
Ing. Michal Valenta, Ph.D.
Head of Department

prof. Ing. Pavel Tvrdík, CSc.
Dean

Prague February 14, 2017

CZECH TECHNICAL UNIVERSITY IN PRAGUE

FACULTY OF INFORMATION TECHNOLOGY

ASSIGNMENT OF BACHELOR’S THESIS

 Title: ElateMe - iOS client II

 Student: Gleb Arkhipov

 Supervisor: Ing. Jiří Chludil

 Study Programme: Informatics

 Study Branch: Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2017/18

Instructions

The ElateMe system is a web application with mobile clients providing functionality of crowdfunding and
wishlist satisfaction of users and their friends (e.g., for Christmas, birthday, etc.). The ElateMe is a team
project. The aim is to analyse and implement an iOS client for ElateMe.

1. Analyse/create:
 - entities: user, wish, recommendation, advertisement,
 - domain diagram,
 - platform non-specific class diagrams,
 - payments via the FIO bank.
2. Design:
 - a platform specific model and class diagram,
 - a server part for FIO bank payments.
3. Implement:
 - news feed functionality and its management,
 - wish management including wish product suggestion,
 - crowdfunding via the FIO bank,
 - friendlist management,
 - common use cases (login, registration, logout, setting, notifications, wish sharing),
 - GUI (based on a 3rd party design).
4. Perform usability tests in the usability lab.

References

Will be provided by the supervisor.

Czech Technical University in Prague

Faculty of Information Technology

Department of Software Engineering

Bachelor’s thesis

ElateMe - iOS client II

Gleb Arkhipov

Supervisor: Ing. Jǐŕı Chludil

15th May 2017

Acknowledgements

I would like to express my sincere gratitude to Ing. Jǐŕı Chludil and
Bc. Michal Maněna for their guidance. I would like to thank Yegor Terokhin,
Georgii Solovev, Yevhen Kuzmovych, Maksym Balatsko, and Boris Laskov for
making ElateMe possible. I also thank our designer Ing. Jan Hoffman for
fresh modern graphics. Finally, I thank every tester, who sacrificed his time
for testing ElateMe application.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on 15th May 2017 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2017 Gleb Arkhipov. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Arkhipov, Gleb. ElateMe - iOS client II. Bachelor’s thesis. Czech Technical
University in Prague, Faculty of Information Technology, 2017.

Abstrakt

Hlavńım ćılem této práce je vývoj mobilńı aplikace, která obsahuje prvky
sociálńı śıtě a hromadného financováńı. Aplikace poskytne př́ıležitost pro
jej́ı uživatele, aby si splnily své sny. Jejich přátelé v aplikaci budou moci
financovat uživatelova přáńı, což doufám změńı svět k lepš́ımu. Na tomto
týmovém projektu, pracuje pět vývojář̊u a běž́ı na třech r̊uzných platformách:
iOS, Android a backend.

Na začátku byla udělaná analýza, jelikož bylo nutné pochopit doménový
model a strukturovat existuj́ıćı požadavky. V této fázi byl vytvořen platformě
nezávislý model. Pak ten model přešel do platformě závislého, aby vyho-
voval omezeńım a limitaćım. Následně provedená implementace byla detailně
popsána tak, aby bylo vidět řešeńı př́ıpadných problémů. V závěru bude
navrženo uživatelské testováńı, jež bylo provedeno v kontrolovaném prostřed́ı
laboratoře uživatelského testováńı. Na zmı́něného testováńı navazuje shrnut́ı
prezentuj́ıćı nalezené nedostatky.

Kĺıčová slova ElateMe, iOS, iPhone, hromadné financováńı, sběr peněz,
sociálńı śı̌t, uživatelské testováńı

ix

Abstract

The major objective of this study is to develop a mobile application that
involves elements of social networking and crowdfunding. It will provide op-
portunity for its users to make their dreams come true. Their friends inside
the application will support users by funding wishes financially making the
world a better place. This is a team project consisting of five developers and
three different platforms: iOS, Android, and backend.

Firstly, analysis will be done to understand domain objects and structurize
the given requirements. In this phase, a platform-independent model will be
created. Secondly, the platform-independent model will become a platform-
specific model to satisfy platform constraints and limitations. After that, the
implementation will be described in a greater detail including solutions to
the emerged problems. Then usability testing will be performed. It will be
conducted in a controlled environment recording participants from different
perspectives. Finally, the aforementioned testing will be analyzed presenting
its results.

Keywords ElateMe, iOS, iPhone, crowdfunding, fundraising, social net-
work, usability testing

x

Contents

1 Introduction 1

2 Analysis 3
2.1 Domain model . 3
2.2 Requirements . 6
2.3 Platform-independent model . 9
2.4 Payments via the FIO bank . 11

3 Design 13
3.1 Payment gateway interaction 13
3.2 Platform-specific model . 14

4 Implementation 21
4.1 Development setup . 21
4.2 Feed management . 21
4.3 Donation via the FIO bank . 22
4.4 Wish management and suggestions 22
4.5 Friendlist management . 24
4.6 Common use cases . 24

5 Testing 29
5.1 Testing goals . 29
5.2 Pre-test and post-test surveys 29
5.3 Test setup . 30
5.4 Task list . 30
5.5 Testing process . 31
5.6 Evaluation . 31

Conclusion 35

xi

Bibliography 37

A Acronyms 39

B Pre-test and post-test surveys 41
B.1 Pre-test questions . 41
B.2 Post-test questions . 43

C Test infographics 45
C.1 Pre-test answers . 46
C.2 Post-test answers . 50

D Installation guide 51

E Contents of enclosed CD 53

xii

List of Figures

2.1 Domain model . 4
2.2 Platform-independent model . 9

3.1 Payment gateway interaction. Source: [1] 14
3.2 Platform-specific model . 16
3.3 Entities . 17
3.4 Moya framework scheme. Source: [2] 18

4.3 Friendlist creation . 24

C.1 Pre-test questions 1,3,4 . 46
C.2 Pre-test questions 5,2,7 . 47
C.3 Pre-test questions 9,10,8 . 48
C.4 Pre-test questions 11,6 . 49
C.5 Post-test questions 1,2 . 50

xiii

Chapter 1
Introduction

Crowdfunding services are slowly making their way into our lives. “Crowd-
funding is a financing method that involves funding a project with relatively
modest contributions from a large group of individuals, rather than seeking sub-
stantial sums from a small number of investors.”[3] Just a few years ago no
one could have imagined that he would send money to support some product
which is not even in production yet. Now it happens every day. People gather
money for technical gadgets, films, games, and just for fun.

The first company that is associated with crowdfunding is Kickstarter. It
was founded in 2009, and since then it helped to raise almost 3 billion dollars
for more than 300 000 projects. Kickstarter is used to fund larger projects,
but what if it was possible to invest into something smaller like a gift to a
friend. And here ElateMe could come into play. ElateMe is the name for a
mobile application that gives its users an opportunity to fulfill their wishes.
For the sake of simplicity, the user is referred in a masculine form (he, him)
throughout this bachelor’s thesis. The user will create his wish describing why
his friends should support it. Then his friends will donate him to make this
wish real. After a required amount make, the user will receive money to buy
what he wants.

Development of ElateMe application has begun during the fourth semester
of studying as a team software project. It was unclear at that time whether
it will succeed, or even be finished at all. It was more like a proof of concept
than anything else. The first working prototype was ready by the end of
the fourth semester, but it had crude graphics and limited functionality. In
the fifth semester, the decision was taken to discard old prototype and start
completely from scratch. Fresh and revamped graphics were created by Ing.
Jan Hoffman, who is an actual UI/UX designer in ElateMe team. New domain
model was designed to meet new requirements. The new architecture was
made to solve some problems of the old one. After that, the development
of the current version of ElateMe application started. Creating such service
is hardly possible without a proper team. That is why our team consists of

1

1. Introduction

several people: project manager, UI/UX designer, one Android developer, two
iOS developers, and two backend developers.

My personal motivation to participate in this team was to try collaborating
with different people in a large software project. ElateMe became my first
project which had its own scope, deadline, and requirements. I realized that
it could provide invaluable experience and increase my programming skills.
Besides that, I am inspired to create a service that will help people to become
happier.

2

Chapter 2
Analysis

This chapter focuses on describing main domains that were used in ElateMe
application. It also includes description of the platform-independent class
diagram in Figure 2.1. Next section after PIM is about functional and non-
functional requirements of ElateMe application. The last but not the least
part of the analysis belongs to organizing payments via FIO bank gateway.

2.1 Domain model

Domain diagram Figure 2.1 provides visual representation for all model en-
tities used in ElateMe application. It defines several main domains which are
essentially data structures that map real world requirements to the model.
Domain model was designed and explained in a more detailed way in the
bachelor’s thesis by Maxim Balatsko [4]. It is important to notice that this
model illustrates server entities and relations. Unlike the server model, mobile
applications hold their entities with less dependency upon each other. That
could be read about in Section 2.3.

2.1.1 User

User entity represents application user. It stores essential information about
him. The user is responsible for creating new content in ElateMe application.
This makes user capable of writing his wishes, receiving surprises, adding
comments, or sending donations to other users. The user is in 1:N relation
with other users because he has friends who are also users. Due to the fact that
Graph API from Facebook does not allow mobile applications to ask for user’s
friends, only those who have installed ElateMe application could be shown. It
is possible to overcome this limitation by creating our own registration, but it
will complicate user experience with the application. This functionality may
be added in the next release; however, it is still a thing of debate.

3

2. Analysis

Comment

+ authorID: Integer
+ text: String
+ wishID: Integer
+ commentID: Integer
+ dateCreated: String

Donation

+ date: String
+ amount: Integer
+ donationID: Integer
+ donatorID: Integer
+ wishID: Integer

User

+ id: Integer
+ imageURL: String
+ firstName: String
+ lastName: String
+ dateOfBirth: String
+ email: String
+ gender: String
+ placeOfBirth: String
+ bankAccount: String

Wish

+ wishID: Integer
+ authorID: Integer
+ amountGathered: Integer
+ amountNeeded: Integer
+ surpriseWish: String
+ title: String
+ description: String
+ dateCreated: String
+ dateOfExpiration: String
+ dateCompleted: String
+ isPublic: Boolean

Image

+ id: Integer
+ imageURL: String
+ dateCreated: String

SuggestedWish

+ imageURL: String
+ wishID: Integer
+ title: String
+ description: String
+ price: Integer
+ url: String

SurpriseWish

1

stores

0..*

1

friend with

0..*

receives

1

creates

0..*

1

holds

0..*

1

owns

0..*

1

sends

0..*

1

receives

0..*

Figure 2.1: Domain model

2.1.2 Wish

Wish entity may be described as the main entity in ElateMe application. It
should hold all data required to present user’s dream or wish in such a way
that other people would like to support his wish. That is why each wish has an
owner. Wish could receive one or multiple donations from different users. All
users who see a wish have an opportunity to write some comments to it, so it
is necessary to store every comment in 1:N relation. Whole wish management
will be explained in Section 4.4.

2.1.3 Surprise wish

Surprise wish is a special case of the regular wish. Several people plan to
make a surprise for someone by buying a gift. Then they create a surprise
wish for one of their friends. After that, they chip in to gather the required
amount. When the wish is completely funded it will be shown to the recipient.
In contrary with the regular wish, which is connected with one user, one more
relation exists between the wish and the awardee.

4

2.1. Domain model

2.1.4 Suggested wish

Suggested wish serves as a helping entity in wish creation. When a user wants
to create new wish he may use interactive search that will suggest him several
products depending on his search text. The user has an option to choose one
of these suggestions which will result in prefilling corresponding fields with
data. It makes the process of wish creation much more simple than manual
writing.

2.1.5 Comment

Comment is an entity that stores user’s comments. Each comment belongs to
a certain wish. It is possible to write as many comments as the user wants.
Comments should have authors. That is why it is connected to the user
entity. All comments are sorted by their creation date which is a property of
the comment.

2.1.6 Donation

Donation entity reflects user’s contribution to some wish. Every time that
user has donated his money the donation entity was created. It serves as a
connecting point between the user and the contributed wish. This approach
simplifies listing of donations belonging to some user or received by a certain
wish. Donation amount plays its role in data mining after ElateMe application
will be launched, because it helps to determine user preferences in donating.

2.1.7 Advertisment

This entity was planned to be included in the final release of ElateMe ap-
plication, but it was postponed until the next one. It had two properties:
advertisement id and zone id. First one was used to uniquely identify each
advertisement. The second one should have named a zone in the application
where an advertisement could be shown. Depending on the advertisement size
several types of zones were possible. Some of them could be integrated into
user’s feed or wish creation. The mobile application would download the list
of advertisements and show them at appropriate places.

5

2. Analysis

2.2 Requirements

This section lists all functional and non-functional requirements that were
designed before the start of development. Some of these requirements refer to
whole ElateMe application, but some refer only to the iOS version.

2.2.1 Functional requirements

Login and registration

F1: Login with Facebook account The user will be able to access
ElateMe application using his Facebook account.

F2: Logout from Facebook account The user will be able to log out
from ElateMe application.

F3: Store credentials to keep user logged in The user will be auto-
matically logged in after reopening ElateMe application.

Wish management

F4: Wish creation User will be able to create his own wish.

F5: Wish completion (success) The user will be notified that his wish
was completely funded.

F6: Wish completion (failure) The user will be notified that his/her
wish was unsuccessful, and the desired sum of money was not gathered.

F7: Wish deletion The user will be able to delete the wish that he created.

F8: Wish suggestion ElateMe application will be capable of suggesting
wishes based on the user’s input. The user could create the same wish that
already exists.

F9: Show user’s wishes The application will be able to show all wishes
belonging to the current user.

F10: Show friend’s wishes The application will be able to show all wishes
belonging to the user’s friend.

6

2.2. Requirements

F11: Show wish detail The application will be able to show wish details.

Donation management

F12: Send donation User could donate specified sum of money to support
his friend’s wish.

F13: Show user’s donation The application will be able to show the list
of all donations made by the current user.

F14: Show wish donations The application will also show the list of
donations related to a certain wish.

Friend management

F15: Show user’s friends The application will show the list of user’s
friends from Facebook who have also installed ElateMe application.

F16: Create friend lists It will be possible to create friend lists for privacy
purposes.

Comment management

F17: Comment wish User could comment on his friend’s wish.

F18: Comment deletion Application will let user to delete his/her com-
ment.

F19: Show comments The application will show the list of comments
related to some wish.

Settings

F20: Show user’s personal information Application will show user’s
personal data including name, surname, and photo.

7

2. Analysis

F21: Add bank account number The user will be able to add his bank
account number to simplify the donation process.

2.2.2 Non-functional requirements

N1: Native iOS application Application will be written using native iOS
SDK.

N2: iOS version 9.0 support Application will support all iOS versions
starting from 9.0.

N3: UI in accordance with Apple guidelines [5] The application will
tend to follow latest trends and best practices.

N4: Additional language support Application architecture will support
multiple languages. It will be relatively simple to add an additional language.

N5: Scalable application architecture Application architecture will be
able to scale and integrate future modules into the current solution.

N6: User-friendliness The application will be user-friendly allowing its
users to accomplish their wishes without complex instructions.

N7: Error handling The application will support handling non-standard
situations like disconnected internet or lack of memory.

8

2.3. Platform-independent model

2.3 Platform-independent model

Entities

+ Comment

+ CommentList

+ Image

+ SuggestedWish

+ WishList

+ Comment

+ Donation

+ User

+ UserGroup

+ Wish

AuthService

+ logout(): void
+ login(String): String

DonationService

+ postDonation(Donation, Integer): Donation

CommentService

+ postComment(Comment, Integer): Comment
+ deleteComment(Integer, Integer): void
+ getComments(Integer, Integer, Integer): array<Comment>

UserService

+ getCurrentUser(): User
+ getUser(Integer): User
+ getFriends(): array<User>
+ patchCurrentUser(User): User
+ getCurrentUserGroups(): array<UserGroup>
+ deleteUserGroup(Integer): void
+ createUserGroup(UserGroup): UserGroup

WishService

+ postWish(Wish): Wish
+ closeWish(Integer): Wish
+ getSuggestedWishes(String): array<SuggestedWish>
+ getCurrentUserWishes(Integer, Integer): WishList
+ getContributedWishes(Integer, Integer): WishList
+ getWish(Integer): Wish
+ getNotifications(Integer, Integer): WishListFeedService

+ getFeed(Integer, Integer): WishList
+ hideWish(Integer): void
+ hideUser(Integer): void

Figure 2.2: Platform-independent model

The main purpose of the current section is to tell about the architecture of
the application. Platform-independent model visualizes software system in
such a way that no constraints regarding specific implementation are taken
into consideration. This type of model is used in a model-driven architecture
together with the platform-specific model. Such an approach was structurized
and documented by an Object Management Group [6].

The PIM diagram in Figure 2.2 shows several services that are used to
connect UI and the API throughout the application. Network layer represents
a substantial part of ElateMe application and will be described in a greater
detail than UI. Each network service has its own responsibility. The initial
intention of dividing logic into different services was to make classes smaller
and to provide an interface only for one type of entities. This decision greatly
simplified network communication because usually one singleton class handles
all interactions between the mobile application and the API, and it becomes
complicated to make changes and extend functionality. Besides that, ElateMe

9

2. Analysis

is a long-term project, which makes time investments into well-thought-out
architecture negligible in comparison with the time required to change the
heavily dependent code in the future. There are detailed descriptions of each
service down below.

2.3.1 Authentication service

This service manages user authentication to access ElateMe API. ElateMe
uses OAuth 2.0 protocol [7] for authorization. The main goal of the service is
to provide facebook token to ElateMe server in order to get application token
which will grant access to other requests. Nevertheless, authentication service
serves only as an interface to the lower network layer and does not store any
tokens. It is also used to log out the user from ElateMe application and send
the corresponding request to ElateMe API.

2.3.2 Wish service

Wish service is responsible for wish management. It includes wish creation,
deletion, and getting more detailed information about the particular wish.
Wish detail consists of additional information like a description. In addition
to this functionality, wish service acts as an interactor to get different lists
of wishes. Those lists are wishes of the current user, contributed wishes, and
suggested wishes. Moreover, the service is capable of getting notifications,
which keep track of user’s activity.

2.3.3 Feed service

To realize feed management functionality this service was created. It enables
the mobile application to request a smart list of wishes that is provided by
ElateMe API. Additionally, it is possible to hide some user or some particular
wish, so they will never be shown again in the feed. Most of the display logic
lays on ElateMe API because the mobile application will show wishes in the
exact order as they were downloaded.

2.3.4 User service

User service works with users and user groups. It helps to download data for
the current logged in user or any other available user. It could also get user’s
friends and update the current user with some changed properties. Further
functionality includes user group management. Each user may add his friends
into different groups. He could create new groups or remove old ones. In the
future it will be possible to modify group data in the same way as the user
data modification works.

10

2.4. Payments via the FIO bank

2.3.5 Comment service

This service allows getting comments for some specific wish. Other function-
ality includes comment creation and comment deletion. Comment editing is
planned for the next development phase. As an extra feature, it might be
considered beneficial to enable commenting to other comments, not to the
wish itself.

2.3.6 Donation service

The last service maintains payments and donations. For sure, it will be im-
proved in the future because it plays the core role in ElateMe application.
Now it only sends the donation amount, so that ElateMe API could register a
donation. To work as intended complete transaction scheme should be known.
All normal payments should be realized via “FIO banka”, but there are several
difficulties, which are described in the next section.

2.4 Payments via the FIO bank

In order to conduct direct or credit card payments, it is necessary to use a
third-party system that is certified for conducting transactions or to certify
your own. The latter variant is overcomplicated, so the first option was chosen.
There are several businesses that provide payment services. Most of them
are so-called payment gateways, and they are managed by either a bank or
a facility that cooperates with some bank. A lot of these services gather
substantial fees for every transaction made. Our intention was to find the
best possible service for our needs. After tedious search, the solution was
found in the form of “FIO banka” [8]. It is a bank with headquarters in
the Czech Republic, and it provides required services for a reasonable sum of
money. It uses a payment gateway [9] for its online transactions. To implement
payments on the client side it is mandatory to study the documentation, which
is not freely available in its full form. It is compulsory to sign a contract with
“FIO banka” to obtain this documentation. The whole process of signing the
contract took from two to three month. Such a delay made it impossible to
integrate credit card payments into the mobile application. Based on some
research the concept of interaction between the mobile client and the payment
gateway was developed to save future time. It could be found in the next
chapter.

11

Chapter 3
Design

This chapter contains the concept of interaction with the payment gateway
and in-depth look into the network layer architecture. To make platform-
independent model suitable for the real mobile system it should be translated
into the platform-specific model. All the needed changes will be described
in Section 3.2. It would be misleading not to mention that ElateMe iOS
application is written in Swift [10], which is a relatively new language com-
pared to Objective-C, but still very powerful. Therefore architecture design
was heavily inspired by core Swift features.

3.1 Payment gateway interaction

Figure 3.1 represents the concept, which was developed in cooperation with
Yevhen Kuzmovych [1]. It illustrates the communication between the mobile
client, ElateMe API, and the payment gateway of “FIO banka”. This flow
starts after a user presses “Donate” button in the mobile application. He
then chooses a suitable amount of money he would like to donate. Different
type of currencies may be added to this stage later. For now, all transactions
are in Czech crowns. All data is sent to ElateMe API, where the server
creates an unconfirmed donation to track its status. The server responds
with donation information, which is used by the mobile client to initialize
transaction with the payment gateway. The web view is opened in the next
step with previously received data. Then the user will follow instructions in
the web view and confirm his payment. After that, the payment gateway will
conduct this transaction in two possible scenarios. The user will be redirected
to the success URL of ElateMe API, where the API will confirm successful
donation, or to the failure URL, where the donation will be removed. In the
last step, the user will be notified whether his donation succeeded or not.
This concept will be implemented as soon as full “FIO banka” documentation
becomes available.

13

3. Design

Mobile application FIO-bankaServer

User presses
"Donate" button

User chooses
amount to donate

Sends donation dataCreates unconfirmed
donation

Responds with
donation information

Receives
donation id

Initiates payment
and opens web-view

Conducts
payment

Redirects user to
Success/Failure URL

Confirms
donation

Removes
donation

Notifies the user of
the payment status

Success Failure

Figure 3.1: Payment gateway interaction. Source: [1]

3.2 Platform-specific model

Figure 3.2 and Figure 3.3 show entities belonging to the PSM. This model
usually is changed slightly from PIM to suit programming language and plat-
form requirements. Not all changes are illustrated in the diagrams because
it would make them unreadable. From the title of this bachelor’s thesis, it is
evident that the mobile client uses iOS from Apple, and ElateMe is written
in Swift. Curious reader may learn more about the application development
on Apple developer portal [11].

Network services should be changed in a special way to work as intended.
To observe these changes it is better to look at an example. Donation service
is a class that has a method with the following signature:

func postDonation (amount : Int , wishID : Int) -> Donation

This method will call underlying network layers, which are responsible for
conducting URL request. Because it takes time to complete the request, this

14

3.2. Platform-specific model

method will block the UI, and a user will experience “freezed” screen. To avoid
such performance issue, it is necessary to make this method non-blocking. The
signature will be changed to

func postDonation (amount : Int , wishID : Int ,
success : @escaping (Donation) -> (),

error: @escaping (Error) -> ())

Additional two parameters are added, and their type is a closure. The closure
is a part of Swift features, but the reader may be more familiar with a term
callback. Basically, they are a delayed code that will be called when the request
is completed. The request may either succeed and call success closure or fail
and call error closure. Such an approach does not block UI, but it should be
used with caution due to the concept of capturing. More information about
capturing and @escaping could be read in the official Apple guide [12]. All
other services also receive additional closures to their methods.

Domain model entities should be transformed to Swift struct type. Pos-
sible transformation of the Donation entity may look like this.

struct Donation {
let amount : Int
let dateString : String
let donationID : Int
let donatorID : Int
let wishID : Int

}

All domain model entities are converted in the same way. There are also
several new entities in Figure 3.3. CommentList and WishList are used to
simplify pagination. These entities serve as wrappers for an array of comments
or wishes. Another interesting entity is UserGroup that represents several
friends united as a group with some certain color. Each user could create
such groups with different friends and make his wishes visible only for certain
groups.

15

3. Design

Network

- endpointClosure: (ElateMe) -> Endpoint<ElateMe>
- provider: MoyaProvider<ElateMe>

+ request<T>(ElateMe, (Response) -> (), (Result<T, MoyaError>) -> ())

Parsers

+ login: (Response) -> ()
+ logout: (Response) -> ()
+ updateBankAccount: (Response) -> ()
+ obtainAccountInfo: (Response) -> ()
+ obtainUserAccountInfo: (Response) -> ()
+ obtainMyFriends: (Response) -> ()
+ obtainUserFriends: (Response) -> ()
+ obtainMyWishes: (Response) -> ()
+ obtainContributed: (Response) -> ()
+ obtainFeedData: (Response) -> ()
+ createWish: (Response) -> ()
+ obtainUserWishes: (Response) -> ()
+ obtainWish: (Response) -> ()
+ removeWish: (Response) -> ()
+ obtainComments: (Response) -> ()
+ createComment: (Response) -> ()
+ obtainComment: (Response) -> ()
+ removeComment: (Response) -> ()
+ obtainMyDonations: (Response) -> ()
+ obtainDonationsToWish: (Response) -> ()
+ donateToWish: (Response) -> ()
+ obtainSuggestedWishes: (Response) -> ()
+ obtainNotifications: (Response) -> ()
+ hideUser: (Response) -> ()
+ hideWish: (Response) -> ()
+ obtainGroups: (Response) -> ()
+ createGroup: (Response) -> ()
+ removeGroup: (Response) -> ()

AuthService

+ logout(): void
+ login(String): String

CommentService

+ postComment(Comment, Integer): Comment
+ deleteComment(Integer, Integer): void
+ getComments(Integer, Integer, Integer): array<Comment>

DonationService

+ postDonation(Donation, Integer): Donation

WishService

+ postWish(Wish): Wish
+ closeWish(Integer): Wish
+ getSuggestedWishes(String): array<SuggestedWish>
+ getCurrentUserWishes(Integer, Integer): WishList
+ getContributedWishes(Integer, Integer): WishList
+ getWish(Integer): Wish
+ getNotifications(Integer, Integer): WishList

«enumeration»
ElateMe

 login(token: String)
 logout
 updateBankAcoount(account: String)
 obtainMyAccountInfo
 obtainUserAccountInfo(userID: Int)
 obtainMyFriends
 obtainUserFriends(userID: Int)
 obtainMyWishes(page: Int, size: Int)
 obtainContributed(page: Int, size: Int)
 obtainFeedData(page: Int, size: Int)
 createWish(wish: SuggestedWish)
 obtainUserWishes(userID: Int)
 obtainWish(wishID: Int)
 removeWish(wishID: Int)
 obtainComments(wishID: Int)
 createComment(wishID: Int, comment: String)
 obtainComment(wishID: Int, commentID: Int)
 removeComment(wishID: Int, commentID: Int)
 obtainMyDonations
 obtainDonationsToWish(wishID: Int)
 donateToWish(wishID: Int, amount: Int)
 obtainSuggestedWishes(keyword: String)
 obtainNotifications(page: Int, size: Int)
 hideUser(userID: Int)
 hideWish(wishID: Int)
 obtainGroups
 createGroup(group: UserGroup)
 removeGroup(groupID: Int)

FeedService

+ getFeed(Integer, Integer): WishList
+ hideWish(Integer): void
+ hideUser(Integer): void

UserService

+ getCurrentUser(): User
+ getUser(Integer): User
+ getFriends(): array<User>
+ patchCurrentUser(User): User
+ getCurrentUserGroups(): array<UserGroup>
+ deleteUserGroup(Integer): void
+ createUserGroup(UserGroup): UserGroup

Figure 3.2: Platform-specific model

16

3.2. Platform-specific model

Comment

+ authorID: Integer
+ text: String
+ wishID: Integer
+ commentID: Integer
+ dateCreated: String

Donation

+ date: String
+ amount: Integer
+ donationID: Integer
+ donatorID: Integer
+ wishID: Integer

CommentList

+ count: Integer
+ next: String
+ previous: String

SuggestedWish

+ imageURL: String
+ wishID: Integer
+ title: String
+ description: String
+ price: Integer
+ url: String

WishList

+ count: Integer
+ next: String
+ previous: String

User

+ id: Integer
+ imageURL: String
+ firstName: String
+ lastName: String
+ dateOfBirth: String
+ email: String
+ gender: String
+ placeOfBirth: String
+ bankAccount: String

Image

+ id: Integer
+ imageURL: String
+ dateCreated: String

Wish

+ wishID: Integer
+ authorID: Integer
+ amountGathered: Integer
+ amountNeeded: Integer
+ surpriseWish: String
+ title: String
+ description: String
+ dateCreated: String
+ dateOfExpiration: String
+ dateCompleted: String
+ isPublic: Boolean

UserGroup

+ groupID: Integer
+ color: String
+ members: array<Integer>
+ name: String

1 1..*

1

1..*

1

1..*

Figure 3.3: Entities

3.2.1 Moya network layer

To make architecture cleaner Moya framework [2] was used in designing the
network layer. It will be explained later in this section. On the low level
of networking, the only way to communicate with ElateMe API is an HTTP
request. It is an application protocol that specifies the standard of data com-
munication on the world wide web. ElateMe API uses five types of requests:

• GET
The mobile client uses this request to download data and show them on
the screen.

• POST
This type is used to upload new data to the server, for instance during
wish creation.

• PUT
It is used to overwrite existing resource on the server.

• DELETE
This type deletes some resource from the server.

• PATCH
This request type is utilized to send partial data that will update existing
resource.

17

3. Design

Figure 3.4: Moya framework scheme. Source: [2]

Each HTTP request with a body has its body formatted to JSON in ElateMe.
JSON [13] is a convenient data format for sending and receiving data. To send
data requests URLSession and several other classes exist in Foundation native
framework, but working with it requires a lot of boilerplate code. The solution
was found in a group of frameworks, which are illustrated in Figure 3.4. One
of them is Alamofire [14] that makes a wrapper for URLSession. The second
one is Moya that manages request parameters, URLs, and encoding in a neat
way. There are three more significant classes in Figure 3.2 involved into
network communication.

• Network
This class interacts with Moya framework to register network request.

• Parsers
This class is used to parse data from JSON format to the convenient
Swift structs.

• ElateMe
It represents a Swift enumeration that is processed by Moya to determine
URL, headers, request type, and encoding.

The designed network flow starts with UI action or retrieving data for UI. Then
the corresponding service is called, which calls Network using appropriate

18

3.2. Platform-specific model

parser from Parsers and enumeration case from ElateMe. After that, Moya
builds URL request and passes it to Alamofire. When the request is finished,
success closure or error closure is called updating UI.

19

Chapter 4
Implementation

The chapter shows few insights and describes common use cases. Mobile client
on iOS is also being developed by Yegor Terokhin [15], who covers a lot of
development aspects in his bachelor’s thesis. His thesis is written in Czech
language. The work of creating ElateMe client was divided into two parts,
so each one of us developed his own part, and then the changes were merged
together. ElateMe application was developed in accordance with the design
that was given to us in the form of screen mockups.

4.1 Development setup

It is crucial to use right IDE for developing the mobile application. In case
of iOS, it is better to use official tools for the development. Apple has de-
veloped its own IDE called Xcode [16]. There are a few issues with it, but
overall performance and functionality make it unique, so Xcode was our choice.
To manage dependencies with various libraries and frameworks, dependency
manager CocoaPods [17] was used. In order to organize collaborative work
with Yegor Terokhin, the Git [18] system was installed. This setup enabled
us to develop ElateMe application independently from each other, so we could
add new features gradually and combine them if needed. To build ElateMe
application, the instructions are provided in Appendix D.

4.2 Feed management

Feed screen shows different wishes of user’s friends that received a donation
recently. Feed appearance is visible in Figure 4.1a. Each user has several
actions he could execute from Feed. One of them is wish creation that is
described in Section 4.4. If the user clicks on the small arrow at the top
right corner of the wish, he will be presented with an alert view. This alert
view enables him to hide some specific wish from Feed or to hide some user. It

21

4. Implementation

also allows to create new wish based on another one, and the user could share
information about any wish on Facebook, what is described in Section 4.6.

(a) Feed (b) Feed actions

4.3 Donation via the FIO bank

Donations using debit or credit cards were only created as a concept because
of unforeseen circumstances. More about that is written in Section 2.4 and
in Section 3.1.

4.4 Wish management and suggestions

Wish management consists of wish creation, hiding, and sharing. Wish could
be created in three ways: by copying someone’s wish, by creating it manually,
or by using a suggestion. The first option is available from Feed as seen in
Figure 4.1b. To create a wish manually the user should click plus icon in
Feed. He will be presented with a search field to write a keyword. If he chooses
to skip this step, he will fill the fields of the wish by himself. Another option
is to start writing to the search field to get a list of suggestions. Figure 4.2a
illustrates this process. If the user chooses some suggestion, all fields will be
prefilled as in Figure 4.2b. Suggestions are produced by ElateMe API based
on the received keyword.

22

4.4. Wish management and suggestions

(a) Wish suggestions (b) Wish creation

(c) Wish deadline (d) Wish editing

23

4. Implementation

Figure 4.3: Friendlist creation

4.5 Friendlist management

Friendlist management includes creation, editing, and removal of friend lists.
Friend lists are essentially groups of users, which are created to simplify wish
sharing between people. This feature was not completely implemented due to
the lack of time. Using the screen showed in Figure 4.3 the user could create
a friend list. He would choose a name for his friend list and select everyone he
wants to add. Then he chooses a color for this list and confirms creation. All
the required infrastructure for friendlist creation is already done, but several
UI elements are missing. Although one friend could be located in multiple
lists, it is not clear how to show such users. An interesting challenge was to
create color selection cell because no similar default element exists. There
are two solutions that come to mind: using UICollectionView with custom
cells and using UIStackView to embed views. The latter variant was chosen.
UITapGestureRecognizer was added to each colored view to show checkmark
on tap.

4.6 Common use cases

To show more examples of common use cases, several of them are described
in this section. Many of the next use cases involve Facebook iOS SDK [19].

24

4.6. Common use cases

(a) Login (b) Login via Facebook

It provides a lot of useful methods to communicate with Facebook API and
adds few UI elements. The only downside is that it is impossible to control
some default behaviour, but Facebook SDK supports classes to implement
custom independent solutions.

• Login
The only option available for now is login via Facebook. The user needs
only to press Facebook button in Figure 4.4a and follow instructions.

• Registration
There is no such term Registration in ElateMe. After first successful
login via Facebook, the user will be automatically registered.

25

4. Implementation

• Logout
It is possible to return back to login screen if user clicks logout button
in Figure 4.5a.

• Settings
The user may change his bank account in Figure 4.5a by editing and
saving it.

• Notifications
Notifications show a list of recent activity. They are displayed in Fig-
ure 4.5b.

• Wish sharing
To share a wish on Facebook the user taps on a small arrow in the
right corner of the wish and chooses appropriate option showed in Fig-
ure 4.5c. He is presented by a web view as in Figure 4.5d.

26

4.6. Common use cases

(a) Settings (b) Notifications

(c) Wish sharing. Step 1 (d) Wish sharing. Step 2

27

Chapter 5
Testing

This chapter describes usability testing. Usability testing is a research that is
conducted to find possible flaws in UI and to decide whether an application
is suitable for the target audience, or not. Testing chapter includes testing
goals, the creation of pre-test and post-test survey, test setup in the controlled
environment, and the whole process of testing. Besides that, all results will
be evaluated in the final section.

5.1 Testing goals

There are several main goals that usability testing helps to achieve. One
of them is to observe participant’s reactions to ElateMe application and UI
elements in particular. By measuring participant’s time to complete differ-
ent tasks it is possible to make adjustments to UI/UX making it more user-
friendly. Participants could also provide valuable feedback regarding different
features they would like to see. Usually, their commentary about existing
interface is also crucial, since they may use this application in the future.

5.2 Pre-test and post-test surveys

Pre-test survey is used to gather additional information about each parti-
cipant. It also helps to explain participant’s actions during testing. Each of
the participants will answer pre-test questions and proceed to the testing it-
self. The post-test survey takes place right after testing, and it mainly serves
as a feedback. The most important question in the post-test survey is about
missing functionality in ElateMe application. It helps to realize what features
should be implemented before the official release. All questions could be found
in Appendix B and all answers are illustrated as charts in Appendix C.

29

5. Testing

5.3 Test setup

Usability testing took place in the SAGElab [20]. It is a collaboration project
between CESNET, the FIT, and the FEE at the Czech Technical University.
Its main aim is to support research in branches of visualization and network
technologies. One of the SAGElab subprojects is a usability lab that could
record audio/video data and transmit it to the large-scale visualization wall.

Testing setup of the usability lab, which was used in our testing, consists of
two rooms. One room contains three cameras, one microphone, and a testing
device (mobile phone). The first camera records what happens on the device.
The second camera records participant’s face, and the third camera records
general view. This is the room where participant sits and performs given tasks
which are read aloud by a moderator. The main job of the moderator besides
reading is to assist participant if something goes wrong. Moderator’s role is
also important from the psychological point of view because the participant
has another person to speak with. Participant is allowed to speak freely and
express his thoughts about this or that task.

Another room holds visualization wall that is used to observe how parti-
cipants are doing predefined tasks. Live stream of audio and video from the
first room is transmitted to this room. While the test is in progress, developers
have time to make notes. All data is thoroughly recorded and is available for
further analysis after the testing ends.

5.4 Task list

In order to accomplish testing goals, task list was designed to cover basic
use cases in ElateMe application. Task list essentially consists of two parts:
wish creation and donation. In the first part, each participant tries to create
his own wish based on some interactive suggestions. After that, he makes a
donation to a certain friend. Down below is the task list itself.

1. Login via facebook if it is required.

2. Check notifications.

3. Realize that your wish “Pencil” was completed and “Pen” was not.

4. Return to Feed and click wish creation button.

5. Use the search field to find suggested wishes (for example: “iPhone”).

6. Select one of the items offered.

7. If some field does not suit you, change it.

8. Set expiration date to 15.05.2017.

30

5.5. Testing process

9. Confirm wish creation.

10. Go to Wishes screen.

11. Find newly created wish and share it on facebook (use small arrow).

12. Go to Settings and change your bank account number to 1234567890/1234.

13. Find a wish titled “Macbook pro retina” made by your friend “Jan
Novak” (Go to Feed).

14. Open wish detail.

15. Donate any amount to this wish.

16. Leave a comment below.

5.5 Testing process

There were two groups of five participants in each one: Android and iOS. An-
droid group is analyzed in the bachelor’s thesis of Georgii Solovev [21]. Testing
process began with filling out pre-test survey. After it was done each parti-
cipant and a moderator proceeded to testing ElateMe application on a mobile
device. During the test, the moderator had read one task letting participant
complete it. The participant was expressing his ideas while doing this task. At
the same time, all developers were making notes to record possible problems
and suggestions. When the test was finished, each participant needed to fill
out a post-test survey. That concluded usability testing.

5.6 Evaluation

Some of the prepared tasks in our scenario took longer time than expected, so
it will be better to provide alternatives or rethink the existing way of things.
Each found problem was assigned with one of the three priorities:

• High — problem needs to be solved before the release

• Medium — problem better be solved before the release

• Low — problem could be solved before or after the release

To summarize all problems happened during the process of testing a list of
problems with corresponding priorities was created.

31

5. Testing

• Notifications are not intuitive
Priority — High

Description
It took a lot of time for some participants to find notifications. Maybe
not all were familiar with this term or notification icon was resembling
something else, for example alarm.

Possible solution
There are several ways to solve this problem. The simplest one would
be to change the icon or to add titles below the icon. More complicated
solution involves making a graphical tutorial to acquaint the user with
the application.

• Save button was not pressed
Priority — High

Description
Several people have not pressed save button while changing their bank
account number.

Possible solution
It is necessary to add dialog that user leaves screen with unsaved data.

• Blank images in Notifications
Priority — Medium

Description
Some of the images were not loaded during usability testing. Usually
asynchronous loading works as intended.

Possible solution
It could have happened because asynchronous loading uses a third-
party framework. To solve this problem loading should be written
without frameworks or at least some default image placeholder should
be provided.

• Wish detail does not refresh
Priority — Medium

Description
When user donates to some wish, he is returned back to wish detail,
but wish detail does not update itself automatically. Changes are only
visible after next opening of wish detail.

32

5.6. Evaluation

Possible solution
Add asynchronous update after donation.

• Small arrow to share wishes
Priority — Low

Description
When user wants to share some wish, he needs to tap a small arrow.
This tap may result in opening of wish detail instead of sharing dialog.

Possible solution
Make arrow icon larger.

• Accidental press of logout button in Settings
Priority — Low

Description
If user presses logout button accidentally, he will be redirected to Login
immediately.

Possible solution
It is required to add confirmation dialog to the logout button. This will
prevent users from accidental logout.

All of the problems described above could be solved in a reasonable amount
of time. Participants also suggested some new functionality that may be
added in the future. A lot of people would like to see search and filtering in
Feed. Some suggested adding other translations for the application, but it is
already planned. One more suggestion was to add payment confirmation to
the donation dialog. All these suggestions are taken into consideration and
will be implemented afterwards. To sum up, usability testing provided crucial
feedback from participants or maybe even future users that is why it was
important to invest time and conduct one.

33

Conclusion

In order to evaluate ElateMe project, it is crucial to recap key points. Overall
satisfaction with this project is high. A lot of planned work was done in time.
This project was complex from the architectural point of view, which enhanced
my skills in designing and implementing the architecture. On the one hand,
it was a challenge for me to collaborate with my team because it was my first
team software project, but on the other hand, it gave me a priceless experience
of handling different situations and managing schedules. Besides that, a few
custom UI elements were implemented based only on their look. This process
of creation vastly improved my programming skills.

If similar project started today, I would do certain things differently. For
example, more time should be dedicated to a project of such scale. Moreover,
time management and task division could also be improved. One more thing
that comes to mind is continuous integration. It includes a testing of regular
builds and a code review. It helps to find bugs and errors in the early stages,
but continuous integration only makes sense for two or more developers on
one platform.

Finally, for the future development, it is necessary to fix some errors found
during the usability testing. Code refactoring would also be beneficial. As an
additional testing, it is possible to integrate UI tests in the mobile application.
The new website is already being developed by another team, and it will see
light in the nearest future. ElateMe project will continue until it will be
released into production.

35

Bibliography

[1] Kuzmovych, Yevhen. ElateMe - Backend. Bachelor’s thesis. Czech Tech-
nical University in Prague, Faculty of Information Technology, 2017.

[2] Network abstraction layer written in Swift. [online]. [viewed 20 April
2017]. Available from: https://github.com/Moya/Moya

[3] Rouse, Margaret. Crowdfunding. Techtarget [online]. [cited 17 April
2017]. Available from: http://whatis.techtarget.com/definition/
crowdfunding

[4] Balatsko, Maxim. ElateMe - Project management and Advert server.
Bachelor’s thesis. Czech Technical University in Prague, Faculty of In-
formation Technology, 2017.

[5] Apple UI guidelines. [online]. [viewed 16 April 2017]. Available from:
https://developer.apple.com/ios/human-interface-guidelines/
overview/design-principles/

[6] OMG. Object management group [online]. [viewed 17 April 2017]. Avail-
able from: http://www.omg.org

[7] OAuth 2.0. Authentication standard [online]. [viewed 16 April 2017].
Available from: https://oauth.net/2/

[8] FIO bank. [online]. [viewed 17 April 2017]. Available from: https://
www.fio.cz/

[9] FIO bank payment gate. [online]. [viewed 17 April 2017]. Avail-
able from: https://www.fio.cz/bankovni-sluzby/platebni-karty/
platebni-terminaly-brana

[10] Swift. Programming language from Apple. [online]. [viewed 16 April 2017].
Available from: https://developer.apple.com/swift/

37

https://github.com/Moya/Moya
http://whatis.techtarget.com/definition/crowdfunding
http://whatis.techtarget.com/definition/crowdfunding
https://developer.apple.com/ios/human-interface-guidelines/overview/design-principles/
https://developer.apple.com/ios/human-interface-guidelines/overview/design-principles/
http://www.omg.org
https://oauth.net/2/
https://www.fio.cz/
https://www.fio.cz/
https://www.fio.cz/bankovni-sluzby/platebni-karty/platebni-terminaly-brana
https://www.fio.cz/bankovni-sluzby/platebni-karty/platebni-terminaly-brana
https://developer.apple.com/swift/

Bibliography

[11] Apple developer web. [online]. [viewed 16 April 2017]. Available from:
https://developer.apple.com/develop/

[12] Swift closure. [online]. [viewed 15 April 2017]. Available from:
https://developer.apple.com/library/content/documentation/
Swift/Conceptual/Swift_Programming_Language/Closures.html

[13] JSON. JavaScript Object Notation. [online]. [viewed 15 April 2017]. Avail-
able from: http://www.json.org

[14] Alamofire. Networking framework for iOS [online]. [viewed 16 April 2017].
Available from: https://github.com/Alamofire/Alamofire

[15] Terokhin, Yegor. ElateMe - iOS client I. Bachelor’s thesis. Czech Tech-
nical University in Prague, Faculty of Information Technology, 2017.

[16] Xcode. Apple IDE for programming. [online]. [viewed 16 April 2017].
Available from: https://developer.apple.com/support/xcode/

[17] CocoaPods. Dependency manager for Swift and Objective-C [online].
[viewed 17 April 2017]. Available from: https://cocoapods.org

[18] Git. Version control system. [online]. [viewed 15 April 2017]. Available
from: https://git-scm.com

[19] Facebook iOS SDK [online]. [viewed 16 April 2017]. Available from:
https://developers.facebook.com/docs/facebook-login/ios

[20] SAGElab. Visualization labaratory [online]. [viewed 17 April 2017]. Avail-
able from: https://sagelab.cesnet.cz/en/

[21] Solovev, Georgii. ElateMe - Android client. Bachelor’s thesis. Czech Tech-
nical University in Prague, Faculty of Information Technology, 2017.

[22] Google Forms. Survey creation tool. [online]. [viewed 15 April 2017]. Avail-
able from: https://www.google.com/forms/about/

38

https://developer.apple.com/develop/
https://developer.apple.com/library/content/documentation/Swift/Conceptual/Swift_Programming_Language/Closures.html
https://developer.apple.com/library/content/documentation/Swift/Conceptual/Swift_Programming_Language/Closures.html
http://www.json.org
https://github.com/Alamofire/Alamofire
https://developer.apple.com/support/xcode/
https://cocoapods.org
https://git-scm.com
https://developers.facebook.com/docs/facebook-login/ios
https://sagelab.cesnet.cz/en/
https://www.google.com/forms/about/

Appendix A
Acronyms

JSON JavaScript object notation

iOS Mobile operating system

GUI Graphical user interface

UI User interface

UX User experience

FIT Faculty of Information Technologies

FEE Faculty of Electrical Engineering

PIM Platform-independent model

PSM Platform-specific model

URL Uniform Resource Locator

HTTP Hypertext Transfer Protocol

API Application programming interface

IDE Integrated development environment

39

Appendix B
Pre-test and post-test surveys

B.1 Pre-test questions

1. Your age

• 12-16
• 17-18
• 19-25
• 26-34
• 35-50
• 50+

2. Your current income

• up to 10 000 CZK monthly
• up to 25 000 CZK monthly
• up to 40 000 CZK monthly
• greater than 40 000 CZK monthly

3. How do you make gifts to friends?

• Personally
• Gather money as a group and buying a gift
• Prefer money as a gift
• Other

41

B. Pre-test and post-test surveys

4. Your experience with mobile phones

• Experienced user (Any application is simple to use)
• Medium user (Mobile applications are normally easy to handle)
• Non-experienced user (You would prefer to call instead of writing

SMS)

5. How often do you use your phone?

• Once a week
• Once a day
• 3+ times a day
• 20+ times a day
• It never leaves my hand

6. Your experience with mobile applications. (Check all that apply)

• Facebook
• Uber
• Airbnb
• Booking
• Instagram
• Mobile Banking

7. Have you ever bought something with a mobile application?

• Yes
• No

8. Have you used bitcoin?

• Yes
• No
• What is bitcoin?

9. Do you have debit/credit card?

• Yes
• No

42

B.2. Post-test questions

10. How often do you use it?

• Never
• Annually
• Quarterly
• Monthly
• Weekly
• On a daily basis

11. Do you use Android or iOS?

• iOS
• Android
• Other

B.2 Post-test questions

1. Did icons/titles make sense regarding which type of content was in the
tab?

• Yes
• Other (explain)

2. Would you use ElateMe in the future?

• Yes
• No
• Maybe

3. What features would you like to see in our application?

43

Appendix C
Test infographics

These infographics present results of pre-test and post-test surveys. They
were made with the help of Google Forms [22] which is a web application by
Google that helps to make online surveys. Answers in the infographics include
participants from both iOS and Android groups.

45

C. Test infographics

C.1 Pre-test answers

Figure C.1: Pre-test questions 1,3,4

46

C.1. Pre-test answers

Figure C.2: Pre-test questions 5,2,7

47

C. Test infographics

Figure C.3: Pre-test questions 9,10,8

48

C.1. Pre-test answers

Figure C.4: Pre-test questions 11,6

49

C. Test infographics

C.2 Post-test answers

Figure C.5: Post-test questions 1,2

50

Appendix D
Installation guide

ElateMe application is still in development, so it is possible to launch it only
using Xcode. Basically, several requirements should be met:

• macOS 10.12 or later

• Xcode 8.3.2 or later

• CocoaPods 1.2.0 or later

Installation from CD

1. Find client-ios folder

2. Copy this folder to the convenient location and open it

3. Run pod install from command line

4. Run open ElateMe.xcworkspace from command line

5. Run ElateMe target in the simulator

51

Appendix E
Contents of enclosed CD

readme.txt the file with CD contents description
src.......................................the directory of source codes

client-ios.................................implementation sources
thesis..............the directory of LATEX source codes of the thesis

text..the thesis text directory
thesis.pdf...........................the thesis text in PDF format

53

	Introduction
	Analysis
	Domain model
	Requirements
	Platform-independent model
	Payments via the FIO bank

	Design
	Payment gateway interaction
	Platform-specific model

	Implementation
	Development setup
	Feed management
	Donation via the FIO bank
	Wish management and suggestions
	Friendlist management
	Common use cases

	Testing
	Testing goals
	Pre-test and post-test surveys
	Test setup
	Task list
	Testing process
	Evaluation

	Conclusion
	Bibliography
	Acronyms
	Pre-test and post-test surveys
	Pre-test questions
	Post-test questions

	Test infographics
	Pre-test answers
	Post-test answers

	Installation guide
	Contents of enclosed CD

