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Abstrakt

Ćılem této diplomové práce je analyzovat nejnověǰśı HEVC video kompresńı
formát a jeho porovnáńı a alternativami jako jsou H.264 a VP9. Část práce
je zaměřena na programováńı aplikace vyhodnocuj́ıćı kvalitu videa, která je
akcelerována na GPU za použit́ı technologíı CUDA a OpenCL. V prvńı části
práce jsou diskutovány hlavńı vlastnosti HEVC. Tato část slouž́ı ke správnému
porozuměńı slabých a silných stránek HEVC. Následně jsou identifikovány
zp̊usoby využit́ı GPU pro akceleraci porovnáńı videa. Aplikace pro vyhodno-
cováńı kvality použ́ıvá knihovnu FFmpeg pro enkódováńı/dekódováńı videa.
Posledńı část je zaměřena na testováńı na v́ıce GPU, založené na datech z
předchoźı analýzy. Závěrem, je diskutována efektivita použitých technologíı
pro akceleraci vyhodnocuj́ıćı kvality videa.

Kĺıčová slova HEVC, H.265, x265, VP9, H.264, x264, NVENC, CUDA,
OpenCL, SSIM, PSNR Kvalita videa
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Abstract

The aim of this thesis is to investigate and analyze newest HEVC video com-
pression standard and compare it with alternatives like H.264 and VP9. Major
part of thesis is focused on programming video quality evaluation program,
which is accelerated on GPU using CUDA and OpenCL. In the first part,
we discuss main features of HEVC. This part leads to correct understanding
of weaknesses and strengths of HEVC. The thesis then identifies best way of
usage GPU in video comparison. Programmed quality evaluation application
uses FFMPEG library for video encoding/decoding. Last part of thesis is
focused on testing on multiple GPUs based on collected data from previous
analysis. In conclusion, the thesis argues about efficiency of used technologies
in quality evaluation task.

Keywords HEVC, H.265, x265, VP9, H.264, x264, NVENC, CUDA, OpenCL,
SSIM, PSNR, Video Quality
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Introduction

Daily requirements for saving, sharing or streaming video have been rising
exponentially. End users are requiring better and better quality from video,
which leads to higher and higher storage requirements. Storing video without
any compression is a problem. Even today when storages in terabytes are
common. Usage of lossless compression algorithms does not provide required
compression ratio and even does not make sense since it is possible to achieve
similar video quality without user noticing difference.

Currently most common compression standard for video streams is called
H.264 and it has been a huge success. It’s scaled remarkably well since it was
first proposed and is capable of handling 3D, 60fps and even high resolution.

But we are starting to get to tipping point of high display resolutions and
higher range of colors. The point at which a series of small changes like
high resolution monitors, virtual reality and better screen panel technology
becomes significant enough to cause a larger, more important change. All
these new technologies are capable to display video stream in higher quality
then ever before. That creates enormous requirements for video compression
standards. One of the main reasons for creating HEVC standard has been
effort to increase compression ratio.

Today it is required to store videos in both higher resolution and higher
quality which require more storage. As the cost of processing power have
been reduced it was possible to create video codec that can reduce storage
requirements for the cost of higher processing power.

First version of HEVC was created in 2013 to utilize more processing power
and address this issue. HEVC was developed by JCT-VC consisted of com-
panies ISO/IEC Moving Picture Experts Group (MPEG) and ITU-T Video
Coding Experts Group (VCEG).
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Introduction

Sadly, HEVC is loaded with a lot of patents. For that reason, commercial
use of HEVC require paying licensing fees to companies such as MPEG LA,
HEVC Advance, and Technicolor SA. This is main reason why adoption of
HEVC is considered to be very slow and many similar implementations exits.
Predecessor H264 also requires licensing but licensing fees are considerably
lower.

As a response to this situation companies Amazon, Cisco, Google, Intel
Corporation, Microsoft, Mozilla, and Netflix founded non-profit organization
Alliance for Open Media (AOMedia). Latter companies AMD, ARM, Adobe,
Ateme, Ittiam and Vidyo joint this organization. First project is to develop
free alternative to HEVC. First version of this codec will be called AV1 a
should be finished by March 2017. It is expected that after release AV1 will
have higher market penetration even though HEVC has an advantage because
it is part of ISO standard.

Main focus of this thesis is to analyze algorithms for video comparison
and possibility of their parallel execution on GPUs. Output of this thesis is
also program that implements video comparison algorithms with utilization
of GPU when possible.

This thesis is separated into four parts. First part of this thesis contains ter-
minology and methods of video comparison. Second part compares available
technologies enabling parallel acceleration on GPUs.

Third part contains description of application architecture and specific meth-
ods used to achieve highest possible performance.

Finally, last part is dedicated to set objective method for video comparison
and test available codecs.

2



Chapter 1

Video codec theory

This chapter is dedicated to describe how video streams are stored on disc,
which processes needs to be done to use store video files and why it is necessary
to have multiple options to store video stream in multiple ways.

Network speeds continue to increase rapidly, high bitrate connection are
now very common and storage capacities are getting bigger and bigger. It
might not seem obvious why it is needed to compress videos. There are two
main reasons. First of all, data requirements necessary to store raw data are
still too big and even if would manage to store/transfer all data most of users
would not see sufficient increase (or none at all) in video quality.

Video coding format is representation format for transmitting or storing
digital video content. Specific video coding format is called video codec. Codec
is shortcut for coder and decoder. Video coding is process of compressing and
decompressing data from/to encoded stream to digital video signal.

Currently lossless codecs provide only small decrease in video size. With
exceptions like cases where most of video scene is static, etc... Lossless codecs
achieve data compression by removing redundancy in the data. Most of co-
decs use lossy compression, which achieves greater compression with price of
distortions in encoded video.

Video is representation of visual scene using slideshow of images. Frames in
video stream usually change with 1/24 or 1/30 second intervals (24/30 frames
per second).

Most common examples of video coding formats are following:

3



1. Video codec theory

• MPEG-4 Part 2 was ancestor to H.262/MPEG-2 Part 2 based on dis-
crete cosine transform compression standard with support of interlaced
video.

• H.263 Predecessor of H.264. low bitrate standard designed for video
conferencing. Technically uses same core standard MPEG-4 Part 2.

• H.264 Also called MPEG-4 Part 10 or Advanced Video Coding (MPEG-4
AVC). H.264 is block-oriented motion-compensation-based standard. Cur-
rently it is most used codec for video compression. x264 is video encoder
application library available under the terms of the open source GNU
GPL 2 license.

• H.265 Also called HEVC High Efficiency Video Codec successor of H264
is considered to be first of next generation codecs. Patented and paid for
commercial projects. x265 is video encoder application library available
under the terms of the open source GNU GPL 2 license.

• Google codecs (VPX) VP8, VP9 are proprietary video compression
formats created by On2 Technologies. Google also released libvpx library
under BSD license. VP9 is direct concurrence to HEVC. It is mostly used
on YouTube. Most of Internet Browsers are capable of playing VP9
encoded video (notable exceptions are Internet Explorer and Safari).

• AV1 Direct concurrence of HEVC and successor to VP9. It is being
developed by Alliance for Open Media (AOMedia). Designed for real-
time applications. Current efficiency is similar to HEVC but targeted
performance should be 50% above HEVC.

1.1 Picture coding

Digital picture is usually two-dimension image. Dimension sizes are
defined by picture resolution. Resolution can be dynamic in case of vec-
tor pictures or static for bitmap pictures. Vector graphics use polygons
to represent images while bitmaps are represented as grid of pixels (col-
ors). With a few exceptions (like Flash) pictures in videos are coded as
bitmaps.

Single picture (also called frame) in video can be represented by mul-
tiple formats [10] . Eligible formats are following:

– Luma (Y) only (monochrome).

– Luma and two chroma (YCbCr or YCgCo).

– Green, Blue and Red (GBR, also known as RGB)

4



1.1. Picture coding

Single component of pixel coding will be referred to as channel. Today
every single channel is mostly 8bit. Monitors (mostly with IPS matrix)
are starting to support 10bit colors, but today only professional graphic
cards (Nvidia Tesla) support video output in more than 8bit per color.
10bit bits per channel are supported by Nvidia only in exclusive full
screen DirectX mode.

HEVC is first modern format which officially supports more than 8bit
per channel by design.

1.1.1 YCbCr

YCbCr is also sometimes referred as YUV, which is analog encoding of
color information in television systems, but in computer science it refers
to YCbCr [11].

– Luma (Y) is channel that determines brightness of color

– Chrominance (U and V) are channels that determine color itself.

Figure 1.1: Chroma subsampling

Representation

– In monochrome sampling there is only one sample array, which is
nominally considered the luma array.

– In 4:2:0 sampling, each of the two chroma arrays have half the
height and half the width of the luma array.

– In 4:2:2 sampling, each of the two chroma arrays have the same
height and half the width of the luma array.

– In 4:4:4 sampling, each of the two chroma arrays have the same
height and same width of the luma array.

Bandwidth required to store one sample (relative to 4:4:4) is sum of all
factors divided by twelve. Every representation except 4:4:4 uses chroma
subsampling to lower bandwidth.

5



1. Video codec theory

When chroma subsampling is used it implementation might differ in
implementation. Most common is usage of top left value as can be seen
in figure 1.1. One of implementation could also be average of values.

Chroma subsampling can create holloing artifact around sharp edges.
That can be problem for keying (technique used to remove video back-
ground) with blue or green screening. Second problem can be out-of-
gamut colors (negative value in channel).

1.1.2 RGB

RGB is additive color model in which red, green, and blue light are added
together in various ways to reproduce a broad array of colors [11]. This
color model is used by monitors to produce specific colors by light mixing
as can be seen in figure 1.2.

Figure 1.2: RGB Additive Mixing

Representation
RGB is usually represented by single array containing information of
all colors in following order RGB—RGB—RGB (figure 1.3). Pixels are
ordered from top left pixel to right bottom by rows.

1.1.3 Interlaced frames

Video frames can be encoded in progressive or interlaced modes [1]. In pro-
gressive video all frames are have same resolution of video sequence.

6



1.1. Picture coding

Figure 1.3: RGB representation

Figure 1.4: Interlaced frame switching

Idea with interlaced frames is to double perceived frame rate by user with
similar bandwidth. All frames (called in this case half frames) have half height
of original video sequence. These half frames define odd or even rows in frame
and are alternately switched (figure 1.4). So every odd frame contains odd
row and every even frame contains even row. That means every time user sees
two frames at the same time.

Interlaced video requires display capable of showing individual fields in se-
quential order. Ideal displays are CRT, where afterglow from frame display
naturally joints multiple frames into one.

Sadly, with today displays which are mostly based on LCD technology,
Interlaced video needs to be Deinterlaced. Otherwise user would notice that
frames are being combined (figure 1.5). This effect can be seen with Scene
Pan or with fast moving objects.

7



1. Video codec theory

Figure 1.5: Interlaced frame without deinterlacing [1]

Deinterlacing can be done in several ways [1]:

• Bob - Doubles framerate, frames are displayed, one after the other

• Blending - Blends frames into each other

• Weaving - Consecutive fields are added together (basically leaves video
as it is)

• Smart (Adaptive) - detects rate of movement and combines Bob and
Weave for best effect. Also called Progressive scan.

1.1.4 Frame types

In video compression several types of frames are used. Frames are separated
into two categories Key frames and Predicted frames. Keyframes are frames
which can be decoded independently on other frames. Predicted frames are
frames which needs other frames to be decoded.

• I-Frame - Independent frame which can be decoded independently on
other frames. I-Frame holds information of entire frame.

• P-Frame - Predicted frame decoding is dependent on previous frame/s.
Picture holds information only for changes relatively to previous frame.

• B-Frame - Bi-predicted frame decoding is dependent on previous and
future frame/s.

1.1.5 Macroblocks

Macroblock is block of 16x16, 8x8 or 4x4 region which contains residual frame
samples after prediction. With chroma subsampling formats macroblock are

8



1.2. Licenses

scaled accordingly. For example chroma 4:2:0 (16 x 16 luma samples, 8 x 8
Cb and 8 x 8 Cr samples)

1.2 Licenses

Specific codec implementations can use different license, that might limit its
usage. Or be used under certain conditions. Common licenses used for codecs
does not limit end user in any way, but in many cases limit developer.

GNU General Public License or GPL is the most popular software licence
used for many projects including Linux kernel [12]. This licence grants user to
use, change and redistribute the software, but changes also must be available
under same licence.

The GNU Lesser General Public License is very similar to GNU General
Public License [12]. But it is more oriented to software libraries. Main reason
is to allow non-GPL application to link and use these libraries. Any changes
in libraries still must be available under same license.

The BSD License is more liberal compared to GNU [13]. License was origin-
ally used in BSD operating system. BSD license lets user to freely use source
code. Source code is provided in ’as-is’ state.

1.3 MPEG-4 Part 2

MPEG-4 Part 2 is older standard developed by MPEG . Latest standard
to this compression format was released in 2004 defined by ISO/IEC 14496-
2:2004. Most known codecs which implemented this standard are DivX and
Xvid. Currently these codes are obsolete. [14]

It is block based standard that uses motion compensation followed by DCT
(Discrete Cosine Transform is lossy compression for audio and image e.g.
JPEG) and Quantization (lossy compression technique used for image pro-
cessing). Basically same process is in standard of H.263.

1.4 H.264

H.264 also called MPEG-4 Part 10 or Advanced Video Coding (MPEG-4
AVC). It is currently dominating video codec. First version was completed in
year 2003. Over following years Video Coding Experts Group released a lot
of new versions with new features. Currently latest version is v22 released in
February 2014, which enhanced support for 3D video. [15]

9



1. Video codec theory

Instead of I-Frames, P-Frames and B-Frames H.264 uses I-Slices, P-Slices
and B-Slices. Slices are regions of frame that are encoded separately. One
frame contains one or more slices. Each slice contains one or more macroblock.

Table 1.1: H.264 codec list

Project License Encoder Decoder Language
x264 GPL 2 3 C
OpenH264 BSD 3 3 C++
FFmpeg LGPL 2.1 or later 3 C

H.264 contains many techniques to improve efficiently over older codecs.
Some of the most important features are:

• Inter prediction process Encoder can use up to 16 frames (even future
frames) as reference to encode frame.

• Motion compensation - algorithmic technique used to predict a frame
in a video. In H.264 block motion compensation (BMC) is used. Frames
are partitioned into macroblocks and based on previous and future frames
shift and difference is calculated. Shift is represented by motion vector.
Motion vector can be represented using non-integer numbers in case shift
would not be decimal (sub-pixel precision) and interpolate pixels. One
macroblock can be splitted into multiple block called partitions.

• Chroma subsampling - Support of monochrome (4:0:0), 4:2:0, 4:2:2,
and 4:4:4

• Independent channels - Channels can be encoded independently. That
leads to easy parallelization of encoding (only supported by 444 profile).

• Lossless macroblock coding

• Higher bit depth - Support for depth precisions ranging from 8 to 14
bits per sample of channel.

H.264 is accepted in following standards:

• H.264 : Advanced video coding for generic audiovisual services. Cur-
rently in version ITU-T H.264 (10/2016) [15]

• ISO/IEC JTC 1/SC 29/WG 11 Motion Picture Experts Group (MPEG)
– publishes the H.264 standard as ISO/IEC 14496-10:2012. [16].

10



1.5. H.265

1.5 H.265

High Efficiency Video Coding (HEVC), also known as H.265, is a new video
compression standard, developed by the Joint Collaborative Team on Video
Coding (JCT-VC). [10]

H.265 is evolution of existing video codec H.264 and is being developed in
response to the growing need for higher compression of moving pictures for
various applications such as Internet streaming, communication, videoconfer-
encing, digital storage media and television broadcasting. It is also designed
to enable the use of the coded video representation in a flexible manner for a
wide variety of network environments.

HEVC is mostly extension of H.264 as it uses same techniques. Block sizes
were increased from maximum of 16x16 to 64x64 with improved segment-
ation. Motion vector prediction, motion compensation and intra-prediction
were improved and new step called sample-adaptive offset filtering was added.
Technologies that are obsolete were removed, for example interlacing are no
longer supported.

Table 1.2: HEVC codec list [9]

Project License Encoder Decoder Language
cclxv GPL 2 3 3 C++11
f265 BSD 3 C
FFmpeg LGPL 2.1 or later 3 C
HM BSD 3 3 C++
HomerHEVC LGPL 2.1 or later 3 C
kvazaar GPL 2 3 C
libav LGPL 2.1 or later 3 C
libde265 LGPL 3 or later 3 C++
openHEVC LGPL 2.1 or later 3 C
x265 GPL 2 or later 3 C++

HEVC is accepted in following standards:

• ITU-T Study Group 16 – Video Coding Experts Group (VCEG) – pub-
lishes the H.265 standard as ITU-T H.265. Currently in version ITU-T
H.265 (V3) (04/2015) [10]

• ISO/IEC JTC 1/SC 29/WG 11 Motion Picture Experts Group (MPEG)
– publishes the HEVC standard as ISO/IEC 23008-2. Currently in ver-
sion ISO/IEC 23008-2:2015. [17].
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1. Video codec theory

Sadly, HEVC is loaded with a lot of patents. For that reason, penetration
on market is very low and seems to increase with very low speed.

1.6 Video Quality Evaluation

Video quality is a characteristic of a video passed through a video transmis-
sion/processing system, a formal or informal measure of perceived video de-
gradation (typically, compared to the original video). Video quality evaluation
is performed to describe the quality of a set of video sequences. [18]

Video quality evaluation can be separated into two categories.

• Subjective video quality.

• Objective video quality

Subjective video quality procedures measurements are described in ITU-R
Recommendation BT.500 and ITU-T recommendation P.910. Their main idea
is that video sequences are shown to a group of viewers and then their opin-
ion is recorded and averaged to evaluate the quality of each video sequence.
However, the testing procedure may vary depending on what kind of system
is tested.

Objective video quality is measured as ratio between information contained
in original video and information in transcoded video. Objective video quality
procedures measurements are divided into following categories:

Full Reference Methods (FR): Full Reference Methods compute the qual-
ity difference by comparing the original video sequence against the re-
ceived video sequence. Usually, every pixel from the source is compared
against the corresponding pixel at the received video. In case of different
resolutions larger frame is downscaled to smaller frame. Full Reference
Methods are the most accurate. [19]

• Picture Quality Methods(PQ): Picture Quality Methods that
are used for video quality rating (such as PSNR or SSIM) are image
quality models, whose rating is calculated for every frame of a video
sequence. This quality measure of every frame can then be recor-
ded over time to calculate the quality of an entire video sequence.
Quality of entire video sequence is usually calculated as average of
all evaluated frames. Some of additional calculated values can be
minimum and maximum.
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Reduced Reference Methods (RR): Reduced Reference Methods provide
a solution that lies between FR and NR models. They are used when all
the reference video is not available. They are designed to predict the per-
ceptual quality of distorted images with only partial information about
the reference images. Calculations are usually done by statistical mod-
eling of the discrete cosine transform (DCT) coefficient distributions.
[20]

No-Reference Methods (NR): No-Reference Methods compute the qual-
ity of a video sequence without any reference to the original video se-
quence. Interestingly, human observers can easily recognise quality of
distorted image even without previout reference. But for computer al-
gorithms it is very difficult task. [21]

• Pixel-Based Methods (NR-P): Pixel-based Methods use a de-
coded representation of the video sequence and analyze the quality
after full image reconstruction. Quality evaluation is mostly pos-
sible only when the prior knowledge about the image distortion
types is available. For example, capability to effectively predict
DCT-based image quality requires knowledge of most significant
artifacts generated during the JPEG compression process.

• Bitstream/Parametric Methods (NR-B): These Methods use
statistics of various coding parameters from the transmission con-
tainer and video data stream, like packet headers, motion vectors
and quantization parameters.

• Hybrid Methods (Hybrid NR-P-B): Hybrid Methods use para-
meters extracted from the data stream and decoded video sequence.
They are therefore a mix between NR-P and NR-B models.

1.6.1 PSNR

Peak Signal to Noise Ratio is most commonly used full reference algorithm
[22]. PSNR is measured in dB (decibels) on a logarithmic scale. PSNR uses
MSE (Mean Square Error) between original and comparing image. MSE is
calculated by equation 1.1. Calculation of PSNR (equation 1.2) is quick and
easy that’s why it is still one of most favorite formulas to calculate image
quality [23].

MSE =
1

mn

height∑
y=0

width∑
x=0

[I (x, y)− J (x, y)]
2

(1.1)

Higher value means better quality. Scale ranges between zero and infinity.
Infinity (or undefined) value occurs when pictures are identical and formula
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contains dividing by zero (or logarithms of zero). Usually it is expected to
have PSNR between 30 and 50 dB for static images when calculated only on
luma channel.

PSNRdB = 10 · log10

(
MAX

2

MSE

)
(1.2)

PSNRdB = 20 · log10 (MAX)− 10 · log10 (MSE) (1.3)

I(x, y) and J(x, y) are sample on location x, y from original and comparing
image. MAX is maximum value of one sample. Images usually use 8-bit colors
where MAX value is then 255.

PSNR does necessarily correlate with subjective quality. PSNR that uses
contrast perception is called PSNR-HVS-M.

1.6.2 SSIM

Structural Similarity Index (SSIM) as an image quality metric.[22] It calculates
the visual impact of three characteristics of an image: luminance 1.4, contrast
1.5 and structure 1.6. The overall index is a multiplicative combination of
these three terms 1.7.

l (x, y) =
2µxµy + C1

µ2x + µ2y + C1
, (1.4)

c (x, y) =
2σxσy + C2

σ2x + σ2y + C2
, (1.5)

s (x, y) =
σxy + C3

σ2x + σ2y + C2
, (1.6)

SSIM(x, y) = l (x, y)α · c (x, y)β · s (x, y)γ · (1.7)

where µx, µy, σx, σy, and σxy are the local means, standard deviations,
and covariance for various windows images x, y. By default, C1 = 0.01 ∗
L,C2 = 0.03 ∗ L,C3 = C2/2. SSIM uses these regularization constants to
avoid instability for image regions where the local mean or standard deviation
is close to zero. L is dynamic range of pixel values, typically 2bits per pixel (255
when calculation only with luma).

Alpha, beta, gamma are coeficients which have defaut value 1.
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Usually this formula is applied only on luma (because human eye is most
sensitive to luminance), but it can be also applied to luma with chrominances
or RGB. Result of SSIM varies between -1 and 1. Where 1 represents identical
images. Windows sizes for calculating means, deviations and covariance is
usually 9x9 pixels.

SSIM is originally designed only for static images, but it can be also used
for video sequences. Usually SSIM for video sequences is calculated as mean
of all calculated frames.

Three-component SSIM is a variant of SSIM which suggests weighted av-
erage of luminance, contrast and structure. Some variants use weighting of
0.5, 0.25, 0.25 or 1.0, 0.0, 0.0 that completely ignores contrast and structure.

Multi-Scale SSIM (MS-SSIM) extends technique by making multiple SSIM
evaluations on different image scales. This is performed by repeatedly down-
scaling images by factor of two. With MS-SSIM the scale of images is becoming
less important. This technique can be used to compare images that have been
upscaled or downscaled [24].

Arithmetic local mean (also called Average or Expected value) is calculated
as sum of all samples divided by their count 1.8. Average is usually marked
as E (X) or µ.

E (X) =
∑
x

x · f (x) (1.8)

Variance is mean of square deviations 1.9. It represents expected deviantion
from local mean. Variance us usually marked as V ar (X) or µ2 (variance is
squared but sometimes it is not written).

V ar (X) = E
[
(X − E [X])2

]
(1.9)

V ar (X) = E
[
X2
]
− (E [X])2 (1.10)

Covariance measures correlation between two sets of variables of same size.
Covariance is calculated as mean value of multiplied deviantions of X and Y
1.11. For uncorrelated variates is covariance zero. Formula can be simplified
to mean value of multiplied X and Y minus multiplied mean values of X and
Y [25]. Covariance is marked as cov (X,Y ).

cov (X,Y ) = E [(X − E [X]) (Y − E [Y ])] (1.11)
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cov (X,Y ) = E [XY ]− E [X]E [Y ] (1.12)

1.6.3 Video Quality Comparation

There are continuous discussions about optimality of video comparison al-
gorithms. Most important is how is video quality perceived by human and
that can be very subjective. It might be very hard to replicate any results even
though few of techniques have been standardized as ITU-R Recommendation
BT.500-13 [26] or ITU-T Recommendation P.910 [27].

Objective video quality are clearly way to go. Algorithms try to predict
human judgment of picture quality. Algorithms often use metrics that can be
easily evaluated by a program.

Many implementations of these algorithms are executed mostly on Luma
part of video sequence as human eye is most sensitive to brightness and color
information is not that important.

In case of evaluation of video quality in RGB human eye is most sensitive
to blue color, but perception differences are not as high.

Many uses of this quality comparison require evaluation in real time. That
in many cases limits algorithm complexity. In this thesis we will compare two
well-known objective image quality metrics SSIM and PSNR, that are most
common algorithms used for measuring the similarity between two images.
During implementation we will focus on parallelization of these algorithms.
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Chapter 2

GPU programming

This chapter is dedicated to describe available technologies for GPU program-
ming, explaining difference between CPU/GPU and mention advantages/dis-
advantages with usage of GPU.

The first GPUs were designed as graphics accelerators, supporting only
specific fixed-function pipelines. Starting in the late 1990s, the hardware
became increasingly programmable, culminating in NVIDIA’s first GPU in
1999. Less than a year after NVIDIA coined the term GPU, artists and
game developers weren’t the only ones doing ground-breaking work with the
technology: Researchers were tapping its excellent floating point performance.

Thanks to the big data parallelism GPU evolved into specialized SIMD
processors, but with many extensions that’s why they are called SIMT (Single
Instructions Multiple Threads). Every thread has own identity, for example
own registers.

Because it is challenging to continue to increase frequency of processors,
but it is easy to add more cores. Thanks to that we have two developmental
lines.

1. multi-core (Several full cores on same chip). These line is currently used
by CPUs. Optimized to perform sequential code. Adding of more cores
is difficult because of 1D architecture. Memory access latency is being
lowered by hierarchy of L1, L2 and L3 caches. Most logic on one chip
dedicated to effective execution of instructions and data fetching.

2. many-core (Many simple cores on same chip). These line is currently
used by GPUs. Optimized for parallel computing. Adding of more
cores is easy thanks to 2D architecture. Memory access latency is be-
ing lowered by thread switching and small cache. Compared to CPU
signifficantly lower space on chip is dedicated to control logic.
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Figure 2.1: Floating-Point Operations per Second for the CPU and GPU [2]

Figure 2.2: Memory Bandwidth for the CPU and GPU [2]

The reason behind the increasing difference in floating-point capability (fig-
ure 2.1) between the CPU and the GPU is that the GPU is specialized for
compute-intensive, highly parallel computation and therefore can be designed
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Figure 2.3: The GPU Devotes More Transistors to Data Processing [2]

so more transistors would be devoted to data processing rather than data
caching and flow control, as schematically illustrated by figure 2.1

CPU is oriented to high performance for sequential code, that why a lot of
space on CPU is occupied by flow control and data caching. Today processors
use out-of-order execution. So processor can execute instructions that already
have available data to process. Without this function many instruction cycles
would be wasted while waiting for data.

GPU executes same program for many data elements in parallel. For this
reason, requirements for flow control and data caching are not as complex and
more space on chip can be used for data processing. Memory access latency
can be easily hidden with calculations.

For effective use of GPU, it is required that code must be easily parallelizable
and without often global synchronization. GPU might not be effective when
code must often communicate with host or transfers a lot of data between
GPU and host.

There are several programming languages used for GPU programming.
Most known are CUDA, OpenCL OpenACC and OpenMP (supports GPU
computing from version 4).

2.1 CUDA

CUDA is a parallel computing platform and programming model invented
by NVIDIA. It enables dramatic increases in computing performance by har-
nessing the power of the graphics processing unit (GPU). List of supported
Graphic Cards can be found on this Nvidia webpage [28]
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NVIDIA is considered to be leader in Graphic cards. Servers based on
GPUs are mostly on hardware delivered by NVIDIA. Server line on GPUs by
NVIDIA is called Tesla series and consumer line is called GeForce. Hybrids
between these two segments are currently called TitanX.

Figure 2.4: Official Nvidia Logo [3]

NVIDIA knew that blazingly fast hardware had to be coupled with intuitive
software and hardware tools, and invited Ian Buck to join the company and
start evolving a solution to seamlessly run C on the GPU. Putting the software
and hardware together, NVIDIA unveiled CUDA in 2006, the world’s first
solution for general-computing on GPUs

Today, the CUDA ecosystem is growing rapidly as more and more companies
provide world-class tools, services and solutions.

If you want to write your own code, the easiest way to harness the perform-
ance of GPUs is with the CUDA Toolkit, which provides a comprehensive
development environment for C and C++ developers. CUDA works with
programming languages such as C, C++, and Fortran.

The CUDA Toolkit includes a compiler, math libraries and tools for de-
bugging and optimizing the performance of your applications. You’ll also find
code samples, programming guides, user manuals, API references and other
documentation to help you get started.

NVIDIA provides all of this, including NVIDIA Parallel Nsight for Visual
Studio, the industry’s first development environment for massively parallel
applications that use both GPUs and CPUs.

2.1.1 Terminology

• Host - GPUs cannot work without CPU. In GPU computing CPU
provides data and instructions to GPU, that why CPU is also called
host.

• Kernel - Instructions designed to run in parallel on GPU.

• Thread - Single instance of kernel
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• Device - Computing device (GPU) that runs threads in parallel

• Warp - Group of 32 threads

• SM - Streaming multiprocessor consisted of CUDA cores

• (Thread) Block - Streaming multiprocessor consisted of CUDA cores

• Grid - Set of thread block that can be executed on SM

2.1.2 Architecture

In this chapter we will discuss architectures of GPUs. Terminology and archi-
tecture will mostly be from new Nvidia GPUs, since CUDA is officially sup-
ported only on GPUs by Nvidia. AMD announced Heterogeneous-compute
Interface for Portability. That should provide compatibility layer with CUDA
for AMD GPUs. HIP tool can port CUDA runtime API’s directly into C++.
But from AMD testing this process is not completely automatic. Only 90%
of code can be automatically converted into C++.

Cuda in available on architecture Fermi (figure 2.5) or newer. Developer
tools are part of CUDA Toolkit. Latest version of CUDA Toolkit 8.0 was
released in September 2016. Version 8.0 provides Support for Pascal Ar-
chitecture, Unified Memory Performance optimization, support for NVIDIA
NVLink. and up to two times faster compilation.

NVIDIA NVLink is a high-bandwidth interconnect between CPU and GPU.
Data transmitting bandwidth is 5 to 12 times higher than PCIe 3. PCI Ex-
press (Peripheral Component Interconnect Express) is today standard bus
(almost exclusively) for connecting GPUs. PCIe standard defines speeds and
number of lanes which connected device can use. GPUs are connected with
maximum of 16 lanes with speed of 985MB/s per lane, that’s 15.75GB/s in
total (calculated for PCIe 3). PCIe is full duplex so it is possible to achieve
full speed for receiving and sending data at the same time. NVLink allows
speeds up to 80GB/s between CPU and GPU or between two GPUs.

CUDA maps thread to a hierarchy of processors on the GPU; a GPU ex-
ecutes one or more kernel grids; a streaming multiprocessor (SM) executes one
or more thread blocks; and CUDA cores and other execution units in the SM
execute threads. The SM executes threads in groups of 32 threads called a
warp. While programmers can generally ignore warp execution for functional
correctness and think of programming one thread, they can greatly improve
performance by having threads in a warp execute the same code path and
access memory in nearby addresses.
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Figure 2.5: Fermi GPU Architecture [4]

Every GPU can differ in following:

• GPU frequency

• Memory size and Speed

• Number of SM

• Number of CUDA cores in one SM(XM)

• Cuda capabilities (table 2.1)

Each stream multiprocessor has 32 CUDA Cores (also called Cuda Pro-
cessors). Each SM also contains instruction cache, shared memory, register
array, warp scheduler and dispatch unit (figure 2.6).

Each CUDA Core has pipelined ALU (arithmetic logic unit) and FPU
(Floating Point Unit). Prior Fermi architecture ALU was limited to 24-bit
precision for multiply operations, for this reason 32-bit precision needed to be
emulated with sequence of multiple instructions.
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Figure 2.6: Fermi single stream multiprocessor [4]

Each stream multiprocessor has defined number of load/store units (LD/ST
units) (defined by compute capability) allowing simulations. These units load
and store data to cache or DRAM.

CUDA Cores are very simple and minimalistic. For that reason, more com-
plex instructions are not executed on CUDA cores but on SFUs (Special Func-
tion Units). Instructions like sin, cosine, square root must be executed on
SFUs. Every SM has limited number of SFUs. For example, Fermi has 4
SFUs per SM. That means in case every CUDA Core in warp wants to ex-
ecute instruction on SFU execution time would be 8 instructions instead of
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one. SFUs work only with single precision.

Stream Multiprocessor also contains number of DP Units designed to ex-
ecute double precision computations. Double precision performance is usually
very low compared to single precision especially on cunsumer GPUs. Double
precision performance ranges from 1/2nd to 1/32rd of single precision per-
formance.

Nvidia releases new GPU generation every year and names every archi-
tecture generation by famous mathematicians. Stream multiprocessors went
through minor changes over past few years. Nvidia changes architecture more
or less every two years (similar to Intels tick-tock).

• SMX (Kepler architecture) is used in GeForce 600 series GeForce 700
series and server Quadro K series. Each SMX has four warp schedules
and eight dispatch units (allowing four warps per SM to be executed at
the same time). One SMX contains 192 single precision CUDA cores, 64
double precision units, 32 special function units (SFU), and 32 load/store
units (LD/ST) [5]

• SMM (Maxwell Architecture) is used in GeForce 800M series Ge-
Force 900 series and server Quadro M series. One SMM contains 128
single precision CUDA cores, 4 double precision units, 32 special func-
tion units (SFU), and 32 load/store units. Double precision units are
not depicted on diagram. [29]

• SMM (Pascal Architecture) is currently newest architecture and is
used in GeForce 1000 series. Architecture is similar to Maxwell. [30]

2.1.3 Memory hierarhy

GPU cannot access memory of CPU and also CPU cannot access memory in
GPU. To work with same memory block on CPU and GPU it is necessary to
explicitly synchronize them.

CUDA defines following memory types:

• Registers are located in register array. They are very fast and they
are allocated for each thread in SM. Number of registers per thread is
specified by kernel. Number of threads on one SM can be limited in case
of high register requirement of one each thread.

• Global memory is located outside of GPU chip. Most commonly used
memory type is GDDR5, but in close future this type of memory should
be replaced with HBM (some GPUs already use it). Global memory
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Table 2.1: Cuda Compute capability

3.0 3.5 3.7 5.0 5.2 6.0 6.1 6.2

Maximum resident grids 16 32 32 32 32 128 32 16

Maximum x-dimension
grid

2ˆ32-1

Maximum y,z-dimension
grid

2ˆ16-1

Maximum number of
threads per block

1024

Warp size 32

Maximum number of
resident blocks per
multiprocessor

16 32

Maximum number of
resident warps per
multiprocessor

64

Maximum number of
resident threads per
multiprocessor

1536 2048

Constant memory size 64 KB

Maximum number of
instructions per kernel

512 million

Number of warp
schedulers

4 2 4

Number of instructions
issued at once by
scheduler

2

is accessible from every thread blocks. Since CC 2.0 Global memory
is cached. For maximum Bandwidth it is required by thread to use
coalesced access. This memory can also be accessed by host.

• Shared memory is located inside each SM. Accessible by each thread
inside single thread block. Reading from same address is broadcasted.
Reading from multiple addresses in share memory leads to serialization
of read requests.

• Local memory is part of global memory with interleaved addressing.
Local memory accesses only occur for some automatic variables. Auto-
matic variables that the compiler is likely to place in local memory are:

1. Arrays for which it cannot determine that they are indexed with
constant
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2. Large structures or arrays that would consume too much register
space

3. Any variable if the kernel uses more registers than available (this
is also known as register spilling)

• Constant memory is read-only memory. It is part of global memory,
but uses own cache.

• Texture memory is read-only memory designed for textures. Texture
memory is located inside global memory but with custom 2D cache.

• Read-only memory is similar texture memory but can be used for
other structures. Available from CC 3.0.

Figure 2.7: Kepler memory architecture [5]

Unified memory is available since CUDA SDK 6.0. It is simplest way how
memory synchronization between host and device can be achieved. Program-
mer can allocate memory block on CPU, that is synchronized with GPU when
needed.

2.1.4 Programming Basics

Kernels can be written directly by PTX (CUDA instruction set), but it is
more time effective to use one of the supported high level languages such as
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C or C++. Full C++ is supported for the host code. However, only a subset
of C++ is fully supported for the device code.

Files with kernel code must be compiled by nvcc. Files can contain mix
of device and host code. nvcc compiles kernel code into PTX or into CUDA
binary (also referred to as cubin). Cubin files are by default embedded into
host executable file. PTX code must be at runtime compiled into binary code
by device driver. This is called just-in-time compilation. JIT compilation
combines the speed of compiled code with the flexibility of interpretation, with
the overhead of compiling. Host code is generated to automatically select at
runtime the most appropriate code to load.

Kernels designed to run on GPU are functions with custom function qualifi-
ers. There are three main function type qualifiers that can be used to modify
function behavior and two minor modifiers:

1. device qualifier declares a function that is executed on device and
can be only called from device.

2. global qualifier declares a function that is executed on device and
can be called from host or device (from CC 3.2). Call of global
function is asynchronous. Meaning it returns before function is executed.
For this reason, return values must be void.

3. host qualifier declares a function that is executed on host and can
be called only from host (this modifier is default).

4. noinline can be used to as a hint to compiler to not inline function.
(functions marked as inline must be in same file as kernels that call this
functions)

5. forceinline can be used to force function to be inlined by compiler.

Programmers split kernel threads into two dimensions. First dimension is
number of blocks executed on GPU and second is number of threads within a
block. Each of these dimension can be separated into up to three dimensions
(x,y,z). Inside kernel are predefined variables that can be used to identify
thread index.

• threadIdx is three component vector that uniquely identifies thread
inside thread block. Variable can be used to identify index in up to
three dimensions (x, y, z).

• blockDim is three component vector that provides information about
dimensions’ sizes in block (x, y, z).
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Listing 2.1: GPU Kernel definition

1 // definition of kernel

2 __global__ void HelloWorld ()

3 {

4 //done on GPU

5 printf("Hello World!\n");

6 }

7
8 int main()

9 {

10 // calling of kernel from main

11 HelloWorld <<<1, 1>>>();

12 }

• blockDim is three component vector that uniquely identifies thread
block. Variable can be used to identify index in up to three dimensions
(x, y, z).

Variables are by default stored in registers. But in some cases compiler
might chose to place some variables inside local memory. Variable Type Quan-
tifiers can be used to change this behaviour.

1. device qualifier declares a variable that is located on device. Memory
space is located in global memory space if no other qualifiers is specified.
Variables has lifetime of application.

2. constant qualifier declares a variable that is located inside constant
memory space. Qualifier is used with combination with device .

3. shared qualifier declares a variable that is located inside shared
memory space. Qualifier is used with combination with device . Memory
is accessible only from same thread block.

4. managed qualifier declares a variable that can be referenced from
both device and host.

5. restrict qualifier declares a restricted variable. By making variables
restricts compiler will not that variables are not aliased. This can help
the compiler to reduce number of instructions.

CUDA contains vector types derived from integer and float. These struc-
tures consist of one to four components. Components are accessible through
fields x, y, z and w. Vector types needs to fulfill memory alignment require-
ments (table 2.2).
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Table 2.2: Alignment Requirements in Device Code

Type Alignment

char1, uchar1 1

char2, uchar2 2

char3, uchar3 1

char4, uchar4 4

float1 4

float2 8

float3 4

float4 16

double1 8

double2 16

Operation request on GPU can be enqueued in stream. Stream is sequence
of commands that are executed in order. If no stream is specified default
stream is used. Following device operations can run in parallel:

• Kernel launches

• Memory copies within a single device’s memory;

• Memory copies from host to device of a memory block of 64 KB or less;

• Memory copies performed by functions that are suffixed with async

• Memory set function calls.

• Kernel Executions (CC 2.0 and higher)

2.1.5 Profilation tools

Nvidia provides profiling tools and API that helps with understanding runtime
performance and code optimization. Profiler by Nvidia is called NVIDIA
Visual Profiler. By this profiler it is possible to analyze activity on CPU and
GPU. Profiler can be installed as a part of CUDA Toolkit which is available
for all OS. Profiler can be integrated into Visual Studio or Eclipse with Visual
Studio Edition for Windows or Nsight Eclipse Edition for Linux and Mac OS.

By default, running application through profiler would result in profiling
entire run of application. To limit scope of profiling it is possible to to call
cudaProfilerStart() to start profiling and cudaProfilerStop() to stop pro-
filing.

Profiler also by default launches kernels synchronously unless Enable con-
current kernel profiling option is set in profiler setting.
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2.2 OpenCL

The Open Computing Language (OpenCL) is open parallel computing API
designed to allow application developing on GPUs and other coprocessors.
OpenCL was initially developed by Apple Inc., which holds trademark rights.
First version of OpenCL was released in 2008 by The Khronos Group.

The Khronos Group is non-profit consortium dedicated to creating of open
standards in many areas like parallel computing, graphics and video coding.
Company is funded by members. Membership in Khronos costs up to $75,000
for higher privileges like setting Khronos strategy and budgetary priorities and
final ratification of the specification. Between main contributors are companies
like AMD, Apple, ARM, IBM, Intel, NVIDIA, Qualcomm and Xilinx.

OpenCL was created because prior to OpenCL only proprietary program-
ming languages were available. These languages were vendor locked, limiting
possibility to create cross-platform applications. Best example of proprietary
implementation is CUDA by Nvidia. Using the OpenCL API, developers can
launch compute kernels written using a limited subset of the C programming
language on a GPU.

Main benefit of OpenCL is ability to run same code on different computation
platforms. OpenCL is compatible with OpenGL, so it is possible to share data
structures between them.

As can be seen in figure 2.8 Nvidia supports OpenCL from its release, but
integration of new versions of OpenCL is slowing. Support for version 2.0 is
already available on GPUs by AMD and Intel but was not even announced on
Nvidia GPUs.

2.2.1 Terminology

Terminology that is exactly same as in CUDA is not repeated here.

1. Compute Unit - Device consists of one or more compute units. Com-
pute unit consists of one or more processing elements.

2. Device is collection of computing units capable of executing commands
from OpenCL Command Queue

3. work-item is single independent instance of kernel.

4. work-group consist of work-items that can be bounded together.

30



2.2. OpenCL

Figure 2.8: OpenCL Implementations [6]

2.2.2 Architecture

OpenCL architecture hierarchy is splitted onto four main models:

1. Platform model

2. Memory model

3. Execution model

4. Programming model

2.2.2.1 Platform model

OpenCL defines host, that can consist of one or more OpenCL Devices.
OpenCL devices than consists of one or more compute units which are di-
vided into processing elements. OpenCL Application sends commands (that
are specified in kernels) which are executed on processing elements (figure 2.9).

Processing elements in Compute unit execute instructions with Single In-
structions Multiple Data model where each step all processing elements must
execute same instruction or as Single Program Multiple Data where same
kernel is running all processing elements but asynchronized.

To support variety of devices for this reason OpenCL specifies following
versions:

1. Platform version specifies supported version of OpenCL runtime.
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Figure 2.9: OpenCL platform model [7]

2. Device version specifies set of supported capabilities by device. Device
version cannot be higher than platform version.

3. Language version specifies set of supported programming language
features for kernels. Language version cannot be higher than Platform
version but can be higher than device version.

OpenCL is backwards compatible. For that reason, device is not required
to support older version.

2.2.2.2 Memory model

1. Global Memory is read/write memory accessible from all work groups.
Global memory can be cached is device specifications allow it.

2. Constant Memory is read only memory. This area of memory is
required to remain constant during kernel execution.

3. Local Memory is local read/write memory of work group. All work-
items from same work group share this memory area.

4. Private Memory is read/write memory of single work-item.

2.2.2.3 Execution model

OpenCL application consists of two parts. Fist part is host program that is
being executed on host. Second part are kernels (can be one or more kernels)
that are executed on device.

Host program defines context for execution of the kernels. Within context
can be create one or more command queues. Host inserts commands into
command queue which are then executed on device. Commands in queue are
executed in in-order execution model.
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Figure 2.10: OpenCL memory model [7]

Kernel can be inserted into queue for execution. Instance of kernel is called
work-item. Every work-item can by identified by N-dimensional index. Each
work-item executes same kernel function but on different data. Space dimen-
sions can be 1, 2, and 3.

Work-items are grouped into work-groups (figure 2.11). All work-items from
same group must be executed on same device so it would be possible for all
work-items within same group to share data in local memory and to allow
easy synchronization.

Both work-items and work-groups can be executed in-order or out-of-order.
For that reason, it is required that result of work-items cannot depend execu-
tion order.

Execution model provides two types of kernels. Kernels that are written in
OpenCL C language and compiled by compiler. And Native kernels that are
can contain extended instructions for specific device. Native kernels may not
work on other devices.

2.2.2.4 Programming model

OpenCL supports both data parallel and task parallel models (even both at
same time). Primary focus is on data parallel model.

1. Data parallel model (SIMD) executes same sequence of instructions on
multiple data. Every work-item has associated own index and address
space.
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Figure 2.11: OpenCL execution model

2. Task parallel model executes instance of kernel independently of any
index.

2.2.3 Programming Basics

OpenCL Development framework consist of three main parts:

1. Language Specification describes interfaces and syntax for kernels.
Kernels can be precompiled or compiled at runtime. Language is ISO
C99 with extensions for parallel computing and some restrictions.

2. Platform API lets developer know about existence of OpenCL com-
patible devices. Developer can then use this layer to detect device and
create command queues for that device.

3. Runtime API is used for managing object like command queues, memory
objects and kernel objects.

Kernel function in application is identified by qualifier kernel. Kernel
needs to be specified in own files. From Kernel files are created program
objects. Program objects can be created online or offline. Online creating
can be done by calling function clCreateProgramWithSource(). After this
step program object is ready for compilation. OpenCL program executable
(kernel) can be compiled by function clBuildProgram.
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Listing 2.2: OpenCL Kernel definition

1 __kernel void HelloWorld(__global char * out) {

2 size_t tid = get_global_id (0);

3 out[tid] = hw[tid];

4 }

It is expected that memory area of host and device are independent. For
this reason OpenCL API allows developer to allocate area in global memory
and add memory commands to command queue. Memory commands can
synchronous or asynchronous. Synchronous call return at the moment when
command was executed and memory on host is no longer needed (in case of
data transfer).

In case memory of host and device are not independent it is possible to
map/unmap memory regions.

2.3 OpenMP

OpenMP is API for shared memory parallelism. Programs with OpenMP
can be written in programming languages like C, C++ and Fortran.

Programmers can easily create parallel programs using directives, library
routes and environment variables defined by OpenMP.

Main difference between OpenMP and CUDA (or OpenCL) is that OpenMP
does not explicitly define how should program be executed on device, but
rather lets developer to specify code, that can be executed in parallel.

Support for GPUs was added with version 4.0 released in year 2012. How-
ever, there is still limited number of production ready tools. This technology
currently works best with Xeon Phi accelerator by Intel.

Xeon Phi is massively-parallel multicore processor targeted to super com-
puters. Architecture is based on Intel Xeon but Xeon processors dedicate only
20% of space on chip to actual cores while Xeon Phi dedicates major space
on chip to cores 2.12. Cores (figure 2.13) are based on Intel R© Pentium cores.
In this architecture up to 61 cores are places on single chip and connected by
bidirectional ring with fully coherent F2 caches. Each core can run up to four
threads to hide memory access latency. Each core has implemented 512-bit
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vector instructions, so it is possible to execute sixteen 32-bit vector instruc-
tions. Theoretical performance of Intel Xeon Phi processors can be calculated
with following formulas:

Figure 2.12: Xeon Phi Architecture

Figure 2.13: Xeon Phi Single Core Architecture [8]

• Single Precision = 16 (SP SIMD Lane) * 2 (FMA) * 1.1 (GHZ) * 60
(# cores) = 2112 GFLOP/sec

• Double Precision = 8 (DP SIMD Lane) * 2 (FMA) * 1.1 (GHZ) * 60
(# cores) = 2112 GFLOP/sec

Formulas are expecting that one core is dedicated to Operating System.
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Table 2.3: Optimization techniques for GPU and Xeon Phi

Method GPU Phi

Libraries CUDA Libraries + others Intel MKL + others

Directives OpenACC OpenMP + Phi Directives

Programming Models Cuda or OpenCL Vector Intrinsics

OpenACC is alternative to OpenMP. While OpenMP is more CPU focused,
OpenACC is standard designed to simplify parallel programing on GPUs.
OpenACC is designed for portability across operating systems, host CPUs,
and a wide range of accelerators, including APUs, GPUs, and many-core cop-
rocessors. Big advantage of OpenACC is implementation of OpenACC 2.0a
in GCC 6 release series.

Nvidia recommends using PGI Community Edition compiler by PGI. Com-
piler includes all OpenMP and OpenACC features. Compiler is available for
Linux and macOS while Windows version is available only in paid PGI Pro-
fessional Edition.

If we compare difference in programming for Xeon Phi and GPUs it required
basically same optimization techniques for both platforms.
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Chapter 3

Realization

In this chapter I will describe architecture of developer application. Firstly I
will describe used frameworks and why I’ve chosed them.

Program is written in programming language Visual C++ 2015 (also known
as Visual C++ 14.0). CUDA is designed to work with programming languages
like C, C++ or Fortran. OpenCL is available for C or C++. I prefer object
oriented programming, for that reason I’ve selected C++ as main developing
language. Project was developed under Windows. but it should be possible
to easily port it to Linux or MacOS.

3.1 Application architecture

Application is programmed with architecture that can be easily extended.
That allowed to easily add multiple comparison algorithms programed with
multiple technologies. I’ve implemented video quality evaluation algorithms
like PSNR and SSIM described in first chapter. First implementations were
CPU only, then I’ve tried to utilize GPU using CUDA and OpenCL.

Application takes video streams data from Source modules. One source
module provides reference data and second compressed data to compare. Eval-
uation of frames generated by Comparator Modules is done on Comparator
modules. Aplication architecture can be seen in figure 3.1.

Source module generates decoded video frame in AVFrame structure. AVFrame
structure origins from FFMPEG framework and in described in their docu-
mentation. This structure is used even when source of video might not origin
from FFMPEG framework. All sources must be inherited from DaxAVSource
class (Listing 3.1). That requires implementing getNextFrame method. All
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Figure 3.1: Flowchart for video comparition

other methods are optional. Method getNextFrame should return NULL after
all frames were generated. Source modules are executed on main thread.

Developed application consists of following source modules:

• DaxAVSourceSyntetic
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Figure 3.2: Application frame evaluation

Listing 3.1: DaxAVSource

1 class DaxAVSource

2 {

3 public:

4 bool reference = false;

5 int frameCount = 5000;

6 int width = 1920;

7 int height = 1080;

8 int currectFrame = 0;

9 char * filename;

10 virtual void getParameters(int argc , char**

↪→ argv);

11 virtual int init();

12 virtual bool getNextFrame(AVFrame * frame) =

↪→ 0;

13 };

• DaxAVSourceFFMPEG

Comparator modules compute difference between two video streams. All
comparators must be inherited from DaxAVComparator class (Listing 3.2)
Most important is method compute which takes structure AVImageCompar-
atorData, that has two frames in AVFrame structure and contains additional
information about frames.

Basic application consists of following comparator modules:

• SimpleStrictAVComparator

• PSNRSeqDaxAVComparator

• SSIMDaxAVComparator

• CudaSimpleStrictAVComparator

• CudaSSIMDaxAVComparator

• OpenCLStrictDaxAVComparator
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Listing 3.2: DaxAVComparator

1 class DaxAVComparator

2 {

3 public:

4 double diff = 0;

5 long frameCount = 0;

6 int height = 0;

7 int width = 0;

8 DaxAVComparator ();

9 ~DaxAVComparator ();

10
11 virtual void getParameters(int argc , char**

↪→ argv);

12 virtual int init(int height , int width);

13 virtual void registerFrame(AVFrame * frame);

14 virtual void customInit ();

15 virtual void evaluateFrame(

↪→ AVImageComparatorData data);

16 virtual void processed ();

17 virtual bool wantsFramesInRGB ();

18 virtual bool supportsMultiThreading ();

19 };

3.2 Multimedia framework

To support as many codecs as possible I’ve wanted to integrate multimedia
framework that would be able to decode all sorts of them. Since I’ve had
very good experience with FFmpeg from my previous projects. Thats why
FFmpeg was my first choise as source module.

FFmpeg is the leading multimedia framework, able to decode, encode,
transcode, mux, demux, stream, filter and play pretty much anything that
humans and machines have created. It supports the most obscure ancient
formats up to the cutting edge. No matter if they were designed by some
standards committee, the community or a corporation. It is also highly port-
able: FFmpeg compiles, runs, and passes our testing infrastructure FATE
across Linux, Mac OS X, Microsoft Windows, the BSDs, Solaris, iOS, tvOS
etc. under a wide variety of build environments, machine architectures, and
configurations.

Between most important supported codecs is x.265 mentioned in section 1.5
and x.264 mentioned in section 1.4.
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Listing 3.3: FFMPEG build script

1 Download the script

2 git clone this repo:

3 $ git clone https :// github.com/rdp/ffmpeg -windows -

↪→ build -helpers.git

4 $ cd ffmpeg -windows -build -helpers

5
6 Or do the following in a bash prompt instead of git

↪→ clone:

7 $ mkdir ffmpeg_build

8 $ cd ffmpeg_build

9 $ wget https ://raw.github.com/rdp/ffmpeg -windows -

↪→ build -helpers/master/cross_compile_ffmpeg.sh -O

↪→ cross_compile_ffmpeg.sh

10 $ chmod u+x cross_compile_ffmpeg.sh

11
12 Now run the script:

13
14 $ ./ cross_compile_ffmpeg.sh --build -ffmpeg -shared=y

↪→ --gcc -cpu -count=4 --disable -nonfree=n --

↪→ compiler -flavors=multi

FFmpeg is licensed under the GNU Lesser General Public License (LGPL)
version 2.1 or later. However, FFmpeg incorporates several optional parts and
optimizations that are covered by the GNU General Public License (GPL)
version 2 or later. If those parts get used the GPL applies to all of FFmpeg.

I’ve also looked for alternatives. Second biggest multimedia framework is
AVconv. AVconv was created as fork from FFmpeg. This fork was created
because group of original developers wanted to focus more on maintaining
current state of library, rather than to keep development velocity with more
features. While FFMpeg integrates changes from AVconv, but AVconv ig-
nores any progress in FFmpeg. It has been suggested to merge both projects
together, but it seems that future of AVconv is uncertain as it lost o lot of
support.

FFmpeg used in this project are custom builded using ffmpeg-windows-
build-helpers script [31]. Build was done in Bash on Windows 10 anniverssary
update with Windows Subsystem for linux. Build parameters can be seen in
listing 3.3.
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Listing 3.5: Application examples

1 # Evaluate video quality by strict comparator (cpu)

2 -c Strict -r "F:\\ Documents \\ Local\\ AVTest \\

↪→ sintel_loseless.mp4" -f "F:\\ Documents \\Local \\

↪→ AVTest \\ sintel_265.mp4"

3
4 # Evaluate video quality by SSIM comparator (Cuda)

5 -c SSIMCuda -r "F:\\ Documents \\ Local\\ AVTest \\

↪→ sintel_loseless.mp4" -f "F:\\ Documents \\Local \\

↪→ AVTest \\ sintel_265.mp4"

6
7 # Generate frames from video sequence

8 -g -p -r "F:\\ Documents \\ Local\\ AVTest \\

↪→ sintel_loseless.mp4"

3.3 Usage and examples

Parrameters of developed application can be printed with parammeter −h or
−− help.

Listing 3.4: Comparator parameters

1 -f Input file name

2 -r Reference input file

3 -c Comparator name

4 -s Syntetic reference

5 -g Generate frames

6 -p Frames as PNG

7 -h or --help Prints help

8
9 -N Block size for SSIM evaluation

10 -kernel Kernel used for parrallel reduction

11 -blocksize Number of threads in block

12
13 --verbose Print detail about frame execution

14 --frameLimit Limit frame count from input file

15 --forceRGB Force execution in RGB (works only if

↪→ comparator supports RGB)

16 --forceYUV Force execution in YUV (works only if

↪→ comparator supports YUV)

17 --threadCount Thread count used for Video Quality

↪→ Comparation
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3.4 Kahan summation algorithm

During development of SSIM comparators on CPU and GPU I’ve noticed
different slightly results. Sum of differences for example video sequence on
CPU was 174028.031 while sum of differences on GPU was 173937.578.

Firstly, I’ve tried to change computations on GPU to double, because I’ve
checked values on CPU and on GPU (before parallel reduction) and numbers
were exactly same, so I’ve figured that problem is reduction. That did not
change result but noticeably slowed execution time. So I’ve reverted compu-
tation to float precision.

After implementing Kahan summation algorithm on CPU code I’ve got
result 173937.594, which is very close to GPU result. And after dividing with
174080 (number of blocks) result was 0.999181 (same on both CPU and GPU).

Kahan summation algorithm (also known as compensated summation) a
method of summing series of number represented with limited precision [32].
This is done by remembering errors during calculations as can be seen in
listing 3.6. With compensated summation error depends only on floating
point precision.

Listing 3.6: Kahan summation algorithm C++

1 void reduceCPUKahan(float& sum , float numberToAdd ,

↪→ float& c)

2 {

3 double y = numberToAdd - c;

4 double t = sum + y;

5 c = (t - sum) - y;

6 sum = t;

7 }

To minimalize problem with float errors float operations were changed to
int operations if possible. Operations that require division were added as a
last step in frame execution. Same algorithm was also added to accumulate
values from all frames evaluation before calculating mean.

3.5 Cuda vs. OpenCL

I’ve started Cuda implementation in version 7.5. Project was in later phase
ported to Cuda 8, that was released in July as Release Candidate and full
version was release in September. Open CL is used in version 1.2 as it is
latest version supported on Nvidia GPUs.
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OpenCL in generic model for GPU computing, for that reason it requires
a lot more steps compared to Cuda. Many steps in OpenCL like creating
command queue can be done also in CUDA, but creating of custom command
queues is only for optimization.
Cuda execution Phases

1. Selecting of appropriate device
(optional)

2. Allocating of memory objects

3. Copying data to device

4. Start kernel execution

5. Copying results to host

6. Deallocating of memory objects

OpenCL execution Phases

1. Selecting of platform

2. Selecting of device

3. Creating of context

4. Creating od command queue

5. Allocating of memory objects

6. Copying data

7. Creating program object

8. Creating executable program

9. Creating kernel object

10. Setting kernel parameters

11. Start kernel execution

12. Deallocating of memory objects

Code written in OpenCL can be executed on all OpenCL capable devices.
There is no guarantee code will run on all devices since code might expect some
minimal size of global memory, etc ... Without knowledge of architecture it
is hard to create code that would be effective on all platforms. Thankfully
in case of GPUs differences in architectures are relatively small. AMD GTN
(Graphics Core Next), Intel EUA (Execution unit Architecture), and Nvidia
Fermi (and newer) are very similar.

Because of generic model, OpenCL does not support platform specific fea-
tures. For example, OpenCL does not support Shift down instructions used
for parallel reduction on Kepler architecture and newer.

Compiling of Cuda code takes long time compared to OpenCL. Even though
Cuda 8.0 speeded up compiling up to two times, it is still considerably slower
compared to OpenCL, that does not require compilation on kernels. Cuda
requires dedicated compiler by Nvidia as Cuda code contains syntax that
extends standard C. Compile time of Cuda can be increased by removing
support for older architectures.
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On other hand OpenCL needs to compile at runtime and thus it takes
longer time to execute. This in not factored into measurement because time
measurements are done without starting initialization.

IntelliSense in Visual Studio provides features like List Members, Para-
meter Info, Quick Info, and Complete Word. Many aspects of IntelliSense are
language-specific. IntelliSense in Visual Studio does not manage to under-
stand syntax of calling CUDA kernels. In case of compile error IntelliSense
assumes no CUDA files can be compiled and that creates imaginary compile
errors. It’s not exactly problem of CUDA, but problem on integrating CUDA
to IDE.

Few times I’ve managed to freeze entire PC with OpenCL by running ker-
nel compilation during execution of another kernel. This happened because
of failing GPU driver, but I’ve did not found any solution for that. My work-
around was to simply precompile all kernels at beginning, so this situation
would not happen. Similar thing happened few times during profiling CUDA
on GPU, but it was very rare occasions.

3.6 GPU implementation

In this chapter we will discuss which parts of program could be done on
Graphic Cards and which actually were programmed.

Since evaluation of single frame took 120ms while frame decoding took only
40ms. It was obvious that moving frame evaluation to GPU would be first
step. For start I’ve started to optimize simplest available comparator and
that is SimpleStrictAVComparator. Its CUDA implementation is called Cu-
daSimpleStrictAVComparator and OpenCL implementation is OpenCLStrict-
DaxAVComparator.

To achieve high occupancy of CUDA cores, it is necessary to select optimal
number of blocks and number of threads in block. Cuda offers cudaOccu-
pancyMaxPotentialBlockSize which heuristically calculate a block size that
achieves maximum occupancy. This function calculated that for PSNR ideal
number of threads on block would be 1024 and minimal recommended num-
ber of blocks is 30. For Full HD video sequences is number of blocks 2025 for
PSNR kernel. For SSIM number of threads in block were calculated to 640.
Nvidia Profiler showed 100% occupancy with usage of recommended settings.
Block size can be changed manually by parameter -blocksize.

To perform competition of one frame on GPU it is necessary to move de-
coded frames to global memory on GPU. That is 1920*1080*3*2 bytes (11.86
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MB) in case of two Full High Definition videos. Then calculate difference in
preallocated array (5.93 MB) and perform parallel reduction. From parallel
reduction we get just one number, which must be moved back to host RAM.

3.6.1 Parrallel reduction

Tree-based approach used within each thread block. GPU needs to be able to
use multiple thread blocks to process very large arrays. Each thread block re-
duces a portion of the array. After that there is problem with synchronization
between thread blocks. CUDA doesn’t provide any way to synchronization
between all thread blocks because it would be too expensive to build it in
hardware inside GPU.

As a solution to this problem parallel reduction is decomposed into two
kernels. Launch of second kernel serves as synchronization point. Launch of
kernel has low software overhead and almost none hardware overhead.

1. Kernel 1 - interleaved addressing with divergent branching

2. Kernel 2 - interleaved addressing with bank conflicts

3. Kernel 3 - sequential addressing

4. Kernel 4 - first add during global load

5. Kernel 5 - unroll last warp

6. Kernel 6 - completely unrolled

7. Kernel 7 multiple elements per thread

Parallel reduction on GPU is done in Log(N) parallel steps, each step S
does N/2S independent operations. Step complexity is O(logN). Implement-
ation is work-efficient. i.e. does not perform more operations than sequential
algorithm. Time complexity is O(N/P + logN). Cost is O(NlogN) so it is
not cost efficient.

Brent’s theorem suggests using O(N/logN) threads. Then each thread does
O(logN) of sequential work. Cost is than O((N/logN) ∗ logN) = O(N) and
that is cost effective. This can be achieved using algorithm cascading. Parralel
reduction combines sequential and parrallel reduction. Each thread loads and
sums multiple elements into shared memory. Tree-based reduction in shared
memory.

48



3.6. GPU implementation

Figure 3.3: Cuda parrallel reduction

Table 3.1: Cuda kernels for parralel reduction

Time (2ˆ22 Ints) Bandwidth Step Speedup
Cumulative
Speedup

Kernel 1 8.054 ms 2.083 GB/s
Kernel 2 3.456 ms 4.854 GB/s 2.33x 2.33x
Kernel 3 1.722 ms 9.741 GB/s 2.01x 4.68x
Kernel 4 0.965 ms 17.377 GB/s 1.78x 8.34x
Kernel 5 0.536 ms 31.289 GB/s 1.8x 15.01x
Kernel 6 0.381 ms 43.996 GB/s 1.41x 21.16x
Kernel 7 0.268 ms 62.671 GB/s 1.42x 30.04x

Parallel reduction is a common building block for many parallel algorithms
thats why Nvidia provides several prepared kernels under GNU licence to show
how parallel reduction can be optimalized. Most recent changes in parrallel
reduction optimalization were done in Kepler architecture with Shuffle On
Down instructions.

Kepler’s shuffle instruction (SHFL) makes posible to read register of other
threads within same warp. Earlier it was necessary to exchange data using
shared memory. That meant writing data to memory, sychronize threads in
same warp and read data back from shared memory.

Fastest known CUDA algorithms are released as CUB library [33]. CUB
provides state-of-the-art, reusable software components for every layer of the
CUDA programming model. CUB simplifies high performance program and
kernel development by taking care to implement the state-of-the-art in parallel
algorithms.

As a result, CUB implementations demonstrate much better performance
when compared to more common parallel libraries such as Thrust.
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Figure 3.4: CUB performance comparition

Sadly parralel reduction in CUB and all Kernels provided by NVIDIA are
not in char but in int. Thats because GPUs are designed to work with ints
or floats (single precision). Since most of videos use just 8bits per channel
then GPU must work with four times more data during parrallel reduction
than necessary. In future it is expected to use wider range of colors and use
up to 16bits per channel. Than it would be required to read just two times
more data. For this reason GPU must have alloced 23.72 MB per frame for
measured differences.

If parameter –kernel is not specified, then a CUB parallel reduction is used.
Parallel reduction from CUB is approximately two times faster compared to
custom kernels.

3.7 Optimalizations

Execution of frames was moved from main thread to background thread.
Thanks to this modified architecture. Source can create decode frame during
frame evaluation. If comparator return true from supportsMultiThreading(),
then evaluation can run on multiple threads. Thanks to this CPU evaluation
scaled almost linearly.

GPU comparators also benefit from multiple CPU threads. Every thread
on host uses own GPU command queue for frame evaluation. This behavior
was achieved by specifying command queue for all async commands. Easier
way to achieve this (from CUDA 7) is specifying –default-stream per-thread
parameter to nvcc. This change was expected to bring simultaneous kernel
execution and data copy to device. In many cases source (FFMPEG) does
not manage to decode frame fast enough to achieve this effect. Difference in
usage of multiple streams for execution can be best seen in Nsight Performance
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analysis. Performance analysis of single stream execution can be seen at figure
3.5 while multiple stream execution can be seen at figure 3.6. Figure 3.6 also
shows that multiple independent data transfers are done without need to wait
for evaluation by kernel.

Figure 3.5: Cuda single stream execution

Figure 3.6: Cuda multiple stream execution

Another optimization was preallocating structures and memory both on
host and device. Most important were AVFrame structures which contain
data objects of frame. These structures are preallocated and stored in class
called MultiBuffer. This class contains AVFrame structures inside a stack.
During each call of getNextFrame on Source Module it pops one instance of
AVFrame from stack. Instances of AVFrame are after evaluation collected and
push back to stack. This allows to generate more frames in advance in case
of slow quality evaluation.

3.8 Frame decoding optimalizations

Decoded framed are always in representation they were encoded in. FFM-
PEG provides function sws scale that converts any frame data into defined
representation (for example RGB), but this function was also performance
bottleneck. Evaluation of single frame took 40ms while from that period
32ms was on sws scale function.

In chapter 1.1 we’ve discussed different color spaces and how they are rep-
resented. Test data are mostly represented in YUV and since data evaluation
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Listing 3.7: YUV to RGB Forumula

1 Y = Y

2 Cb = Cb - 128

3 Cr = Cr - 128

4 R = Y + Cr + (Cr >> 2) + (Cr >> 3) + (Cr >> 5);

5 G = Y - ((Cb >> 2) + (Cb >> 4) + (Cb >> 5)) - ((Cr

↪→ >> 1) + (Cr >> 3) + (Cr >> 4) + (Cr >> 5));

6 B = Y + Cb + (Cb >> 1) + (Cb >> 2) + (Cb >> 6);

was designed to be in RGB sws scale needed to convert data from YUV to
RGB. Easiest way to solve this is converting video sequences into RGB. Then
decoded frames are directly in RGB and no converting needs to be done.

To find out why changing representation from YUV to RGB takes so long
I’ve implemented custom function from YUV to RGB. Implementation was
sequential a from tests I’ve find out it was exactly same speed as sws scale.
So FFMPEG does not accelerate representation conversion in any way. Con-
version from YUV to RGB in standardized with following formula (8 bits per
channel):

I’ve also created GPU accelerated version. While converting data on GPU
was extremely fast this time bottleneck was PCIe limit. In case of executing
data on CPU copying data to/from GPU took most of time. But even with
need to move data, scaling on GPU took only 2ms (copy times included).

In case of comparing data on GPU there is no need to copy data back to
host. That allowed to lower execution time of single frame to only 7ms.

Nvidia GPUs contain separate chip (ASIC) speciffically designed to encode
and decode video sequences. Nvidia provides VIDEO CODEC SDK designed
to allow developers to use it. Hardware-Accelerated Video Encoding uses
NVENC (figure 3.8) and Hardware-Accelerated Video Decoding uses NVDEC
(also can be called CUVID) as can be seen in figure 3.7.

FFMPEG uses its own decoding library to decode video. This decoder works
with multiple threads. This behavior can be changed to use other decoder such
as NVDEC.

Supported coders and decoders change with each GPU generation. For
example, VP9 and 10bit support is available only on Pascal generation. List
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Figure 3.7: NVDEC

Figure 3.8: NVENC

of codecs supported for each generation can be found on Nvidia website [34].
FFMPEG can use NVENC and NVDEC if following conditions are meet:

• A supported GPU

• Supported drivers

• ffmpeg configured without –disable-nvenc
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FFMPEG does provide any way to leave decoded data in buffer and copy
them in device memory. That’s why data are always copied from buffer to
host and then to global memory on device as can be seen in figure 3.9.

Figure 3.9: NVDEC decoding and evaluation
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Chapter 4

Codec Testing

4.1 Testing Data

Most of test videos are not provided on disk as they require to big data
space. All video sequences in raw format can be downloaded from internet or
generated by developed application.

4.1.1 Syntetic video sequences

I’ve created simple Source module that generates simple syntetic video se-
quences. This video sequence is created of squares that move from the left to
the right. It has very high compress ratio even for lossless codecs. Resolution
of output images is by default Full HD (1920x1080).

Figure 4.1: Square example image
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Frames of video sequence can be generated by following command:

Listing 4.1: Square video sequence

1 HEVC_comp -g -p -s DaxAVSourceSyntetic

4.1.2 Real video sequences

4.1.2.1 Sintel

Sintel is an independently produced short film, initiated by the Blender Found-
ation as a means to further improve andvalidate the free/open source 3D cre-
ation suite Blender. With initial funding provided by 1000s of donations via
the internet community, it has again proven to be a viable development model
for both open 3D technology as for independent animation film.

Figure 4.2: Sintel example image

Sintel is licensed as Creative Commons Attribution 3.0. That means it can
be shared and showen, for as long you include the credit scroll of the film
itself.

Video sequence contains 1000 frame snippet with 24 frames per second
(around 40 sec) of this video. This video sequence contains high movement and
camera panning. Color format is YUV 444, so there is no chroma subsampling.
This video sequence needs to be downloaded from official websites frame by
frame. I’ve created script (listing 4.2) that downloads required frames and
creates video sequence.

4.1.2.2 HoneyBee

HoneyBee is video sequence of 600 frames. Video sequence can be downloaded
on website of Ultra Video Group [35]. Used versions are 8-bit, YUV, RAW
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Listing 4.2: Sintel download and convert script

1 #!/bin/bash

2
3 url_template="http :// media.xiph.org/sintel/sintel

↪→ -1080 -png/"

4 # or

5 # url_template ="http :// media.xiph.org/sintel/sintel -4

↪→ k-png/"

6
7
8 for i in {6000..6999}; do

9 wget -O $(printf ’%08d.png ’ $i) "$(printf "

↪→ $url_template" $i)"

10 done

11
12
13 # Creation of lossless format:

14 ffmpeg -framerate 24 -i frame %08d.png -c:v libx265 -

↪→ preset ultrafast -x265 -params lossless =1 -r 30

↪→ sintel_loseless.mp4

15
16 #Convert to h265:

17 ffmpeg -i sintel_loseless.mp4 -c:v libx264 -b:v 4000k

↪→ -minrate 4000k -maxrate 4000k -bufsize 1835k

↪→ sintel_264.mp4

18
19 #Convert to h264:

20 ffmpeg -i sintel_loseless.mp4 -c:v libx265 -b:v 4000k

↪→ -minrate 4000k -maxrate 4000k -bufsize 1835k

↪→ sintel_265.mp4
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sequences in 1080p and 4K resolutions. Chroma subsampling of reference
video is YUV 420. Scene is mostly static.

Figure 4.3: HoneyBee

4.1.2.3 ShakeNDry

ShakeNDry is video sequence of 300 frames. Video sequence can be down-
loaded on website of Ultra Video Group [35]. Used versions is 8-bit, YUV,
RAW sequences in 1080p. Chroma subsampling of reference video is YUV
420. Scene contains a lot of independend movement that require high very
bandwidth.

4.2 Test method

Decoder in following tests is always native decoder from FFMPEG. GPU
decoding acceleration was not used for testing since not all GPUs have same
support of codecs. Also currently no tested GPUs support decoding of YUV
444.

4.2.1 Testing data encoding

Reference video sequences are always in lossless formats. Commands for con-
version can be found on appendix.

Folowing codecs will be tested:

• x.264 (H.264)

58



4.3. Testing enviroment

Figure 4.4: ShakeNDry

• nvenc264 (H.264)

• libvpx-vp9 (VP9)

• x.265 (HEVC)

• nvenc265 (HEVC)

4.3 Testing enviroment

Testing is done under operating system is Windows 10 Anniversary edition
with Windows Subsystem for Linux. In test does not explicitly specifies GPU,
then Nvidia Geforce GTX 1070 is used.

4.3.1 Hardware Specifications

CPU Core i7 3770k
GPU variable
RAM Kingston 16GB (4x4GB) DDR3 1600MHz
PCI-e 3.0

Core i7 3770k Specs:

# of Cores 4
# of Threads 8
Processor Base Frequency 3.50 GHz
Max Turbo Frequency 3.90 GHz
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GPU Engine Specs:

GPU specification TITAN X MSI GTX 1070 GTX 680

Architecture Maxwell Pascal Kepler

CUDA Cores 3072 1920 1536

Base Clock (MHz) 1000 1607 1006

Boost Clock (MHz) 1075 1797 1058

Memory Speed 7.0 Gbps 8 Gbps 6.0 Gbps

Memory Config 12 GB 8 GB 2048MB

Memory Interface 384-bit GDDR5 256-Bit GDDR5 256-bit GDDR5

Memory Bandwidth 336.5 GB/s 256 GB/s 192.2 GB/s

Bus Support PCI-e 3.0 PCI-e 3.0 PCI-e 3.0

Graphics Power (W) 250 W 150 W 195 W

4.4 Tests

Measuring of transcoding times was done under powershell using Measure-
Command. All data are stored on SSD to minimalize impact of reading and
writing data to persistent storage.

Figure 4.5: Transcoding times of codecs

Transcoding times (figure 4.5) of software HEVC codec are four times higher
compare to H.264. On the other hand, encoding times with hardware acceler-
ation of H.264 and HEVC does not change. Encoding of VP9 took six times
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more compared to HEVC. Main reason for slow encoding times of VP9 is only
one thread implementation of encoding.

Time measuring of video quality evaluation in implemented directly inside
developed application. Time measuring is done without initialization and
deinitialization. So for example runtime kernel compilations (if done in ini-
tialization) does not affect result.

Figure 4.6: Multiple sequences test

Video Quality Evaluation times massively differ based on selected video
sequence as can be seen on figure 4.6. Video sequences with 4K resolution
require to evaluate four times more data. For that reason, evaluation of 4K
video takes almost four times more time. Evaluation of video sequence in color
space yuv444 took three times more time compared to yuv420 even though
same data bandwidth need to be compared.

Both PSNR and SSIM algorithms scaled almost linearly with number of
available cores on CPU as can be seen on figure 4.7. That was expected since
CPU evaluations are not parrallized, but multiple frames are executed at the
same time on different threads.

As for GPU implementations both CUDA and OpenCL achieve GPU util-
ization of up to 30%.
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Figure 4.7: ShakeNDry Execution time (cpu)

Results in figure 4.8 shows that OpenCL implementations are arround 20%
slower compared to CUDA. Asynchronous evaluation in multiple streams
helped to decrease even more, since it was possible to interspace data copy-
ing and kernel evaluation. Evaluation only on Luma channel significantly
decreased size of evaluated data. Last optimalization with registread memoty
increased transfer speed between host and device from 3840 MB/s to 11755
MB/s.

All tested graphic cards are connected by PCIe 3. For that reason copy
speeds are same. As we can see in figure 4.8 fastest execution was on Titan X.
Decoding speeds are also constant since all video sequences are decoded by
CPU. But kernel evaluation takes less time on Titan X. That is thanks to
higher global memory bandwidth and more CUDA cores of Titan X. Execu-
tion performance does not scale linearly with peak performance of GPU since
PCIe 3 bandwidth limits performance. Thanks to that mainstream GPUs like
GTX 1070 are much more cost effective.

In analysis we’ve suggested that quality evaluation can be done on entire
RGB scale or just Luma channel. Results on both SSIM (figure 4.9 for Luma
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Figure 4.8: ShakeNDry Execution time (gpu)

and figure 4.10 for RGB) and PSNR (figure 4.11 for Luma and figure 4.12 for
RGB) show, that both evaluation methods correlate and thus evaluation on
Luma can decrease memory bandwidth to one third compared to RGB.

Results of PSNR with SSIM seems to correlate on most of tested codecs
with exception of VP9. This effect can be seen on both RGB and Luma.
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Figure 4.9: ShakeNDry Calculated SSIM on Luma

Figure 4.10: ShakeNDry Calculated SSIM on RGB
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Figure 4.11: ShakeNDry Calculated PSNR on Luma

Figure 4.12: ShakeNDry Calculated PSNR on RGB
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Conclusion

Main focus of this master thesis was to describe possible ways to evaluate
video quality of video streams encoded using cutting edge technologies like
HEVC.

In first chapter I’ve described ways of saving video sequences into data
streams. I’ve identified standards that are most commonly used to compress
video and described video quality evaluation algorithms.

In second chapter I’ve described available technologies enabling computa-
tions on graphical processing units. Main focus was on CUDA and OpenCL.
I’ve discussed advantages and disadvantages of both technologies.

In next chapter I’ve created video quality evaluation application with ar-
chitecture that can be easily extended. That allowed to easily add multiple
comparison algorithms programed with multiple technologies. I’ve implemen-
ted video quality evaluation algorithms like PSNR and SSIM described in first
chapter. First implementations were CPU only, then I’ve tried to utilize GPU
using CUDA and OpenCL.

CUDA provided more tools and offered higher performance compared to
OpenCL. OpenCL algorithms took longer to program, since OpenCL required
a lot more steps to successfully run code on GPU. Situation might change a
little in case NVidia would provide support for OpenCL 2.0 which was released
in 2013. Even though I’ve considered OpenCL more difficult to program with
I must admit that most of additional steps compared to CUDA are there for
a good reason and CUDA does not requires they only because it supports
hardware specific devices.

Expected results of speedup on GPU differ dramatically based on tested
video sequence. Video sequences, that could not be decoded using hardware,
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like HECV with YUV444 coding, showed only 10% speedup compared to
multithread execution on CPU since bottleneck was in long decoding times
on CPU. On the other hand, video sequences that could be decoded directly
on GPU, were evaluated up to four times faster.

Lastly I’ve used programmed application to test most common video com-
pression standards. In test were codecs like H.264 (x.264/nvenc264), H.265
(x.265/nvenc265) and VP9 (libx-vp9). Result looks promising. Codec H.265
(also called HEVC) seems to be almost 50 % more efficient than H.264. Soft-
ware implementations (x.264 and x.265) of codecs offers better compressing
ratio compared to hardware compression (nvenc264 and nvenc265), but dif-
ferences seems to be not that big. With much higher speeds of hardware
encoders I recommend nvenc265 for encoding end user content. Professionals
might still use software implementations, but I would recommend usage of
H.264 standard only in case of need of backward compatibility.

Results confirmed that evaluation can be done just on Luma channel of
video sequence. That lowers memory bandwidth needed to evaluate video to
just one third compared to RGB color space.

Tests also confirmed correlation between results of PSNR and SSIM. Both
algorithms almost scaled linearly with number of available cores on CPU. As
for GPU implementations both CUDA and OpenCL achieved GPU utilization
of up to 30 percent. OpenCL was a little behind of CUDA performance, since
it could not use architecture specific instructions.

Developed program will be available under MIT license on GitHub. As for
future development I would like to integrate developed comparators into FFM-
PEG, rather than continue development as standalone application. FFMPEG
is the leading multimedia framework for decoding and encoding. I’ve worked
with FFMPEG framework even before I’ve started writing this thesis and
I’ve had very good experience with it. I’ve integrated FFMPEG into plat-
forms by Apple like iOS and tvOS and even contributed with bug reports
and fixes. Community around FFMPEG is very active and many developers
could benefit from GPU accelerated video evaluation or even minor things like
GPU accelerated conversion of YUV to RGB. Since in developed application I
already use structures defined by FFmpeg integration process should not take
very long.
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Appendix A

Codec conversion commands

Listing A.1: HoneyBee conversion example

1 Measure -Command {./ ffmpeg -i ref/HoneyBee_3840x2160.

↪→ mp4 -c:v libx264 -b:v 4M x264/

↪→ HoneyBee_3840x2160_4M.mp4}

2 Measure -Command {./ ffmpeg -i ref/HoneyBee_3840x2160.

↪→ mp4 -c:v libx264 -b:v 8M x264/

↪→ HoneyBee_3840x2160_8M.mp4}

3 Measure -Command {./ ffmpeg -i ref/HoneyBee_3840x2160.

↪→ mp4 -c:v libx264 -b:v 12M x264/

↪→ HoneyBee_3840x2160_12M.mp4}

4 Measure -Command {./ ffmpeg -i ref/HoneyBee_3840x2160.

↪→ mp4 -c:v libx265 -b:v 4M x265/

↪→ HoneyBee_3840x2160_4M.mp4}

5 Measure -Command {./ ffmpeg -i ref/HoneyBee_3840x2160.

↪→ mp4 -c:v libx265 -b:v 8M x265/

↪→ HoneyBee_3840x2160_8M.mp4}

6 Measure -Command {./ ffmpeg -i ref/HoneyBee_3840x2160.

↪→ mp4 -c:v libx265 -b:v 12M x265/

↪→ HoneyBee_3840x2160_12M.mp4}

7 Measure -Command {./ ffmpeg -i ref/HoneyBee_3840x2160.

↪→ mp4 -c:v libvpx -vp9 -b:v 4M vp9/

↪→ HoneyBee_3840x2160_4M.mkv}

8 Measure -Command {./ ffmpeg -i ref/HoneyBee_3840x2160.

↪→ mp4 -c:v libvpx -vp9 -b:v 8M vp9/

↪→ HoneyBee_3840x2160_8M.mkv}

9 Measure -Command {./ ffmpeg -i ref/HoneyBee_3840x2160.

↪→ mp4 -c:v libvpx -vp9 -b:v 12M vp9/

↪→ HoneyBee_3840x2160_12M.mkv}
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10 Measure -Command {./ ffmpeg -i ref/HoneyBee_3840x2160.

↪→ mp4 -c:v h264_nvenc -b:v 4M nvenc264/

↪→ HoneyBee_3840x2160_4M.mp4}

11 Measure -Command {./ ffmpeg -i ref/HoneyBee_3840x2160.

↪→ mp4 -c:v h264_nvenc -b:v 8M nvenc264/

↪→ HoneyBee_3840x2160_8M.mp4}

12 Measure -Command {./ ffmpeg -i ref/HoneyBee_3840x2160.

↪→ mp4 -c:v h264_nvenc -b:v 12M nvenc264/

↪→ HoneyBee_3840x2160_12M.mp4}

13 Measure -Command {./ ffmpeg -i ref/HoneyBee_3840x2160.

↪→ mp4 -c:v hevc_nvenc -b:v 4M nvenc265/

↪→ HoneyBee_3840x2160_4M.mp4}

14 Measure -Command {./ ffmpeg -i ref/HoneyBee_3840x2160.

↪→ mp4 -c:v hevc_nvenc -b:v 8M nvenc265/

↪→ HoneyBee_3840x2160_8M.mp4}

15 Measure -Command {./ ffmpeg -i ref/HoneyBee_3840x2160.

↪→ mp4 -c:v hevc_nvenc -b:v 12M nvenc265/

↪→ HoneyBee_3840x2160_12M.mp4}
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List of Abbreviations

ALU Arithmetic Logic Unit

AMD Advanced Micro Devices

API Application Program Interface

APU Accelerated Processing Unit

ARM Advanced RISC Machine

AVC Advanced Video Coding

BMC Block Motion Compensation

BSD Berkeley Software Distribution

CPU Central Processing Unit

CRT Cathode Ray Tube

CTU Czech Technical University

CUDA Compute Unified Device Architecture

DCT Discrete Cosine Transform

DDR Double Data Rate

DRAM Dynamic Random Access memory

FFMPEG Fast Forward MPEG

FIT Faculty of information Technology

FMA Fused Multiply Add

FPU Floating Point Unit
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B. List of Abbreviations

GBR Green, Blue and Red

GCC GNU Compiler Collection

GDDR Graphics Double Data Rate

GFLOP GigaFlop

GHZ Gigahertz

GNU General Public License (GNU GPL or GPL)

GPL General Public License

GPU Graphical Processing Unit

HBM High Bandwidth Memory

HDR High Dynamic Range

HEVC High Efficiency Video Coding

HIP Heterogeneous-compute Interface for Portability

HVS Human Visual System

IBM International Business Machines

IEC International Electrotechnical Commission

IPS In-Plane Switching

ISO Organization for Standardization

ITU International Telecommunication Union

JCT-VC The Joint Collaborative Team on Video Coding

JIT Just-In-Time

JPEG Joint Photographic Experts Group

LCD Liquid Crystal Display

LGPL GNU Lesser General Public License

MKL Math Kernel Library

MPEG Moving Picture Experts Group

MSE Mean Squared Error

OLED Organic Light Emitting Diodes
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OPENACC Open Accelerators

OPENCL Open Computing Language

OPENMP Open Multi-Processing

PCI Peripheral Component Interconnect

PDF Portable Document Format

PGI Premiere Global Services

PNG Portable Network Graphics

PSNR Peak Signal-To-Noise ratio

PTX Parallel Thread eXecution

RAM Random Access memory

RGB Read, Green, Blue

SDK Software Development Kit

SFU Special Function Unit

SHFL Shuffle instruction

SIMD Single Instruction Multiple Data

SIMT Single Instruction Multiple Thread

SMM Streaming Multiprocessor Maxwell

SMX Streaming Multiprocessor (Kepler)

SSIM Structural Similarity

VCEG Video Coding Experts Group

YUV Luma (Y) and two chrominance (UV)
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Appendix C

Obsah p̌riloženého CD

readme.txt .................................. stručný popis obsahu CD
exe ....................... adresář se spustitelnou formou implementace
src

impl...................................zdrojové kódy implementace
thesis......................zdrojová forma práce ve formátu LATEX

text....................................................... text práce
thesis.pdf............................. text práce ve formátu PDF
thesis.ps................................ text práce ve formátu PS
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