
Ing. Michal Valenta, Ph.D.
Head of Department

prof. Ing. Pavel Tvrdík, CSc.
Dean

Prague February 14, 2017

CZECH TECHNICAL UNIVERSITY IN PRAGUE

FACULTY OF INFORMATION TECHNOLOGY

ASSIGNMENT OF BACHELOR’S THESIS

 Title: ElateMe - Backend

 Student: Yevhen Kuzmovych

 Supervisor: Ing. Jiří Chludil

 Study Programme: Informatics

 Study Branch: Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2017/18

Instructions

The ElateMe system is a web application with mobile clients providing functionality of crowdfunding and
wishlist satisfaction of users and their friends (e.g., for Christmas, birtday, etc.). The ElateMe is a team
project. The aim is to analyse and implement a backend for ElateMe.

1. Analyse/create:
 - use cases,
 - domain model,
 - non functional requirements,
 - refund mechanism for cancelled or overdue users' wishes.
2. Design:
 - class and database models,
 - FB and clients push notifications depending on user interaction,
 - deployment model for serving 1500 requests/sec.
3. Implement:
 - a physical database model,
 - a REST API for mobile clients,
 - web endpoints for supporting payments in the FIO bank,
 - implement a refund mechanism for bitcoin payments.
4. Test the server performance and perform unit tests.

References

Will be provided by the supervisor.

Czech Technical University in Prague

Faculty of Information Technology

Department of Software Engineering

Bachelor’s thesis

ElateMe - Backend

Yevhen Kuzmovych

Supervisor: Ing. Jǐŕı Chludil

16th May 2017

Acknowledgements

I would like to thank the supervisor of the work, Ing. Jǐŕı Chludil for help in
writing of this thesis, valuable advice and suggestions for improvement, and
Michal Maněna, supervisor of ElateMe project, for managing the practical
part of the work. I would also like to thank development team of the ElateMe
project namely Georgii Solovev, Maksym Balatsko, Yegor Terokhin and Gleb
Arkhipov.

I want to express my special gratitude to my family, especially my parents,
for their great support and help throughout the whole study and writing of
this work.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on 16th May 2017 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2017 Yevhen Kuzmovych. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Kuzmovych, Yevhen. ElateMe - Backend. Bachelor’s thesis. Czech Technical
University in Prague, Faculty of Information Technology, 2017.

Abstrakt

ElateMe je nová crowdfundingová platforma s elementy sociálńı śıtě. Na rozd́ıl
od jiných podobných projekt̊u, jako jsou Kickstarter nebo Patreon, které
podporuj́ı vývoj kreativńıch a komerčńıch projekt̊u prostřednictv́ım zájemc̊u,
ElateMe je zaměřen na naplněńı osobńıch přáńı s pomoćı přátel uživatel̊u. V
aplikaci ElateMe může uživatel sd́ılet své přáńı a jeho přátelé mu mohou po-
moci t́ım, že finančně přispěj́ı. Vývoj této platformy je týmovým projektem.
Práce je rozdělena do vývoje Android a iOS aplikaćı, backend REST API a
reklamńıho serveru.

Tato bakalářská práce se zaměřuje na vývoj backend REST API pro výše
uvedený projekt. Ćılem této práce bylo definovat a zdokumentovat funkčńı
a nefunkčńı požadavky pro systém ve vývoji, analyzovat př́ıpady užit́ı a cel-
kovou strukturu projektu. Autor také analyzuje exterńı systémy použ́ıvané
touto aplikaćı, jmenovitě Facebook Graph API, rozhrańı online platebńıch
systémů, jako jsou FIO-banka a Bitcoin, služby push notifikace Apple(APNs)
a Google(GCM). V rámci této práce byla navržena struktura databáze a archi-
tektura serverové aplikace a bylo realizováno backend rozhrańı pro komunikaci
s mobilńımi a webovými aplikacemi pomoćı populárńıch nástroj̊u pro vývoj
web server̊u, jako jsou programovaćı jazyk Python, Django web framework a
PostgreSQL DBMS. Nakonec aplikace byla podrobena jednotkovým (unit) a
výkonovým test̊um.

Kĺıčová slova ElateMe, crowdfundingová platforma, sociálńı śıt’, backend
API, RESTful, online platebńı systémy

ix

Abstract

ElateMe is a new crowdfunding platform with elements of the social net-
work. Unlike other similar projects like Kickstarter or Patreon that help bring
creative, commercial projects to life by means of interested people, ElateMe
focuses on the fulfillment of personal wishes with the help of user’s friends.
In ElateMe application, the user can share his wish, and his friends can help
him by contributing financially. The development of this platform is a team
project. The work is divided into the development of Android and iOS ap-
plications, REST API server and an advertising server.

This thesis focuses on the development of the backend REST API for the
project mentioned above. The aim of this work was to define and document
the functional and non-functional requirements for the system under devel-
opment, to analyze use cases and the overall structure of the project. The
author also explains the external systems used by this application, such as
the Facebook Graph API, the interfaces of the online payment systems like
FIO-banka and Bitcoin, the operating system push notification services of
Apple(APNs) and Google(GCM). In the framework of this work, the data-
base structure and server-side application architecture were designed, and the
backend interface for communication with mobile and web applications was
implemented using modern web development tools such as Python program-
ming language, Django web framework, and PostgreSQL DBMS. After that,
the application has undergone unit and performance testing.

Keywords ElateMe, crowdfunding platform, social network, backend API,
RESTful, online payments systems

x

Contents

Introduction 1
ElateMe . 1
Aim of the thesis . 1
Motivation . 1

1 Analysis 3
1.1 BI-SP1 and BI-SP2 subjects . 3
1.2 Functional requirements . 3
1.3 Non-functional requirement . 5
1.4 Use cases . 6
1.5 Domain model . 7
1.6 System structure . 8
1.7 Authentication . 9
1.8 Payments system . 9
1.9 Push notifications . 12

2 Design 15
2.1 Authentication . 15
2.2 REST API . 16
2.3 Chosen technologies . 20
2.4 Database model . 21
2.5 Class model . 22
2.6 Deployment model . 24

3 Implementation 27
3.1 Project structure . 27
3.2 Python Virtual Environment 31

4 Testing 33
4.1 Unit tests . 33

xi

4.2 Apachebench . 35

Conclusion 39
Work contribution . 39
Future outlook . 39

Bibliography 41

A Acronyms 45

B Contents of enclosed CD 47

C Database model 49

D Installation guide 53

xii

List of Figures

1.1 Use cases diagram . 6
1.2 Domain model [1] . 7
1.3 Component diagram . 8
1.4 Payment via FIO-banka . 10
1.5 Mechanism of push notifications 13

2.1 Authentication activity diagram 16
2.2 Apiary documentation . 18
2.3 Social integration class model . 22
2.4 Payments class model . 23
2.5 Push notification class model . 24
2.6 Deployment model . 25

C.1 Database packages . 49
C.2 Account models . 49
C.3 Donation models . 50
C.4 Friendship models . 50
C.5 Wish models . 51

xiii

Introduction

ElateMe

ElateMe is a new crowdfunding platform with elements of the social net-
work. Unlike other similar projects like Kickstarter or Patreon that help bring
creative, commercial projects to life by means of interested people, ElateMe
focuses on the fulfillment of personal wishes with the help of user’s friends.
The user can create a wish and set its cost, title, and a short description. His
friends then will be able to contribute by donating money. When wish gathers
needed amount, money will be transferred to the user bank account. The so-
cial part of the application is providing an ability for the user to connect with
his friends, communicate with other users, rate and comment others’ wishes.

Aim of the thesis

The aim of this thesis is to analyze functional, non-functional requirements
and use cases of the project, design database model, and server architecture,
implement back-end Application Programming Interface (API) and payments
system for this service.

Motivation

The primary goal for the author of the thesis was to analyze and learn tools
for web back-end development such as Python programming language and
Django web framework, practice building complex systems using them, learn
to design server architecture and explore various online payment systems.

1

Chapter 1
Analysis

This chapter will focus on the analysis of the project as a part of a software
development that connects customer’s requirements to the system and its
subsequent design and development.

Analysis of software project is intended to define the detailed description
of the product, break it down into requirements to the system, their systema-
tization, detection of dependencies, and documentation.

1.1 BI-SP1 and BI-SP2 subjects

The work on the ElateMe project started within the framework of the soft-
ware team project (BI-SP1 subject). Our development team divided into
groups: Android, iOS, Backend developers, and architect. Our task was
to define and document primary client’s requirements, implement functioning
prototypes of mobile applications and the server API. During BI-SP1 sub-
ject, Maksym Balatsko was working on the prototype of backend server, so
the choice of used technologies was up to him. Then the technology stack
was agreed with the supervisor of the project. Chosen technologies will be
discussed in the next chapter.

Because of changes in requirements and the new interface design of the mo-
bile applications, analysis and its documentation have undergone certain chan-
ges. And at the start of the BI-SP2 subject implementation of back-end API
has begun.

1.2 Functional requirements

Functional requirements specify the behaviors the product will exhibit under
specific conditions. They describe what the developers must implement to
enable users to accomplish their task (user requirements), thereby satisfying
the business requirements [2].

3

1. Analysis

Authorization

F1 Sign up via Facebook. User shall be able to sign up to the ElateMe
application with his Facebook account. The application shall load user’s
data such as name, surname, email, date of birth, etc.

F2 Logout. Authorized user shall be able to log out. In this case, he shall
also stop receiving any notifications from the application.

F3 Load friends from social network. On initial login application shall
load a list of user’s friends that are already signed up in this application.
These users shall be considered as friends in the ElateMe application.

Friendship management

F4 View friends list. User shall be able to view the list of his Facebook
friends that are already signed up in the application.

F5 Create friends group. User shall be able to create friends group.
Groups shall be used for simplification of friends management.

F6 Delete friends group. User shall be able to delete friends group.

Wish management

F7 Create wish. User shall be able to create a wish, set its title, des-
cription, price (amount of money that he (user) wants to gather), and
deadline.

F8 Delete wish. User shall be able to delete his wish if nobody has donated
money yet.

F9 Close wish. User shall be able to close his wish. Money that will have
been gathered on this wish shall be refunded to donators.

F10 View users’ wishes list. User shall be able to browse wishes lists of
his friends.

F11 Create surprise wish. User shall be able to create surprise wish for
one of his friends. In this case, the user, to whom the wish was addressed,
shall not have access to it and shall not know about it until the whole
amount is collected.

F12 View contributed wishes list. User shall be able to view the list of
wishes he will have contributed.

Feed and notifications

F13 View user’s feed. User shall receive the feed with the latest news of
his friends.

F14 View user’s notifications. User shall receive information about the
state of his wishes, new donations, comments, etc. via push notifications.

4

1.3. Non-functional requirement

Donation management

F15 Donate to wish. User shall be able to contribute to wishes of his
friends financially.

F16 Refund. In the case of the closure of the wish, all gathered money shall
be refunded to donators.

Comments management

F17 View wishes comments list. User shall be able to view the list of
comments under the wish he will be browsing.

F18 Comment wish. User shall be able to leave a comment under the wish.
F19 Delete comment. User shall be able to delete his comment.

1.3 Non-functional requirement

Non-functional requirement is a software requirement that describes not what
the software will do, but how the software will do it, for example, software
performance requirements, software external interface requirements, software
design constraints and software quality attributes. Non-functional require-
ments are difficult to test; therefore they are usually evaluated subjectively [3].

Back-end API

N1 RESTful. Back-end API shall follow architectural constraints of REST
architectural style.

N2 HTTPS. The server shall communicate with the client via HyperText
Transfer Protocol Secure (HTTPS).

N3 PostgreSQL database. PostgreSQL shall be used as the primary
DataBase Management System (DBMS).

N4 Performance. The server shall be able to serve 1500 requests per
second.

Payments

N5 FIO-bank. User shall be able to make payments via FIO-bank.
N6 Bitcoin. User shall be able to make payments via Bitcoin.
N7 Secure payments. The system shall ensure secure payments.
N8 Consistency. Servers data about payments shall be consistent with

data in payments systems (FIO-bank, Bitcoin, etc.). The system shall
react accordingly to errors appeared during payments.

5

1. Analysis

1.4 Use cases

Use cases were defined after analyzing of functional and non-functional re-
quirements. Use cases documentation serves for better understandings of
functionality required from the system. Use cases model of this application is
presented on the diagram 1.1.

Payment System
Facebook

User

Sign up

Authentication

Load user
info

Log out

Load user's
friends

Friendship

Get list of
friends

Create friends
group

Delete friends
group

Wish management

Create wish

Create
surprise wish

Set wish
accessibility

Donate to
wish

Close wish

Refund
collected

money

Get list of
users wishes

Get list of
contributed

wishes

Comment wish

Other

Get list of
notifications

Get news feed

«include»

«include»

«include»

«include»

«include»

Figure 1.1: Use cases diagram

Use case model includes the following components:

• Actors represent people and external systems involved in a particular
use cases. The diagram focuses specifically on the actors to insure that
the system provides useful and usable functionality.
The main actors of this system are:

– User that uses mobile or web application.
– Facebook participates in user authorization and provides an inter-

face for obtaining the necessary information about him (user).

6

1.5. Domain model

– Payment system participates in payments, namely donations
and redundancies. In the role of payment systems in this applica-
tion are FIO-Banka and Bitcoin.

• Use cases represent the functionality that the system provides for
actors. In this diagram, they are divided into logical groups namely

– Authentication of the user through Facebook and obtaining the
necessary information about the user from his Facebook account.

– Friendship between users and the division of friends into groups.
– Wish management includes the creation of wishes, donations,

and comments, as well as closure of the wishes with the subsequent
refund.

– Other includes the news feed and notifications.

1.5 Domain model

For simplification of understanding of the primary domain classes and their
behavior, it was decided to define so-called Domain model. The domain model
is the visual representation of conceptual classes in a domain of interests. Do-
main model is visualization of things in real-world, not of software components
such as C++ or Python class [4].

Domain model 1.2 was created by Maksym Balatsko, team lead and advert
server developer of ElateMe. In his bachelor’s thesis [1] he describes in detail
this diagram, classes specified in it, their attributes, and associations between
them.

����

�� ����

�� �������

�� ���	

�� ������

�� �����

�� �����������

�� �
������	���

����

�� �	�
�

�� �����	��	��

�� ������������

�� �����������

�� ���������	���	��

�� ��������
����

�� 	����
	�

��		�
�

�� ����

�� �����������

��
���

�� ������

�� ����

�

�����

���

��	����

�

����	���

���

���

�������

�

�

���	����

���

�����������

�

�!��

���

Figure 1.2: Domain model [1]

7

1. Analysis

1.6 System structure

The whole ElateMe application system is divided into components. Principal
components are the server, Android, and iOS clients.

The detailed structure of the server and its connection with external inter-
faces are presented at the component diagram 1.3. As seen in the diagram,
the server provides interface for the mobile applications to communicate via
Representational State Transfer (REST) API. The server also uses interfaces
of Facebook (Graph API) to receive needed data about users and interfaces
of payment systems (FIO-bank and Bitcoin) for payments processing.

Inside, the server is divided into components that are responsible for sto-
ring and processing data of application entities. This components are called
apps in Django. Apps communicate with the database via Django models.
Models in Django is an interface designed to simplify querying to the database.

Server

Android client

iOS client

DB
PostgreSQL

Django models

Django framework

Django apps

Facebook

Graph API

Android and
iOS SDKs

Authentication Payments

FIO-bank Bitcoin

Wish
management

Donations
management

Friendship
management

Comments
management

Advertisement server

<<extends>>

Server
REST API

Python
DB API

Figure 1.3: Component diagram

The diagram also shows the use of interfaces of Facebook and payment
systems by mobile clients, but they are not a part of my work, so their design
and implementation will not be described in this thesis.

8

1.7. Authentication

1.7 Authentication

The user has to be authorized to use the application. The ElateMe application
will not provide in-app registration. User authentication will be conducted
exclusively through third-party systems. It is made to simplify the registration
in the application.

1.7.1 Facebook

User authentication will be conducted through his Facebook account.
After the first login, the application will get from Facebook needed infor-

mation about the user: first name, last name, email address, a list of user’s
friends. User’s Facebook friends, who are already logged in to the application,
automatically become his friends in the ElateMe.

Despite the lack of in-app registration, user’s information received from
Facebook will be stored in ElateMe system as well, because a user will be able
to add other users to his friend list, create friends groups independently from
Facebook.

1.8 Payments system

The ElateMe project is based on crowdfunding. So application (and the server
in particular) has to provide service for payments processing. According to
the requirements, this service should use interfaces of FIO-banka and Bitcoin.

1.8.1 Use cases

In this application, the payment system participates in the following use cases:

• Donation
During the donation, the money is transferred to the internal account
of ElateMe, where it is stored until one of the following use cases.

• Wish completion
In the case of fulfillment of the wish, money is transferred to the account
of the author of this wish.

• Wish closing
There are two situations in which the wish is closed: closing of the wish
by its author and closing upon expiration of the deadline. In both cases,
already collected money is returned to the donators’ accounts.

9

1. Analysis

1.8.2 FIO-banka

Since the open API of the FIO-banka [5] does not provide sufficient function-
ality for the needs of this application, it was necessary to agree directly with
the bank on the provision of required interface. Due to prolonged communic-
ation with the bank, we still did not get the full documentation. We only got
a description of the payment process, which can be seen on the diagram 1.4.

Mobile application FIO-bankaServer

User presses
"Donate" button

User chooses
amount to donate

Sends donation dataCreates unconfirmed
donation

Responds with
donation information

Receives
donation id

Initiates payment
and opens web-view

Conducts
payment

Redirects user to
Success/Failure URL

Confirms
donation

Removes
donation

Notifies the user of
the payment status

Success Failure

Figure 1.4: Payment via FIO-banka

As seen in the diagram, before initiating the payment, the mobile ap-
plication will send a request to the server to create a donation; the server
will create an unconfirmed donation and respond to the application with in-
formation about the newly created donation. From this information, the ap-
plication will take the donation id, which will later serve as the identifier of
the paid product. The application initializes the payment with the necessary

10

1.8. Payments system

information about the user and donation and redirects the user to the pay-
ment gateway of the FIO-banka in the web-view. After processing the pay-
ment, the FIO-Banka redirects the user to one of the two URLs on the server,
depending on the state of the payment (success/fail URLs). In the case of suc-
cess, the server marks the payment as confirmed, alternatively failed. The mo-
bile application will close the web-view and notify the user about the status
of the payment.

1.8.3 Bitcoin

The second way to make payments in the application is Bitcoin.
Bitcoin is a collection of concepts and technologies that form the basis

of a digital money ecosystem. Units of currency called bitcoins are used
to store and transmit value among participants in the bitcoin network. Bitcoin
users communicate with each other using the bitcoin protocol primarily via
the Internet, although other transport networks can also be used. The bitcoin
protocol stack, available as open source software, can be run on wide range of
computing devices, including laptops and smartphones, making the technology
easily accessible [6]. A detailed analysis of the system of Bitcoins was carried
out in the bachelor’s thesis of Yegor Terokhin [7], one of the iOS developers of
ElateMe. In his work, he describes in detail the principles of work of Bitcoin
and the benefits of using this system in the framework of the ElateMe project.

Yegor decided to use Coinbase, to process Bitcoin payments. Founded
in June of 2012, Coinbase is a digital currency wallet and platform where
merchants and consumers can transact with new digital currencies like bitcoin
and ethereum [8]. The main benefit of using Coinbase is that it provides
Software Development Kit (SDK) for both mobile platforms and a Python
used for the implementation of the backend in this project.

1.8.4 Refund mechanism

As was mentioned before, after closing of the wish, collected money will be re-
funded to the donators’ accounts. ElateMe will have a bank account or online
wallet for every payment system that it will provide. As every payment sys-
tem has a different interface for conducting payments, every donation and its
refund will use a different way of payment processing, depending on the avail-
able interface for each particular system. There are three possible solutions
on processing refunds:

• SDK (e.g. Coinbase SDK)

• HTTP API (e.g. FIO-banka API)

• Web user interface (e.g. mBank)

11

1. Analysis

As long as payment system provides SDK or any other API, the imple-
mentation of donation and refunds processing does not require complicated
systems to conduct payments. On the current stage of development, it was
decided to use only FIO-banka and Bitcoin, which provide appropriate inter-
faces. But in the case of the addition of payment systems that don’t have API
for developers, payments, and refunds, in particular, need to be processed
through other available interfaces.

Following solution was proposed by Michal Maněna, project supervisor of
ElateMe.

User web interfaces of payment systems that don’t provide proper API
will be used for conducting refunds. It was decided to use Selenium for auto-
matization of payments via user web interface. Selenium is a set of tools
specifically for automating web browsers [9]. So it will simulate actions dir-
ectly in the web browser to provide refunds to the users’ bank accounts. Here
it is necessary to reckon with the fact that many banks send a confirmation
code via SMS. In this case, it is required to have a Global System for Mo-
bile Communications (GSM) module with a SIM card physically connected
to the server. Then there will be running daemon that will collect and save
the SMS messages in the database. Then confirmation code will be entered in
the corresponding field by Selenium and sent to process payment.

1.9 Push notifications

Push notifications are short important messages from the application or
service, displayed by the operating system when the user does not directly
work with the specified application or service. The advantage of such notific-
ations is that there is no need to keep the program in memory, spending on
it processor powers and memory.

In the ElateMe application, the user will receive information about the
state of his wishes, new donations, comments, etc.

1.9.1 Mechanism of push notifications

For the server to be able to send push notifications it needs to store a token.
Token is a line of characters that serves as an address of specific application
on the particular device. The token is generated by Operating system push
notification service (OSPNS). After the application is installed on the device
it registers itself for receiving of push notifications; OS requests token from
OSPNS, the application receives token and sends it to the server.

12

1.9. Push notifications

Server

Application

OS

OSPNS

1. Application registeres for
receiving of push notifications.

5. When a specific event
occures server sends push

notification to OSPNS.

2. OS requests devices
token from OSPNS.

3. Application recieves devices token

4. Application sends
devices token to the server.

6. OSPNS sends notification to the application.

Figure 1.5: Mechanism of push notifications

1.9.2 Actors

• OSPNS
Every operating system has its service for processing push notifica-
tions. They are Google Cloud Messaging (GCM) for Android and Apple
Push Notification service (APNs) for iOS. As shown on the diagram 1.5
OSPNS sends a token to the application when it registers in the service
and sends the push notifications to the application itself.

• Server
The server stores the tokens of each device and sends the push notifica-
tions to OSPNS.

• Client application
The application is registered to receive a push notification, receives
a token from OSPNS and sends it to the server.

13

Chapter 2
Design

2.1 Authentication

As was mentioned earlier in this thesis, authentication of the user will be
conducted through his Facebook account. Facebook provides the interface for
user authentication in third-party applications. This interface uses OAuth 2.0
protocol.

2.1.1 OAuth 2.0

OAuth 2.0 is the industry-standard protocol for authorization. OAuth 2.0
supersedes the work done on the original OAuth protocol created in 2006.
OAuth 2.0 focuses on client developer simplicity while providing specific autho-
rization flows for web applications, desktop applications, mobile phones, and
living room devices [10].

For the server to be able to get a list of friends and other information about
the user, the mobile application needs to receive a token from Facebook with
appropriate permissions and send it to the server. Token is a line generated by
Facebook and by which Facebook provides access to specific data of the certain
user.

Diagram 2.1 shows mechanism of successful authentication via user’s Face-
book account.

15

2. Design

Server Clien application Facebook

Press "Login via Facebook"

Redirect to facebook page /
open facebook login window

Authenticate user

Ask user for permissions

Recieve token and
send it to the server Response with token

Recieve user token

Requeste user data

Responce with user data

Check token permissions

Recieve user data

Is user
in DB?

Generate in-app token
and send to client

Add user to DB
and create friends

connections

Recieve in-app token

no yes

Figure 2.1: Authentication activity diagram

2.2 REST API

Server API will be built on the basis of REST. REST is the architectural
solution for the transfer of structural data between server and client [11]. API
is considered RESTful if it follows certain rules [12]:

• Client-Server
Client-Server defines a clear separation between a service and its con-
sumers. Service (in this case server) offers one or more capabilities and
listens for requests on these capabilities. A consumer (in this case mobile
client) invokes a capability by sending the corresponding request mes-
sage, and the service either rejects the request or performs the requested
task before sending a response message back to the consumer.

16

2.2. REST API

• Stateless
Statelessness ensures that each service consumer request can be treated
independently by the service. The communication between service con-
sumer (client) and service (server) must be stateless between requests.
This means that each request from a service consumer should contain
all the necessary information for the service to understand the meaning
of the request, and all session state data should then be returned to
the service consumer at the end of each request.

• Cache
Responses may be cached by the consumer to avoid resubmitting the same
requests to the service. Response messages are explicitly labeled as
cacheable or non-cacheable. This way, the service and the consumer can
cache the response for reuse in later requests.

• Uniform Interface
All services and service consumers within a REST-compliant architec-
ture must share a single, overarching technical interface. As the primary
constraint that distinguishes REST from other architecture types, Inter-
face is generally applied using the methods and media types provided
by HTTP.

• Layered System
A REST-based solution can be comprised of multiple architectural lay-
ers, and no one layer can “see past” the next. Layers can be added,
removed, modified, or reordered in response to how the solution needs
to evolve.

There is also an optional constraint Code-On-Demand. This constraint
states that client application can be extended if they are allowed to down-
load and execute scripts or plug-ins that support the media type provided by
the server. Adherence to this constraint is therefore determined by the client
rather than the API [11].

17

2. Design

2.2.1 Apiary

The apiary service will be used for the server API documentation. Apiary
is a powerful API design stack [13]. The Blueprint API is used to describe
the structure of the APIs in the apiary. API Blueprint is a powerful high-
level API description language for web APIs [14].

The following screenshot shows an example of the documented API end-
point, specifically GET request on receiving comments list of the specified
wish.

Figure 2.2: Apiary documentation

18

2.2. REST API

Documentation of every endpoint contains Uniform Resource Locator (URL),
mandatory URL parameters (filled circle), optional URL parameters (hollow
circle), request headers and body format if required, response headers and
body format.

The corresponding Blueprint to the documentation on the screenshot looks
like this:
Comments to the wish [/ wishes /{wish id }/comments/{? page , p a g e s i z e }]

GET [GET]

+ Parameters
+ wi sh id : ‘ 1 ‘ (requ i red , number)
+ page : ‘1 ‘ (opt iona l , number) − page number

+ Defau l t : ‘ 1 ‘
+ p a g e s i z e : ‘20 ‘ (opt iona l , number) − o b j e c t s count on apage

+ Defau l t : ‘ 20 ‘

+ Request (a p p l i c a t i o n / j son)
+ Headers

Author i zat ion : Token In APP Token

+ Response 200 (a p p l i c a t i o n / j son)
+ Att r ibute s

+ count : 2 (number) − t o t a l number o f r e s u l t s
+ next (s t r i ng , opt iona l , n u l l a b l e) − next page u r l
+ prev ious (s t r i ng , opt iona l , n u l l a b l e) − prev ious page u r l
+ r e s u l t s (array)

+ (ob j e c t)
+ id : 1 (number)
+ author : 1 (number)
+ wish : 1 (number)
+ text : ‘Me too ‘
+ dat e c r ea t ed : ‘2017−02−10T15 : 4 6 : 3 3 . 8 5 4 4 7 8Z ‘

+ (ob j e c t)
+ id : 2 (number)
+ author : 3 (number)
+ wish : 1 (number)
+ text : ‘ But why? ‘
+ dat e c r ea t ed : ‘2016−12−22T15 : 4 6 : 3 3 . 8 5 4 4 7 8Z ‘

API Blueprint detailed documentation can be found on the official API
Blueprint website [14].

19

2. Design

2.3 Chosen technologies

As I mentioned before, the choice of used technology was not up to me so in
this section I will not describe why certain technologies were chosen, but their
advantages (alternatively disadvantages) for this project.

2.3.1 Python

Python is a base of the server. It was chosen as a primary programming
language because it was designed to be simple and highly readable, which is
crucial for large-scale projects. Its syntax and standard library simplify and
speed up development.

2.3.2 Django

Django is an open source web framework for Python. It provides a high-level
abstraction of common web development patterns. Django framework follows
Model-View-Controller (MVC) design pattern. It uses MVC to separate model
as a data and a business logic of the application, view as a representation of
the information for the user, in this case, the client side of the application
and controller as an interface of the application, in this case, set of URLs to
communicate with front-end [15].

2.3.3 Django REST

Django REST framework is an open source project built on Django frame-
work. It contains needed tools for implementation of the RESTful API such
as serializers, pagination, permissions, etc.

2.3.4 PostgreSQL and SQLite

On initial stage of the development, SQLite will be used as a DBMS, because
it does not require a standalone database server and is simple to set up.
The database will be changed and migrated to PostgreSQL later.

PostgreSQL is powerful, open source relational DBMS. It has advanced
features such as full atomicity, consistency, isolation, durability [16]. Django
framework provides great API for working with PostgreSQL databases.

20

2.4. Database model

2.3.5 Nginx

Nginx [engine x] is an HyperText Transfer Protocol (HTTP) and reverse
proxy server, a mail proxy server, and a generic TCP1/UDP2 proxy server,
originally written by Igor Sysoev [17]. According to Netcraft [18], nginx served
or proxied 28.50% busiest sites in March 2017.

2.4 Database model

One of the primary parts of the web server is the database. A database design,
the data model, is created before the implementation of the physical database
model.

A data model is a combination of three components [19]:

• The structural part: a collection of data structures (or entity types,
or object types) which define the set of allowable databases.

• The integrity part: a collection of general integrity constraints, which
specify the set of consistent databases or the set of allowable changes to
a database.

• The manipulative part: a collection of operators or inference rules,
which can be applied to an allowable database in any required combin-
ation to query and update parts of the database.

Thus, the structure of the ElateMe database was defined and documented.
The full database model is in the attachment C. It is not included in the text
of this thesis because of its large volume. The documentation is divided into
logical parts containing the corresponding database tables, their columns, and
connections. Diagrams include the following connections:

manyone zero or manyzero or one one or many

This documentation, however, is not an accurate representation of the physical
database, since Django models are used to work with the database, which
themselves create tables and connections between them.

1Transmission Control Protocol (TCP)
2User Datagram Protocol (UDP)

21

2. Design

2.5 Class model

Class model of the project was built based on Django project structure. Most
of the classes extend Django classes following certain rules and format. There-
fore I will describe only parts that don’t depend on Django structure. A com-
plete model of classes can be found in the electronic attachments.

2.5.1 Authentication

As was said before, in frameworks of this work user authentication will be
conducted through his Facebook account. But in the future, other social
networks and authorization methods may be added. Since most of the social
networks support OAuth 2.0 [10], this allows to make a universal interface for
user authorization, that will process user authentication via a social network
using token provided by the client (mobile or web application).

Thus, as shown in the diagram 2.3, classes that extend AbstractSocialAPI
will provide an interface for token processing. AbstractSocialAPI defines
method process that receives token from the client, requests information about
the user from the corresponding social network, decides if the user is already
registered in the application, registers him (adds to the database) if necessary,
and authorizes the user in the application. Information about user is obtained
using abstract methods like request data, get social id, get friends, etc.

AbstractSocialAPI

+ API_URL: s tr
+ PROVIDER_NAME: str
+ TOKEN: str

+ check_token()
+ create_social_integration(User)
+ create_user()
+ get_date_of_birth(): date
+ get_email(): str
+ get_first_name(): str
+ get_friends(): [User]
+ get_gender(): str
+ get_last_name(): str
+ get_profile_image(): str
+ get_social_id(): str
+ get_social_integration_user()
+ process(Token)
+ request_data()

FacebookSocialAPI

+ check_token()
+ create_social_integration(User)
+ create_user()
+ get_date_of_birth(): date
+ get_email(): str
+ get_firs t_name(): str
+ get_friends(): [User]
+ get_gender(): s tr
+ get_las t_name(): str
+ get_profile_image(): str
+ get_social_if(): str
+ get_social_integration_user()
+ process(str)
+ request_data()

res t_framework.authentication

BaseAuthentication

TokenAuthentication

+ authenticate(Request): int
+ authenticate_credentials (str, str): int

Account::ExternalServiceIntegration

+ social_id: TextField
facebook: ExternalService

Figure 2.3: Social integration class model

22

2.5. Class model

2.5.2 Payments

Payment information will be stored in the models that inherit the Payment
model. Currently, these classes are FIOBankaPayment and BitcoinPayment.
They store information for conducting and refunding payments needed for
interfaces of FIO-banka and Bitcoins respectively. Payment processing will be
performed by PaymentsHandlers. They provide interfaces for the handling of
donations, refunds, and payments for the completed wishes. For each Payment
model there will be a corresponding PaymentsHandler. Which means if a new
payment system arrives, it will be enough to override the Payments class with
the necessary information and implement the PaymentsHandler interface for
this particular system.

Donations::Donation

+ amount: DecimalField
+ date: DateTimeField

Payment

+ time_confirmed: DateTimeField
+ time_refunded: DateTimeField

FIOBankaPayment

+ other_info
+ transaction_id: CharField

BitcoinPayment

+ order_code: CharField
+ other_info

PaymentsHandler

+ pay_out_collected_money(Wish): int
+ process_payment(Donation): Payment
+ refund_payment(Payment)

FIOBankPaymentsHandler

+ pay_out_collected_money(Wish): int
+ process_payment(Donation): Payment
+ refund_payment(Payment)

BitcoinPaymentsHandler

+ pay_out_collected_money(Wish): int
+ process_payment(Donation): Payment
+ refund_payment(Payment)

0..1

1

Figure 2.4: Payments class model

2.5.3 Push notifications

As shown in the diagram 2.5, the EventHandler class will be responsible for
processing of events which require user notification. This class uses interface of
AbstractNotificationService for sending of push notifications to the correspon-
ding OSPNSs. Since the user can have several devices with the installed ap-
plication, there may be situations when one notification will be sent to several

23

2. Design

tokens and different OSPNSs. Classes that extend AbstractNotificationService
and implement method notify will be responsible for sending push notifications
to the specific OSPNS.

AbstractNotificationService

+ OSPNS_URL: s tr

+ notify(DeviceToken, NotificationData): int

AndroidNotificationService

+ notify(DeviceToken, NotificationData): int

IOSNotificationService

+ notify(DeviceToken, NotificationData): int

EventHandler

+ process(Event): int
- notify_user(User, NotificationData): int

Figure 2.5: Push notification class model

2.6 Deployment model

ElateMe implies an enterprise system. That means that its server application
needs to be able to cope with a large number of simultaneous requests, has to
be scalable, secure and reliable.

Nginx will be used as a reverse proxy server. Reverse proxy server is
a type of proxy server that typically sits behind the firewall in a private net-
work and directs client requests to the appropriate backend server. Using
of such proxy server makes backend application run faster, reduces down-
time, consumes less server resources, and improves security [20]. Nginx will
also be used as a load balancer for multiple application server instances.
Load balancing means distributing client requests across a group of servers
in a manner that maximizes speed and capacity utilization while ensuring no
one server is overloaded, which can degrade performance. If some server goes
down, the load balancer redirects traffic to the remaining online servers [21].

Design of the ElateMe deplyment model is presented on the diagram 2.6.

24

2.6. Deployment model

«device»
Application server

«device»
Android phone/tablet

Android
application

«device»
iOS phone/tablet

iOS
application

Server

nginx

Django
application

Django
application

Django
application

«device»
Database server

«executionEnvironment»
DBMS

PostgreSQL
database

«device»
PC

Web
application

TCP/IP
REST API

HTTPS

Figure 2.6: Deployment model

As seen in the diagram, backend application and database will be running
on separate servers. Pros of such approach are

• Application and database don’t use the same server resources (CPU,
Memory, I/O, etc.)

• It allows vertical scaling, by adding more resources to whichever server
needs increased capacity.

• It increases security by removing the database from the Demilitarized
Zone (DMZ)3.

Nginx in this model is used as a load balancer which improves performance
and reliability by distributing the workload across multiple Django application
instances. It also allows horizontal scaling, i.e. environment capacity can be
scaled by adding more servers to it.

Currently, the server is deployed on the Virtual Private Server (VPS) with
the database and Django application on the same machine for testing pur-
poses.

3DMZ is a host or small network that is a neutral zone between a local network and the
Internet.

25

Chapter 3
Implementation

This chapter contains a description of the implementation of the project’s
server side. This part will describe the structure of the project. It is intended
to familiarize the reader with the implementation of this application and to
simplify the understanding of the structure of the project for future developers.

Note that the installation guide for this application is in the attachment D.

3.1 Project structure

Django as a framework determines the structure of the whole system. Django
project is divided into logical parts, apps. Apps contain a set of modules with
classes, which implement interfaces and extend classes, which are provided by
Django.

Later in this section, the main modules of the apps in the Django project
will be described. The parts involved in the processing of the request for
the receiving of the user’s wishes will be taken as an example.

3.1.1 Django models

Django models is an interface for simplified querying to the database. All
models extend class model from django.db module and usually represent single
table in a database [22].

Thus, each app, except the feed and notifications, contains a module
models. In this module, there are models that completely describe the data-
base. Despite what kind of DBMS is used (PostgreSQL or SQLite) the Django
models and querying through them does not change, which simplifies devel-
opment, testing and deploy.

27

3. Implementation

Model that represent table Wish in the database:
class Wish(models . Model) :

t i t l e = models . CharField (max length =100)
d e s c r i p t i o n = models . CharField (max length =512)
amount needed = models . F l oa tF i e ld ()
da t e c r ea t ed = models . DateTimeField (auto now add=True)
d a t e o f e x p i r a t i o n = models . DateTimeField (n u l l=True)
date completed = models . DateTimeField (n u l l=True)
i s p u b l i c = models . BooleanFie ld (d e f a u l t=Fal se)
author = models . ForeignKey (User ,

o n d e l e t e=models .CASCADE,
re lated name=’ wishes ’)

class Meta :
db tab l e = ’Wish ’

3.1.2 Django views

Django view is a method that is called during request on certain URL.
This function takes a Web request and returns a Web response, in this case,
JavaScript Object Notation (JSON). The main logic of processing requests is
in the views.

Before we started using Django REST framework, the request on receiving
the wish list of the current user looked like this:
def c u r r e n t u s e r w i s h e s v i e w (reque s t) :

c u r r e n t u s e r = reques t . user
i f not user . i s a u t h e n t i c a t e d () :

return HttpResponse (’ Unauthorized ’ , s t a t u s =401)

c u r r e n t u s e r w i s h e s = cur rent . user . wishes . \
order by (’−dat e c r ea t ed ’)

r e sponse data = []
for wish in c u r r e n t u s e r w i s h e s :

s e r i a l i z e d w i s h = W i s h S e r i a l i z e r (wish) . data
re sponse data . append (s e r i a l i z e d w i s h)

pag inated re sponse = WishPagination () . \
g e t p ag in a t e d r e s po n s e (request , r e sponse data)

return JsonResponse (pag inated re sponse)

Such requests, to obtain a list of objects of a certain model (wishes, donations,
comments, etc.), look very similar. It is checked if the user is authenticated,
the data queryset is obtained, the data is serialized, paginated (divided into
pages), returned in the JSON format. It was decided to use the Django REST

28

3.1. Project structure

framework, to simplify the implementation of such requests and the corres-
ponding auxiliary classes (serializers, paginations, etc.)

Thus, in Django REST framework view on getting the current user’s wish
list looks like this:
class CurrentUserWishesView (g e n e r i c s . ListCreateAPIView) :

r e n d e r e r c l a s s e s = (r e nd e r e r s . JSONRenderer ,)
p e r m i s s i o n c l a s s e s = (pe rmi s s i ons . I sAuthent icated ,)
s e r i a l i z e r c l a s s = s e r i a l i z e r s . W i s h S e r i a l i z e r
p a g i n a t i o n c l a s s = pag inat ion . WishPagination

def g e t q u e r y s e t (s e l f) :
user = s e l f . r eque s t . user
return user . wishes . order by (’−dat e c r ea t ed ’)

This approach simplifies implementation and improves the readability of
the code.

3.1.3 Django urls

The urls module in Django is responsible for linking the URL endpoints to
their corresponding views. It contains a list of objects url. In wishes app it
looks like this:
u r l p a t t e r n s = [

u r l (r ’ wishes / ’ , CurrentUserWishesView . as v iew ()) ,
o the r u r l s

]

3.1.4 Django REST serializers

Django REST serializers is an interface that provides the Django REST
framework for simplifying the serialization and deserialization of instances of
Django models. The simplest wish serializer looks like this:
class W i s h S e r i a l i z e r (s e r i a l i z e r s . M o d e l S e r i a l i z e r) :

class Meta :
model = Wish
f i e l d s = ’ a l l ’
r e a d o n l y f i e l d s = (’ id ’ , ’ author ’ ,

’ da t e c r ea t ed ’ , ’ date completed ’ ,
’ amount gathered ’ , ’ donators count ’)

29

3. Implementation

3.1.5 Django REST pagination

It was decided to use pagination, to avoid large responses in the case of
a big number of objects in the queryset. Pagination is the partitioning
of the response into so-called pages of the same size. It is enough to extend
the PageNumberPagination class from the module rest framework.pagination
to create a class responsible for the pagination of the list of data:
class WishPagination (PageNumberPagination) :

p a g e s i z e = 10
page s i ze query param = ’ p a g e s i z e ’
max page s ize = 50

If this class is used as pagination class in the view, page size and page are
used in the URL as optional parameters.

So on the request “/wishes?page size=5&page=2 ” server will respond with
JSON in the following format:
{

” count ” : 13 ,
” next ” : ” https : // api . e lateme . com/ wishes ? p a g e s i z e=5&page=3” ,
” prev ious ” : ” https : // api . e lateme . com/ wishes ? p a g e s i z e=5&page=1” ,
” r e s u l t s ” : [

5 s e r i a l i z e d wishes from the second page
]

}

3.1.6 Django apps

The project was divided into the following apps:

• account. App includes modules for storing and processing information
about the user. account is divided into sub-applications authorization
and social that are responsible for user authorization and integration
with social networks respectively.

• donations. This app is designed to process donations. It will also
contain the logic of the payment and refund systems.

• feed. App for the arrangement of a user’s news feed.

• friendship. Application for the processing of friendly relationships
between users.

• notifications. App provides user notifications. At the moment, it
provides the REST interface for getting news list. Later this application
will work with push notifications.

• wishes. Application provides the interface for processing user wishes.
It also contains sub-application comments.

30

3.2. Python Virtual Environment

3.1.7 Django settings

Django settings is a module that contains all the configuration of the Django
project. The main configurations to notice are:

• INSTALLED APPS. A list of all apps in a project.
• ALLOWED HOSTS. A list of the host/domain names that this Django

site can serve.
• DATABASES. A dictionary containing the settings for all databases

to be used with Django.
• DEBUG. A boolean that turns on/off debug mode.

A complete list of settings available in Django can be found in the official
documentation [23].

As for development and deployment it is needed to have different confi-
gurations for allowed hosts, databases and debugging, in the server api folder,
alongside with settings module there were created two modules: prod settings
and dev settings. They contain specific configurations for the production and
development respectively. For example dev settings have configured SQLite
database and set debug mode on, while prod settings defines settings for
PostgreSQL without debug mode. To enable prod settings it is needed to set
environment variable PRODUCTION. Otherwise dev settings will be used.

Following lines were added to the main settings module to make it work:
i f os . env i ron . get (’PRODUCTION’ , Fa l se) :

from . p r o d s e t t i n g s import ∗
else :

from . d e v s e t t i n g s import ∗

3.2 Python Virtual Environment

Since this application uses a set of dependencies that don’t come as a part
of the Python standard library they must be installed for all instances of
the application, namely the development and testing on the local machines of
developers and the production server. Python Virtual Environment was used
for these purposes.

A Virtual Environment is a tool to keep the dependencies required by
different projects in separate places, by creating virtual Python environments
for them. It solves the “Project X depends on version 1.x but, Project Y needs
4.x” dilemma, and keeps global site-packages directory clean and manage-
able [24].

A list of all the dependencies that are installed in the virtual environ-
ment can be found in the requirements.txt file in the project’s root directory.
The guide for installing and configuring the virtual environment is described
in the installation guide in the attachment D.

31

Chapter 4
Testing

4.1 Unit tests

Automatic testing was performed using unit tests, alongside with the devel-
opment. Unit tests are designed to verify the correct functioning of the parts
of the application.

Unit testing code means validation or performing the sanity check of
code. Sanity check is a basic test to quickly evaluate whether the result of cal-
culation can possibly be true. It is a simple check to see whether the produced
material is coherent [25].

4.1.1 Django REST tests

Native tools were used for testing, namely the Django REST framework
tests. Similar to Java JUnit tests, Django tests are class-based. Every test
case is a method of the class, that extends APITestCase from the module
rest framework.test. Classes can also contain the following methods:

• setUp: Method called to prepare the test fixture.

• tearDown: Method called immediately after the test method has been
called and the result recorded.

For testing, Django creates a separate empty database independent of
the primary database. SQLite DBMS is used for testing in this project.

4.1.2 Auxiliary methods

I wrote a set of auxiliary methods that simulate HTTP requests to the server.
These methods take URL, to which the request is sent, and, optionally, infor-
mation (JSON), which is sent as the body of the request. Methods use
APIRequestFactory to perform requests to the server.

33

4. Testing

Methods also use force authenticate function that allows to authenticate
a user (in this case test user) in the system without involvement of Facebook.
This function is used for testing of requests that require authorization.

4.1.3 Test cases

As an example of a test, I’ll take the creation of the wish by the user.
Initially, in the method setUp I create the test user, after that, I make

a POST request to the server with information about the wish in the body of
the request. After the server responded, I check status code of the response,
compare the information between the body of the request and the body of
the response (body of the response contains the newly created wish) and check
that wish is added to the database.
from django . u r l s import r e v e r s e
from res t f ramework . t e s t import APITestCase
from res t f ramework import s t a t u s
from account . models import User , UserManager
from wishes . models import Wish

a u x i l i a r y methods f o r h t t p r e q u e s t s
from u t i l . t e s t r e q u e s t s import post , get , put , patch , d e l e t e

class WishesTest (APITestCase) :

def setUp (s e l f) :
s e l f . u r l = r e v e r s e (’ wishes : wishes ’)
s e l f . user = UserManager () . c r e a t e u s e r (’ t e s t 1@te s t . com ’ , ’ t e s t ’)

def t e s t c r e a t e w i s h (s e l f) :
wish data = {

’ t i t l e ’ : ” iPhone7 ” ,
’ d e s c r i p t i o n ’ : ” I don ’ t need no jack ” ,
’ amount ’ : 19999

}
s ta tus code , r e sponse data = post (u r l=s e l f . ur l ,

user=s e l f . user ,
data=wish data)

s e l f . a s s e r tEqua l (s ta tus code , s t a t u s .HTTP 201 CREATED)
s e l f . a s s e r tEqua l (r e sponse data [’ t i t l e ’] , wish data [’ t i t l e ’])
s e l f . a s s e r tEqua l (r e sponse data [’ amount ’] , wish data [’ amount ’])
s e l f . a s s e r tEqua l (Wish . o b j e c t s . get () . t i t l e , wish data [’ t i t l e ’])

This is a positive test, so the status code must be 201 (created), wish
should be created and added to the database.

34

4.2. Apachebench

4.2 Apachebench

Apachebench tool was used to test server performance. Apachebench is
an open source, single-threaded command line program for benchmarking
a web server.

Tests were conducted on various URLs, with different methods including
GET and POST. An example of a testing will be GET request on “wishes/”
URL, which returns a list of wishes of the current user. It is one of the most
popular requests. The server makes one SELECT-WHERE request to the data-
base, during the GET request on this URL.

Testing command looks like this:
HEADERS=(

” Author i zat ion : Token b0edca023c283518f20b36894708 ” \
”User−Agent : t e s t−agent ”\
)

URL=” https : // api . e lateme . com/ wishes /”

c u r l −sL ”${HEADERS[@]/#/−H}” ”$URL”

ab −c 100 −n 5000 ”${HEADERS[@]/#/−H}” ”$URL”

Before testing itself, it is checked, with the curl utility, if the headers and the
URL are valid and it is possible to get a satisfactory response with them.

In this case, curl should print 200, which means a successful request.
Further testing with the same headers and the URL is conducted. The ab
(Apachebench) utility offers two main flags:

-c Number of multiple requests to perform at a time.

-n Number of requests to perform for the benchmarking session.

This test sends 5000 requests to the server with 100 simultaneous connec-
tions.

After testing, ab writes out the statistics, which includes time taken for
tests, requests per second, average per request, etc. The primary analyzed
indicator was “requests per second”.

4.2.1 Testing results and optimisation

After the first test, the request per second rate was about 25, which is a very
low result.

Finding a bottleneck point is necessary to optimize the performance of
the server. There are several possible problematic places:

35

4. Testing

• Database. Slow connection, long requests processing.

• Django. Unsuitable Django configuration.

• Nginx. Incorrect proxy configuration, wrong number of workers, log-
ging, caching, static files, etc.

• Hardware. Low hardware performance.

It is necessary to test each of the parts mentioned above separately, to find
a problematic place.

4.2.2 Database test

Database testing is quite simple: sending a large number of requests and
timing duration of execution. This was done directly through Django to test
all the parts involved in connecting to the database at once (Django, Python,
PostgreSQL).

The test looks like this:
def t e s t d b (r e q u e s t s p e r u s e r) :

s t a r t = datet ime . now ()
u s e r s = User . o b j e c t s . a l l ()
for i in range (r e q u e s t s p e r u s e r) :

for u in use r s :
wishes = u . wishes . a l l ()

time = (datet ime . now () − s t a r t) . t o t a l s e c o n d s ()
t o t a l r e q u e s t s = r e q u e s t s p e r u s e r ∗ use r s . count ()
print (t o t a l r e q u e s t s , ’ r e q u e s t s per ’ , time , ’ seconds ’)
print (t o t a l r e q u e s t s /time , ’ req / sec ’)

t e s t d b (1000)

The test checks how long it takes to get each user’s wishes separately from
the database 1000 times. 23 users were stored in the database with 5 to 30
wishes each, at the time of testing.

Output of the test:
23000 r e q u e s t s per 7 .23 seconds
3178.34 req / sec

As seen, the database is capable of serving more than three thousand
requests per second, so the problem is not in it.

36

4.2. Apachebench

4.2.3 Django test

It was enough to run the Apachebench locally on the port on which Django
server is running to test Django separately from Nginx (without a proxy):
URL=” 1 2 7 . 0 . 0 . 1 : 8 8 8 8 / wishes /”
ab −c 20 −n 1500 ”${HEADERS[@]/#/−H}” ”$URL”

This test showed that one instance of the Django server itself serves about
11 requests per second. This indicates that the problem is in Django or hard-
ware performance. Same tests of this Django project on authors local machine
showed much better results, about 350 requests per second.

4.2.4 Nginx test

It was enough to make virtualhost that served a static page to test Nginx
separately from Django application. Here is a testing of this page:
ab −c 100 −n 5000 ” https : // api . e lateme . com/ t e s t . html”

Results of this test showed similar rate as requests to the URLs of server
API. This indicates that the problem is in Nginx or hardware performance.

4.2.5 Results

Taking into consideration everything mentioned above the problem is presu-
mably in server’s hardware. Currently, the server is running on the free
VPS, which is not designed for enterprise projects, so testing on current
server is not an accurate indicator of project performance. Therefore, perfor-
mance tests will be conducted again after backend application is deployed on
the full-fledged server.

37

Conclusion

The aim of this work was to learn how to develop a complex backend system
from the analysis of the requirements and the design of the future system to
implementation, deploy and testing. Functional and non-functional require-
ments, use cases and business processes were documented. The structure of
the project, the scheme of the database and the class model, the payment
and refund systems were designed, REST API for communication with mo-
bile and web applications was implemented and the implemented application
was tested by the unit and performance tests.

In the framework of this thesis, the author studied the use of such web
development tools like Python, Django and Django REST frameworks, Nginx,
and PostgreSQL. The author also learned about ways to integrate user au-
thorization via Facebook using OAuth 2.0 protocol and payment systems like
FIO-Bank and Bitcoins.

Work contribution

The reader of this work can learn for himself how to implement the authoriza-
tion system through the OAuth 2.0 protocol, the basics of using the interfaces
of the FIO-banks and the Bitcoin payment systems. Also, the work explains
the structure of the implementation of this project, which will be useful for
future developers of this platform.

Future outlook

The next step in developing of the backend of the application will be the com-
pletion of the REST API and the integration with the advert server. Also, it
will be necessary to study in detail the configurations of the Nginx and ways to
optimize the application and complete performance testing on the production
server.

39

Bibliography

[1] Balatsko, M. ElateMe - Project management and Advert server. Bach-
elor’s thesis. Czech Technical University in Prague, Faculty of Informa-
tion Technology, 2017.

[2] Wiegers, K.; Beatty, J. Software Requirements. Best practices, Mi-
crosoft Press, 2013, ISBN 9780735679665. Available from: https://
books.google.cz/books?id=40lDmAEACAAJ

[3] Chung, L.; Nixon, B.; et al. Non-Functional Requirements in Software
Engineering. International Series in Software Engineering, Springer US,
2012, ISBN 9781461552697. Available from: https://books.google.cz/
books?id=MNrcBwAAQBAJ

[4] Larman, C. Applying UML and Patterns: An Introduction to Object-
oriented Analysis and Design and the Unified Process. Safari electronic
books, Prentice Hall PTR, 2002, ISBN 9780130925695. Available from:
https://books.google.cz/books?id=r8i-4En_aa4C

[5] Reference. FIO API BANKOVNICTVÍ [online]. [Cited 2017-04-28]. Avail-
able from: https://www.fio.cz/docs/cz/API_Bankovnictvi.pdf

[6] Antonopoulos, A. Mastering Bitcoin. O’Reilly Media, Incorporated, 2014,
ISBN 9781449374044.

[7] Terokhin, Y. ElateMe - iOS klient I: bakalářská práce. Praha: České
vysoké učeńı technické v Praze, Fakulta informačńıch technologíı, 2017.

[8] Reference. ABOUT COINBASE [online]. [Cited 2017-05-7]. Available
from: https://www.coinbase.com/about

[9] Reference. Selenium Documentation [online]. [Cited 2017-05-11]. Avail-
able from: http://www.seleniumhq.org/docs/

41

https://books.google.cz/books?id=40lDmAEACAAJ
https://books.google.cz/books?id=40lDmAEACAAJ
https://books.google.cz/books?id=MNrcBwAAQBAJ
https://books.google.cz/books?id=MNrcBwAAQBAJ
https://books.google.cz/books?id=r8i-4En_aa4C
https://www.fio.cz/docs/cz/API_Bankovnictvi.pdf
https://www.coinbase.com/about
http://www.seleniumhq.org/docs/

Bibliography

[10] Reference. OAuth 2.0 [online]. [Cited 2017-04-02]. Available from: https:
//oauth.net/2/

[11] DAIGNEAU, Robert. Service design patterns: fundamental design solu-
tions for SOAP/WSDL and RESTful web services. Upper Saddle River:
Addison-Wesley, c2012. Addison-Wesley signature series, 2012, ISBN 978-
0-321-54420-9.

[12] Reference. What is REST? [online]. [Cited 2017-04-02]. Available from:
http://whatisrest.com/

[13] Reference. Apiary [online]. [Cited 2017-04-22]. Available from: https:
//apiary.io/

[14] Reference. API Blueprint [online]. [Cited 2017-04-22]. Available from:
https://apiblueprint.org/

[15] HOLOVATY, Adrian and Jacob. KAPLAN-MOSS. The definitive guide
to Django: Web development done right. 2nd ed. Berkeley: Apress, c2009.
Expert’s voice in Web development., 2009, ISBN 978-1-4302-1936-1.

[16] OBE, Regina Obe and Leo Hsu. PostgreSQL: up and running. Sebastopol:
O’Reilly, c2012, 2012, ISBN 978-1-449-32633-3.

[17] Reference. nginx [online]. [Cited 2017-04-08]. Available from: https://
nginx.org/en/

[18] Reference. Netcraft [online]. [Cited 2017-04-08]. Available from:
https://news.netcraft.com/archives/2017/03/24/march-2017-
web-server-survey.html

[19] Levene, M.; Loizou, G. A Guided Tour of Relational Databases and Bey-
ond. Springer London, 2012, ISBN 9780857293497.

[20] Smith, F. Maximizing Python Performance with NGINX, Part 1:
Web Serving and Caching [online]. March 2016, [Cited 2017-05-12].
Available from: https://www.nginx.com/blog/maximizing-python-
performance-with-nginx-parti-web-serving-and-caching/

[21] Reference. What is a reverse proxy server? [online]. [Cited 2017-
05-12]. Available from: https://www.nginx.com/resources/glossary/
reverse-proxy-server/

[22] Reference. Django documentation [online]. [Cited 2017-04-18]. Available
from: https://docs.djangoproject.com/

[23] Reference. Django settings [online]. [Cited 2017-05-12]. Available from:
https://docs.djangoproject.com/en/1.11/ref/settings

42

https://oauth.net/2/
https://oauth.net/2/
http://whatisrest.com/
https://apiary.io/
https://apiary.io/
https://apiblueprint.org/
https://nginx.org/en/
https://nginx.org/en/
https://news.netcraft.com/archives/2017/03/24/march-2017-web-server-survey.html
https://news.netcraft.com/archives/2017/03/24/march-2017-web-server-survey.html
https://www.nginx.com/blog/maximizing-python-performance-with-nginx-parti-web-serving-and-caching/
https://www.nginx.com/blog/maximizing-python-performance-with-nginx-parti-web-serving-and-caching/
https://www.nginx.com/resources/glossary/reverse-proxy-server/
https://www.nginx.com/resources/glossary/reverse-proxy-server/
https://docs.djangoproject.com/
https://docs.djangoproject.com/en/1.11/ref/settings

Bibliography

[24] Reference. Virtual Environments [online]. [Cited 2017-05-05]. Available
from: http://python-guide-pt-br.readthedocs.io/en/latest/dev/
virtualenvs/

[25] ACHARYA, Sujoy. Mastering unit testing using Mockito and JUnit: an
advanced guide to mastering unit testing using Mockito and JUnit. Birm-
ingham, England: Packt Publishing, 2014. Community experience dis-
tilled., 2014, ISBN 978-1-78398-250-9.

43

http://python-guide-pt-br.readthedocs.io/en/latest/dev/virtualenvs/
http://python-guide-pt-br.readthedocs.io/en/latest/dev/virtualenvs/

Appendix A
Acronyms

API Application Programming Interface

APNs Apple Push Notification service

DBMS DataBase Management System

DMZ Demilitarized Zone

GCM Google Cloud Messaging

GSM Global System for Mobile Communications

HTTPS HyperText Transfer Protocol Secure

HTTP HyperText Transfer Protocol

JSON JavaScript Object Notation

MVC Model-View-Controller

OSPNS Operating system push notification service

REST Representational State Transfer

SDK Software Development Kit

TCP Transmission Control Protocol

UDP User Datagram Protocol

URL Uniform Resource Locator

VPS Virtual Private Server

45

Appendix B
Contents of enclosed CD

readme.txt the file with CD contents description
src.......................................the directory of source codes

server api................................. implementation sources
thesis..............the directory of LATEX source codes of the thesis

text..the thesis text directory
BP Kuzmovych Yevhen 2017.pdf.......the thesis text in PDF format
Assignment.pdf the thesis assignment

documentation.............the generated documentation of the analysis
Class model.pdf........................class model documentation
Database model.pdf database model documentation
Requirements.pdf..................... requirements documentation
Use cases.pdf use cases documentation
Component diagram.pdf.........component diagram documentation
Deployment model.pdf............deployment model documentation

47

Appendix C
Database model

AccountInfo Models

+ Bank
+ ExternalService
+ User
+ UserAdress
+ UserBankAccount
+ UserContactInfo
+ UserExternalServiceIntegration

Friendship Models

+ FriendsGroup
+ FriendsGroupColor
+ FriendsGroupMember
+ Friendship

Wish Models

+ Comment
+ SurpriseWish
+ Wish
+ WishImage

Donation Models

+ BitcoinPayment
+ FioBankaPayment
+ Payment
+ Donation

Figure C.1: Database packages

User

«column»
*PK user_id: uuid
* name: varchar(255)
* surname: varchar(255)
 date_of_birth: date
* email: varchar(255)
* password: varchar(255)
 gender: char(1)
 place_of_birth: varchar(255)
 image: varchar(255)
* date_created: date

«PK»
+ PK_User(uuid)

UserAdress

«column»
*pfK user_id: uuid
 country: varchar(100)
 city: varchar(100)
 street: varchar(100)
 house_number: varchar(100)
 google_maps_data: geometry_dump

«FK»
+ FK_Adress_User(uuid)

«index»
+ IXFK_Adress_User(uuid)

«PK»
+ PK_Adress(uuid)

UserContactInfo

«column»
*pfK user_id: uuid
 mobile_phone: varchar(50)
 site: varchar(50)
 skype_username: varchar(50)

«FK»
+ FK_ContactInfo_User(uuid)

«index»
+ IXFK_ContactInfo_User(uuid)

«PK»
+ PK_ContactInfo(uuid)

ExternalService

«column»
*PK externalservice_id: uuid
* name: varchar(50)

«PK»
+ PK_ExternalService(uuid)

UserExternalServiceIntegration

«column»
*pfK externalservice_id: uuid
*pfK user_id: uuid

«FK»
+ FK_ExternalServiceIntegration_ExternalService(uuid)
+ FK_ExternalServiceIntegration_User(uuid)

«index»
+ IXFK_ExternalServiceIntegration_ExternalService(uuid)
+ IXFK_ExternalServiceIntegration_User(uuid)

«PK»
+ PK_ExternalServiceIntegration(uuid, uuid)

UserBankAccount

«column»
*PK bankaccount_number: varchar(50)
*FK user_id: uuid
 FK bank_id: uuid

«FK»
+ FK_UserBankAccount_Bank(uuid)
+ FK_UserBankAccount_User(uuid)

«index»
+ IXFK_UserBankAccount_Bank(uuid)
+ IXFK_UserBankAccount_User(uuid)

«PK»
+ PK_UserBankAccount(varchar)

Bank

«column»
*PK bank_id: uuid
* name: varchar(100)
* code: varchar(50)
* swift_code: varchar(50)

«PK»
+ PK_Bank(uuid)

Figure C.2: Account models

49

C. Database model

Donation

«column»
*PK donation_id: uuid
* amount: real
 comment: varchar(255)
* date_created: timestamp with time zone
*FK wish_id: uuid
*FK author_id: uuid

«FK»
+ FK_Donation_User(uuid)
+ FK_Donation_Wish(uuid)

«index»
+ IXFK_Donation_User(uuid)
+ IXFK_Donation_Wish(uuid)

«PK»
+ PK_Donation(uuid)

User

«column»
*PK user_id: uuid
* name: varchar(255)
* surname: varchar(255)
 date_of_birth: date
* email: varchar(255)
* password: varchar(255)
 gender: char(1)
 place_of_birth: varchar(255)
 image: varchar(255)
* date_created: date

«PK»
+ PK_User(uuid)

Wish

«column»
*PK wish_id: uuid
* title: varchar(100)
* description: varchar(512)
*FK author_id: uuid
* amount_needed: real
* date_created: timestamp with time zone
 date_of_expiration: timestamp without time zone
 date_completed: timestamp with time zone
* is_public: boolean
* type: varchar(3)
 FK comment_id: uuid

«FK»
+ FK_Wish_Comment(uuid)
+ FK_Wish_User(uuid)

«index»
+ IXFK_Wish_Comment(uuid)
+ IXFK_Wish_User(uuid)

«PK»
+ PK_Wish(uuid)

«check»
+ TYPE_ENUM(varchar)

Payment

«column»
 time_confirmed: time
 time_refunded: time

BitcoinPayment

«column»
 transaction_id: varchar(50)
 other_info: varchar(50)

FioBankaPayment

«column»
 transaction_id: varchar(50)
 other_info: varchar(50)

(author_id = user_id)

(author_id = user_id)

Figure C.3: Donation models

User

«column»
*PK user_id: uuid
* name: varchar(255)
* surname: varchar(255)
 date_of_birth: date
* email: varchar(255)
* password: varchar(255)
 gender: char(1)
 place_of_birth: varchar(255)
 image: varchar(255)
* date_created: date

«PK»
+ PK_User(uuid)

Friendship

«column»
*pfK friend1: uuid
*PK friend2: uuid
 accepted: boolean
 friendsgroup_id: uuid

«FK»
+ FK_Friendship_User(uuid)

«index»
+ IXFK_Friendship_FriendsGroup(uuid)
+ IXFK_Friendship_User(uuid)

«PK»
+ PK_Friendship(uuid, uuid)

FriendsGroupColor

«column»
*PK code: varchar(6)

«PK»
+ PK_FriendsGroupColor(varchar)

FriendsGroup

«column»
*PK friendsgroup_id: uuid
* name: varchar(50)
 FK color_code: varchar(6)
*FK author_id: uuid

«FK»
+ FK_FriendsGroup_FriendsGroupColor(varchar)
+ FK_FriendsGroup_User(uuid)

«index»
+ IXFK_FriendsGroup_FriendsGroupColor(varchar)
+ IXFK_FriendsGroup_User(uuid)

«PK»
+ PK_FriendsGroup(uuid)

FriendsGroupMember

«column»
*pfK user_id: uuid
*pfK friendsgroup_id: uuid

«FK»
+ FK_FriendsGroupMember_FriendsGroup(uuid)
+ FK_FriendsGroupMember_User(uuid)

«index»
+ IXFK_FriendsGroupMember_FriendsGroup(uuid)
+ IXFK_FriendsGroupMember_User(uuid)

«PK»
+ PK_FriendsGroupMember(uuid, uuid)

(author_id =
user_id)

(friend1 =
user_id)

Figure C.4: Friendship models

50

Wish

«column»
*PK wish_id: uuid
* title: varchar(100)
* description: varchar(512)
*FK author_id: uuid
* amount_needed: real
* date_created: timestamp with time zone
 date_of_expiration: timestamp without time zone
 date_completed: timestamp with time zone
* is_public: boolean
* type: varchar(3)
 FK comment_id: uuid

«FK»
+ FK_Wish_Comment(uuid)
+ FK_Wish_User(uuid)

«index»
+ IXFK_Wish_Comment(uuid)
+ IXFK_Wish_User(uuid)

«PK»
+ PK_Wish(uuid)

«check»
+ TYPE_ENUM(varchar)

SurpriseWish

«column»
*pfK wish_id: uuid
*FK recepient_id: uuid

«FK»
+ FK_SurpriseWish_User(uuid)
+ FK_SurpriseWish_Wish(uuid)

«index»
+ IXFK_SurpriseWish_User(uuid)
+ IXFK_SurpriseWish_Wish(uuid)

«PK»
+ PK_SurpriseWish(uuid)

User

«column»
*PK user_id: uuid
* name: varchar(255)
* surname: varchar(255)
 date_of_birth: date
* email: varchar(255)
* password: varchar(255)
 gender: char(1)
 place_of_birth: varchar(255)
 image: varchar(255)
* date_created: date

«PK»
+ PK_User(uuid)

WishImage

«column»
*PK image_id: uuid
 image: varchar(255)
*FK wish_id: uuid

«FK»
+ FK_WishImage_Wish(uuid)

«index»
+ IXFK_WishImage_Wish(uuid)

«PK»
+ PK_WishImage(uuid) Comment

«column»
*PK comment_id: uuid
* text: varchar(255)
* chatroom_id: uuid
*FK author_id: uuid

«FK»
+ FK_Comment_User(uuid)

«index»
+ IXFK_Comment_ChatRoom(uuid)
+ IXFK_Comment_User(uuid)

«PK»
+ PK_Comment(uuid)

(author_id = user_id)

(recepient_id = user_id)

(author_id = user_id)

Figure C.5: Wish models

51

Appendix D
Installation guide

This is the guide on how to setup, run and deploy ElateMe back-end server
on Ubuntu OS.

Requirements

To be able to setup and run project you need

• python3
• pip
• virtualenv

To install run:

sudo apt-get update
sudo apt-get install python3
sudo apt-get install python-pip
pip install virtualenv

53

D. Installation guide

Setup

Clone repository:

git clone git@repo.micman.cz:allmywishes/server-api.git ElateMe

Go to ElateMe folder and create virtual environment:

cd ElateMe
virtualenv -p /usr/bin/python3.5 venv

To begin using the virtual environment, it needs to be activated:

source venv/bin/activate

Install requirements inside virtual environment:

pip install -r requirements.txt

Migrate Django models:

python manage.py makemigrations
python manage.py migrate

By default project runs with DEBUG=True and SQLite database.
Run tests:

python manage.py test

Now you should be able to run project locally:

python manage.py runserver

Server should be running on localhost:8000

54

http://localhost:8000

	Introduction
	ElateMe
	Aim of the thesis
	Motivation

	Analysis
	BI-SP1 and BI-SP2 subjects
	Functional requirements
	Non-functional requirement
	Use cases
	Domain model
	System structure
	Authentication
	Payments system
	Push notifications

	Design
	Authentication
	REST API
	Chosen technologies
	Database model
	Class model
	Deployment model

	Implementation
	Project structure
	Python Virtual Environment

	Testing
	Unit tests
	Apachebench

	Conclusion
	Work contribution
	Future outlook

	Bibliography
	Acronyms
	Contents of enclosed CD
	Database model
	Installation guide

