chapters,
while refuted others.

The weighted search tree proved to be the most effective container for the
numerical database. However, no concurrent WST implementation is known,
so its usage is limited to the sequential environment.

The combination of the hash table and the binary heap performs about 10%
slower than WST. However, its advantage over WST is the simpler structure,
that made it possible to develop the concurrent version of this container, called
CNDC.

The benchmark proved splay tree inefficiency. It is outperformed by WST
and the hash table on all workloads. Therefore it is not recommended to use
it for a numerical database.

Least-recently-used and Least-frequently-used eviction policies do not achieve
the same performance as the policy, based on the binary heap. Possibly,
because they do not rely on the initial item priority, thus give no preference
to items that are rarely accessed but took long to be calculated and due to
that must be kept in the database.

Priority aging does not show any advantage over the static priority. However,
further studies and tests are required here, as the benchmark does not simulate
the worst-case input for the static priority scheme.

2with Intel® Turbo Boost Technology

33

5. PERFORMANCE EVALUATION

2,500 | | |---- DBaseline
2,250 | 1| WST
2.000 | | —e—Hash table

’ —— Splay tree
1,750 |

1,500 | i
1,250 | i
1,000 i

750 |- .

500 :
250 |- N

Throughput [op/s]

4 16 64
Memory [KiB]

Figure 5.1: Sequential containers comparison (variable memory size)

---- Baseline
—=a— WST
—e— Hash table
—— Splay tree

2,750 |
2,500
2,250 |
2,000 |
1,750
1,500 |
1,250 |
1,000 |

750 |

500 | .

250 | .

| |
0.45 055 065 075 085 0.95
area-under-curve

Throughput [op/s]

Figure 5.2: Sequential containers comparison (variable area-under-curve
value)

34

5.3. Analysis of the Sequential Containers

2,750 | | |---- Baseline
2,500 |- —= WST
2250 | —eo— Hash table
2,000 |- —— Splay tree

1,750 |
1,500 |
1,250 |
1,000 |
750 |
500 |
250 | .

Throughput [op/s]

| |
0 1/100 1/10 1

Mean changing rate

Figure 5.3: Sequential containers comparison (variable mean changing rate)

35

5. PERFORMANCE EVALUATION

5.4 Analysis of the Concurrent Containers

The performance evaluation of the concurrent containers has been performed
on the following machine:

CPU Intel® Xeon® E5-2650 v4 2.20GHz (2.90 GHz?) x 2 sockets x 12 cores
Memory 256 GB DDR4 2400 MHz
OS Linux® Ubuntu® 16.04 LTS 64-bit

Compiler GCC 5.4, compilation flags: -03 -std=c++14

Same as with the sequential containers, the complete benchmark data is pre-
sented in Appendix B. Figure 5.4 shows the performance difference between
the tested concurrent containers. Figure 5.5 demonstrates their scalability —
the relative per-thread performance with increasing number of threads. For
example, the graph shows that with 24 threads running simultaneously, the
performance of one thread in cNDC is 30% lower than that in the single-
threaded test.

As expected, the coarse-grained locking approach yields the very ineffective
container. The observation that with 2 threads the performance is two times
lower compared to the single-threaded test (note, the total, not the per-thread
performance) can be explained by the high contantion on the single mutex.
The process of locking/unlocking an open mutex is quite fast operation, but
locking the already locked mutex implies, that the thread will be suspended
and then resumed. This is quite heavy and complex operation from the per-
spective of an operational system.

The binning approach performs better than the previous one. However, Fig-
ure 5.5 clearly shows, that it does not scale very good for the bigger number
of threads — at 24 threads, per-thread performance is only 10% as high as the
maximum.

CNDC shows excellent scalability, even with 24 threads. The poor per-thread
performance is rather explained by the huge memory overhead per item than
by computational complexity — in addition to the overhead, introduced by
the data structure itself, synchronization adds at least 60 bytes for each item.
The further studies should be directed at lowering this overhead. For exam-
ple, some synchronization can be performed in the lock-free fashion with no
mutexes involved.

3with Intel® Turbo Boost Technology

36

5.4. Analysis of the Concurrent Containers

Throughput [op/s]

13000 |- || —e— CNDC
12000 - | |—=— Coarse + WST

11000 |- | | —=—Binning + WST

10000 + a
9000 a
8000 a
7000 - a
6000 - a
5000 a
4000 |- a
3000 a
2000 a
1000 - " a

12 4 8 16 24
Thread count

Figure 5.4: Concurrent containers comparison (variable thread count)

Relative performance per thread

e CNDC
—a— Coarse + WST

0.9 —— Binning + WST

0.8
0.7
0.6 -
0.5
0.4
0.3
0.2 |
0.1

| | |
12 4 8 16 24

Thread count

Figure 5.5: Concurrent containers scalability comparison

37

Conclusion

This thesis explores and extends the concept of the numerical database. First
of all, an extensive overview of the original concept and its practical imple-
mentation is provided, basing on the [1]. In Chapter 3 the flaws of the original
WST implementation are pointed out and the fix for them is presented.

In addition, the alternative data structures — the hash table and the splay tree,
that can be used in place of WST, are discussed. The practical performance
evaluation, presented in Chapter 5, showed that the hash table achieves almost
the same performance as WST. However, the splay tree is much slower than
other data structures.

Chapter 3 introduces several alternative policies for managing item priorities —
LRU and LFU policies. However, the benchmark showed that the original
policy, based on the binary heap, is more effective.

This thesis presents new concurrent data structure — c¢NDC. It is based on
the combination of the hash table and the binary heap. It has been adapted
to the multi-threaded environment using the fine-grained locking approach
(Section 1.2.3). Its advantage is the high scalability with increasing number
of threads. However, it shows rather low single-thread performance - this is
due to the high memory overhead per node. Further researches, directed at
lowering the overhead, should be done.

Finally, the NUMDB library is presented. It realises the data structures, men-
tioned above. The implementation is done in the C++ language. NUMDB has
been used for the practical performance evaluation, presented in Chapter 5.
On the particular test, the following speed up has been achieved:

39

CONCLUSION

Base algorithm without numerical database — 588 operations per second
Splay tree based numerical database — 976 operations per second
Hash table based numerical database — 2407 operations per second

WST based numerical database — 2595 operations per second

40

Bibliography

Park, S. C.; Draayer, J. P.; et al. Time-Space Optimal Numerical
Database for Large-Scale Scientific Applications. Proc. Int. Computer
Symposium, 1990: pp. 333-338, visited on 2017-05-03. Available from:
http://www.phys.lsu.edu/draayerpubs/ConferenceProceedings/
Time-SpaceOptimalNumericalDatabaseforLarge-
ScaleScientificApplications.pdf

Sedgewick, R.; Wayne, K. Algorithms. Addison-Wesley, fourth edition,
2011, ISBN 9780321573513.

Black, P. E. complete binary tree. 2016, visited on 2017-
05-03. Available from: https://xlinux.nist.gov/dads/HTML/
completeBinaryTree html

Adelson-Velskii, G. M.; Landis, E. M. An algorithm for organization of
information. Dokl. Akad. Nauk SSSR, volume 146, 1962: pp. 263-266,
ISSN 0002-3264.

Knuth, D. E. The Art of Computer Programming, Volume 3: (2Nd Ed.)
Sorting and Searching. Redwood City, CA, USA: Addison Wesley Long-
man Publishing Co., Inc., 1998, ISBN 0-201-89685-0.

Sleator, D. D.; Tarjan, R. E. Self-adjusting Binary Search Trees. Jour-
nal of the ACM, volume 32, no. 3, 1985: pp. 652-686, ISSN 0004-5411,
doi:10.1145/3828.3835. Available from: http://doi.acm.org/10.1145/
3828.3835

Huus, E. Reduced Restructuring in Splay Trees. 2014, visited on 2017-
05-03. Available from: https://eapache.github.io/assets/Huus2014_
SplayTrees.pdf

41

http://www.phys.lsu.edu/draayerpubs/Conference Proceedings/Time-Space Optimal Numerical Database for Large-Scale Scientific Applications.pdf
http://www.phys.lsu.edu/draayerpubs/Conference Proceedings/Time-Space Optimal Numerical Database for Large-Scale Scientific Applications.pdf
http://www.phys.lsu.edu/draayerpubs/Conference Proceedings/Time-Space Optimal Numerical Database for Large-Scale Scientific Applications.pdf
https://xlinux.nist.gov/dads/HTML/completeBinaryTree.html
https://xlinux.nist.gov/dads/HTML/completeBinaryTree.html
http://doi.acm.org/10.1145/3828.3835
http://doi.acm.org/10.1145/3828.3835
https://eapache.github.io/assets/Huus2014_SplayTrees.pdf
https://eapache.github.io/assets/Huus2014_SplayTrees.pdf

BIBLIOGRAPHY

8]

42

Klostermeyer, W. F. Optimizing searching with self-adjusting trees.
J. Information and Optimization Sciences, volume 13, no. 1, jan
1992: pp. 85-95, ISSN 0252-2667, doi:10.1080,/02522667.1992.10699094.
Available from: http://www.tandfonline.com/doi/abs/10.1080/
02522667.1992.10699094

Knott, G. D. Hashing functions. The Computer Journal, volume 18,
no. 3, 1975: pp. 265-278, ISSN 0010-4620, doi:10.1093/comjnl/18.3.265.
Available from: http://comjnl.oxfordjournals.org/content/18/3/
265.short

Park, S. C.; Draayer, J. P.; et al. WSTREE. 1994, visited on 2017-05-03.
Available from: http://cpc.cs.qub.ac.uk/summaries/ACTZ_v1_0.html

Masat, M. Numerical Database System. Bachelor’s thesis. Czech Techni-
cal University in Prague, Faculty of Information Technology, 2016. Avail-
able from: https://dspace.cvut.cz/handle/10467/65871

Park, S. C.; Bahri, C.; et al. Numerical database system based on a
weighted search tree. Computer Physics Communications, volume 82, no.
2-3, 1994: pp. 247-264, ISSN 00104655, doi:10.1016/0010-4655(94)90172-
4.

Masat, M. CCherish. 2016, visited on 2017-05-03. Available from: https:
//github.com/tyrhus/CCherish

Korenfeld, B. CBTree: A practical concurrent self-adjusting search tree.
2012, visited on 2017-05-03. Available from: http://link.springer.com/
chapter/10.1007/978-3-642-33651-5_1

Hunt, G. C.; Michael, M. M.; et al. An Efficient Algorithm for Concurrent
Priority Queue Heaps. Information Processing Letters, volume 60, 1996:
pp. 151-157. Available from: http://www.research.ibm.com/people/m/
michael/ipl-1996.pdf

Tamir, O.; Morrison, A.; et al. A Heap-Based Concurrent Priority
Queue with Mutable Priorities for Faster Parallel Algorithms. 19th In-
ternational Conference On Principles Of Distributed Systems, volume i,

1998: pp. 1-16, doi:10.4230/LIPIcs.OPODIS.2015.186. Available from:
http://www.cs.tau.ac.il/~mad/publications/opodis2015-heap.pdf

Appleby, A. MurmurHash. Visited on 2017-05-03. Available from: https:
//github.com/aappleby/smhasher

Free Software Foundation, I. libstdc++: functional hash.h. Visited
on 2017-05-03. Available from: https://gcc.gnu.org/onlinedocs/gcc-
6.2.0/1ibstdc++/api/a01298_source.html

http://www.tandfonline.com/doi/abs/10.1080/02522667.1992.10699094
http://www.tandfonline.com/doi/abs/10.1080/02522667.1992.10699094
http://comjnl.oxfordjournals.org/content/18/3/265.short
http://comjnl.oxfordjournals.org/content/18/3/265.short
http://cpc.cs.qub.ac.uk/summaries/ACTZ_v1_0.html
https://dspace.cvut.cz/handle/10467/65871
https://github.com/tyrhus/CCherish
https://github.com/tyrhus/CCherish
http://link.springer.com/chapter/10.1007/978-3-642-33651-5_1
http://link.springer.com/chapter/10.1007/978-3-642-33651-5_1
http://www.research.ibm.com/people/m/michael/ipl-1996.pdf
http://www.research.ibm.com/people/m/michael/ipl-1996.pdf
http://www.cs.tau.ac.il/~mad/publications/opodis2015-heap.pdf
https://github.com/aappleby/smhasher
https://github.com/aappleby/smhasher
https://gcc.gnu.org/onlinedocs/gcc-6.2.0/libstdc++/api/a01298_source.html
https://gcc.gnu.org/onlinedocs/gcc-6.2.0/libstdc++/api/a01298_source.html

Bibliography

[19]

[20]

[21]

[22]

Shah, K.; Mitra, A.; et al. An (1) algorithm for implementing the LFU
cache eviction scheme. 2010, visited on 2017-05-03. Available from: http:
//dhruvbird.com/1fu.pdf

Coplien, J. Curiously Recurring Template Patterns. C++ Report, vol-
ume 1, no. February, 1995: pp. 24-27, ISSN 1040-6042.

Stroustrup, B. Stroustrup: C++ Style and Technique FAQ. 2013, vis-
ited on 2017-05-03. Available from: http://www.stroustrup.com/bs_
fag2.html#sizeof-empty

Myers, N. C. The "Empty Member” C++ Optimization. Dr. Dobb’s Jour-
nal, volume 1, no. C++ Issue, 1997, visited on 2017-05-03. Available from:
http://www.cantrip.org/emptyopt.html

43

http://dhruvbird.com/lfu.pdf
http://dhruvbird.com/lfu.pdf
http://www.stroustrup.com/bs_faq2.html#sizeof-empty
http://www.stroustrup.com/bs_faq2.html#sizeof-empty
http://www.cantrip.org/emptyopt.html

APPENDIX A

Container Reference

A.1 Sequential Containers

Baseline The performance of the user function itself without any numerical
database.

WST, aging = 0 The original weighted search tree, as described in [12].

WST, aging = N Weighted search tree with aging mechanism. For every
traversed node, its priority is decreased by N x 256

Hash table, Binary heap, aging = N The container, very similar to the
WST, but with a hash table in place of a BST. N parameter has the
same meaning as for the WST; 0 value means that no priority aging is
performed.

Hash table, LRU The hash table, that uses LRU strategy for item eviction.
Hash table, LFU The hash table, that uses LF'U strategy for item eviction.

Splay tree, Splay policy, canonical The splay tree with the splay policy
(as described in Section 3.2.3). “Canonical” stands for the splaying
strategy — the node is always splayed up to the root|[6].

Splay tree, Splay policy, partial The splay tree with the splay policy (as
described in Section 3.2.3). “Partial” stands for the splaying strategy —
each node has the access counter and it is splayed until its counter value
is less than that of its parent the node. This approach is known as the
partial splaying[8].

Splay tree, LRU, canonical The splay tree with the LRU policy.

Splay tree, LFU, canonical The splay tree with the LFU policy.

45

A. CONTAINER REFERENCE

A.2 Concurrent Containers

The number after the container name in Table B.5 and Table B.6 denotes the
number of threads running in parallel.

CNDC The concurrent numerical database container.

Coarse lock + WST The sequential WST container, guarded by a coarse-
grained lock.

Binning + WST The sequential WST container, guarded with the binning
approach.

46

APPENDIX B

Benchmark Results

47

B. BENCHMARK RESULTS

Table B.1: Sequential benchmark (variable memory size, static input distri-
bution)

Container Throughput [op/s]

4 KiB 16 KiB 64 KiB
Baseline 588
WST, aging = 0 2265 2595 2461
WST, aging = 1 2502 2568 2279
WST, aging = 2 2619 2369 2052
WST, aging = 4 2651 2040 1699
WST, aging = 16 1500 1741 1721

Hash table, Binary heap, aging = 0 2716 2407 2344
Hash table, Binary heap, aging = 1 2686 2388 2353
Hash table, Binary heap, aging = 2 2640 2422 2391
Hash table, Binary heap, aging = 4 2547 2456 2335
Hash table, Binary heap, aging = 16 2568 2344 2316

Hash table, LRU 803 779 771
Hash table, LFU 750 711 706
Splay tree, Splay policy, canonical 1014 976 957
Splay tree, Splay policy, partial 766 963 823
Splay tree, LRU, canonical 721 700 679
Splay tree, LFU, canonical 671 663 659
Parameter Value
Min/Max arg 25/35
Memory vary
Area-under-curve 0.85
Mean changing rate 0

48

Table B.2: Sequential benchmark (variable memory size, time-varying input

distribution)

Container Throughput [op/s]

4 KiB 16 KiB 64 KiB
Baseline 088
WST, aging = 0 2015 2411 2329
WST, aging = 1 2175 2348 2183
WST, aging = 2 2368 2265 1931
WST, aging = 4 2430 1864 1609
WST, aging = 16 1343 1514 1560
Hash table, Binary heap, aging = 0 2505 2258 2211
Hash table, Binary heap, aging = 1 2320 2245 2220
Hash table, Binary heap, aging = 2 2295 2176 2199
Hash table, Binary heap, aging = 4 2354 2202 2204
Hash table, Binary heap, aging = 16 2121 2167 2152
Hash table, LRU 697 711 720
Hash table, LFU 639 646 651
Splay tree, Splay policy, canonical 879 887 896
Splay tree, Splay policy, partial 812 872 799
Splay tree, LRU, canonical 640 634 631
Splay tree, LFU, canonical 610 626 628

Parameter Value
Min/Max arg 25/35
Memory vary
Area-under-curve 0.85

Mean changing rate '/109

49

B. BENCHMARK RESULTS

Table B.3: Sequential benchmark (variable area-under-curve value)

Container Throughput [op/s]

0.45 0.55 0.65 0.75 0.85 0.95
Baseline 588
WST, aging =0 1199 1432 1709 1997 2329 2890
WST, aging = 1 1103 1341 1541 1802 2183 2749
WST, aging = 2 987 1188 1375 1630 1931 2559
WST, aging = 4 858 983 1146 1321 1609 2325
WST, aging = 16 798 887 1028 1216 1560 2537
Hash table, Binary heap, aging =0 1183 1416 1655 1904 2211 2733
Hash table, Binary heap, aging = 1 1185 1405 1651 1881 2220 2759
Hash table, Binary heap, aging =2 1178 1403 1647 1897 2199 2784
Hash table, Binary heap, aging =4 1188 1407 1651 1908 2204 2755
Hash table, Binary heap, aging = 16 1179 1391 1638 1845 2152 2675
Hash table, LRU 603 621 643 678 720 809
Hash table, LFU 576 591 604 624 651 700
Splay tree, Splay policy, canonical 658 698 747 801 896 1040
Splay tree, Splay policy, partial 616 669 767 781 799 861
Splay tree, LRU, canonical 550 566 582 595 631 687
Splay tree, LFU, canonical 567 577 590 608 628 675

Parameter Value
Min/Max arg 25/35
Memory 64 KiB
Area-under-curve vary
Mean changing rate /100

20

Table B.4: Sequential benchmark (variable mean changing rate)

Container Throughput [op/s]

0 /100 /10 1
Baseline 588
WST, aging = 0 2461 2329 1161 330
WST, aging = 1 2279 2183 1169 344
WST, aging = 2 2052 1931 1136 349
WST, aging = 4 1699 1609 1054 350
WST, aging — 16 1721 1560 800 334

Hash table, Binary heap, aging = 0 2344 2211 1238 336
Hash table, Binary heap, aging =1 2353 2220 1238 333
Hash table, Binary heap, aging =2 2391 2199 1241 331
Hash table, Binary heap, aging =4 2335 2204 1235 331
Hash table, Binary heap, aging = 16 2316 2152 1214 333

Hash table, LRU 7L 720 479 386
Hash table, LFU 706 651 438 356
Splay tree, Splay policy, canonical 957 896 565 311
Splay tree, Splay policy, partial 823 799 533 398
Splay tree, LRU, canonical 679 631 419 350
Splay tree, LFU, canonical 659 628 418 340
Parameter Value
Min/Max arg 25/35
Memory 64 KiB
Area-under-curve 0.85

Mean changing rate vary

B. BENCHMARK RESULTS

Table B.5: Parallel benchmark (variable memory size, static input distribu-
tion)

Container Throughput [op/s]

4 KiB 16 KiB 64 KiB
Baseline 428
CNDC (1) 809 850 828
CNDC (2) 1251 1465 1576
CNDC (4) 2114 2505 3088
CNDC (8) 3217 4332 5023
CNDC (16) 5585 7823 9043
CNDC (24) 9062 11178 12920

Coarse lock + WST (1

2

(1) 2262 2502 2421
Coarse lock + WST (2) 1051 1280 1190
Coarse lock + WST (4) 1276 1301 1232
Coarse lock + WST (8) 1340 1281 1166
Coarse lock + WST (16) 1407 1392 1266
Coarse lock + WST (24) 1439 1443 1236

Binning + WST (1) 1660 2302 2382
Binning + WST (2) 1786 2490 2864
Binning + WST (4) 1668 2720 3510
Binning + WST () 2633 3517 3789
Binning + WST (16) 3495 5144 5305
Binning + WST (24) 4295 5997 6367
Parameter Value
Min/Max arg 25/35
Memory vary
Area-under-curve 0.85
Mean changing rate 0

52

Table B.6: Parallel benchmark (variable memory size, time-varying input dis-
tribution)

Container Throughput [op/s]

4 KiB 16 KiB 64 KiB
Baseline 428
CNDC (1) 729 650 734
CNDC (2) 1312 1404 1524
CNDC (4) 2148 2496 2984
CNDC (8) 3288 3968 5120
CNDC (16) 5744 6208 9040
CNDC (24) 9648 10824 12408

Coarse lock + WST (1) 1601 2155 2347
Coarse lock + WST (2) 848 1328 1230
Coarse lock + WST (4) 1264 1268 1200
Coarse lock + WST (8) 1320 1416 1272
Coarse lock + WST (16) 1489 1392 1248
Coarse lock + WST (24) 1560 1368 1272

Binning + WST (1) 1406 2052 2229
Binning + WST (2) 1540 2594 2794
Binning + WST (4) 1748 2852 3320
Binning + WST () 2728 3664 3792
Binning + WST (16) 4044 5232 5248
Binning + WST (24) 4296 5928 6384
Parameter Value
Min/Max arg 25/35
Memory vary
Area-under-curve 0.85

1

Mean Changlng rate 100xthread count

93

APPENDIX C

Acronyms

BST Binary Search Tree

T A binary tree

N A node in a binary tree or a hash table

K A key, used for the lookup in a container

F' User-provided function that accepts K as an argument

R A result, that is calculated from K by F

95

APPENDIX D

Contents of enclosed CD

oo L= PR NUMDB project folder
L 3rdparty e e NUMDB additional libraries
function_traits
google_benchmark
gtest
murmurhash2functor
| _benchmark..........ooviiuuunnn... NUMDB benchmark source files
| dnclude......oiiiiiiiiii i NUMDB library header files
| numdb
cndc
concurrent_adapters
hash_table
splay_tree
wst
N I o T NUMDB library source files
I v Y= PP NUMDB unit tests
| Text
Lthesis.pdf this thesis in the PDF format

o7

	Introduction
	Preliminaries
	Related Data Structures
	Thread Synchronization

	Numerical Database
	Concept
	Priority
	Weighted Search Tree
	Known Implementations

	Numerical Database Variations
	Priority
	Alternative Eviction Policies
	Alternative Sequential Containers
	Alternative Concurrent Containers

	Library Implementation
	Chosen Technologies
	Project Structure Overview
	Source Code Overview

	Performance Evaluation
	Benchmark
	Benchmark Parameters
	Analysis of the Sequential Containers
	Analysis of the Concurrent Containers

	Conclusion
	Bibliography
	Container Reference
	Sequential Containers
	Concurrent Containers

	Benchmark Results
	Acronyms
	Contents of enclosed CD

