

Czech Technical University in Prague

Faculty of Transportation Sciences

Department of Transport Telematics

Master’s thesis

Implementation of the DMI Display for the
ETCS On-Board Sub-System

Bc. Jan Červenka

Supervisor: doc. Ing. Martin Leso, Ph.D.

30th May 2017

Acknowledgements

I would like to thank doc. Ing. Martin Leso, Ph.D. for his professional guid-
ance and advice.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on 30th May 2017 .

Czech Technical University in Prague
Faculty of Transportation Sciences
c© 2017 Jan Červenka. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Transportation Sciences. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Červenka, Jan. Implementation of the DMI Display for the ETCS On-Board
Sub-System. Master’s thesis. Czech Technical University in Prague, Faculty
of Transportation Sciences, 2017.

Abstrakt

Prvńı část této diplomové práce slouž́ı jako úvod do zabezpečovače ETCS
a také popisuje funkce jeho DMI jednotky. Druhá část představuje hardware
a software platformu, vysvětluje proces implementace DMI aplikace a slouž́ı
jako dokumentace API.

Kĺıčová slova Vozidlový simulátor, rozhrańı člověk stroj, ERTMS, ETCS,
DMI

Abstract

The first part of the thesis provides an overview of the ETCS and describes the
functionality of the DMI unit. The second part introduces the hardware and
software platform, covers the implementation process of the DMI application,
and documents the API.

Keywords Vehicle simulator, human machine interface, ERTMS, ETCS,
DMI

ix

Contents

Introduction 1
Background . 1
The Simulator . 2
Scope of the Thesis . 2

1 ERTMS/ETCS Overview 3
1.1 Development History . 3
1.2 ETCS Architecture . 4
1.3 ETCS Levels . 7

2 DMI Description 11
2.1 Glossary . 11
2.2 General Principles . 12
2.3 Speed Monitoring . 14
2.4 Current Train Speed Information 16
2.5 Speed Supervision Information 18
2.6 Braking Information . 20
2.7 Supplementary Information . 21
2.8 Planning Area . 22
2.9 Monitoring Information . 24
2.10 Sub-level Windows . 24

3 Hardware and Operating System 27
3.1 Hardware . 27
3.2 Operating System . 30
3.3 Application Requirements . 31

4 Application Framework 33
4.1 Qt . 33
4.2 .NET . 34

xi

4.3 wxWidgets . 35
4.4 Unity Engine . 35
4.5 Framework Analysis Conclusion 35

5 Implementation 37
5.1 Environment . 37
5.2 Project Setup . 38
5.3 Design . 38
5.4 View . 39
5.5 Converters . 43
5.6 ViewModels . 44
5.7 Models . 45
5.8 Auxiliary Logic . 47
5.9 Message Parser . 50
5.10 Networking . 51

6 Testing 53
6.1 EVC Emulator . 53
6.2 Test Scenarios . 55

7 API Documentation 57
7.1 Data . 57
7.2 Messages . 58

Conclusion 61

Bibliography 63

A Acronyms 65
A.1 ETCS Related . 65
A.2 Other . 66

B Message Data 69
B.1 General Data . 69
B.2 Planning Area Data . 79
B.3 Notes . 80

C Source Code 81

xii

List of Figures

1.1 ETCS Reference Architecture . 4
1.2 ETCS Level 1 . 8
1.3 ETCS Level 2 . 9
1.4 ETCS Level 3 . 9

2.1 DMI Display Area Layout - Touchscreen 13
2.2 ETCS Speed Supervision . 15
2.3 Current Train Speed Presentation 17
2.4 Pointer Color Overview . 18
2.5 CSG Overview . 19
2.6 CSG in TSM/IndS and TSM/IntS 19
2.7 Speed Dial with the Basic Hooks 20
2.8 Planning Area . 22
2.9 Planning Area Speed Profile . 23

3.1 AMiT AP9 . 28
3.2 AMiT AP9 High Level Schematics 28

4.1 Model-View-ViewModel . 34

5.1 Application Architecture . 38
5.2 DMI View . 39
5.3 Converter Function . 43
5.4 Communication Process . 51

6.1 EVC Emulator Architecture . 53
6.2 EVC Emulator UI . 54
6.3 Scenario 1 . 55
6.4 Scenario 2 . 55

7.1 General Message Structure . 58

xiii

7.2 Planning Area Message Structure 59

xiv

List of Tables

2.1 DMI Colors . 12
2.2 CSM Order of Precedence . 15
2.3 TSM Order of Precedence . 16
2.4 RSM Order of Precedence . 16
2.5 Train Speed Digital Colors . 17
2.6 Data Entry Windows . 25
2.7 Train Data Entry Window . 25
2.8 Data View Windows . 26

3.1 HW Specifications . 27
3.2 Auxiliary CPU Messages . 29

B.1 Train Speed . 69
B.2 Permitted Speed . 69
B.3 Target Speed . 69
B.4 SBI Speed . 70
B.5 Release Speed . 70
B.6 LSSMA . 70
B.7 Distance to Target . 70
B.8 Distance from Start . 70
B.9 Supervision Section . 71
B.10 Supervision Status . 71
B.11 Mode . 71
B.12 ETCS Level . 72
B.13 Acknowledgment . 72
B.14 Track Ahead Free Indication . 72
B.15 Text Messages . 72
B.16 Override Active . 72
B.17 Adhesion Factor . 73
B.18 Tunnel Stopping Area . 73

xv

List of Tables

B.19 Track Conditions Symbols . 73
B.20 Indication Marker . 74
B.21 Radio Connection . 74
B.22 Reversing Permitted Indication . 74
B.23 Geographical Position . 74
B.24 System Version . 74
B.25 Time to Indication . 75
B.26 Track Condition Deactivation . 75
B.27 Driver ID . 75
B.28 Train Running Number . 75
B.29 General Commands . 75
B.30 SR Speed . 76
B.31 SR Distance . 76
B.32 Set VBC . 76
B.33 Remove VBC . 76
B.34 Radio Network ID . 76
B.35 RBC ID . 77
B.36 RBC Phone Number . 77
B.37 Train Type . 77
B.38 Train Length . 77
B.39 Brake Percentage . 77
B.40 Maximum speed . 78
B.41 Airtight . 78
B.42 Loading Gauge . 78
B.43 Train Category . 78
B.44 Axle Load Category . 79
B.45 Track Conditions . 79
B.46 Gradient Profile . 79
B.47 Speed Profile . 80
B.48 Units . 80

xvi

Introduction

This thesis is a part of an ongoing effort at the Transportation Laboratory of
the Czech Technical University in Prague.

The mission of the Transportation Laboratory is to study railway signaling
and interlocking. For this purpose, the laboratory maintains and operates a
physical model of a railway network with various Czech national interlocking
systems.

The current focus of the laboratory is the ETCS (European Train Control
System). The idea is to integrate this system into the railway model and to
build a new train cab simulator with the ETCS on-board sub-system.

The Staff of the Transportation Laboratory has decided to build the train
simulator and develop the necessary software in-house instead of buying a
complete solution from an external contractor. Besides lower cost, the main
advantage is the ability to customize any part as needed and perform changes
or updates in the future. Furthermore, building the simulator on our own
provides us with a deeper understanding of the system.

As of May 2017, the project of the simulator is still at an early stage. Func-
tional specifications have been finalized in a thesis written by Lukáš Petř́ık [1].
Additionally, some hardware, such as the driver’s desk or on-board computers,
have been acquired.

Integral part of the proposed train simulator is the ETCS driver machine
interface. The goal of this thesis is to develop the DMI application for future
use in the simulator.

Background

Vehicle simulators are popular across all modes of transport. From space
flight to road traffic. They can be used either for training purposes or as
a platform for experiments. The capability to easily design scenarios with
desired conditions cannot be replicated in real life environment. Moreover,

1

Introduction

the cost of running a simulation is usually much lower than using real life
vehicles and equipment.

In the last several years, railway industry has been influenced by gradual
deployment of the ETCS. This system introduces new challenges requiring
further research. One of the area of interest is the driver’s interaction with
the system.

When a train is under ETCS supervision, the driver is required to regulate
the speed in such a way that it stays below a computed braking curve. This
type of operation is different from the current state which requires the driver
to rely mostly on trackside speed limits and signals. Such new conditions lead
to different driver behavior, which can be studied using simulators.

A simulator can also be very useful for evaluation of the DMI design.
Scenarios can be made to test whether the drivers can interpret information
from the DMI easily. Furthermore, access to the source code allows us to
make changes to the features of the DMI and compare them with the original
solution.

The Simulator

The specification [1] states that the simulator shall be implemented as a full
cab. The cab will consist of a dashboard and a windscreen. The cab will be
surrounded by a virtual reality projection with tracks, trains and other objects
displayed.

The simulator is static. This means it will not use actuators to simulate
effects of dynamic forces on the vehicle. However, it shall be built in such a
way it will be possible to add this feature later.

The dashboard itself comes from a real vehicle and is compliant with the
UIC document [2].

Scope of the Thesis

• The first chapter provides an overview of the ERTMS/ETCS signaling.

• The second chapter introduces the features and functions of the DMI.

• The third and fourth chapter researches and analyzes possible frame-
works, operating systems or other tools that could be implemented.

• The fifth and sixth chapter describes the design, implementation, and
testing of the DMI application.

• The seventh chapter documents the software so it can be integrated in
the simulator.

2

Chapter 1
ERTMS/ETCS Overview

ERTMS (European Railway Traffic Management System) is a European ini-
tiative aiming to achieve signaling interoperability between various European
railway systems. It is a part of a broader standardization process coordin-
ated by the European Railway Agency (ERA) known as the TSI (technical
specification for interoperability). TSI defines the following interoperability
areas:

• Power

• Rolling stocks

• Infrastructure

• Comand and control

ERTMS refers to the entire command and control TSI program and in-
cludes the ETCS signaling and the GSM-R wireless standard.

This chapter presents an overview of the ETCS development history, its
components, and service levels.

1.1 Development History

The idea of standardization of European railway signaling dates back to 1990
when European Railway Research Institute (ERRI) assembled A200 expert
group to work on the specifications. The group focused on developing an
on-board computer architecture (EUROCAB) and data transmission systems
(EUROBALISE and EURORADIO). [3]

In 1993, another expert group was established as a result of an interoper-
ability directive issued by the EU. The group was named ERTMS and its goal
was to define the TSI.

3

1. ERTMS/ETCS Overview

Companies involved in the railway signaling industry such as Siemens,
Alcatel, or Bombardier joined the effort and created the UNISIG consortium
to work on the TSI.

The first ERTMS specification was officially commissioned in 2000. Around
this time, the system was deployed on several tracks across Europe to test the
technology.

The year 2009 marks the adoption of the European ERTMS Deployment
Plan. This documents defines six main European railway corridors where the
use of ETCS is mandatory.

1.2 ETCS Architecture

ETCS consists of an on-board and trackside sub-system. Each sub-system
includes a number of components described below.

Figure 1.1: ETCS Reference Architecture

4

1.2. ETCS Architecture

1.2.1 Balise

Balise is an up-link wireless communication device that functions as an in-
terface between the on-board computer and the trackside sub-system. Data
transmitted by balises are called telegrams. Balise transmission module (BTM)
is used by the on-board equipment to receive the telegrams. Balises are or-
ganized into groups, and telegrams sent by one group create a message. [4]

Balise message can be either fixed or dynamically changed. Variable mes-
saging requires a connection to an LEU (Lineside Electronic Unit).

1.2.2 Lineside Electronic Unit

LEU serves as an interface between the balises and the external interlocking
system. It receives data from the trackside infrastructure, assembles telegrams
and sends them to the balises. [5]

1.2.3 Radio Block Center

RBC is a computer that gathers data from the on-board units and the external
trackside systems, and generates messages to be sent back to the trains. The
message provides the movement authorities required for train separation. [5]

Each RBC has its area of responsibility. Transfer from one area to another
is governed by a handover process.

1.2.4 Euroloop

ETCS Level 1 track to train communication is based on spot data transmission
via balises. When a state of the system changes, the on-board sub-system will
receive the information only after the train reaches the next balise group. To
mitigate this delay, Euroloops are used on ETCS level 1 track as an additional
mean of data communication. The loops consist of a leaky cable placed in the
track serving as an antenna transmitting data to on-board loop transmission
module (LTM). [6]

1.2.5 Radio In-fill

Radio in-fill serves the same purpose as the Euroloop. The in-fill information
is provided via the GSM-R network.

1.2.6 GSM-R Network

GSM-R provides wireless bi-directional connectivity for data and voice trans-
mission between the train and the trackside systems. The technology is based
on the GSM (Global System for Mobile Communication) cell technology.
GSM-R is an essential component of the ETCS level 2 and level 3. [5]

5

1. ERTMS/ETCS Overview

EURORADIO is a component used by both on-board and trackside sub-
systems as an interface to the GSM-R network.

1.2.7 Key Management Center

Communication over GSM-R between the trackside and on-board equipment
is secure. The network identifies and authenticates all entities involved in the
communication and then protects the transmitted data. The key management
center is responsible for generation, allocation and distribution of the required
cryptographic keys. [7]

1.2.8 European Vital Computer

EVC is the core element of the ETCS on-board sub-system. It is connected to
other modules and interfaces as seen in the Figure 1.1. The computer provides
the ETCS on-board functionality such as braking curve calculation and speed
supervision.

1.2.9 Driver Machine Interface

Via the DMI, the driver interacts with the ETCS on-board sub-system. DMI
displays information such as the current train speed, permitted speed, or tar-
get distance. The driver also uses the DMI to input data or to acknowledge
certain situations.

1.2.10 Juridical Data

ETCS on-board sub-system is connected to a train data recorder. The sub-
system sends data to the recorder when triggered by specific events. The data
consists of a message associated to the event and supplementary information
such as the current time, speed, position, level, mode, and system version. [8]

Examples of events triggering the recorder include Eurobalise telegram
reception or a 5-second tick. [8]

1.2.11 Odometry

Odometry component provides an inertial positioning. Train position is es-
timated as a distance traveled from an initial location. Eurobalise data are
used to derive the initial fix.

1.2.12 Train Interface Unit

TIU provides the ETCS on-board sub-system with access to train functions
such as cab activation, power switch, or pantograph operation. TIU also
connects to any external train integrity system. [9]

6

1.3. ETCS Levels

1.2.13 Brake Interface Unit

The main purpose of the BIU is to control service and emergency brakes. Via
the BIU, the ETCS on-board equipment can trigger brake commands when
an intervention is necessary. [9]

1.2.14 National System

This denotes any national train protection system that is deployed along-
side the ETCS. French Le Crocodile, German LZB or Indusi are examples
of national systems. They have similar purpose as the ETCS, ensuring safe
movement and separation of trains.

1.2.15 Specific Transmission Module

Specific transmission module is a component that allows the ETCS on-board
sub-system to interact with a legacy national control system. The module
allows an ETCS equipped train to operate on a track without ETCS where a
national system is present.

1.3 ETCS Levels

ETCS defines several levels with varying functionality. The level differs in the
required trackside equipment and the means of data transmission.

Levels 1, 2, 3 are downward compatible. It is possible to operate a track
on multiple levels at the same time [5]. However, the compatibility requires all
necessary equipment from the lower levels. For example, level 3 track cannot
support level 1 operation if no underlying interlocking system is present.

1.3.1 ETCS Level 0

Level 0 refers to operation of trains equipped with the ETCS on-board sub-
system on tracks where the ETCS trackside sub-system is not present.

At this level, the driver relies on external optical signals. The ETCS on-
board equipment offers only the maximum design speed supervision.

Underlying external interlocking and signaling systems are responsible for
train integrity supervision and train detection. [5]

1.3.2 ETCS Level STM

STM Level covers the case of a train equipped with the ETCS on-board
sub-system running on a national system-only track. The STM level should
provide similar supervision capability as the legacy system. The STM on-
board interface can support multiple national systems.

7

1. ERTMS/ETCS Overview

1.3.3 ETCS Level 1

ETCS level 1 employs switchable balises for track to train data transmission.
The communication system can be enhanced with the Euroloops and the radio
in-fills. The trackside sub-system does not have any information about the
train to which the data are sent.

Via continuous speed monitoring, the supervision functionality prevents
exceeding the permitted speed and overrunning the movement authority.

The data transmission is not continuous, however; the driver is still re-
quired to watch the trackside signals as new information may not be immedi-
ately available to the onboard sub-system. [5]

Level 1 can be seen as an extension of the underlying interlocking and
signaling system that is responsible for train integrity supervision and train
detection. [5]

Figure 1.2: ETCS Level 1

1.3.4 ETCS Level 2

ETCS level 2 relies on the GSM-R network for data communication. Balises
with fixed messaging are used as location reference.

The RBC knows the identity of all trains in its area of responsibility, and
the data are sent to each train individually. Furthermore, the level 2 is not an
up-link only. Trains are able to send messages over the GSM-R back to the
ETCS trackside infrastructure. [10]

Level 2 ensures that the trains do not exceed the permitted speed or over-
run assigned movement authority.

Thanks to the GSM-R continuous data transmission, the trackside signals
are not required. L2 relies on the underlying interlocking and signaling system
for train integrity supervision and train detection. [5]

8

1.3. ETCS Levels

Figure 1.3: ETCS Level 2

1.3.5 ETCS Level 3

Similar to the level 2, ETCS level 3 is also based around the GSM-R network
continuous data transmission but offers extended capabilities.

Level 3 is a standalone system that does not require any underlying signal-
ing. The train integrity supervision and train detection is done by the RBC
and the on-board train integrity equipment. Trackside signals are not used at
this level. [5]

Figure 1.4: ETCS Level 3

9

Chapter 2
DMI Description

This chapter serves as an overview of the DMI principles and functions, as
defined in the ERA document [11]. Not all features and requirements defined
in the specification are covered, only the key ones.

2.1 Glossary

The following terms are used in the rest of this chapter to describe the DMI
functions.

• Movement authority (MA) – “Permission for a train to run to a specific
location within the constraints of the infrastructure.” [12]

• Most restrictive speed profile (MRSP) – “The speed which a train must
not exceed. It is the lowest speed taking into account all the various speed
profiles.” [12]

• Vtrain – current train speed

• Vperm or VP SL – permitted speed

• Vtarget – permitted speed at the end of a movement authority

• VW SL – Warning supervision limit threshold

• VISL – Indication supervision limit threshold

• VSBI – Threshold for triggering the service brake intervention

• Vrel – “A speed value calculated within the ERTMS/ETCS to allow a
train to approach the end of its movement authority in a safe way.” [12]

11

2. DMI Description

2.2 General Principles

These principles refer to rules and definitions valid in all the different parts
and elements of the DMI.

2.2.1 Resolution and Colors

The entire display area has a ratio of 4:3 with the resolution of 640 px×480 px
at minimum. The width and height of the display must be at least 180 mm
and 150 mm respectively. [11]

Colors used in the DMI are defined in the Table 2.1.

Table 2.1: DMI Colors
Color RGB HEX Color RGB HEX
White FFFFFF Black 000000

Dark blue 031122 PASP dark 21314A
Gray C3C3C3 Dark gray 555555
Red BF0002 PASP light 294A6

Yellow DFDF00 Orange EA9100
Shadow 081839 Medium gray 96969

2.2.2 Text and Numbers

Alphanumeric characters are displayed with a font that does not use serifs.
The recommended ones are Helvetica, Verdana, Swiss, and Chicago. The
default text color is gray. [11]

2.2.3 Sounds

DMI has an audio output with four different sound signals in total. Two
of the signals are related to the speed monitoring function and are played
when the supervision status changes. The third one called “Sinfo” is a general
notification sound. The fourth signal is used as a button click feedback.

2.2.4 Display Area Layout

The display is defined as a two-dimensional grid array of cells. A cell is
defined as one or multiple pixels. For example, when the basic 640 px×480 px
resolution is used, one cell equals one pixel. The cell grid array can be seen
as a Cartesian coordinate system.

The grid array is divided into sub-areas serving specific functions. Each
sub-area is positioned using an (X, Y) tuple representing the number of cells
on the X and Y axis from the top-left corner of the display area. The position
of various graphical elements located inside the sub-areas is defined relative

12

2.2. General Principles

to the top-left corner of the particular sub-area. The width and height of the
sub-areas and other graphical elements are also defined in terms of cells [11].

Figure 2.1: DMI Display Area Layout - Touchscreen

Y (640x15)

Z (640x15)

A1
(54x54)

A3
(54x191)

B
(280x300)

B0
(125 Radius)

E4
(54x25)

E1
(54x25)
E2

(54x25)
E3

(54x25)

E9 (234x20)

E6 (234x20)

E7 (234x20)

E8 (234x20)

E5 (234x20)

E11
(46x50)

E10
(46x50)

C9
(54x25)

C8
(54x25)

C2
(37x
50)

C5
(37x
50)

C6
(37x
50)

C7
(37x
50)

C4
(37x
50)

C3
(37x
50)

C1
(58x50)

B6
(36x36)

B7
(36x36)

B5
(36x36)

B4
(36x36)

B3
(36x36)A4

(54x25)

F1
(60x50)

F9
(60x50)

F8
(60x50)

F7
(60x50)

F6
(60x50)

F5
(60x50)

F4
(60x50)

F3
(60x50)

F2
(60x50)

G13
(63x50)

G11
(63x50)

G12
(120x50)

G1
(49x50)

G8
(49x50)

G7
(49x50)

G6
(49x50)

G5
(50x50)

G4
(49x50)

G3
(49x50)

G2
(49x50)

G10
(50x50)

G9
(49x50)

B1
(50x50)

A2
(54x30)

D1
(40x
270)

D2
(25x
270)

D4
(25x
270)

D3
(25x
270)

D7
(93x
270)

D
6

1
4
x
2
7
0

D
5

1
8
x
2
7
0

D
8

6
X
2
7
0

D13 (166x15) D14
(40x15)

D12
(40x15)

D10 (166x15) D11
(40x15)

D9
(40x15)

B2 (Radius 128 – 137)

Source: [11]

2.2.5 Buttons

All buttons have three states called “enabled”, “disabled”, or “pressed”. Mul-
tiple buttons cannot be in the “pressed” state simultaneously. There are three
types of buttons called “up-type”, “down-type”, and “delay-type”; each with
different logical transition between the button states.

2.2.6 Acknowledgments

Certain situations require the driver to respond with an acknowledgment in
the form of pressing an up-type button.

When the touch screen technology is used, the location of the acknowledg-
ment button is situation-dependent. With soft keys, the button is located in
the area H7. It is also possible to have an external button located on the
driver’s desk. [11]

Only one acknowledgment can be displayed to the driver at one time. If
two or more objects require acknowledgments simultaneously, they are put in

13

2. DMI Description

a FIFO (first in, first out) queue and presented to the driver one by one with
a period of 1 s between each acknowledgment. [11]

2.2.7 User Input

The DMI specification allows the implementation to use either a touch screen
or hardware keys around the DMI with associated software buttons.

The two variants differ in the object layout on the default screen and
structure of the sub-level windows.

2.2.8 DMI and ETCS Modes

ETCS modes define the general behavior of the system. A complete descrip-
tion of all the modes is available in [5].

DMI functions differ with each mode. For example, some elements of the
interface might not be available unless the system is in the FS mode.

2.2.9 DMI and STM

DMI supports custom objects and functions that interpret data coming from
a national train control system when the train operates at the STM level.

For example, the Czech national control system is LS06. One of its func-
tions is a signal repeater which displays trackside signals to the driver inside
the train. This feature can be integrated into the DMI as a custom object;
thus, no dedicated LS06 interface is required.

2.3 Speed Monitoring

The core feature of the ETCS is its speed monitoring functionality. Based on
the MRSP and other relevant data, the system computes the dynamic speed
profile which is compared to the actual train speed to ensure that the train
stays within the permitted limits.

For the purpose of speed monitoring, movement authority area is divided
into different supervision sections:

• Ceiling speed monitoring section (CSM)

• Pre-indication monitoring section (PIM)

• Target speed monitoring section (TSM)

• Release speed monitoring section (RSM)

In each section, the braking curves define multiple supervision statuses.
When a train moves through an authority area, it always has an associated
supervision status depending on the train speed and the current supervision
section (assuming the full supervision mode is available).

14

2.3. Speed Monitoring

Figure 2.2: ETCS Speed Supervision

Distance

TSM2

S
pe
ed

160

100

RSMCSM2 PIM2CSM1 PIM1 TSM1

MRSP

Indication
status

Intervention
status

Overspeed/Warning
status

Normal
status

Normal
status

Normal
status

Indication
status

Overspeed/Warning
status

Source: [11]

2.3.1 Ceiling Speed Monitoring

CSM refers to the section of a movement authority area with no nearby speed
restriction, which would require decreasing the train speed to a target speed.

• Normal status (NoS): If Vtrain ≤ VP SL

• Over-speed status (OvS): If Vtrain > VP SL, deactivated if Vtrain < VP SL

• Warning status (WaS): If Vtrain > VW SL, deactivated if Vtrain < VP SL

• Service brake intervention status (IntS): if: Vtrain > VSBI , deactivated
with the on-board sub-system SBI command

Table 2.2: CSM Order of Precedence
↓ supersedes → IntS Was OvS NoS

IntS - Yes Yes Yes
WaS No - Yes Yes
OvS No No - Yes
NoS No No No -

2.3.2 Pre-indication Speed Monitoring

PIM prepares the driver for an incoming speed restriction. PIM defines the
supervision in the same way as the CSM [11].

15

2. DMI Description

2.3.3 Target Speed Monitoring

TSM supervises gradual decrease of the train speed to a new target speed.

• Normal status (NoS): If Vtrain ≤ VISL

• Indication status (IndS): If Vtrain > VISL, deactivated when
Vtrain < Vtarget

• Over-speed status (OvS): If Vtrain > VP SL, deactivated if Vtrain < VP SL

• Warning status (WaS): If Vtrain > VW SL, deactivated if Vtrain < VP SL

• Service brake intervention status (IntS): If Vtrain > VSBI , deactivated
with the on-board sub-system SBI command

Table 2.3: TSM Order of Precedence
↓ supersedes → IntS Was OvS IndS NoS

IntS - Yes Yes Yes Yes
WaS No - Yes Yes Yes
OvS No No - Yes Yes
IndS No No No - Yes
NoS No No No No -

2.3.4 Release Speed Monitoring

RSM is active in the vicinity of the end of a movement authority.

• Indication status (IndS): If Vtrain ≤ Vrelease

• Service brake intervention status (IntS): If Vtrain > Vrel, deactivated
with the on-board sub-system SBI command

Table 2.4: RSM Order of Precedence
↓ supersedes → IndS IntS

IntS - Yes
IndS No -

2.4 Current Train Speed Information

DMI displays the current speed of the train in a digital form and using circular
speed dial with a pointer.

16

2.4. Current Train Speed Information

Figure 2.3: Current Train Speed Presentation

150

100

1

200

30050

0 400

67

Source: [11]

2.4.1 Train Speed Digital

Train speed is displayed digitally in the center of the circular dial. To display
the speed correctly, the current supervision status is required because the color
of the digits depends on this information.

Table 2.5: Train Speed Digital Colors

Supervision Color
NoS/IntS/OvS/WaS/undefined Black

IndS Red

2.4.2 Circular Speed Dial

Four possible dials are allowed. DMI is set to display one selected range,
and the configuration cannot be changed by the driver. The four ranges are
following:

• 0 km/h – 140 km/h

• 0 km/h – 180 km/h

• 0 km/h – 250 km/h

• 0 km/h – 400 km/h

17

2. DMI Description

The dial also visualizes the current supervision status by changing the
color of the pointer. To resolve the color, the DMI needs input information
as shown in the Figure 2.4. The logic itself is described by the Table 8 in the
ERA document [11].

Figure 2.4: Pointer Color Overview

2.5 Speed Supervision Information

The driver is informed about the current speed supervision either via the
circular speed gauge or basic speed hooks.

2.5.1 Circular Speed Gauge

CSG (Circular speed gauge) is an area around the speed dial displaying the
permitted speed, target speed, release speed, and service brake intervention
limit. The CSG is operational only in the FS (full supervision) mode and it
consists of four segments.

The main segment points to the current value of the permitted speed and
is always visible.

The second segment points to the SBI limit. This segment is visible when
the train exceeds the permitted or release speed and the supervision is in the
warning, over-speed, or intervention status.

The third segment displays the target speed during the ceiling speed and
pre-indication monitoring.

18

2.5. Speed Supervision Information

The last segment functions as the release speed visualization.
Complete logic controlling the CSG is defined by the Table 9 in the ERA

document [11].

Figure 2.5: CSG Overview

In the Figure 2.6, the left CSG displays the target speed and permitted
speed. The right CSG shows the release speed, permitted speed and the SBI
limit.

Figure 2.6: CSG in TSM/IndS and TSM/IntS

150

100

1

941

200

30050

0 400

138

150

100

1

162

200

30050

0 400

61

30

Source: [11]

2.5.2 Basic Speed Hooks

In modes RV (reversing), OS (on sight), SR (staff responsible), SH (shunt-
ing), when the CSG is not available, the DMI offers the basic speed hooks to
visualize the permitted speed and target speed [11].

19

2. DMI Description

The basic hook representing the permitted speed is always available. The
target speed basic hook is visible during the PIM, TSM, and RSM. [11]

Figure 2.7: Speed Dial with the Basic Hooks

150

100 200

30050

0 400

119

Source: [11]

2.6 Braking Information

Brake information consists of the distance to target display and service/emer-
gency brake intervention indication.

2.6.1 Distance to Target Information

Distance to target is presented digitally and by a bar in the sub-area A3 that
scales analogically with the target distance. An example of the distance to
target information display can be seen in the Figure 2.6.

The distance bar is active when the target distance is less than 1000 m.
Logarithmic mapping is used between 100 m and 1000 m. [11]

The relation between the distance to target value Dtarget and the scale S
of the distance bar is

S =
{

log17(Dtarget(58.8236 m)−1), if 100 m < Dtarget ≤ 1000 m
1.772× 10−3 m−1Dtarget, if 0 m < Dtarget ≤ 100 m

(2.1)

where S = 1 represents the bar at its full size.

2.6.2 Intervention Indication

The sub-area C9 displays information regarding the service/emergency brake
intervention and might also serve as an acknowledgment button.

20

2.7. Supplementary Information

2.7 Supplementary Information

Supplementary information refers to various supervision and track conditions
that are presented to the driver via the DMI.

Depending on the exact situation, some of the information might require
an acknowledgment or another defined response from the driver.

Level, mode, and track conditions are presented using graphical symbols
defined in the Chapter 13 of [11].

Section 8.2.3 of [11] covers the entire specification of the supplementary
driving information.

2.7.1 Level and Mode

DMI displays the current supervision mode and ERTMS/ETCS level to the
driver.

2.7.2 Track Conditions

Various types of track conditions are listed below.

• Track ahead free

• Tunnel stopping area

• Level crossing

• Orders and announcements

– Air condition intake
– Pantograph
– Neutral section
– Radio hole
– Non-stopping area
– Brake inhibition
– Traction system
– Horn

Specific subset of track conditions is called orders and announcements. Orders
require a response from the driver that is not executed via the DMI. For
example, an order to lower the pantograph or open the air condition intake.
Announcements require no response.

2.7.3 Text Messages

Via the DMI, the driver can be presented with information in the form of text.
The content of these messages is specified in the Chapter 15 of [11].

21

2. DMI Description

2.8 Planning Area

Planning area is an object displayed in the D sub-area of the DMI default
screen. Its purpose is to inform the driver of various conditions ahead of the
train. The planning area displays the following:

• Gradient profile

• Indication marker

• Speed profile

• Orders and announcements of track conditions

Figure 2.8: Planning Area

4000

2000

1000

500

0

0

0-

22

-

+

5

+

Indication marker

Distance scale

Orders and announcements
of track conditions

Gradient profile

Speed profile discontinuity

Train position

Source: [11]

2.8.1 Distance Axis

The distance axis is vertical and always starts at the front of the train. As
the train moves, the entire planning area scrolls up and all the objects move
towards the beginning of the axis.

The planning area offers a zoom function, which may change the scale
of the distance axis. There are six scales available with maximum distance
ranging from 1000 m to 32000 m [11].

The relation between the distance DO to an object and its position xO in
the area in pixels from the bottom is

xO =
{

50 + 2.32× 10−2 log2(DO
zL

), if zL < DO ≤ 40zL

17 + 33DO
zL

, if 0 < DO ≤ zL

(2.2)

where zL = Dmax
40 is the zoom level used.

22

2.8. Planning Area

2.8.2 Gradient Profile

Gradient profile is presented using rectangles with different colors as seen in
the Figure 2.8. Uphill gradient is displayed with gray color, downhill gradient
uses dark gray.

The numeric value of the gradient is shown as well.

2.8.3 Indication Marker

Indication marker represents the location on the track where the TSM to the
next target begins.

2.8.4 Speed Profile

Speed profile is a diagram displaying MRSP-based speed discontinuities ahead
of the train.

Horizontal axis, where the MRSP values are presented, is discrete. The
axis is divided into four quarters. Permitted speed at the current train position
always takes all four quarters of the axis.

The speed profile displays up to three restrictions as 3/4, 2/4, 1/4 of the
axis respectively. The last quarter is reserved for Vtarget = 0. Upward MRSP
discontinuities are not presented in the diagram. The three quarters represents
99% to 75%, 74% to 50%, and 49% to 1% decrease in the permitted speed at
the current position. [11]

Figure 2.9: Planning Area Speed Profile

0

80

40

60

80

120

140 140

120

PASPMRSP

0 40 80 120 160

PASPMRSP

0 40 80 120 160

Source: [11]

23

2. DMI Description

Additionally, the speed profile is presented by graphical symbols with nu-
meric values as seen in the Figure 2.9. These symbols show both decreasing
and increasing speed discontinuities of the MRSP.

2.8.5 Orders and Announcements

The planning area displays the same orders and announcements of track con-
ditions as previously described in the section 2.7.2.

2.9 Monitoring Information

Monitoring information is similar to the supplementary information previously
mentioned in the section 2.7. However, it does not require any response from
the driver.

Monitoring information includes:

• Radio connection indication

• Reversing permitted indication

• Local time

• Geographical position

2.10 Sub-level Windows

Sub-level windows can be summoned on demand and serve for tasks such as
accessing settings, entering required data, or navigating various dialogues.

This section serves as a brief overview of each sub-window. For the com-
plete specification, please refer to chapters 10 and 11 of [11].

2.10.1 Menu Windows

Menu windows serve as entry points offering access to other sub-level windows
described in this section.

2.10.2 Data Entry Windows

Data entry windows are interfaces used to enter the data listed in the Table
2.6. Each window has an associated keyboard with allowed input values.

The values entered by the driver are subjected to a data check. The values
need to have a valid resolution, be in a valid range, and be consistent with
other inputs. There are two kinds of data checks. Failed operational data
check can be overruled by the driver, failed technical data check requires a
new data entry. [11]

24

2.10. Sub-level Windows

Data entry windows might be accompanied with a “Data entry complete?”
question and a “yes” answer button confirming the input.

Table 2.6: Data Entry Windows

Data window Input
Train running number Numeric

ETCS level Selected from predefined values
Driver ID Numeric

Radio network ID Selected from predefined values
RBC ID and phone number Numeric

Language Selected from predefined values
Volume Implementation specific

Brightness Implementation specific
SR speed and distance Numeric

Adhesion Selected from predefined values
Set VBC Numeric

Remove VBC Numeric

There is one additional window for train data entry described in the Table
2.7. This window allows two possible ways of entering the data.

Flexible train data entry means that each input field can be modified
separately by the driver. However, some of them might be preconfigured or
received from external sources. [11]

When fixed train data entry is used, the driver only chooses one of the
train types that contains a predefined combination of all train data values.

Table 2.7: Train Data Entry Window

Data Input
Train category Selected from predefined values

Length Numeric
Brake percentage Numeric
Maximum speed Numeric

Axle load category Selected from predefined values
Airtight yes/no

Loading gauge Selected from predefined values

2.10.3 Data Validation Windows

Validation windows are used to validate or invalidate data entries using a
“yes” or “no” answer. Train data, set VBC, and remove VBC windows have
associated validation windows. [11]

25

2. DMI Description

2.10.4 Data View Windows

All the items that can be displayed via the data view windows are listed in
the Table 2.8.

Table 2.8: Data View Windows
Data item Note
Driver ID

Train running number
Train type Fixed train data entry only

Train category Only when modifiable
Length Only when modifiable

Brake percentage Only when modifiable
Maximum speed Only when modifiable

Axle load category Only when modifiable
Airtight Only when modifiable

Loading gauge Only when modifiable
Tadio network ID

RBC ID
RBC phone number

VBC code set Multiple codes possible
System version

2.10.5 Dialogue Sequences

Dialogue sequences connect multiple sub-level windows and navigate the driver
to perform certain actions. Chapter 11 of [11] specify the sequences.

• Start up sequence guides the driver through all the windows and data
entries required for the start of a mission.

• Main window sequence defines the relationship between the main
window and other sub-level windows that are accessed via the main
window.

• Shunting sequence serves for authorization of a shunting action.

• Settings window sequence connects the settings window with sub-
level windows such as Volume, Brightness, or Language.

• Special window sequence defines access to the adhesion and SR
speed/distance windows via the special window.

• Override sequence is used to override an EOA.

26

Chapter 3
Hardware and Operating System

The first part of this chapter introduces the device which the DMI application
will run on. The second part goes over possible operating systems that could
be deployed.

3.1 Hardware

A panel computer from the AP9 series made by the Czech company AMiT
is used as the target hardware. It was selected because AMiT computers are
used in real locomotives and EMUs such as ŠKODA 109E, ŠKODA 10Ev, or
STADLER FLIRT 3.

AP9 is a series of embedded industrial computers that combine the intern-
als with all the peripherals into one self-contained unit.

A total of four AP9s will be used in the train simulator. Aside from the
DMI, they will serve as the diagnostic display, electronic timetable, and train
radio.

Table 3.1: HW Specifications

CPU Intel Atom E680T 1.6 GHz
RAM DDR2 1 GB
Flash 2 GB
GPU Intel GMA 600

Display resolution 800 px × 600 px
Touch screen Capacitive
Peripherals USB 2.0
Networking Ethernet, CAN, RS232

OS Linux, Windows Embedded

AP9 is built around a kontron COM board containing an Intel Atom CPU,
RAM, and flash memory. The main CPU is connected to an auxiliary Cor-

27

3. Hardware and Operating System

tex CPU that handles additional functions. The CPUs communicate using a
UART serial link.

Figure 3.1: AMiT AP9

Figure 3.2: AMiT AP9 High Level Schematics

Keyboard, LED
light sensor

Master CPU
1 GB RAM

4 GB FLASH

Power
supplies

Codec + amplifier

X1 X12 X3X5X4

RS232
driver

RS485
driver

RS485
driver

16C554
4x UART

X2

Power supply 2x USB RS232RS485 RS485

Audio output

X14 X15X16

GSM
GPRS

16C554
4x UART

GSM

WiFi GPS

WiFi GPS

X11

Ethernet

X13

2x USB

Auxiliary CPU
Buzzer

Temperature
sensor

Touch
panel

LCD

LPC/ISA

X6

CAN
driver

CAN

X7

CAN
driver

CAN

CC770 CC770

MVB
Module

X8, X9

MVB

HDA

LPC

Addressing

SATA
Flash

SATA

PCIe / ETH

X12

Ethernet

CFast
slot/

Source: [13]

28

3.1. Hardware

3.1.1 Peripherals

The main peripherals are the 10.4 inch TFT display with a capacitive touch
screen and a keyboard with 24 backlit keys placed around the display. The
computer also has a light sensor that can be used to automatically adjust the
screen brightness and the keyboard backlight.

3.1.2 Auxiliary CPU

Auxiliary CPU services the keyboard, controls the screen brightness, or turns
on/off the computer. The main CPU sends commands over the UART link and
receives responses from the auxiliary CPU. The communication uses ACK/N-
ACK messages comprising a variable number of fields.

Table 3.2: Auxiliary CPU Messages

Command
Field Value

Message start 0x1B
0x23

Command
Parameter P1

Delimiter 0x2C
Parameter Pn

Message end 0x0D

Response
Field Value

Message start 0x1B
0x23

Command
Return value V1

Delimiter 0x2C
Return value Vn

Message end 0x0D

The structure of the messages is described in the Table 3.2. Complete lists
of commands, parameters, and return values are available in [13].

3.1.3 Write Filters

The computer uses NAND flash instead of a conventional hard drive. This
type of memory is limited by a finite amount of erase cycles it can perform.
AMiT recommend using write filters to protect the memory and prolong its
service life [14].

Write filter redirects data to RAM, lowering the amount of flash drive erase
cycles. The disadvantage is that the data will be lost when the computer is
shut down.

Windows XP Embedded and Windows 7 Embedded systems offer two write
filters: EWF and FBWF. On Linux, write filters can be emulated [15].

When EWF is active, the entire drive partition is being protected. Using
EWF causes continuous allocation of free RAM up to the point when no
memory is available and the system crashes. To prevent this situation, periodic
system restarts are required. The rate of memory allocation depends on the
number of data write cycles and can reach up to 24 MB/day. This can be
lowered down to 1 MB/day by optimizing the OS configuration.

29

3. Hardware and Operating System

FBWF works on a per-file basis. Files can be configured individually to
either allow data write or redirect it to RAM. FBWF can allocate only a
predefined amount of RAM so using it cannot lead to a system crash.

3.2 Operating System

AMiT distribute the computer both with or without an OS. Officially sup-
ported operating systems are Windows XP Embedded, Windows 7 Embedded
Standard, and Linux. However, AP9 should be compatible with any x86 plat-
form OS.

3.2.1 Linux

Linux refers to a family of UNIX-like operating systems that are built around
the Linux kernel.

Using Linux requires no software licensing and allows the user to access the
source code and customize any part of it. Many of the existing Linux distribu-
tions are already designed specifically for use in embedded devices. OpenWrt,
Raspbian, or Embedded Debian are examples of embedded distributions.

3.2.2 Windows XP Embedded

Microsoft released the embedded version of Windows XP in 2001. The sup-
port for the latest version of the OS, the Service Pack 3, was ended in early
2016 [16]. However, the system is still being used.

Windows XP Embedded allows the user to build a custom-tailored system
using Windows XP components the user wants. This approach helps to re-
duce resources required to run the OS while increasing security and stability.
For example, if a device does not need an internet connection, networking
capabilities can be removed from the OS. [17]

The system also includes advanced functions, such as booting over network
or the already mentioned write filters. On the other hand, some desktop
features are not available.

3.2.3 Windows 7 Embedded

Windows 7 Embedded, was released in 2010, and as of now it is still being
supported by Microsoft.

The system uses the same component-based design as the XP Embedded
to create a highly customized OS. Additionally, Windows 7 Embedded has
an improved performance and is also compatible with recent versions of the
.NET framework. [18]

30

3.3. Application Requirements

3.3 Application Requirements

The DMI application is being developed for the x86 platform using Microsoft
.NET framework. The reasons why this framework was chosen are covered in
the following chapter.

The framework choice dictates the use of a Windows operating system; the
computer runs Windows 7 Embedded system. Originally, the application used
.NET version 4.5, which is officially supported by Windows 7. However, for
an unknown reason, AMiT were unable to install this version on the computer
forcing a downgrade to version 4.0.

Hardware-wise, the computer should be powerful enough to run the applic-
ation without problems. The program employs relatively simple 2D graphic
objects and most of the more computationally heavy tasks, such as breaking
curve calculation, are handled by the EVC. Calculations done by the DMI are
mostly related to transforming physical quantities such as, speed or distance,
to some pixel representation on the screen.

31

Chapter 4
Application Framework

Frameworks offer mainly a level of abstraction simplifying the development.
They also encourage use of a design pattern leading to a clear code structure
with separation of user interface and logic.

In this chapter, various frameworks supporting GUI development are ex-
plored and analyzed in order to select a suitable one for the DMI implement-
ation.

4.1 Qt

Qt is a cross-platform application framework. It is developed by The Qt
Company with numerous other companies and individuals contributing to the
project.

Qt can be used for free under GNU licenses if the final product is open
source. Otherwise, a commercial license is required.

The framework supports all the major operating systems and can be used
to develop desktop, mobile, and embedded applications.

C++ is the primary language used with the Qt, but native binding for
Python is available as well. Qt offers two main options how to develop the UI.
One possibility is Qt Quick and a language called QML which uses JSON-like
syntax to define graphical objects and JavaScript to implement the logic. The
second option is the QtWidgets module with more traditional approach of
creating the UI elements directly from the C++ code. [19]

Qt Quick employs a pattern with model/view/delegate. Models contain
data, views display the data and delegates control the appearance of the data.

The Qt framework is shipped with its own IDE (integrated development
environment) called Qt Creator.

33

4. Application Framework

4.2 .NET

.NET is a framework developed by Microsoft mainly for the Windows plat-
form. Parts of the framework are open source. The framework itself consists
of a class library and the Common Language Runtime, a virtual machine ex-
ecuting the code. The framework supports programming languages such as
C#, F#, Visual Basic, or Visual C++.

In .NET, User interfaces are built using the MVVM pattern as seen in the
Figure 4.1. View is the UI; it presents the data to the user. Model represents
the data. For example, Models can refer to database entries. View model
connects the model and the view; it controls how the data are transferred and
displayed. When a UI event occurs, the view model changes the model ac-
cordingly. Conversely, model updates are propagated through the view model
to the view. [20]

Figure 4.1: Model-View-ViewModel

WPF application uses XAML (Extensible Application Markup Language)
to define the GUI. XAML contains basic UI objects such as geometric shapes,
paths, or buttons. More complex XAML examples are ListView or GridView,
which can display collections of data. DataTemplate then customizes the
view presentation of the collections. XAML can also be used to create custom
controls. XAML objects employ construct of data binding to connect either
to other UI elements or view models.

34

4.3. wxWidgets

Microsoft produces its own IDE called Visual Studio, which is heavily fo-
cused on .NET development. A community version of the IDE can be installed
for free.

4.3 wxWidgets

wxWidgets is a popular open source GUI library. The development started in
1992; the latest version 3.1.0 was released in 2016. Windows, Linux, and Mac
desktop platforms are supported.

The library is distributed for free under a GNU based license, which does
not require publishing your own code.

wxWidgets uses the C++ language. However, bindings for numerous other
programming languages, such as Python, Ruby, Lua, Java, or PHP, have been
developed as well.

The library is the most suitable one for creating traditional desktop ap-
plications using native control elements.

4.4 Unity Engine

Unity Engine is a video game framework developed by Unity Technologies.
Originally designed for OS X, it now supports all the major desktop and
mobile platforms as well as video game consoles.

The framework is available for free. However, some advanced features,
such as access to the source code, are paid.

Unity Engine has dedicated tools for 2D graphics development and UI
design. Game objects are controlled by “components” that implement the
logic. Unity has a selection of in-built “components”, but also allows the
developer to write custom scripts using either C# or UnityScript. [21]

The engine includes a high level networking API which implements com-
munication between remote hosts and servers. A network manager, built using
the API, can be used to manage the state of an application. [21]

4.5 Framework Analysis Conclusion

I have concluded that the wxWidgets and Unity Engine are not very suitable
for the task of implementing the DMI.

wxWidgets is designed for basic window-based UI applications and is not
entirely ideal for more graphics-oriented, touch-screen interface.

Unity Engine is focused primarily on video game development and the
framework might have limitations that would require some modifications.

Between the Qt and .NET framework, I have decided to choose the .NET.
The main reason is that most of the software in the CTU Transportation
Laboratory was built using this framework.

35

Chapter 5
Implementation

This chapter documents the process of designing and developing the DMI
application.

5.1 Environment

The DMI was built using my laptop with Intel Core i7 64-bit CPU, which
runs Windows 10 OS. The application was periodically tested on the AP9
hardware.

I used GitHub and Visual Studio 2015 IDE to manage and write the source
code of the DMI application.

5.1.1 GitHub

GitHub is a hosting service providing Git and additional features such as issue
tracking, or wikis. A student account and a private repository were used to
host the DMI code.

Git itself is an open source version control system that stores a snapshot
of the code each time it is pushed into the repository. The project can also be
divided into multiple branches for easier development.

5.1.2 Visual Studio

Visual studio organizes the code into projects. One project usually results in
an .exe program and a .dll file. Multiple dependent projects are combined
into solutions. The DMI code is represented by one project.

Multiple built profiles were used to build the release and debug versions
of the program for either my 64-bit laptop or the 32-bit target computer.

37

5. Implementation

5.2 Project Setup

The project is set up as a WPF application with the target framework version
4.0. External assets, such as bitmap images or audio files, are loaded as
resources directly into the solution, which means they are included directly in
the executable file.

5.3 Design

The architecture of the application is based on the MVVM pattern; the main
components are shown in the figure below.

Figure 5.1: Application Architecture

38

5.4. View

5.4 View

The View represents the UI itself. It contains .xaml files, with graphical
objects defined using XAML, and associated .xaml.cs files with C# code,
which implements interaction with the objects.

In the DMI application, the view consists of user control objects that
implement the DMI functions. There are six main user controls (as seen in
the Figure 5.1), five associated to the display regions of the DMI default screen,
and one control for the sub-level windows.

The UI elements inside the user controls are connected via data binding
to the view models which store the data sources.

The width, height, and position of all the UI elements is defined in absolute
terms using 1 px = 1 cell relation. This means that the default resolution of
the application is 640 px× 480 px, however; the view employs <ViewBox> that
allows the application to be scaled to whichever resolution is desired.

Figure 5.2: DMI View

5.4.1 RegionBControl

RegionBControl includes the speed monitoring functions such as the current
train speed pointer, CSG, and basic speed hooks. The data comes mainly
from the SMViewModel.

39

5. Implementation

5.4.1.1 Train Speed Pointer

The speed pointer is represented by a <Polyline> and <Elipse> shapes. The
polyline is rotated around its origin, using RenderTransform, to an angle
calculated from the current train speed.

To smooth the movement of the pointer, an animation is employed. The
duration of the animation is 1 s which is the same interval as the refresh rate of
the display. This leads to a lag; when the pointer finishes the transition to the
old data point, new data comes in. However, the difference is not substantial
for usual train speeds.

The color of the pointer is controlled by SMColorEngine object described
in another section.

5.4.1.2 Circular Speed Gauge

The CSG is implemented using a total of five <ArcSegment> objects. One for
the permitted, target, and SBI speeds; the variable width of the release speed
is achieved with two overlaying segments. An additional <Rectangle> object
represents the hook at the end of the permitted speed segment.

Listing 5.1: CSG Permitted Speed Arc Segment
1 <Path Stroke ="{ Binding Path=VpermColor ,
2 NotifyOnTargetUpdated =True}"
3 Visibility ="{ Binding Path=VpermColor ,
4 Converter ={ StaticResource
5 VisibilityConverter },
6 NotifyOnTargetUpdated =True}"
7 StrokeThickness ="8"
8 DataContext ="{ DynamicResource SMViewModel }">
9 <Path.Data >

10 <PathGeometry >
11 <PathFigure StartPoint ="61.8 ,257.6">
12 <ArcSegment IsLargeArc ="{ Binding Path=Vperm ,
13 Converter =
14 { StaticResource
15 IsLargeConverter }"
16 Size="133 ,133"
17 Point="{ Binding Path=Vperm ,
18 Converter =
19 { StaticResource
20 SpeedToPointConverter },
21 NotifyOnTargetUpdated =True ,
22 ConverterParameter =133}"
23 SweepDirection =" Clockwise "/>
24 </ PathFigure >
25 </ PathGeometry >
26 </Path.Data >
27 </Path >

40

5.4. View

The Listing 5.1 shows an XAML definition of the permitted speed segment.
The starting point and radius of the segment are fixed; the endpoint is bounded
to the Vperm property. The DataContext assignment tells the application to
look inside the SMViewModel for the property. Because a set of two endpoints
and a radius leads to two possible arc segments, the IsLargeArc has to be
bounded to the permitted speed to resolve which arc should be rendered.

The CSG is available only under certain conditions; the Visibility prop-
erty binding resolves whether the CSG should be displayed or not.

5.4.1.3 Basic Speed Hooks

Basic speed hooks can be seen as a simplified version of the CSG. They com-
prise two <Rectangle> objects bounded to the target speed and permitted
speed.

5.4.2 RegionDControl

RegionDControl is the planning area displaying the speed discontinuity pro-
file, gradient and track conditions.

5.4.2.1 Speed Profile

Listing 5.2: Planning Area Speed Items Control
1 <ItemsControl DataContext ="{ DynamicResource DaPViewModel }"
2 ItemsSource ="{ Binding SpeedProfile }"
3 Background =" Transparent ">
4 <ItemsControl . ItemsPanel >
5 <ItemsPanelTemplate >
6 <Canvas Width="246" Height ="300"
7 Background =" Transparent "/>
8 </ ItemsPanelTemplate >
9 </ ItemsControl . ItemsPanel >

10 <ItemsControl . ItemContainerStyle >
11 <Style TargetType =" ContentPresenter ">
12 <Setter Property =" Canvas . Bottom "
13 Value="{ Binding Pos}"/>
14 <Setter Property =" Canvas .Left" Value="147"/>
15 </Style >
16 </ ItemsControl . ItemContainerStyle >
17 <ItemsControl . ItemTemplate >
18 <DataTemplate >
19 <Rectangle Width="{ Binding Q}" Fill="#294 A6B"
20 Height ="{ Binding Height }"/>
21 </ DataTemplate >
22 </ ItemsControl . ItemTemplate >
23 </ ItemsControl >

41

5. Implementation

The speed profile view is not bound to a single variable, as in the previous
cases, but to a collection of objects each representing the (X, f(X)) data
points, where X is the position and f(X) is the value of the discontinuity.

The <ItemsControl> element contains the collection and presents it in the
view (seen in the Listing 5.2). The <DataTemplate> defines that members of
the collection are displayed as <Rectangle> objects with Width and Height
bound to the speed limit value and to the distance where the limit is valid.
The style setter is then used to bind the overall position of the UI objects to
the actual position of the data points.

5.4.2.2 Gradient Profile

The gradient profile works in the same way as the speed profile. It is rather
simplified because the width of the <Rectangle> shapes is fixed. The color of
the shapes depends on the gradient values and is controlled by a converter.

5.4.2.3 Track Conditions Profile

Track condition profile also employs the <ItemsControl>; however, the mem-
bers are displayed as <Image> objects with image source bound to URIs (uni-
form resource identifier) associated to track condition bitmaps.

5.4.3 RegionAControl

The distance to the target indicator is the main element of the control. It is
implemented as a <Line> shape. The length of the indicator is then changed
via ScaleTransform where ScaleY property is bound to the target distance
value.

Listing 5.3: Distance to Target Control
1 <Line X1="0" X2="0" Y1="0" Y2=" -186"
2 StrokeThickness ="10" Stroke ="# C3C3C3 "
3 Canvas .Left="39" Canvas .Top="186"
4 DataContext ="{ DynamicResource DaPViewModel }"
5 Visibility ="{ Binding Path= Supervision1 ,
6 Converter ={ StaticResource
7 AnalogDistanceVisibilityConverter },
8 NotifyOnTargetUpdated =True}"
9 RenderOptions . EdgeMode =" Aliased ">

10 <Line. RenderTransform >
11 <ScaleTransform ScaleY ="{ Binding Path=Dtarget ,
12 Converter ={ StaticResource
13 AnalogDistanceConverter },
14 NotifyOnTargetUpdated =True}">
15 </ ScaleTransform >
16 </Line. RenderTransform >
17 </Line >

42

5.5. Converters

5.4.4 Not Implemented Controls

The RegionCControl, RegionEControl, and SublevelControl are not yet
implemented in the application. However, they will use the same features of
the .NET framework as the other controls. SublevelControl will be slightly
different because it functions mainly as an input.

5.5 Converters

Converters form an interface between the view and the view model. They
inherits properties from IValueConverter or IMultiValueConverter, and
implement the methods Convert and ConvertBack.

Figure 5.3: Converter Function

The Listing 5.4 shows an example of a converter which takes a speed value
and computes the endpoint of an arc segment as an (X, Y) amount of pixels
from the top left corner.

Listing 5.4: Speed to Point Conversion Method
1 public object Convert (object value , Type targetType ,

object parameter , CultureInfo culture)
2 {
3
4 double V = System . Convert . ToDouble (value);
5
6 if (V > 180)
7 V = 180;
8 else if (V <= 0)
9 V = 0;

10
11 double angle = (234 - 1.6 * V) / 180 * Math.PI;
12
13 double x = 140 + System . Convert . ToInt32 (parameter) *

Math.Cos(angle);
14 double y = 150 - System . Convert . ToInt32 (parameter) *

Math.Sin(angle);
15
16 return new Point(x, y);
17 }

43

5. Implementation

Converters are also used to control the visibility of various objects. For
example, the distance to the target indicator uses a visibility converter to
ensure that the bar is visible only under certain supervision condition.

5.6 ViewModels

View models contain the data that the elements of the view are bound to.
Furthermore, the auxiliary-logic objects and functions are called inside the
view models.

5.6.1 BaseViewModel

The BaseViewModel implements the INotifyPropertyChange interface. With
this interface employed, changes to view models properties are instantly propag-
ated to the view when the RaisePropertyChanged is called.

All the other view models inherits the interface from the BaseViewModel
along with some properties that are used across multiple controls.

Listing 5.5: BaseViewModel
1 namespace DMI
2 {
3 public class BaseViewModel : INotifyPropertyChanged
4 {
5 public event PropertyChangedEventHandler

PropertyChanged ;
6
7 protected void RaisePropertyChanged (string

propertyName)
8 {
9 var handler = PropertyChanged ;

10 if (handler != null)
11 {
12 handler (this , new PropertyChangedEventArgs

(propertyName));
13 }
14 }
15
16 // some code excluded
17
18 public BaseViewModel ()
19 {
20 // some code excluded
21 }
22 }
23 }

44

5.7. Models

5.6.2 SMViewModel

SMViewModel is connected mainly to the speed monitoring functions of the
RegionBControl. It incorporates data such as the train speed and all the
various speed limits.

5.6.3 DaPViewModel

DaPViewModel handles the planning area and the distance to the target in-
formation. It uses ObservableCollection objects to store the planning area
profile data points.

The Listing 5.6 shows an ObservableCollection property containing the
speed profile data. It is also shows how the RaisedPropertyChanged is called
when the data changes.

Listing 5.6: Speed Profile Property
1 private ObservableCollection < SpeedPresentationModel >

_speedProfile { get; set; }
2 public ObservableCollection < SpeedPresentationModel >

SpeedProfile
3 {
4 get { return _speedProfile ; }
5 set
6 {
7 if (_speedProfile != value)
8 {
9 _speedProfile = value;

10 RaisePropertyChanged (" SpeedProfile ");
11 }
12 }
13 }

5.6.4 Not Implemented View Models

Not yet implemented SIViewModel and SublevelViewModel will hold the data
related to the supplementary information and sub-level windows.

5.7 Models

Models represents the data. In case of simple concepts, such as the train
speed or the target distance, the models are the built-in data types such as
int, float, or string. On the other hand, planning-area profile data employs
more complex custom classes as the models.

Properties of the view models are implemented using the model classes.
A property can hold a single model; for example, Vtrain holds one float, or
multiple models using ObservableCollection as shown in the Listing 5.6.

45

5. Implementation

5.7.1 Speed Profile Models

Speed profile models are used to represent the speed discontinuity profile data.
The SpeedModel in the Listing 5.7 contains the value of the speed limit and
the position X where the limit ends. For example, X = 1000 m means that
the speed limit is valid between the end of the previous limit and 1000 m from
the initial train location.

Listing 5.7: SpeedModel
1 public class SpeedModel
2 {
3 public int X { get; set; }
4 public float Speed { get; set; }
5 public SpeedModel (int x, float speed)
6 {
7 X = x;
8 Speed = speed;
9 }

10 }

SpeedPresentationModel objects contain a subset of speed profile data which
is currently being displayed in the planning area of the DMI. The Pos, Height,
and Q specify the position and proportions of the <Rectangle> objects in the
planning area in pixels, so no converters are required.

The process of creating a SpeedPresentationModel instance based on a
SpeedModel is covered in the next section.

Listing 5.8: SpeedPresentationModel
1 public class SpeedPresentationModel
2 {
3 public int Pos { get; set; }
4 public int Height { get; set; }
5 public float Speed { get; set; }
6 public int Q { get; set; }
7 public SpeedPresentationModel (int pos , int height ,

float speed)
8 {
9 Speed = speed;

10 Height = height ;
11 Pos = pos;
12 Q = 0;
13 }
14 }

5.7.2 Gradient Profile Models

GradientModel and GradientPresentationModel work similarly to the speed
profile models. The presentation model is simplified because of the fixed width.

46

5.8. Auxiliary Logic

5.7.3 Track Conditions Profile Models

TrackCondModel is almost identical to the SpeedModel. The difference is that
it carries the track condition information instead of the speed limit. Moreover,
the track conditions are related to a single position, not a track segment.

5.8 Auxiliary Logic

Auxiliary logic refers to objects that implements some functions of the DMI
that were too complex to be handled by converters.

5.8.1 SMColorEngine

SMColorEngine includes ResolveCSGColors and ResolvePointerColor meth-
ods that are used to determine the colors of the pointer and the CSG.

5.8.1.1 ResolveCSGColors

The Listing 5.9 shows a part of the ResolveCSGColors. The method imple-
ments the Table 9 in the [11].

Listing 5.9: ResolveCSGColors
1 public static string [] ResolveCSGColors (string Mode ,

string Supervision1 , string Supervision2)
2 {
3 if (Mode == "FS")
4 {
5 if (Supervision1 == "CSM")
6 {
7 if (Supervision2 == "NoS")
8 {
9 return new string [] {" #555555 ", null ,

10 null , null };
11 }
12 else if (Supervision2 == "OvS")
13 {
14 return new string [] {" #555555 ", null ,
15 null , "# EA9100 "};
16 }
17 else if (Supervision2 == "WaS")
18 {
19 return new string [] {" #555555 ", null ,
20 null , "# EA9100 "};
21 }
22 // some code exlcuded
23 }
24 }
25 }

47

5. Implementation

The method uses the mode and the supervision data as input and returns
an array of four elements representing the colors of each segment of the CSG.
Returning null means that the segment is not visible.

5.8.1.2 ResolvePointerColor

This method controls the color of the train speed pointer. It implements the
Table 8 in the [11]. It is also an if/else decision tree, as in the previous case.
The required input is the mode, supervision status, permitted speed, target
speed, release speed, and the SBI speed limit.

5.8.2 PAPresentationEngine

Planning area profile data loaded into the DMI covers the entire length of
the movement authority. However, only a segment of the profile is visible
in the planning area. The PAPresentationEngine selects which part of the
data should be visible and computes where in the planning area the UI objects
should be displayed. The results are then stored into instances of presentation
model classes covered in the previous section. The collections of the created
presentation models are the binding sources for the <ItemsControl> elements
in the view part of the application.

Listing 5.10: DistanceToPoint
1 public static int DistanceToPoint (int x, int scale , int

dfromStart)
2 {
3
4 float dist = x - dfromStart ;
5
6 if (dist < 0)
7 {
8 return -1; // out of PA bounds
9 }

10 else if (dist > scale * 40)
11 {
12 return -2; // out of PA bounds
13 }
14 else if (dist <= scale) // linear part
15 {
16 return (int) Math.Round (17 + dist / scale * 33);
17 }
18 else // logarithmic part
19 {
20 return (int) Math.Round (50 + Math.Log(dist / scale

, 2) / 5.3219 * 229);
21 }
22 }

48

5.8. Auxiliary Logic

The PAPresentationEngine uses the function in the Listing 5.10 to com-
pute the position of an object on the distance axis of the planning area. The
function implements the Formula 2.2. The x (the distance of the object from
the initial train position) and dfromStart (current position of the train as
the distance from the start of the movement authority) inputs are used to
calculate how far ahead of the train the object is. The scale is the selected
range of the planning area, which can be changed by the zoom in/out buttons.
The function returns −1 or −2 when an object should not be displayed in the
planning area because it either lies beyond the selected range or the train has
already passed its position. When an object should be visible, the function
returns its position in pixels from the bottom of the area.

The methods ResolveTrackCond, ResolveGradient, and ResolveSpeed
are then used to display the correct profile data. They all start by going
through the collection of associated profile models, and if conditions are met,
they add the data point to the related presentation model collection which is
displayed in the profile area. The presentation collections are created every
time new positional data arrives to the DMI.

5.8.2.1 ResolveGradient

Algorithm 1 ResolveGradient Algorithm
Data← entire collection of gradient profile data points
Pres← empty collection of presentation models
S ← selected scale
D ← current distance from the start of the MA
L← position of the bottom border of the planning area
U ← position of the top border of the planning area
for i = 0 to count(Data) do

end← DTP (x(Data[i]), S, D)
if i = 0 then

start← DTP (0, S, D)
else

start← DTP (x(Data[i− 1]), S, D)

if start = −1 ∧ end = −2 then
Pres← push(model(pos← L, height← L− U))

else if start = −1 ∧ end > 0 then
Pres← push(model(pos← L, height← L− end))

else if start > 0 ∧ end = −2 then
Pres← push(model(pos← start, height← U − start))

else if start > 0 ∧ end > 0 then
Pres← push(model(pos← start, height← start− end))

49

5. Implementation

The Algorithm 1 describes the logic of ResolveGradient. The function
creates a new collection of data representing <Rectangle> objects with calcu-
lated Height and Pos specifying their height and position on the distance axis
respectively. The method pushes the instance to the presentation collection,
making the data visible, if one of the following conditions is true:

1. The data point is a segment that starts beyond the bounds of the plan-
ning area.

2. The data point is a segment that intersects the lower bound of the
planning area, but ends within the planning area.

3. The data point is a segment that intersects the upper bound, but starts
within the planning area.

4. The data point is a segment that starts and ends within the planning
area.

5.8.2.2 ResolveSpeed

The first part of the ResolveSpeed is identical to the ResolveGradient. How-
ever, there is a second step which computes the width as previously specified
in the section 2.8.4.

Full width is assigned to the <Rectangle> shape representing the current
speed limit. If the next limit is lower than the previous one, the width of the
shape depends on the speed limit ratio. Speed increase has the same width
as the previous limit.

5.8.2.3 ResolveTrackCond

The ResolveTrackCond is less complex than the previous cases. It adds the
data to the presentation collection if the track condition is within the bounds
of the planning area.

5.9 Message Parser

The purpose of the message parser is to extract the data from the massages
which receives as byte arrays from the TCP client. The extracted data are
then distributed to the view models and propagated into the view.

The messages received from the server may contain various amount of
different data items. Each data item is accompanied with an ID and length;
when the parser goes through the data it uses this information to extract the
correct number of bytes, convert them to the correct data type, and assign
the data to the correct view model property. The structure of the messages is
further defined in the Chapter 7.

50

5.10. Networking

As of now, the DMI application does not yet implement features that sent
data to the EVC which would require a message assembler.

5.10 Networking

The application uses TCP to send and receive data. The communication is
based on the client-server architecture with the DMI being the client and the
EVC being the server.

Figure 5.4: Communication Process

The Figure 5.4 shows an example of a data exchange between the DMI
and an EVC emulator which have been built as a part of this thesis because
the EVC for the train simulator has not yet been developed. In the future,
the communication with the actual EVC software might be different. The
emulator supports test scenarios that involve one movement authority. The
emulator program is introduced in the Chapter 6.

The EVC emulator initiates a TCP server that listens and waits for a con-
nection from DMI. When the connection is accepted, the DMI sends START
message (byte 0xFF), commanding the emulator to start transmitting the
data. The server starts with three planning area messages (PA), which cover
the movement authority. The DMI responds with OK (byte 0xFE) and the
emulator proceeds to send general data (GM) according to the scenario. The
server always waits for the OK from the DMI before transferring next message.

51

Chapter 6
Testing

The chapter outlines the DMI backend software and simulation scenarios
which are used to test the functions of the DMI application.

6.1 EVC Emulator

The EVC emulator serves as a backend to the DMI. It generates the messages
carrying the data and sends them to the DMI. The emulator does not imple-
ment any actual logic of the EVC; its main purpose is to allow the user to
input the scenario in a human-readable form.

Figure 6.1: EVC Emulator Architecture

53

6. Testing

The architecture of the program, defined in the Figure 6.1, follows the
same pattern as the DMI application.

Figure 6.2: EVC Emulator UI

The user interface of the emulator is depicted in the Figure 6.2. The
scenario is loaded into the application as two text files. One file for the general
data, and another for the planning area data.

Each line of the text files represents one set of data sent to the DMI. The
left area of the emulator UI shows the scenario as defined by the user. The
right area shows the scenario data encoded into messages according to the API
(the API is documented in the next chapter) which are sent to the DMI. The
TCP client asks for a new message every single second, which means that the
lines in the scenario files are interpreted as 1 Hz samples of the environment.

Each line of the data in both scenario files shall be formatted using the
following pattern:

name1 value1 name2 value2 ... nameN valueN

For example, a line Vperm 100 would set the Vperm to 100 km/h.

54

6.2. Test Scenarios

6.2 Test Scenarios

Two scenarios have been created to verify the implemented functions of the
DMI software.

The first scenario, seen in the Figure 6.3, emulates a train during the CSM.
The train accelerates and exceeds both the OvS and SBI limits, which triggers
the service brake intervention resulting in deceleration of the train.

Figure 6.3: Scenario 1

0 10 20 30 40 50 60 70
Time [s]

0

50

100

150

200

250

300

S
p
e
e
d
 [

km
/h

]

Train speed
OvS limit
SBI limit

The second scenario, displayed in the Figure 6.4, shows a train slowing
down to a new target speed during the TSM. All the time, the train stays
under the permitted speed limit and thus within the normal status supervision
boundaries, so no warning or intervention is activated.

Figure 6.4: Scenario 2

0 10 20 30 40 50
Time [s]

0

20

40

60

80

100

120

140

S
p
e
e
d
 [

km
/h

]

Train speed
OvS limit

55

Chapter 7
API Documentation

The purpose of the API is to establish the communication between the DMI
and EVC. The DMI specification does not define how the communication
should be implemented and thus the API was defined as part of the thesis
after studying and analyzing the documents [11] and [5].

As covered in the previous chapters, the DMI and the EVC communicate
with each other via TCP. The data sent over this connection are byte arrays
with a defined structure. This documentation specify what data can be sent
over the TCP connection and how to create messages carrying the data.

7.1 Data

The data contained inside the messages are generally float, int, or string
data types carrying values associated to DMI objects or functions. The data
can be grouped into the following categories:

1. Data carried by general messages

• Data sent to the DMI
• Data sent to the EVC
• Bidirectional data

2. Data carried by planning area messages

• Data sent to the DMI

The difference between the general and the planning area messages is described
in the next section of the documentation. All the data items supported by
the API are documented in the Appendix B.

The DMI application assumes that the data sent from the EVC are mu-
tually consistent according to the documents [5] and [11]. If the consistency
is not satisfied, the result will be a system failure in a form of an undefined
behavior or a complete application crash.

57

7. API Documentation

Permitted speed being higher than the service brake intervention speed is
an example of inconsistent data.

7.2 Messages

The data sent from or to the DMI are contained inside messages. The messages
consists of a header and the data itself. Multiple data fields can be included
in the data part of a message.

The API defines two types of messages: a general message and a planing
area message. The following principles are valid for both message types:

1. Data field can carry null value. This is done by setting the length of
the field to zero.

2. Any float or int are stored using little-endian format (least significant
byte first).

3. Multiple data fields with the same data item ID can be stored inside one
message.

7.2.1 General Message

General messages can be sent both from or to the DMI. They consist of a
header and one or multiple data fields. General messages carry the data listed
in the Appendix B.1.

Figure 7.1: General Message Structure

58

7.2. Messages

• Header identifies the type of the message and contains the information
about the length of the data part. General messages use 0x01 as the
message type value.

• Data field is composed of a unique ID (associating the data to a DMI
object), length information and the data itself.

7.2.2 Planning Area Message

Planning area messages transport track profile data from the EVC to the
DMI. They consist of a header identifying the type of profile data and one or
multiple data points. Panning area messages can contain the data listed in
the Appendix B.2.

Figure 7.2: Planning Area Message Structure

• Header identifies the type of the message and the type of the profile
data. Planning area messages use the 0x00 type value. ID refers to either
the speed discontinuity profile data, gradient profile, or track conditions.
Furthermore, the header carries information about the length of the data
part.

• Data field represents an (X, f(X)) data point. X is the distance from
the initial train position, f(X) is the data at that position. For example,
f(X) can represent the value of a MRSP speed discontinuity. The po-
sition value is defined in meters and stored as 32-bit integer. For the
gradient and the speed discontinuity profile, the position refers to the
end point of either a gradient segment or a speed limit.

59

7. API Documentation

7.2.3 Examples

First data field of the message bellow is sent from the EVC to the DMI and
states that the current train speed is 120 km/h. The second data field sets the
value of the release speed to null, which means that the release speed does
not exist under current conditions.

Header Data
0x01 0x0038 0x01 0x0020 0x42F00000 0x05 0x0000

1 2 3 4 5 6 7

• 0x01 identifies the message as the general message.

• 0x0038 states that the data part is 56 bit long.

• 0x01 associates the data to the current train speed.

• 0x0020 means the data value is 32 bit.

• 0x42F00000 is an IEEE-754 float value equal to 120.

• 0x05 is an ID of the release speed.

• 0x0000 sets the release speed to null.

The next example shows a planning area message. This message has two
data points. The first one orders 5000 m from the initial train position that
the driver shall sound a horn. This order is represented by PL24 symbol. The
second one announces change of traction to AC 25 kV at 7000 m. PL27 symbol
is used for the announcement.

Header Data
0x00 0x0028 0x1A 0x00001388 0x14 0x00001B58 0x14

1 2 3 4 5 6 7

• 0x00 represents the planning area message.

• 0x0008 informs that the data part is 40 bit long.

• 0x01A associates the data to track condition profile.

• 0x00001388 is an integer equal to 5000.

• 0x14 identifies the PL24 symbol.

• 00001B58 is an integer equal to 7000.

• 0x17 stands for the PL27 symbol.

60

Conclusion

The thesis is focused on the DMI display of the ETCS on-board sub-system
and the process of implementing it as a Microsoft .NET application. This task
was selected because the Transportation Laboratory at the Czech Technical
University in Prague is currently building a train vehicle simulator, which the
DMI application will be part of.

The theoretical part of this text outlines the general features and charac-
teristics of the ETCS in order to establish the environment in which the DMI
operates. It then proceeds to describe the functions of the DMI itself.

The next part documents the research that had been done prior to the
development of the DMI program. It introduces the target hardware, an AMiT
AP9 panel computer. It also explores and analyzes the operating systems that
could be deployed on the hardware, as well as frameworks suitable for the
DMI development. This part concludes with the choice of Microsoft Windows
7 Embedded OS and Microsoft .NET framework. In retrospect, it is apparent
that the .NET is not ideally suited for building real time applications, such
as the DMI, which made the development sometime difficult.

The DMI implementation required a definition of an API for communic-
ation between the DMI and either the current EVC emulator or the future
EVC unit of the simulator. The API defines the structure of the message and
the data carried. The API covers all the functions of the DMI, even those
which are not implemented in the current version of the application. It is also
important to mention that the API might change in the future as the rest of
the DMI will be completed.

The main goal of the thesis was to develop the DMI application. The speed
monitoring function, comprising the train speed dial and the circular speed
gauge, as well as the distance to the target and the planning area have been
successfully implemented. Sub-level windows and supplementary information
remains for future work. Alongside the DMI software, an EVC emulator has
been built, and test scenarios have been designed to verify the implemented
functions of the display.

61

Bibliography

[1] Petř́ık, L. Functional Specification for a Driver’s Cab Simulator with
ETCS. Master’s thesis, Czech Technical University in Prague, 2016.

[2] UIC. Driver Machine Interfaces for EMU/DMU, Locomotives and Driv-
ing Coaches. 2009.

[3] Palumbo, M. The ERTMS/ETCS Signalling System. railwaysig-
nalling.eu, 2015.

[4] UNISIG. FFFIS for Eurobalise. 2012.

[5] ERA UNISIG EEIG ERTMS Users Group. ERTMS/ETCS System Re-
quirements Specification. 2016.

[6] UNISIG. FFFIS for Euroloop. 2012.

[7] UNISIG. On-line Key Management FFFIS. 2015.

[8] UNISIG. FIS Juridical Recording. 2014.

[9] UNISIG. Train Interface. 2014.

[10] UIC. ETCS Implementation Handbook. 2008.

[11] European Union Agency for Railways. ETCS Driver Machine Interface.
2014.

[12] UNISIG. Glossary of UNISIG Terms and Abbreviations. 2000.

[13] AMiT. AP9xxx programátorská př́ıručka. 2015.

[14] AMiT. WINXPE – Filtry pro ochranu flash paměti. 2012.

[15] Ghilardi, G. P. Emulate EWF Effects on Linux. [cited 2017-04-
30]. Available from: https://serverfault.com/questions/64035/
emulate-ewf-effects-on-linux

63

https://serverfault.com/questions/64035/emulate-ewf-effects-on-linux
https://serverfault.com/questions/64035/emulate-ewf-effects-on-linux

Bibliography

[16] Microsoft. Lifecycle FAQ – Windows Products. [cited 2017-03-02].
Available from: https://support.microsoft.com/en-us/help/18581/
lifecycle-faq-windows-products

[17] Enos, K. Differences Between Windows XP Embedded and Windows XP
Professional.

[18] Microsoft. Windows Embedded Standard 7 Technical Overview.

[19] The Qt Company. Qt Examples and Tutorials. [cited 2017-05-05]. Avail-
able from: https://doc.qt.io/qt-5/qtexamplesandtutorials

[20] Microsoft. Overview of the .Net Framework. [cited 2017-05-05]. Available
from: https://msdn.microsoft.com/en-us/library/zw4w595w

[21] Unity Technologies. Unity Manual. [cited 2017-05-05]. Available from:
https://docs.unity3d.com/Manual

64

https://support.microsoft.com/en-us/help/18581/lifecycle-faq-windows-products
https://support.microsoft.com/en-us/help/18581/lifecycle-faq-windows-products
https://doc.qt.io/qt-5/qtexamplesandtutorials
https://msdn.microsoft.com/en-us/library/zw4w595w
https://docs.unity3d.com/Manual

Appendix A
Acronyms

A.1 ETCS Related

ATP Automatic train protection

BIU Brake interface unit

BTM Balise transmission module

DMI Driver machine interface

CSG Circular speed gauge

EOA End of authority

ERA European Union Agency for Railways

ERRI European Railway Research Institute

ERTMS European Railway Traffic Management System

ETCS European Train Control System

EVC European vital computer

FS Full supervision

GSM-R Global System for Mobile Communication - Railway

IndS Indication status

IntS Intervention status

ISL Indication supervision limit

KMC Key management center

65

A. Acronyms

LEU Lineside electronic unit

LTM Loop transmission module

MA Movement authority

MRSP Most restrictive speed profile

NoS Normal status

OvS Over-speed status

PASP Planning area speed profile

PSL Permitted speed limit

RBC Radio block center

SBI Service brake intervention

STM Specific transmission module

TSI Technical specification for interoperability

TIU Train interface unit

VBC Virtual balise cover

WaS Warning status

WSL Warning supervision limit

A.2 Other

API Application programming interface

COM Computer-on-module

CPU Central processing unit

EMU Electric multiple unit

FIFO First in, first out

GPU Graphics processing unit

GUI Graphical user interface

IDE Integrated development environment

OS Operating system

66

A.2. Other

RAM Random access memory

TCP Transmission Control Protocol

UART Universal asynchronous receiver/transmitter

UI User interface

URI Uniform resource identifier

WPF Windows Presentation Foundation

XAML Extensible Application Markup Language

67

Appendix B
Message Data

Data that can be carried via the messages between the DMI and EVC are
listed in this appendix.

B.1 General Data

B.1.1 Data Sent to the DMI

Table B.1: Train Speed

Name Vtrain
ID 0x01

Length 32 bit
Nullable No

Data Any 32-bit float representing a valid speed

Table B.2: Permitted Speed

Name Vperm
ID 0x02

Length 32 bit
Nullable Yes

Data Any 32-bit float representing a valid speed

Table B.3: Target Speed

Name Vtarget
ID 0x03

Length 32 bit
Nullable Yes

Data Any 32-bit float representing a valid speed

69

B. Message Data

Table B.4: SBI Speed

Name VSBI
ID 0x04

Length 32 bit
Nullable Yes

Data Any 32-bit float representing a valid speed

Table B.5: Release Speed

Name Vrel
ID 0x05

Length 32 bit
Nullable Yes

Data Any 32-bit float representing a valid speed

Table B.6: LSSMA
Name VLSSMA

ID 0x06
Length 32 bit

Nullable Yes
Data Any 32-bit float representing a valid speed

Table B.7: Distance to Target

Name Dtarget
ID 0x0A

Length 32 bit
Nullable Yes

Data Any 32-bit float representing a valid distance

Table B.8: Distance from Start
Name Dstart

ID 0x0B
Length 32 bit

Nullable Yes
Data Any 32-bit float representing a valid distance

70

B.1. General Data

Table B.9: Supervision Section

Name Supervision1
ID 0x07

Length 24 bit
Nullable Yes

Value list

0x43534D Ceiling speed monitoring
0x50494D Pre-indication monitoring
0x54534D Target speed monitoring
0x52534D Release speed monitoring

Table B.10: Supervision Status

Name Supervision2
ID 0x08

Length 24 bit
Nullable Yes

Value list

0x4E6F53 Normal status
0x496E6453 Indication status
0x4F7653 Over-speed status
0x576153 Warning status

0x496E6453 Intervention status

Table B.11: Mode
Variable Mode

ID 0x09
Length 8 bit

Nullable Yes

Value list

0x4653 Full supervision
0x4C53 Limited supervision
0x4F53 On sight
0x5352 Staff responsible
0x5348 Shunting
0x554E Unfitted
0x5053 Passive shunting
0x534C Sleeping
0x5342 Stand by
0x5452 Trip
0x5054 Post trip
0x5346 System failure
0x4E50 No power
0x4E4C Non leading
0x534E STM national
0x5256 Reversing

71

B. Message Data

Table B.12: ETCS Level
Name ETCSLevel

ID 0x0C
Length 8 bit

Nullable No

Value list

0x30 Level 0
0x31 level 1
0x32 Level 2
0x33 Level 3
0x34 Level STM

Table B.13: Acknowledgment

Name Ack
ID 0x0D

Length 8 bit
Nullable No

Data Any value representing a valid data item ID

Table B.14: Track Ahead Free Indication
Name TrackAheadFree

ID 0x0E
Length 8 bit

Nullable No
Data Boolean

Table B.15: Text Messages

Name TextMsg
ID 0x0F

Length Variable
Nullable No

Data Any character string repressing a valid message

Table B.16: Override Active
Name OverrideActive

ID 0x10
Length 8 bit

Nullable No
Data Boolean

72

B.1. General Data

Table B.17: Adhesion Factor
Name AdhFactor

ID 0x11
Length 8 bit

Nullable No
Data Boolean

Table B.18: Tunnel Stopping Area

Name TunnelSA
ID 0x12

Length 32 bit
Nullable Yes

Data Any 32-bit float representing a valid distance

Table B.19: Track Conditions Symbols

Name TrackCond
ID 0x14

Length 8 bit
Nullable No

Value list

0x00 TC19 0x12 TC15
0x01 TC21 0x13 TC16
0x02 TC20 0x14 TC17
0x03 TC22 0x15 TC18
0x04 TC02 0x16 TC23
0x05 TC03 0x17 TC24
0x06 TC01 0x18 TC25
0x07 TC04 0x19 TC26
0x08 TC05 0x1A TC27
0x09 TC06 0x1B TC28
0x0A TC07 0x1C TC29
0x0B TC08 0x1D TC30
0x0C TC09 0x1E TC31
0x0D TC10 0x1F TC32
0x0E TC11 0x20 TC33
0x0F TC12 0x21 TC34
0x10 TC13 0x22 TC35
0x11 TC14 0x23 LX01

73

B. Message Data

Table B.20: Indication Marker
Name IndicationMarker

ID 0x13
Length 32 bit

Nullable Yes
Data Any 32-bit float representing a valid distance

Table B.21: Radio Connection
Name TrackCond

ID 0x15
Length 8 bit

Nullable No

Value list
0x00 No connection
0x01 Connection up
0x02 Connection lost/set-up failed

Table B.22: Reversing Permitted Indication

Name ReversePerm
ID 0x16

Length 8 bit
Nullable No

Data Boolean

Table B.23: Geographical Position

Name GeoPos
ID 0x17

Length 32 bit
Nullable Yes

Data Any 32-bit int representing a valid position

Table B.24: System Version

Name SysVer
ID 0x2B

Length Variable
Nullable No

Data Any character string representing a valid version

74

B.1. General Data

Table B.25: Time to Indication
Name TTI

ID 0x2D
Length 32 bit

Nullable Yes
Data Any 32-bit int representing a valid time

Table B.26: Track Condition Deactivation
Name TrackCondDe

ID 0x2C
Length Variable

Nullable No
Data Same as B.19

B.1.2 Data Sent from the DMI

Table B.27: Driver ID
Name DriverID

ID 0x1C
Length 32 bit

Nullable No
Data Any 32-bit int representing a valid driver ID

Table B.28: Train Running Number

Name TrainNo
ID 0x1D

Length 32 bit
Nullable No

Data Any 32-bit int representing a valid running number

Table B.29: General Commands
Name GenCommand

ID 0x1B
Length 8 bit

Nullable No

Value list

0x00 Start
0x01 Shunting
0x02 Exit shunting
0x03 Maintain shunting
0x04 Override

75

B. Message Data

Table B.30: SR Speed

Name VSR
ID 0x1F

Length 32 bit
Nullable No

Data Any 32-bit float representing a valid speed

Table B.31: SR Distance
Name DSR

ID 0x20
Length 32 bit

Nullable No
Data Any 32-bit float representing a valid distance

Table B.32: Set VBC
Name VBC

ID 0x21
Length 32 bit

Nullable No
Data Any 32-bit int representing a valid VBC code

Table B.33: Remove VBC
Name VBC

ID 0x22
Length 32 bit

Nullable No
Data Any 32-bit int representing a valid VBC code

Table B.34: Radio Network ID
Name RadioID

ID 0x23
Length variable bit

Nullable No
Data Any character string representing a valid GSM-R ID

76

B.1. General Data

Table B.35: RBC ID
Name RBCID

ID 0x24
Length 32 bit

Nullable No
Data Any 32-bit int representing a valid RBC ID

Table B.36: RBC Phone Number
Name RBC Phone Number

ID 0x24
Length Variable

Nullable No
Data Any string representing a valid phone number

B.1.3 Bidirectional Data

Table B.37: Train Type

Name TrainType
ID 0x25

Length Variable
Nullable No

Data Any valid character string

Table B.38: Train Length

Name TrainLength
ID 0x26

Length 32 bit
Nullable No

Data Any 32-bit integer representing a valid length

Table B.39: Brake Percentage

Name BrakePrcnt
ID 0x28

Length 32 bit
Nullable No

Data Any 32-bit float representing a valid brake percentage

77

B. Message Data

Table B.40: Maximum speed

Name Vmax
ID 0x29

Length 32 bit
Nullable No

Data Any 32-bit float representing a valid speed

Table B.41: Airtight

Name Airtight
ID 0x2A

Length 8 bit
Nullable No

Data Boolean

Table B.42: Loading Gauge

Name LoadG
ID 0x2A

Length 8 bit
Nullable No

Value list

0x00 Out of GC
0x01 G1
0x02 GA
0x03 GB
0x04 GC

Table B.43: Train Category

Name TrainCat
ID 0x2A

Length 8 bit
Nullable No

Value list

0x00 PASS1 0x12 TILT7
0x01 PASS2 0x13 FP1
0x02 PASS3 0x14 FP2
0x03 TILT1 0x15 FP3
0x04 TILT2 0x16 FP4
0x05 TILT3 0x17 FG1
0x06 TILT4 0x18 FG2
0x07 TILT5 0x19 FG3
0x08 TILT6 0x1A FG4

78

B.2. Planning Area Data

Table B.44: Axle Load Category

Name ALC
ID 0x2A

Length 8 bit
Nullable No

Data Undefined

B.2 Planning Area Data

Table B.45: Track Conditions
Name TrackCondProfile

ID 0x1A
Length 8 bit

Nullable No

Value list

0x00 PL17 0x10 PL13
0x01 PL19 0x11 PL14
0x02 PL18 0x12 PL15
0x03 PL20 0x13 PL16
0x04 PL01 0x14 PL24
0x05 PL02 0x15 PL25
0x06 PL03 0x16 PL26
0x07 PL04 0x17 PL27
0x08 PL05 0x18 PL28
0x09 PL06 0x19 PL29
0x0A PL07 0x1A PL30
0x0B PL08 0x1B PL31
0x0C PL09 0x1C PL32
0x0D PL10 0x1D PL33
0x0E PL11 0x0F PL12

Table B.46: Gradient Profile
Name GradientProfile

ID 0x18
Length 32 bit

Nullable No
Data Any 32-bit float representing a valid gradient

79

B. Message Data

Table B.47: Speed Profile

Name SpeedProfile
ID 0x19

Length 32 bit
Nullable No

Data Any 32-bit float representing a speed

B.3 Notes

Table B.48: Units
Physical quantity Unit

Length meters
Time seconds
Speed km/h

80

Appendix C
Source Code

The DMI application and its source code is available at the Transportation
Laboratory of the Faculty of Transportation Sciences.

81

	Introduction
	Background
	The Simulator
	Scope of the Thesis

	ERTMS/ETCS Overview
	Development History
	ETCS Architecture
	ETCS Levels

	DMI Description
	Glossary
	General Principles
	Speed Monitoring
	Current Train Speed Information
	Speed Supervision Information
	Braking Information
	Supplementary Information
	Planning Area
	Monitoring Information
	Sub-level Windows

	Hardware and Operating System
	Hardware
	Operating System
	Application Requirements

	Application Framework
	Qt
	.NET
	wxWidgets
	Unity Engine
	Framework Analysis Conclusion

	Implementation
	Environment
	Project Setup
	Design
	View
	Converters
	ViewModels
	Models
	Auxiliary Logic
	Message Parser
	Networking

	Testing
	EVC Emulator
	Test Scenarios

	API Documentation
	Data
	Messages

	Conclusion
	Bibliography
	Acronyms
	ETCS Related
	Other

	Message Data
	General Data
	Planning Area Data
	Notes

	Source Code

