
doc. Ing. Jan Janoušek, Ph.D.
Head of Department

prof. Ing. Pavel Tvrdík, CSc.
Dean

Prague February 3, 2016

CZECH TECHNICAL UNIVERSITY IN PRAGUE

FACULTY OF INFORMATION TECHNOLOGY

ASSIGNMENT OF MASTER’S THESIS

 Title: Constraint Models for Planning and Scheduling

 Student: Bc. Martin Procházka

 Supervisor: prof. RNDr. Roman Barták, Ph.D.

 Study Programme: Informatics

 Study Branch: Knowledge Engineering

 Department: Department of Theoretical Computer Science

 Validity: Until the end of summer semester 2016/17

Instructions

Student will first familiarize with constraint satisfaction techniques for solving planning and scheduling
(P&S) problems, in particular with the design of constraint models for P&S problems. Based on this study,
the student will propose a constraint model for a specific problem, for example, from the area of space
applications. Then he will implement the model for a selected constraint solver, such as SICStus Prolog, and
finally he will experimentally evaluate it.

References

Roman Barták, Miguel A. Salido, Francesca Rossi: New Trends on Constraint Satisfaction, Planning, and Scheduling: A
Survey. The Knowledge Engineering Review, Vol. 25:3, 249-279. Cambridge University Press, 2010.
Philippe Baptiste, Claude Le Pape, Wim Nuijten: Constraint-Based Scheduling, Applying Constraint Programming to
Scheduling Problems. Springer, 2001.
Rina Dechter: Constraint Processing, Morgan Kaufmann, 2003.
Martin Kolombo, Roman Barták. A Constraint-based Planner for Mars Express Orbiter. In Proceedings of MICAI 2014,
Part II, LNAI 8857, pp. 451- 463, Springer, 2014.

Czech Technical University in Prague

Faculty of Information Technology

Department of Theoretical Computer Science

Master’s thesis

Constraint Models for Planning and
Scheduling

Bc. Martin Procházka

Supervisor: prof. RNDr. Roman Barták, Ph.D.

9th May 2017

Acknowledgements

I thank my father for taking his time to correct the grammar of this thesis.
Also I thank my supervisor for pointing me the right way, so I could find a
topic that was interesting and challening. Last but not least I thank my family
for their patience.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on 9th May 2017 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2017 Martin Procházka. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Procházka, Martin. Constraint Models for Planning and Scheduling. Mas-
ter’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2017.

Abstrakt

Cílem této práce je navrhnout výpočetní model pomocí technologie constraint
programming, který by byl schopen popsat a vyřešit konkrétní plánovací
problém. Problém je definován pomocí plánovacího jazyka PDDL a je zaměřen
na offshore větrné farmy, jejich údržbu a plánování zdrojů, které jsou s údržbou
spojeny. Model který navrhujeme je založen na výzkumu Graphplan algo-
ritmu a jeho využití v paradigmatu constraint programmingu pro plánování.
Popisujeme všechny navržené akce a jejich případnou transformaci z původní
PDDL domény do logického modelu constraint programmingu. Nakonec provádíme
analýzu výsledků a navrhujeme vylepšení nebo návrhy na jiné implementace
modelu pro budoucí práci.

Klíčová slova plánování, constraint programming, rozvrhování, PDDL, pláno-
vací graf, programování pomocí omezujících podmínek

Abstract

The purpose of this thesis is to propose a CSP model that would be able to
describe and solve a specific planning problem. The problem is defined by a
PDDL domain and it is related to an offshore wind farm maintenance and to
the planning of the resources required. The model we propose is based on the

ix

research of the Graphplan algorithm and its use in the constraint programming
approach to planning. We describe all the actions and their eventual mapping
from the original PDDL domain to the logical model of the constraint pro-
gramming. Finally we analyze the results and propose improvements or ideas
on a different implementation of the model for future work.

Keywords planning, constraint programming, CP, PDDL, scheduling, dur-
ative actions, integer domains, planning graph

x

Contents

Introduction 1

1 Light problem introduction 3

2 Baseline solution 5
2.1 Problem encoding . 6

3 Technologies used in the baseline solution 9
3.1 PDDL . 9
3.2 PDDL2.2 . 11
3.3 The OPTIC solver . 12

4 Constraint programming 17
4.1 CSP . 17
4.2 Search . 18
4.3 Consistency . 20
4.4 Constraint propagation . 21
4.5 The modelling toolkit . 26
4.6 Constraint optimisation problem 28

5 Technology of our solution - the Choco solver 33
5.1 Propagation . 34
5.2 Search & other features . 35

6 Research for our solution 37
6.1 CP planning starting point - the Graphplan 38
6.2 Durative actions . 42
6.3 The Activity-Based search . 47

7 Design and implementation 49

xi

7.1 The source PDDL domain & problem - detailed description . . 50
7.2 Implementation overall . 54
7.3 Filtering in the L&F program layer 57
7.4 The CSP Model – Objects . 59
7.5 The CSP Model – Action layers and Durative actions 61
7.6 The CSP Model – Durative actions and the PDDL 65
7.7 The CSP Model – Durative actions and the Object types . . . 66
7.8 The CSP Model – other constraints and the frame axiom . . . 74
7.9 Search . 78

8 Results 81
8.1 Experiment . 81
8.2 Modelling . 81
8.3 Search results and implications 81
8.4 Further pointers . 84

Conclusion 87

Bibliography 89

A Acronyms 93

B Contents of enclosed CD 95

xii

List of Figures

1.1 An image of the domain as presented in [1] 4

3.1 Basic PDDL definition of the modelled problem 10
3.2 A domain definition and a problem definition excerpt in PDDL2.2 13

4.1 The AC-1 alorithm as presented in [2] 23
4.2 The AC-3 alorithm as presented in [2] 24
4.3 The AC-4 algorithm [3] . 30
4.4 An example of the reification - exactly one constraint must be

satisfied . 31

7.1 Type hierarchy as presented in WINDY-COMPLEX 50
7.2 The type hierarchy as used in the CSP. The white rounded rect-

angles are the interfaces. The yellow ovals are classes defined as
objects in the Parser and the PDDL, however without any stateful
variables and therefore reduced to the collections of IDs. The green
ovals represent stateful classes. 56

7.3 The time schema used in the model. Blue variables have a boolean
domain. Green cells are constants. Yellow cells show the end activ-
ity variables of actions which could try to end. 64

7.4 Twofold constraint posting for implications 77

8.1 The time and the number of constraints and variables by the num-
ber of layers . 83

8.2 Optimal solutions for serial inspection with a vehicle using 4 engineers 85

xiii

List of Tables

7.1 Actions and Durative actions as proposed 51
7.2 Valid and invalid combinations of the Durative action BoolVars . . 62

xv

Introduction

Today’s society is very developed because of the excessive use of energy which
we use to power our factories, hospitals and cars. In the past few years there
has been a huge shift in focus to renewable sources of energy as an alternative
to the traditional sources such as coal, oil and nuclear power. One of the most
accessible sources for certain areas are wind turbines, which generate the clean
energy with relatively low costs, which have become even lower in the past
few years. [4].

The problem with the wind turbines is that they possess some unwanted
properties such as noise, which prevents them from being used on a larger
scale onshore or close to the cities. This can be solved by constructing them
further away from population centres or, if there is a lack of space, offshore.
The European Union is the biggest user of these offshore facilities with UK
being responsible for 53% of the worldwide production. [5]

Offshore wind turbine facilities are however very costly to maintain al-
though the life expectancy of a wind turbine is around 20 years. While the
repairs carried out onshore can cost thousands of euros, repairs carried out off-
shore can cost millions of euros [1]. The reasons for this are more constraints
and logistic costs, as a blade or gearbox replacement require huge transporta-
tion capabilities. In addition the weather constraints, when certain means of
transport can’t operate in high winds and/or high waves. The planning that
seeks to minimise these costs is therefore of the utmost importance.

1

Chapter 1
Light problem introduction

As was outlined in the introduction, the problem is in the domain of wind
turbine maintenance planning. For the investigation of the current solution a
broad non-technical definition is satisfactory. Detailed decomposition will be
presented while presenting the newly made solution.

We are presented a real world situation, where there are wind turbine farms
offshore, which consist of several wind turbines and a basic infrastructure for
transportation of the people providing maintenance between those turbines
(meaning they don’t have to use any special means of transport to get from
one turbine to another). Also they include a port for ships and barges. The
port is the only access point that can be used for more complicated repairs
where heavy parts are needed.

The wind farms can also be reached by a helicopter, which can transport
engineers to site for minor repairs e.g. a manual restart of a turbine. A
helicopter however faces a huge limitation of fuel as it can’t land on the wind
farm and has to get back to the nearest heliport before its reserves run dry.
For more complicated or numerous operations the helicopter can’t hover and
wait for the engineers to finish their work, but rather has to serve as a pick
up and drop off service.

There are different land ports which contain boats for rent and heliports
that contain helicopters for rent. From these points the engineers may be
loaded along with parts needed for the repair.

The parts are usually located in warehouses or can be manufactured in
factories if necessary, but this however takes a long time. The parts can be
delivered to ports by cars, which are not a part of the planning abstraction
(they can be always delivered at a certain speed by some rented car). All land
locations are interconnected by land links.

3

1. Light problem introduction

Figure 1.1: An image of the domain as presented in [1]

4

Chapter 2
Baseline solution

The problem that is researched in this work is defined in the paper [1], but is
solved by a different technique, which we will try to improve on. To understand
the differences in the solution methods and why the one proposed is better
suited for this task, the former method has also been researched and will be
described in the section

We have investigated the current solution proposed in the paper to un-
derstand the methods used to model and solve the problem. There are some
approximations and logical omissions regarding the realness of the model and
the quality of the solution.

2.0.1 Prior solution and considerations

The solution that was available before the automated planning solution was
implemented (although it is probably still used even now) was planning by
hand. When a maintenance operation was required, the plan was designed
by a logistics expert. The objective of this expert was the same as ours - to
minimise the total cost associated with the operation while also minimising
the downtime of the failed turbines. [1]

The components that can break also differ in their size and so does the
complexity of the repair. Some repairs like a manual reset are quick and don’t
require any additional components while a blade replacement can take weeks
to complete and requires specific components (blades) to be transported to
site and replaced. Companies thus associate the maintenance actions with
fault categories and produce generic plans which can be applied as needed.
Those plans are not yet grounded and the grounding procedure is dependent
on the problem at hand.

The difficulties and constraints that an expert has to take into considera-
tion while grounding the plan were mentioned in the introduction.

An important note is that the plans and the domains are static. Although
the faults happen dynamically and new problems may arise during the plan

5

2. Baseline solution

execution, it is not a part of this work as it would increase complexity. ’Dy-
namic’ plan estimation may be done by simple restart of the planning process
with updated initial state newly including new faults and updated positions of
the personnel (new goal is not necessary). Because the main costs are usually
associated with the repairs and not with the downtime, it is usually more cost
efficient to wait with the repair until regular revision tasks are scheduled and
then do all of the tasks in one plan.

Taking into consideration that the plans are static it is not a big surprise
that the problem is also fully observable. New problems can’t arise on site,
although in reality they usually do. This might be a thing to consider for the
task - to make a buffer time which could cover some basic operations on the
platform (e.g. one dummy restart per turbine inspected).

2.1 Problem encoding

Planning problem in the former solution is encoded by the Planning Do-
main Definition Language (PDDL 2.2 language) and solved by the Optics
solver. The problem has been encoded in two encodings - WINDY-SIMPLE
and WINDY-COMPLEX. The paper states that solutions have been found
only for the simplified domain.

The simplified domain is used to generate a general plan without cost
optimization. This is good for the goal of generating a suitable plan, but it
fails to cover the main objective - to minimise cost.

This is covered by the WINDY-COMPLEX domain where there is imple-
mented the required concurrency (RC) constraint from PDDL 2.2. The RC
used was encoded such that the lease actions could overlap and would cover
all the actions required as child actions. For example when a helicopter flies,
drops off engineers to perform operations on the turbines and then collects
them and returns, it has to be leased all the time it performs those opera-
tions.

However finding an optimal plan or just a solution with regards to the
optimisation criterion has proven impossible for all but the most trivial cases.
The cost estimation had to be moved to the post processing stage of the solu-
tion and thus a lot of the information for the search is lost and the Optic solver
can’t make well informed decisions during the search and optimise efficiently.

2.1.1 Note on the reproduction of the results

The objective function results were not actually published in the paper nor
was there a detailed description of the problem. There were just types of
repairs, with their respective counts required for each instance and the times
it took the solver to solve these instances. This wasn’t a good baseline for us
to be able to compare our results, but thanks to Dr. Pattison’s generosity we

6

2.1. Problem encoding

received the full pddl files along with the modified version of the Optics solver
they used.

7

Chapter 3
Technologies used in the

baseline solution

As was mentioned above, the paper used the PDDL 2.2 encoding and Optics
solver. In this section we would like to analyse both to see what advantages
or disadvantages this model presents and if it can help us in the construction
of the constraint programming model.

3.1 PDDL

PDDL or Planning Domain Definition Language is a language that is an at-
tempt to create a common formalism for the planning tasks and its use has
been implemented into a number of solvers. In other words it is a standard
encoding language for planning tasks.

The original language has been developed for the problem specification of
the AIPS-98 planning competition. It was one of the means that could rein-
force the empirical evaluation of the solutions by forcing all of the competitors
to encode the problem in one common code providing a reasonable constraint
that unified the problem definition [6] (otherwise the different encoding of the
problems could lead to misinterpretation of the problems).

The language supports the following features - basic STRIPS style actions,
conditional effects, universal quantification over dynamic universes (object cre-
ation and destruction), domain axioms over stratified theories, specification
of safety constraints, specification of hierarchical actions composed of subac-
tions and subgoals and management of multiple problems in multiple domains
using differing subsets of language features so different solvers with different
features implemented could share domains.

PDDL serves as a prescription of the dynamic behaviour of a domain.
There are objects modified by actions. For each state (a collection of objects)
we can form predicates, which are basically questions about the state with

9

3. Technologies used in the baseline solution

(:types turbine - locatable
turbine port - landable
airport seaport - port
seaport airport warehouse ... turbine landable - location

...
)

(:predicates
(operating ?t - turbine)
(at ?loc - location ?obj - locatable)
(link-sea ?from - location ?to - location)
...

)

(:action disable-turbine
:parameters (?t - turbine)
:precondition (operating ?t)
:effect (and (not (operating ?t)) (not-operating ?t))

)

Figure 3.1: Basic PDDL definition of the modelled problem

yes/no answers (e.g. a predicate isInCar(x) which is true when x is indeed in
the car). Actions transform the world from state A to state B while modifying
the affected state B as prescribed. To finish this brief enumeration, there are
also initial and goal states defined. The work of the planner is to find a
sequence of actions that transforms the world from the initial state to the
goal state.

The aforementioned features could also fit on the STRIPS problem defini-
tion, but it lacks certain levels of expressiveness which result in some problems
being unmodellable.

One of the great features of PDDL is an object hierarchy. In the domain
definitions we can provide a hierarchical graph – possibly a tree as the des-
cendancy is defined as an ISA relation. Then we can define actions that use
this hierarchy and thus the effects and preconditions can be defined for all
objects of the specified type and its subtypes.

3.1.1 Example from the PDDL definition of the problem

Here we present an excerpt of the WINDY-SIMPLE problem definition to
demonstrate the PDDL features.

On the figure 3.1 we can see the hierarchy of the objects. Provided by

10

3.2. PDDL2.2

the hierarchy we can see basic predicates available for a specific object – the
turbine. Since the turbine is not extended further, it is a very simple predicate
indicating only whether the turbine is in operation.

More interesting is the predicate at , which indicates if a locatable appears
on a location. Locatable and a location include a lot of different objects and
this predicate is universal for all of them.

The action is a simple one, possibly representable by a simple STRIPS
representation. We can see that at any time we can disable the turbine if it
was (precondition) operating before and the effect is that it is not operating
anymore.

3.2 PDDL2.2
The PDDL2.2 language [7] is derived from the PDDL2.1 language developed
by Fox and Long [8]. The PDDL2.2 bases on the basic PDDL language (a
valid model of PDDL2.1 is a valid model of PDDL2.2 and a valid PDDL model
is also a valid PDDL2.1 model) while adding certain features that are missing
from the former and which allow us to model and solve an extended class
of problems. The PDDL2.2 features has been extensively used in our base
solution to which we compare our solution, so we’ll try to pinpoint features
that are used and provide examples.

The language has been developed for the 4th International Planning Com-
petition (IPC-4). From the PDDL2.1 it takes all its three levels of expressive
power and adds on top of it derived predicates and timed initial literals. For
our researched problem definition, the metrics and the durative actions from
the PDDL2.1 are the most important.

One other important feature the PDDL2.1 introduced was a concurrency
of actions. Until then the plans tended to be sequential, but since the durative
actions were introduced, time had to be taken into account. With concurrency
there were introduced questions about the constraints between the actions
as actions can’t sometimes logically take effect at the same time (e.g. an
action moving a robot to the left can’t run at the same time as an action
moving the robot to the right). Those questions are tackled in the PDDL2.1
specification [8] and they very much resemble the constraints that are present
in the Graphplan algorithm. [9]

3.2.1 New features of PDDL2.{1,2}

From PDDL2.1 the metrics have been used. Those metrics are used for the
specification of the object function. This can provide a measure for the planner
to search for the best plan according to the specified optimisation criterion.
The language does not state however whether the solver will use the metric
efficiently during the search process (to prune the branches) or whether the
estimation will happen post hoc after a valid plan is found.

11

3. Technologies used in the baseline solution

Also from PDDL2.1 there is a very important definition of durative actions.
The durative actions are in their core still actions which rely on the logical
changes caused by the application of the action. On top of that however
they require certain conditions to be satisfied during the whole run of the
application of the action. Those are called temporarily annotated conditions
and effects. The annotation of the conditions makes it possible for us to
differentiate whether the conditions must hold on the start of the action, on the
end or over the interval from the start to the end with the endpoints excluded.
The exclusion is necessary to be able to model situations, where another action
can happen exactly after the end of the durative action. For example consider
a hovering helicopter where an engineer is climbing on-board. The helicopter
may begin its journey back just as the boarding procedure completes.

A new feature from PDDL2.2 that is used in the previous work are timed
initial literals (TILs). Those are basically time windows during which facts
either do or don’t hold. They are known in advance and thus are deterministic
external and unconditional events.[7] An easy example of TILs is a daylight -
we know always in advance the timing of light and dark hours.

3.2.2 Example

As we can see on the code on the figure 3.2 the features we listed are utilised
in the definition of the domain and also in the problem definition. Very much
utilised are the durative action features. As you can see, there is a duration
defined for the action. Also there is a condition over all, that the helicopter
must be leased and in the port to be refuelled. At the end of the action the
remaining time is updated to its maximal value.

The other two features are used in the problem definition. A metric is
defined as a total lease cost while the objective is to minimise it.

As an example for the TILs there is the example already mentioned, the
TILs depicting the light hours of the day.

3.3 The OPTIC solver

The PDDL language is very useful in the means of definition of the problem
domain and the concrete problem. It is however the solvers which do the hard
work of interpretation of the PDDL language and production of valid and as
much as possible optimal solutions.

The solver that has been used by the authors of the reference paper was
an OPTIC solver [10]. It is fitted to interpret PDDL3 language and imple-
ments a large portfolio of PDDL3 features like preferences and preference
constraints. The constraints are encoded using dummy steps and, without
getting into much detail, provide us with modelling options of predicate re-
lations like sometimes-before (a car can go to a city B only if it has visited

12

3.3. The OPTIC solver

(:durative-action refuel-helicopter
:parameters (?h - helicopter ?port - airport)
:duration (= ?duration 0.5)
:condition (and (over all (leased ?h))

(over all (at ?port ?h)))
:effect
(and (at end (assign (range-remaining-time ?h)

(range-max-time ?h))))
)

;PDDL problem specification
(:metric minimize (total-lease-cost))

(at 14 (not (daylight)))
(at 24 (daylight))
...

Figure 3.2: A domain definition and a problem definition excerpt in PDDL2.2

a city A sometime before) and sometimes-after. Those features (and many
more) are however not used in the researched solution.

3.3.1 The POPF solver

The OPTIC solver is strongly based on the Coles’ previous solver - the POPF
solver[11]. Most of the features used are already implemented in POPF and
Optic solver provides extensions which are not used to model the problem.
The POPF solver officially supports only PDDL2.1, so it would seem that the
TILs must be a part of the OPTIC extension. This is however not the case
as the TILs are already present in the POPF solver and are actually used as
an implementation of a preference hold-during.

The POPF solver is again based on a solver Colin and serves as an ex-
tension to it. Colin is a solver that produces partially ordered plans. Partial
ordering provides many advantages - the plans that are found are not groun-
ded and the grounding procedure may wait until further constraints arise.This
is very useful in the context of the process that is currently used to solve
our domain problem as was noted in the section 2.0.1. However the optimal
grounding of a plan is NP-hard and the construction of partial-order plans
has proven difficult.

POPF thus tries to exploit the advantages of partial-order planning but
at the same time uses a new paradigm in the plan construction - the forward
chaining. Forward chaining or forward state-space search is a search where
we start with the starting propositions and facts and try to find the goal

13

3. Technologies used in the baseline solution

through the depth first search. The nodes in the search tree in Colin are
states describing the partial plan with constraints, steps, facts that hold in
the state and records of temporal constraints that are in effect.

The strength of the FC is that there is no need to search and resolve threats
in the partial plan as it imposes a total order on actions. The total ordering
prevents any threats to the previously added preconditions and effects from
the actions newly added as they come after all the actions already in. Also,
because of the temporal nature of the problem, the newly added actions must
not threaten any invariants of ongoing durative actions.

The main weakness of FC comes from the early commitment it implies
and the lack of parallelism of non-durative actions. The early commitment is
dangerous as it determines the ordering of the actions very early even when it
wouldn’t be necessary. Trying to correct a plan that has taken an action that
it shouldn’t have in the starting steps means a regeneration of the whole tree
with the correct order. The authors however state, that the tree generation
and backtracking is very rapid. [11]

In the temporal case the planning considers both starts and ends of actions
which makes, along with total ordering, the search very difficult. As an ex-
ample taken from [11]: consider the example of two durative actions, A and B,
with start points A$ and B$ and ends A% and B%. Suppose that B is longer
than A, and the actions do not interfere with one another at the start, but
due to their end conditions B% must precend A%. If the planner chooses to
order the starting actions in order A$. . .B$. . .B%, the temporal constraints
will turn out to be unsatisfiable and require the planner to backtrack through
all the intermediate decisions until it orders B$ before A$.

Another problem of the FC are deadlines that arise during the search as
the point of failure is at the deadline itself. The failure of the deadline is
however not an instantaneous problem and the reasons for the failure may
have emerged on the very start of the plan construction. The effect is the
same as with the previously stated weaknesses of FC - excessive backtracking.

The POPF planner however proposes and implements additional data
structures and algorithm modifications which allow to support partial order
planning with FC. Basically it newly records achievers and deleters (steps with
actions that add or delete a fact) of the required facts and promotes them to
be placed before/after steps which require them. As an interesting extension
the POPF planner also contains similar functionality for the numeric temporal
planning. Steps are however recorded if they have an effect on a value of a
numeric variable v, either instantaneous or continuous, or if they have some
dependency on v. The part of algorithm to use this feature is very similar to
the one with facts.

Finally, after finding the partially-ordered plan which means that the con-
straints over the actions are chosen, the plan needs to be grounded and checked
for consistency. Until now the solver has created a solution with uplifted con-
straints and although it has chosen the ordering of the actions, it is yet to

14

3.3. The OPTIC solver

be found out if they are truly capable of forming a totally-ordered plan. The
planner also offers a heuristic based on calculation of minimal timestamps
that can be assigned to the steps according to the facts and/or numeric values
required.

3.3.2 Solver(s) summary

We can see that the OPTIC solver is very sophisticated and that its solving
mechanism has been very much researched and optimised. It was demon-
strated on the description of POPF solver - the core of OPTIC which contains
most of the features that has been actually used. The algorithm type that is
utilised to find a solution is of forward chaining type and is basically a highly
developed search with its interpretation of constraints. On one hand this is
very different from the CP paradigm that is based mostly on declaration, but
on the other hand the planning domain problem solutions are in a way alike so
we might use the knowledge we have gained from the research in our solution.

15

Chapter 4
Constraint programming

Constraint programming (CP) is a paradigm for solving combinatorial search
problems. To understand what it really means, we must define both terms
used in its name.

Constraints are logical relations between two objects. They don’t have to
be anyhow bound to some computational area for us to understand what it
represents. If we say that a dot is in a square, we have provided a relation
between two objects which constraints the reality in a way, that this statement
holds. Of course we have to be absolutely sure that it is indeed the case, as
we have put a constraint on the observed world by stating that it is true. It is
obvious that we have narrowed down the number of possible observed worlds
(although from infinity to infinity since we didn’t bound our system in any
other way) and that we can continue to make new statements which should
ultimately define the observed system enough so we would be able to extract
some interesting information from within.

This process of enforcing of the constraints along with definitions of do-
mains is the programming part of CP. Domains are basically sets of variables
and values which they may be instantiated to. Instantiation is an assignment
of a fixed single value to the variable which doesn’t change further. For ex-
ample the position of a taxi can be at the airport, at the hotel or at the train
station (as for now we ignore that it actually moves between those positions
and can be on the way). This is an example of a finite domain of a positional
parameter of a taxi with cardinalitypDtaxi_posq � 3.

4.1 CSP
A fully defined problem that we encode using the above mentioned tools is
called a Constraint Satistfaction Problem (CSP). Mathematically the CSP P is
a triple P � xX ,D, Cy, where X is a vector of variables X � xx0, x1, . . . , xny,
D is a n-tuple of finite domains D � xD0, D1, . . . , Dny such that xa P Da

and C is a t-tuple of constraints C � xC0, C1, . . . , Cty. A constraint Cj is a

17

4. Constraint programming

tuple Cj � xRSj , Sjy where Sj si a scope of the constraint, meaning the set
of variables the constraint affects – thus Sj � tX u, and RSj is a relation

on Sj , meaning RSj �

��
@i
Di : xi P Sj

. In other words, RSj defines valid

combinations of values that cab be assigned to the variables.
A solution to the CSP is an n-tuple A � xa0, a1, . . . , any, where ai P Di

and @Cj P C is satisfied. Satisfaction of Cj means that RSj holds on the
projection of A onto the scope Sj . In the general CSP we might want to know
whether a solution exists. If it doesn’t (the set of solutions is empty), the CSP
is unsatisfiable.

4.2 Search

To find a solution we must find the solution through a search. The most
basic search we can consider is a basic backtracking search (BT). The naive
backtracking algorithm is the most elementary case and a base of all the more
sophisticated algorithms. It can be imagined as a depth-first traversal of a
search tree. Visiting a node means its generation and further branching is
defined as picking an uninstantiated variable and assigning a value to it. At
the node visit a constraint check is performed on the constraints that have
no uninstantiated variables in their scopes. If the constraint check fails, the
algorithm backtracks to the last assigned variable and tries to assign other
values to the unassigned variable or backtracks further on.

The decision taken at the node used for branching can however bear a dif-
ferent meaning according to the definition of a branching strategy. In the basic
example the node represents a set of assignments node � tx0 � a0, . . . , xi � aiu.
The branches are then extensions of this assignment set, while creating new
nodes for all assignable values @A P Dj : nodenext � tx0 � a0, . . . , xi � ai, xi�1 � Au.
There are other possibilities though. For example a method of binary choice
points, where two constraints are posted effectively assigning a value (x � a)
and prohibiting an assignment of a value (x � a) to the variable. Another pop-
ular is domain splitting, where the domain of a chosen variable xj is splitted
into two or more disjunctive parts. Mathematically

Dnext : Dnext � Dj ,
£

@next

Dnext � H,
¤

@next

Dnext � Dj

None of these methods is universally superior and we had to choose and
modify the search procedure according to our needs. A question that must
inevitably arise is how to choose the right variables that we want to instatiate.
This question is tackled by the variable ordering heuristics. It tells us which
variable we might want to instantiate in order to find a solution as fast as
possible or to make the search tree as small as possible. The most basic case
which we followed during our definition above is a random variable selection.

18

4.2. Search

We leave it on the solver which one to choose. Random variable ordering
heuristic can be very useful especially in cases where we search for the best
solutions by the means of restarts (after a certain threshold is reached we
run the solver again, thus preventing it from getting stuck in the local min-
imum/maximum). However this is not always the best idea especially when
we have the information about the nature of the problem.

If we reject the idea of a random variable selection, there are several prin-
ciples to be followed when determining which variable should be selected.
The two categories that are available are - variable ordering heuristic based
on domain size and custom heuristic based on the structure of the CSP.

As for the variable ordering heuristics based on the domain size, there is a
first-fail principle which we can use. While sounding a bit odd as we want to
find a solution and not to fail, we must realise that on fail the tree is pruned
and we do not explore that branch later on. The sooner we fail, the sooner
we can backtrack and thus recover from the bad choice we might have made
earlier on. As all of the variables must be instantiated, the variables with
the smallest domain are the hardest to instantiate and thus are bound to fail
earlier. This heuristic is called Dom as it uses the sizes of domains to choose
the best variable.

The hardness of the instantiation may not however lie only in the domain
size. As it may occur, the degrees of constraint of a variable can also be taken
into account. The degree of a variable can be determined as a number of
constraints that are bound to it and thus the effect it has on the CSP. Again,
the more costraints there are, the more likely the variable is to fail on instan-
tiation. There is a variable ordering heuristic based only on those degrees
and is called Deg. Combination of the two previously mentioned heuristics
is also acceptable. The combination being denoted Dom+Deg first chooses
the variable with the smallest domain and in case of a tie uses the degree as
a tiebreaker. Another combination is Dom/Deg which is being computed as
rankDom{Deg �

Dom
Deg , incorporating the degree in the primary variable choice.

As an extension, the degrees can be weighted by the weight of a constraint.
The weight of a constraint is initially set to 1, and is incremented every time
the constraint is responsible for a failure. This way the algorithm ’learns’
during the search and it has been proven that this method is quite effective
in solving certain classes of problems.

Finally, we should also mention the value ordering heuristics. Value or-
dering heuristics are basically heuristics that choose which value should be
selected first when we have decided which variable we want to instantiate.
They try to follow the best-first (or survivors-first) principle, selecting the
value which is the most likely to survive and lead us to the solution. There
are some static techniques researched [12] based on the constraint graph re-
laxation and then the estimation of the number solutions in which they can be
present. Ginsberg et al. [12][13] has also proposed a dynamic value ordering
heuristic which incorporates the sizes of domains after the application of the

19

4. Constraint programming

value. The best value is the least restrictive, thus maximising the product of
the domains in the next step.

All those techniques used in search are useful, but none of them is universal,
so we have to hand-pick the one most suitable for our task or use the ones
that are available through the technology we use.

4.3 Consistency

The search is a powerful tool to solve problems, however so far we have been
mostly ignoring (or we have used them in a hidden manner) one of the most
powerful features we have in our possession in CP - the constraint set. The
constraint set is used intensively during the search to filter domains through
consistency techniques. The consistency forces the domains to omit values
which would lead to dissatisfaction of the constraints. This way the search
tree is pruned so the algorithm doesn’t have to construct the nodes using
constraint-wise invalid values.

There are several levels of consistency, the simplest one being the node
consistency. Node consistency is focused on the unary constraints, which it
forces to be satisfied. Each unary constraint is related to just one variable by
definition, so the filtering of the domain according to the constraint is a trivial
one.

NC(node)
foreach UnaryConstraint unary in node

if unary is inconsistent with value X
remove X from the domain

endif
endfor

One of the most used consistencies is an arc consistency. It is popular for
its simplicity and expressiveness, while retaining very low computational cost.
A binary constraint creates an arc in the constraint graph, thus the name. An
arc is arc consistent if all the values from one domain have a corresponding
pair value according to the relation of the constraint. Formally

Cpxi,xjq is arc consistent ðñ @v P Di, Dv
1 P Dj : pv, v1q P RS

^@v1 P Dj , Dv P Di : pv, v1q P RS

Where Cpxi,xjq is a binary constraint with xi and xj within its scope S
and RS is a relation of valid tuples defined by the constraint C. If there are
some values either from Di or Dj that are breaking the arc consistency, we
can safely remove them. This can of course break the arc consistency of some

20

4.4. Constraint propagation

other constraints, so we need an intelligent algorithm to make all constraints
consistent. This will be examined in the subsection 4.4

One of the basic consistencies worth mentioning is also the bound consist-
ency. It is not as strict as arc consistency and enables quicker propagation
and consistency checking. The idea is that every value doesn’t have to have
a support value from the domain of the arc-consistency-like bound variable,
but only the bounds are checked. The bounds - the maximum and minimum
- are however checked and all values in between are considered valid. In the
definition below we suppose the construction of the domain bounds from the
finite discrete domains we have used previously. The domain for the arcs with
bound consistency can be also defined purely as the bounds.

Cpxi,xjq is bound consistent ðñ @v P Di : bmax ¥ v ^ bmax P Di

^@v P Di : bmin ¤ v ^ bmin P Di

^@v1 P Dj : b1max ¥ v1 ^ b1max P Dj

^@v1 P Dj : b1min ¤ v1 ^ b1min P Dj

^@bc P tbmax, bminu, Dval : b1min ¤ val ¤ b1max ^ pbc, valq P RS

^@bc1 P tb1max, b
1
minu, Dval : bmin ¤ val ¤ bmax ^ pval, bc

1q P RS

We can see that we have lost precision, but gained speed because of the
omission of the intermediate values. To make the constraint bound consistent,
we must update the bounds so the definition would hold. The bound update
however can only make the interval shrink, because otherwise it would be the
equivalent of adding values to the discrete domain while enabling previously
invalidated options.

There are many more consistency types with different strengths and some
are more useful than others, but their application is very domain specific.

4.4 Constraint propagation

There is a wide range of algorithms that enforce the consistency through
constraint propagation with different strengths and different computational
expenses. The core of the constraint propagation is a fix-point algorithm.
The idea of the fix-point algorithm is that at every node, the domains are
filtered until no unsupported or invalid value is present in the domains. Thus
while backtracking we are always sure, that the node we are exploring from is
valid and requires no further propagation.

The implementation of the fix-point algorithm differs by the strengths of
the constraints that are used. In the OSCAR solver there are different levels
and the constraints may implement different propagation strengths. Usually
the higher strength is bought out with lower speed and vice versa. In OSCAR,

21

4. Constraint programming

Strong constraint propagation asks for domain consistency while Medium asks
for a faster bound consistency.

As it might occur, the consistency filtering of constraints may break con-
sistency of other constraints (and it usually does). There are several al-
gorithms that can manage the constraints during the fix-point algorithm run.
The very basic algorithm is a naive one. Firstly it adds all the constraints
in the processing queue. Then in proceeds with the consistency checking and
domain filtering on the constraints in the queue. Every time there is an in-
consistency it adds all the constraints back to the queue.

4.4.1 AC-1

The naive algorithm (also called AC-1) is very demanding and ineffective.
It would suffice only for the most basic problems. When there is a lot of
constraints in the model, checking all of them can take some time (especially
if the domains are big as well and arc consistency is required). As the binary
constraints have only two variables in their scope, the probability that it will
be really affected by the current change is low.

The complexity of the AC-1 is mediocre. For every change all constraints
are added back to the queue (an improvement can be introduced with the
queue being interchanged by a set). In the worst case we could filter the
domain values one by one from each domain in a chain-like manner. If we
would add all constraints to the queue again, it would mean that we would
have to check Opd3 �n�cq possibilities in the worst case, where d is a maximal
domain size, n is a number of variables and c is a number of constraints. We
take the d3, because there will be d � n propagations and each propagation
will take d2 operations in the worst case (see the make_consistent method).

4.4.2 AC-3

The suboptimality of the AC-1 algorithm is why the AC-3 algorithm was
developed. The AC-3 adds back only the constraints which have the variable
of the domain, which has been updated, in their scope. The algorithm is
described on the figure 4.2.

We can see that the algorithm is much more optimal as only the pos-
sibly influenced variables are added back into the domains. Although the
propagation may require more of algorithmic work, it is still quite simple and
asymptotically it is much more efficient. The worst computed complexity of
AC-3 is Opnd3q and space complexity is Ope� ndq. [3]

4.4.3 AC-4

The AC-4 algorithm offers even more refinement in the propagation using a
different schema with support structures. The main idea is that not the whole

22

4.4. Constraint propagation

function AC-1(Constraints A, Variables V){
// satisfy unary constraints

Q <- push all c(x1, x2) from A;
while(!Q.empty()){

c(x1, x2) <- Q.pop()
if(make_consistent(c(x1, x2)) {

Q <- push all c(x1, x2) from A;
}

}

funtion make_consistent(Constraint c(x1, x2)){
let Domain1 <- domain(x1)
let Domain2 <- domain(x2)
update <- false
forEach v in Domain1{

if not exists v’ in Domain2 such that c(x1<-v,x2<-v’) is consistent {
remove v from Domain1
update <- true

}
}

forEach v in Domain2{
if not exists v’ in Domain1 such that c(x1<-v’,x2<-v) is consistent {

remove v from Domain2
update <- true

}
}
return update

}

Figure 4.1: The AC-1 alorithm as presented in [2]

constraints must be placed on the queue, but just pairs of values and variables
from which those values are removed. The support structures include the
sets of the support variable-value pairs and counters which record how many
support pairs are present. The deletion and following propagation starts only
if the counter of supports has reached 0 and even then the deletion affects
only one value in the variable.

The support structures are however an overhead and it depends on the
problem whether they are advantageous or not. Some researchers are scep-
tical about the AC-4 algorithm and they empirically prove that the AC-3
outperforms AC-4 on a wide range of problems [14]. However, as the AC-4

23

4. Constraint programming

function AC-3(Constraints A, Variables V){
// satisfy unary constraints

Q <- push all c(x1, x2) from A;
while(!Q.empty()){

c(x1, x2) <- Q.pop()
if(make_consistent(c(x1, x2)) {

forEach v from V
if(c(v,x2) in A)

Q.push(c(v,x2))
if(c(x1, v) in A)

Q.push(c(x1,v))
}

}

funtion make_consistent(Constraint c(x1, x2)){
... defined as above

}

Figure 4.2: The AC-3 alorithm as presented in [2]

algorithm is a part of the Choco solver propagation technique and there are
many of its followers which are even more specific and more effective in the
means of complexity (AC-5, AC-6, AC-7. AC-8, AC-2001 and many more),
we simply can’t avoid it.

The derived algorithms usually introduce new structures or remove the old,
making the algorithm more complex and robust to the constraint propagation.
For example the AC-6 algorithm reduces the information stored to only one
support for each value and when this support is removed it searches for another
one in an ordered manner instead of memorizing all of them as was the case in
the AC-4 [15]. The AC-2001 or AC-2001/3 works with the framework of the
AC-3 algorithm and fine-grains the revision stage, represented on the figure
4.2 by the make_consistent method [16].

The computational complexity of the AC-4 isOped2q with space complexity
being Oped2q. [3] The algorithm is presented on the figure 4.3.

4.4.4 Path consistency

There is a special degree, stronger than the arc consistency, that is also widely
used for the definition of consistency in CP and that is the path consistency.
Path consistency, also called K-consistency, is a consistency that incorporates
K variables in their effect. A constraint graph is K-consistent if for any K-1
variables which satisfy the constraints upon these variables we can select a

24

4.4. Constraint propagation

Kth variable. If for each value from the last selected Kth variable there exists
a combination of values for the K-1 variables that makes all the constraints
upon these K variables consistent, then the constraint graph is K-consistent.
We can see that every K-consistent constraint graph must also be J-consistent,
where J ¤ K. [2]

Path consistencies also have their specific propagation algorithms, which
closely resemble their AC counterpart. For example the PC-4 algorithm fol-
lows the same schema as the AC-4 algorithm we have described [17]. Again,
the propagation algorithms reason between time and space complexities, reas-
oning their effectiveness by empirical experiments. The PC-7 algorithm min-
imises the space complexity while increasing the time complexity [17]. The
choice of the optimal propagation algorithm would be again problem depend-
ent.

4.4.5 General case

The above mentioned algorithms are used to effectively maintain arc consist-
ency defined by the constraint set. However we are not only limited to the arc
constraints. The arc constraints are the very basic constraints that are used in
the modelling and they are quite expressive for the basic problems. However
having only them, we wouldn’t be able to model everything we need. They
affect only two variables in their scope, but in reality the world is much more
complex. For example - how about a ternary constraint, which would say that
the sum of the three can’t be more than 5? We could decompose this relation
into four binary constraints and one dummy constraint, however if even more
variables are in some kind of relation, the decomposition is ineffective and
there exist algorithms that solve the constraint more efficiently [18].

The types of constraints we can encounter and utilise are mentioned in
the section 4.5, however it is good to mention them now as we have just
explored algorithms for maintaining arc consistency. The n-ary constraints
are obviously not covered by those algorithms. There exist algorithms which
deal with the n-ary constraints and the basic ones are usually generalisations
of their arc consistency counterparts.

The easiest to imagine is the General Arc Consistency algorithm GAC-3,
based on the AC-3 algorithm. The AC-3 algorithm adds a constraint to the
queue if there is a change in its scope caused by a propagation of a different
constraint. The GAC-3 is just that, without the specification of the arity of
the constraints involved. The detailed description of the algorithm can be
seen for example in the lecture notes of the CP lecture of Charles University
[19]. We will not go into details here as the idea is the same as in AC-3.

There are many general arc consistency algorithms, but we narrow the
scope to the one that is used by our technology, which is the Seven queues
propagator. [20] This will however be explained in the technological part of
our solution (section 5.1).

25

4. Constraint programming

4.5 The modelling toolkit

We have talked about the constraint propagation and search techniques and
should have by now an idea how a solution is found and extracted from the
world we have modelled. We have mentioned a few constraint types which
are used in the modelling process, but we haven’t mentioned the concrete
constraints which can be used to model the world and how.

The constraints we utilize are constraints with finite integer domains.
Boolean values are represented by variables with a domain Dboolean � t0, 1u,
although they might get handled differently, depending on the implementa-
tion.

Firstly, we have the unary constraints. These are the constraints that
limit the domain of a variable while not interacting with any other. The
propagation is thus easy. An example would be this px1 21q where x1 is a
variable. This simply limits the domain to have values smaller than 21.

Secondly, we can take a look at binary constraints. These are much more
interesting, as there exist all kinds of relations that can exist between variables.
If we explore the arithmetic constraints, we can find the following examples.

• px1 ¤ x2q

• px1 � x2q

• px1 � x2q

All of the constraints are quite intuitive and it is clear how the values will
be checked for consistency between variables. It is quite important to note,
that now we are dealing with arithmetic relations between variables, so during
the propagation there may arise conflicts.

The arithmetic constraints can be effectively chained together, so in many
solvers we can see constraints like px1�x2 � 5q or more complicated px1 � x2 x3q.
The first example still belongs to the binary constraints and the propagation
is trivial. The second one however requires support of 3-ary constraints or
global scalar constraints.

4.5.1 Global constraints

There exist constraints which don’t have limits on the number of variables
in their scope. They are called global constraints and are quite specific and
interesting. Until now the constraints we have presented were very easy to
grasp and their satisfaction and pruning was trivial. The global constraints
are different. Every one of them express a different relation between variables
and this relation can be expressed and checked by different algorithms.

26

4.5. The modelling toolkit

First global constraint widely used as an example is the allDifferent or
allDiff constraint. The variables that are recorded in the scope of the con-
straint all have to have different values assigned. Now, the check of the con-
straint for the values assigned is easy. How to express the problem so we could
use the constraint for pruning and how to quickly find an information that
the constraint is unsatisfiable before all variables are instantiated?

We must realise that although the constraint can be decomposed into !n
arcs, we lose a lot of information if we do so [21]. That is not even considering
the unsupportable explosion of constraints that would have to be generated
for a big n, where n is the number of variables in the scope. Thus the decom-
position is a possible, yet unfeasible method for the allDifferent constraint.

The trick for the propagation of this constraint is its representation as a
pairing problem between the values and the variables. By definition the one
node set of the bipartite graph is variables and the other represents values.
The edges in this bipartite graph are the possible assignments of values to
variables. The detection of an inconstistency is done through the finding of a
valid maximal pairing. If there is no valid maximal pairing, the constraint is
unsatisfiable and the search can safely backtrack.

More complicated is the propagation. There exist different propagators
with different strengths (forward checking, bound consistent, domain consist-
ent) [21][22] , but if we were to continue with the pairing representation, we
can start with the maximal matchingM which we found while checking for the
constraint consistency. For this pairing we orientate the edges - the edges in
M we orientate from variables to values, the rest go from values to variables.

Now, the edges belong to a maximal matching iff they belong to the max-
imal matching M or they belong to an alterning cycle or they belong to an
even length alterning path starting at an uncovered node. All edges that do
not belong to any of these groups are inconsistent and can be removed, effect-
ively applying the pruning, as the deletion of an edge is a removal of a value
from a domain.

The allDifferent constraint is just one of the many constraints which can
be effectively represented as a combinatorial subproblem, which have different
propagators with different strengths. Constraints which are also possible are
the knapsack constraint, which allows a definition of a knapsack subproblem on
the variables of the problem, the sum constraint, the global cardinality (GCC)
constraint, stating maximal and minimal numbers of appearances of values
in the sets of variables, circuit constraint which ensures that the variables
create a circuit and many more. There exist global constraint catalogs with
consistent definitions of behaviour of teh constraints (for example at http:
//sofdem.github.io/gccat/gccat/titlepage.html), but it depends on the
solvers which constraints they have resources to implement.

There is one important note to be said after the global constraints have
been explained. It is strongly connected with the design of the model. As
we have seen, the allDifferent constraint has got a domain consistency level

27

http://sofdem.github.io/gccat/gccat/titlepage.html
http://sofdem.github.io/gccat/gccat/titlepage.html

4. Constraint programming

propagation based on the construction of maximal pairing and its extension.
It has been noted that there exist different propagation levels with different
complexities (for example the forward checking applies the filtering only if
a variable from the scope is instantiated). It is thus of the utmost import-
ance to have the complexities in mind during the design and to use the more
effective constraints if possible or less demanding propagations if precision
is not needed, as some constraints are NP-hard and don’t have an efficient
propagation algorithm (the sum constraint is a good example). [23]

4.5.2 Logical constraints and reification

If we want to model the problem as a set of boolean logical formulas, we
are free to do so with the tools we have for the logical constraints. Apart
from the different relations that are present in the binary constraints, the
logical formulas very much resemble the models we have for the arithmetic
constraints. There is however a feature that is quite powerful and that allows
us to model another scope in the constraint programming.

So far we have defined the constraints as some rules that must be satisfied.
Those are so called hard constraints and if there is an inconsistency, we declare
the solution unsatisfiable and backtrack from the algorithm as a failure. This
however doesn’t cover the cases, where we want to make a disjunction of
constraints. A solution at hand is to make a boolean variable, which declares
whether the constraint is or isn’t satisfied. This process of assigning a boolean
variable to a constraint is called a reification.

Through reification we can specify logical relations between the constraints.
Then we can work with the reified constraint variables as with standard con-
straint values. This allows us to define soft constraints - constraints, which
may but don’t have to be satisfied. Soft constraints are quite handy, for ex-
ample for an estimation of objective functions during the COP 4.6. Also we
can define new hard constraints using the reified constraints, for example for
a definition of a goal constraint, where exactly one of three constraints must
be satisfied 4.4.

With a possible disjunction there comes the negation and implication (as
implication is a disjunction in disguise), which can form the relations between
constraints further (if a helicopter is on an airfield, it must land). The same
goes for the equivalency. For the negation of the problem we must realise,
that the boolean variable is true if the constraint is entailed - there is no way
that it couldn’t be unsatisfied. Similarly it is false only if the constraint is
disentailed - if it can’t be satisfied.

4.6 Constraint optimisation problem
In our domain we are almost always sure that a solution exists, except maybe
for some exotic instances where we don’t have enough resources to satisfy the

28

4.6. Constraint optimisation problem

problem (e.g. we only have a helicopter for repairs that have to be done by
ships). More interesting for us is thus the Constraint Optimization Problem
(COP). A COP is a quadruple P � xX ,D, C,Oy, where X , D and C are defined
as in the CSP and O is an objective function O : A Ñ R, which assigns a
numerical value to a solution. Without any changes in the CSP structure we
might state that we want to maximize/minimize the objective function, thus
finding the best solution.

The easiest way to solve the COP is to explore a sequence of solutions
of CSP (ideally enumerating them all) and then apply the objective function
on the solutions trying to find the best. This method is highly dependent
on the quality of the search. However, even when the search is well formed,
enumeration of all the solutions is usually computationally impossible.

There are different methods that incorporate the objective function even
in the search process. For example we could estimate an optimistic estim-
ate of the solutions not yet instantiated and use this information to extend
our backtracking search with branch-and-bound features. This way we could
prune the branches of the search tree which couldn’t lead us to the better solu-
tion than which we have already recorded, avoiding extra work and speeding
up the search.

The implementation of the objective function may be a simple function
applied on the results, however this approach would not give a chance to the
solver to exploit the optimization metric during the search. We could also
build a hard constraint, which would track, for example through the sum
constraint, the usage of resources. Another possibility is the use of the soft
constraints, which could record which or how many constraints have been used
and satisfied, so the cost could be associated with them. Finally, especially for
the planning CP problems, the objective function doesn’t have to be defined
and the quality of the solution is structural and we optimize the length of a
plan through the definition of the CSP problem length.

The problem with the solution of the COP problems is that we are never
sure if we have found the very best solution, unless the search is complete
(or the objective function is structural) and we either find all solutions or the
branches that would lead to worse solutions are effectively pruned.

29

4. Constraint programming

function AC-4(Constraints A, Variables V){
// satisfy unary constraints

Q <- queue
A <- constraints
data_structures(A,Q)
propagation(Q)

}

function data_structures(Constraints A, Queue Q) {
forEach c(x1,x2) in A{

forEach val in domain(x1){
total <- 0
forEach val’ in domain(x2) {

if (val,val’) in R(x1,x2) {
total <- total + 1
S[(x2,val’)] <- (x1, val)

}
}
if(total == 0) {

Q.push((x2,val’))
domain(x1) <- domain(x1) - val

} else {
Counter[(x1,x2), val] <- total

}
}

}
}

function propagation(Queue Q) {
while(!Q.empty()) {

(x, val) <- Q.pop()
forEach (x2,val’) in S[(x,val)] {

Counter[(x,x2),val’] <- Counter[(x,x2),val’] - 1
if(Counter[(x,x2),val’] == 0) {

Q.push((x,val’))
domain(x1) <- domain(x1) - val

}
}

}
}

Figure 4.3: The AC-4 algorithm [3]

30

4.6. Constraint optimisation problem

b_0 <- reif((x_0 < 0))
b_1 <- reif((x_1 < 1))
b_2 <- reif((x_2 == 100))
Goal <- (sum(b_0,b_1,b_2) == 1)

Figure 4.4: An example of the reification - exactly one constraint must be
satisfied

31

Chapter 5
Technology of our solution - the

Choco solver

The Choco solver [24] is a free open-source java library dedicated to constraint
programming. We have chosen to use it for its simplicity of use and the Java
language it is implemented in. Thanks to its open-source nature we were able
to analyze the algorithms and CP features implemented and could compare it
with the CP theory we have explained. We have noted that different solvers
support different features and constraints and implement different propagation
algorithms. The propagation algorithms could be extended or reimplemented
as Choco supports definitions of user defined searches, propagations and con-
straint definitions along with a manual with examples.

Choco allows the definition of standard integer variables with finite do-
mains as well as real values, although those are implemented with special
constraints and routed to a different subsolver. It supports the arithmetic
constraints, logical constraints and global constraints. Several other useful
constraints are also implemented, like constraints used for scheduling. Reific-
ation is also a must.

An architecture of the Choco solver is very much influenced by Java and
uses polymorphism and interfacing extensively. The constraints are children
of an abstract class AbstractConstraint and the variables are descendants of
AbstractVar. Even the IntVar type is an interface as the domain implement-
ations differ. Constraints in general have got link to the variables they have
in their scope and likewise the variables have got links to constraints which
affect them along with an index, at which they are stored in the constraint.

The implementation of the integer domains may differ, based on the size
of the domain and its type (whether the domain is bounded or not). There
are two implementations, one being a bitset and other being an array of the
values in the domains, optimizing space complexity. This implementation is
in constrast with the representation used in the OSCAR solver, where the
domains are represented as arrays with a special timetracking class pointer

33

5. Technology of our solution - the Choco solver

called reversible int. [23]

5.1 Propagation
A large portion of the constraint programming definition is the propagation.
We have presented many possible propagation techniques, most of them be-
ing specialised for arc consistency, but have also mentioned the propagation
algorithms for the general case. In the end we resort to the default technique
used in the Choco solver, as it has been improved with research background
and the development of a better propagation algorithm is not an objective of
this work.

The propagation architecture is based on generating four kinds of events
- instantiate, removal, incinf and decup. Their meaning is - instantiation of a
variable, removal of a value from a variable, increase of the lower bound and
decrease of the upper bound respectively. They are generated by the variables
and put to different propagation structures, which serve as propagation queues
in a way. The removal events have got their FIFO queue, the incinf and decup
are put in their own FIFO queue and the instantiate events are put on a stack.

The solver uses a priority propagator with seven queues (or eight queues,
if we trust the code more than the description). It differentiates seven levels
of priority for the constraints by their propagation complexity. The levels are
the following:

• level 0: instantiate events
• level 1: removal events
• level 2: incinf and decup events
• level 3: feasible tuples are propagated (AC-4)
• level 4: linear constraints are propagated
• level 5: global constraints with subquadratic complexity are propagated
• level 6: global constraints with quadratic complexity are propagated
• level 7: all other constraints are propagated

During the propagation the algorithm processes events from the queue
with the lowest level and moves on only if the queue has been emptied. The
logic behind this is that the events from the queue with lower levels are much
quicker to be processed. Also, considering the speed, if we would call the
complex constraints often, the time would rise notably while the significance
of the propagation would be small.

To reduce the processing time of the more complex constraints, the Choco
solver also introduces batching of the events into one abstract event for the
constraints above level 3. This allows the global constraints to process the

34

5.2. Search & other features

events indifferently on the amount of changes that were introduced in the pre-
vious layers. As they are delayed anyway and the number of domain changes
can be high, this improves the performance of the propagation. Each con-
straint however defines its own abstract events, as their propagation may
depend on the types of event they consist of.

Choco solver also implements a mechanism that prevents duplicate or
inferior events being queued into the queues and alternatively it can also
strengthen the events in its propagator queue (for example if an event doesn’t
only update the lower bound but accidentally instantiates the variable).

It also implements a special pointer system which should prevent unneces-
sary wake ups of the constraints. Firstly they don’t wake up the constraint
that is the initiator of the event. Secondly they store a special array of point-
ers by which the variables know which constraints should be awoken, as some
might be satisfied even after the event processing takes place (for example a
constraint that observes the upper bound doesn’t have to be woken up on the
lower bound or removal update).

5.2 Search & other features
The search in Choco is fully modifiable and Choco also comes with a set of
predefined search strategies ranging from DomOverWdeg to activity based
search.

Choco also provides monitors, which basically monitor and record the
events that happen during the search. These can be initialization, opening of
a new search node, when a solution is found, while backtracking etc.

If the monitoring is not enough, we can also use the large neighborhood
search to make the algorithm search through the neighbors of the solution
found. The main principle of the LNS is a relaxation of the problem. The
definition of relaxation in this context is an un-constrainment of the domain of
a selected variable or a set of selected variables. The algorithm takes the (best)
solution, relaxes a few variables creating a partial solution and then searches
for the complete instantiations of the partial solution. The idea is that some
better solutions may be present around our best one, however through the
tree structure of the main search tree it would be difficult to reach them.

Choco provides a LNS factory, through which we can define the variables
to be relaxed, a number of them which will be fixed, the number of failures
on which the algorithm will cease searching or another metric like time or
backtrack count.

35

Chapter 6
Research for our solution

Now that we have the tools to work with researched and basic methods defined,
we need to start defining and implementing the problem we have chosen to
implement. It has been decided that we will start implementing the parts of
the system and research the technologies on the go. A technological know-how
was needed when the implementation started, so it would have been possible
to make a development plan, however it is better to present the technolo-
gies and their possible alternatives or extensions as we reach the appropriate
implementation points.

6.0.1 Problem type identification

We have outlined the problem we are solving in the section 1. Along with
the PDDL specification there is a clear idea of what is needed to model and
what are the optimization criteria. We know how to construct models for the
classical CP problems. The domain into which our problem belongs is however
halfway between a scheduling problem and a planning problem.

From scheduling we take the timing of actions as we need to create a plan
least costly for the company. Also, we utilize resources, for example engineers,
which are needed to execute the repairs on the wind turbines. The resources
also influence the feasibility of helicopter action planning, as the helicopter
can run out of fuel.

In scheduling however we usually know the set of actions in advance and
our objective is to schedule them in an efficient way. In our case we are not
sure which actions will be needed in order to satisfy our goal. This is where
planning comes into play, as it is exactly the choice of actions which we will
need to reach the goal state from an initial setup.

The CP planning however is a bit more difficult to model, so it is a good
idea to start with it. For scheduling there already is a large set of constraints
and task structures which altogether help with the modelling, so the main
focus is set on the CP planning with time extensions for durative actions.

37

6. Research for our solution

6.1 CP planning starting point - the Graphplan

The planning problems are problems, where we have the world and its prop-
erties defined as well as the starting state of the world, the goal conditions
which must be satisfied in the end and a set of actions, which transform the
world from state A to state B. The objective in the planning problems is to
find which actions to apply in which order for us to reach the goal state from
the initial state.

The starting point for us is the Graphplan algorithm [9]. Graphlan is
a solver for planning tasks with problems defined by the STRIPS domain
language. We have already mentioned STRIPS, as it is the predecessor of the
PDDL language. Graphplan constructs a planning graph, which the authors
define as a directed graph with two kinds of nodes in layers and three kinds of
edges. The proposition nodes are labelled with logical propositions and they
are kept in proposition layers. The action nodes represent the actions and are
organized in action layers. There are precondition edges from preconditions to
actions, which determine the requirements for the applicability of the action.
An action can be activated if all its preconditions are true. There are also
add-effect and remove-effect edges, going from action nodes to precondition
nodes, which trace the effects of the action on the following precondition layer.
Special no-op actions are present to transfer the propositions which have not
been invalidated into the following layer.

There is a definition for the limitation of parallelism of the actions, so as no
two actions can happen at one time step if there is a mutex relation between
them - if they don’t interact with each other. Two actions are in a mutex
relation iff one deletes a precondition or an add-effect of the other. Similar
rules apply to the conflicting prepositions.

A valid plan is a set of actions decorated with times at which they are
carried out.

The algorithm then constructs a plan of a minimal length and tries to
find a solution through the search in the graph. If a solution is not found,
the graph is then extended by two extra layers and corresponding constraints,
allowing a search for graphs of a greater length. The process is repeated until
a solution is found.

6.1.1 Graphplan CSP - CPlan

The planning graph can be compiled to the CSP and solved by the CSP solv-
ers. One of the approaches is presented by the CPlan system [25] , where
they decompose the planning graph into a set of constraints and variables,
performing better than prior solvers (like Blackbox) [25] , which use the de-
composition of a planning graph into a CNF formula and then they solve the
problem as a SAT problem. However it also expects to have all the constraints
hand-picked and hardcoded.

38

6.1. CP planning starting point - the Graphplan

6.1.2 Graphplan CSP - GP-CSP

The GP-CSP planner [26] presents an automatic scheme to encode the plan-
ning graph into the CSP problem. It defines the mapping between the Graph-
plan constraints and CSP constraints as well as the mapping from the Graph-
plan propositions and actions to CSP variables and their domains. As an
advantage from the conversion we get an applicability of different search tech-
niques, so a non-directional search can be used (or any defined so to say),
in contrast to the simple backward search in the graphplan. Also the GP-
CSP scheme introduces additional techniques like reachability analysis and
constraint analysis, as most of the mutex constraints in the Graphplan are
derived and therefore redundant.

In the encoding of the GP-CSP solver, the propositions are mapped into
the CSP variables and the actions are assigned CSP value numbers. The
propositions then have the actions which make them true in their domain along
with a null value. The constraints are encoded as functions, which can check
their satisfiability through the values of the variables they are assigned to, and
they are organized in a global hashtable and linked with their corresponding
action. Also based on their value, they state whether some predicates in the
previous layers are active and therefore must be set by an action sometime
before.

However, we don’t have variables for actions and there is a huge amount of
constraints for every original action mutex constraint. To be precise, for every
precondition of actions in mutex relation, every combination of variables in-
stantiated into values corresponding to the mutex actions must be constrained
by mutex.

@a1, a2 P Actions,@p11 P Supporta1 ,@p12 P Supporta2 ,mutexpa1, a2q :
 pp11 � a1 ^ p12 � a2q

The effect of modelling the graphplan without action variables is not very
comfortable and further research has been done to improve the modelling
methods.

6.1.3 Graphplan CSP - CSP-Plan

Based on the GP-CSP and CPlan more sophisticated CSP models representing
the Graphplan have been created. One of those is the CSP-Plan implementa-
tion [27]. It uses the action variables along with the preposition variables, all
organized in layers as in the Graphplan algorithm. Also the iterative search
procedure, where we create a plan of a minimal length and then increase the
size on complete search fail, is retained.

In order to retain the consistency in propositional layers, the Reiter’s suc-
cessor state axiom is used. [27] In simple words it states that if a propositional

39

6. Research for our solution

variable Pj is true in the layer L, it has either been made true by an action in
the current action layer or it was true in the previous propositional layer and
hasn’t been deleted by any action in the action layer.

PL
j ðñ pPL�1

j ^
©

aPActionDeletePj

 aq

_p PL�1
j ^

ª
aPActionCreatePj

aq

The successor state axiom guarantees the consistency between time frames.
The constraints used are mostly the same as before - the preposition mu-

texes, the action mutexes and more. However the authors have explored a
stronger consistency, the 2-j consistency, to derive even more constraints. A
technique to make the problem easier to solve is to create redundant con-
straints, i.e. constraints, which are not necessary for finding a valid plan,
but which additionally reduce the domain, therefore speeding up the search.
Additional constraints are thus useful.[27]

The 2-j consistency is a strong one - it states that for every assignment to
2 variables there is a set of values for j additional variables such that the 2+j
assignments satisfy all the constraints over these variables. We can see some
similarities with the arc consistency, but with much more general strength and
with corresponding computational cost. However the authors propose the 2�2
variant for the definition of additional action mutex constraints in a following
way - if there is a mutex constraint between the propositions PL

i and PL
j and

there are actions AL
i and AL

j with PL
i and PL

j as their preconditions, the 2-2
encovers a new constraint pAL

i ^A
L
j q.

Other new constraints are derived propositional mutexes. To construct the
new propositional mutexes, the actions must be inspected and then, based on
the three scenarios, it must be proven that there doesn’t exist an action that
would make the propositions both true. The three scenarios are defined as
situations, where the propositions Pi and Pj are in a state Pi^Pj , Pj^Pi,
 Pi ^ Pj and a special case Pi ^ Pj . The preconditions of the mutexes are
then checked through the enumerations of the actions and the proof of their
validity is therefore constructive. The special case Pi ^ Pj is applicable only
when those propositions are present exclusively in the first propositional layer.

It is necessary to note after the definition of these new constraints that the
null action layers (the layers where no action is active) are prohibited in the
model proposed as all of the constraints would have to cover situations after
null actions.

Apart from the new constraints based on the Graphplan CSP the authors
propose new techniques beyond the Graphplan CSP representation. One of
the easiest propositions is the Symbolic Reduction of Single Valued Variables.
The technique simply eliminates the variables present in the CSP model and

40

6.1. CP planning starting point - the Graphplan

replaces them with constants, thus simplifying the problem. Because all con-
straints and variables can be translated into logical formulas, some simplific-
ations are straightforward (Pj _ false ñ Pjq. The same applies for special
cases, where there are no adders or deletors of the propositions among the set
of actions - they can be reduced to a constant.

Another new binary constraints can be derived by the same analysis that
was used for the derived propositional mutexes. Before we were only restricting
the use of the pTRUE.TRUEq combination, however using a similar reasoning
we can derive the same constraints for the negations of the variables, forcing
their values to be both true or both false.

Finally, custom constraints are proposed, namely widely used sequence
constraints which restrict the use of the inverse actions in sequence. The
search therefore doesn’t have to search through the possibilties, where we
do an action and then do its inverse while not making any change in the
propositional world. Those constraints may be useful, however we should be
careful with their use with the temporal actions (as they are not taken in
the consideration now), because the inverse actions may cause some change
in the CSP modelled world with times and resources (e.g. we want to fly the
helicopter until the fuel tank is empty).

6.1.4 Graphplan CSP - Reformulation of the CSP

There exist many ways to represent the same CSP, some efficient, some less
so. There are attempts for reformulation of the constraint model through
the simplification of the constraints and/or their reduction and representation
with more expressive simpler constraints with better pruning or control. One
of those optimizations is a substitution of multiple constraints by a simpler
table constraint [28], [29]. The table constraint is a constraint over a n-tuple
of variables, to which we can define a set of tuples of values, which are valid
(or alternatively invalid, if the modelling tool allows). The idea is to group
similar actions into one table.

The graphplan is modelled in a similar fashion to the CSP-Plan propos-
ition or the GP-CSP proposition (actually multiple models are considered),
although there is always only one action variable in the action layer with ac-
tion IDs in its domain. This has its advantages, as we don’t have to consider
the mutexes between actions and the parallelism can be introduced afterwards
on the solution found. Also the sequence of actions is very easy to implement
and so is the frame axiom or successor axiom, as we are dealing with the
effects of one action at a time.

However this approach also has its limitations, as the missing parallelism
can be considered an issue, because a parallel plan, which would be able to be
satisfied in one steps with n parallel actions, would have a length n in the serial
approach. This however is a choice of the implementor as both approaches
have their pros and cons.

41

6. Research for our solution

The reformulation of the CSP using table constraints is demonstrated on
the serial plan, however it could be extended (with certain limitations) into
the parallel version.

6.1.5 Graphplan CSP - Reformulation of the CSP II

Another reformulation of the constraint model comes from the same author
[30]. This time however the reformulation is not concentrating on the model,
but rather on the search techniques. We have not considered the search tech-
niques much so far, as the previously mentioned models used more or less the
searches that we have already mentioned in section 4.2, or the authors state
that the search is problem dependent and that we should choose the search
according to our needs (and empirical evidence) as all problems are different.

For example in the previous reformulated CSP model the search was a
simple static variable ordering heuristic instantiating actions from end to start.
Note that it is advantageous to make only the action values the decision vari-
ables as the rest is either not important or, more often, is fully determined by
the choice of the actions.

However, the search tehcnique the authors propose is a domain splitting
technique called lifting, where the actions are split into groups according to
their effect and preconditional domains. This allows the backward search to
postpone the decision of the concrete action until later, however the knowledge
of influenced variables remains.

The authors also introduce the symmetry breaking constraints (or Dom-
inance constraints), which define an ordering between the non-interfering ac-
tions. This is crucial to the model presented as no parallelism was allowed, so
if there was n potentially parallel non-interfering actions, there was !n possible
orderings, which were all valid and functionally equivalent.

The last improvement introduced is a stronger consistency defined.

6.2 Durative actions

One of the most problematic issues we deal with in the implementation is the
representation of durative actions. Until now the representation of actions
sufficed to model only the basic planning tasks that could be very easily solved
by different methods, be it the CSP approach or the chain forward iterative
approach. As we use the CSP paradigm, we have to find a way to extend the
planning model to include also the durations of the actions.

Firstly we have to revisit the definition of durative actions to see what
features are needed and which similarities do they bear with regular actions
in our CSP planning graph. Then we can research the works of the authors of
the planning graph models we have mentioned above to see how they solved
the issue of the duration of actions in their CSP formulations. We can also

42

6.2. Durative actions

make first guesses and notes as how those actions could be represented just
exploring the structure of the planning graph we have used until now.

6.2.1 Revisiting the definition of durative actions

We have already talked about the durative actions in section 3.2.1, where they
were a part of the PDDL domain definition. The definition in general stays
the same, although now we have to take into consideration the implementation
of those constructs. The durative actions have preconditions, which are gen-
erally identical with preconditions of simple actions, effects, which resemble
the effects of simple actions, although their enforcement is not instantaneous,
and invariants which have to hold during the whole ’run’ of the action.

6.2.2 Basic notes

If we look at the previously successfully modelled planning graph, we can
observe the difficulty of implementation of durative actions right away. The
preconditions stay the same. The effects are also the same, although they are
applied only after a certain time. This could be easily solved if every layer
would represent one atomic time step - the effects would simply be joined by
a constraint, which would force them to be true after certain number of steps.
The invariants are a problem, as we have to make sure that they are satisfied
throughout the whole run (endpoint excluded). If we again returned to the
model of atomic-step-per-layer, this could be also easily solved, enforcing the
invariant constraint on every layer separately. A boolean variable would act
as an activator of the constraint and an indicator of the action in effect.

However this representation creates a lot of issues by itself. Although very
easy to imagine and moderately easy to implement, there are errors which
arise even before we formulate a formal definition of the extended graph. One
of the issues is that we have ultimately lost connection to the durationless
actions. In the standard planning graph we can also speak of timestamps
of the layers, however they were used only for the correct estimation of an
order of the actions and didn’t say anything about the durations. Everything
was, in the end, instantaneous. We could define that the simple actions have a
duration as small as is the duration of the shortest durative action. This would
however prolong the generated plans, forcing simple non-durative actions to
wait for each other and actions that could be instantaneous (like purchase
component) would take at least 15 minutes, as is the time of the shortest
durative action. We could also pick an arbitrarily small time length like one
second. This would only lead to another issue - the granularity of the graph.

The granularity is even a bigger issue in our problem. Lets consider that
we would pick one minute as the most useful time to model the durations of
simple actions. Then the shortest durative action would need a plan of 15
layers to be satisfied and if we would like to create a plan which would cover a

43

6. Research for our solution

whole day, we would end up with a plan with 1440 layers, which would be very
hard to solve. Taking into regard that in the basic problem instance we have
a repair action which spans 184 hours, this approach as-is is clearly unusable
for our further research.

Another issue, not being connected to the durative actions at first glance,
are the timed initial literals (discussed in section 3.2.1). Having an effect on
the actions, it would be easy to represent them in the atomic-time-step-per-
layer model – they would be defined as constants present in the corresponding
layers. However new approach will have to be found based on the planning
model we will create. As they make the proposition hold or not based on
the times in the plan, they closely resemble the durative actions with starting
points and endpoints equal to their predetermined time points.

TILs could be also represented as constraints on the start/end actions.
We could make them fall into a set of intervals, during which the allowable
conditions hold. Of course then we would have to compute whether the action
could or couldn’t finish in the same interval to prevent infeasible solutions,
possibly precomputing the possible starting and ending times and allowing
the actions to start only when they would be able to finish. The static nature
of the TILs could be easily exploited.

6.2.3 A flexible constraint model for validating plans with
Durative actions

The article with the same name as the name of this section is one of the first
papers related to the problem of the description of durative actions [31]. The
procedure is slightly different, as it works with partially ordered plans with
durative actions and thus it doesn’t create the plan from scratch as is defined
in our task. However the author exploits further the structure of the planning
graph, enriching it in order to represent the durative actions.

The representation is inspirational for our solution as it tackles some prob-
lems foreshadowed in the notes (6.2.2). It uses a boolean planning graph en-
riched with numeric parts of a graph. It transforms the action variables in
action layers so an action can have three boolean variables in effect - start,
end and middle. The start variable indicates whether the action starts in the
selected layer. The end variable serves as an indication for the finish of action
in the layer correspondingly. The middle variable indicates the run of the
action during which the invariant conditions must hold. Those variables are
logically bound, so the start action is always entwined with the middle action,
which has to be true through the action layers of the planning graph until an
end action is reached.

For the interlayer consistency the successor state axiom is again used with
corresponding constraints which make prepositions true when they are added
by some action or when they were true in the previous layer and have not
been deleted by an action.

44

6.2. Durative actions

The representation includes another feature - the times of the propo layers
and times of the actions. For every action we have additional StartT imea

and EndTimea variables, which store the starting and ending times of the
action. If there are any action precedences, it is easily modelled through these
variables. Additionally the duration can also be encoded as a constraint on
these variables, as StartT ime�Duration � EndTime.

There are also variables that interconnect the numerical and logical parts
of the model. Every action has a StartLayera and an EndLayera variables,
which contain indexes of layers at which the Starta and Enda actions are
true, that is if we maintain those variables in arrays (which we usually do).
This is achieved through the element constraint, present in almost all good
solvers (and Choco is not an exception), which models exactly this relation.
The element constraint is also used to create a link between the TimeL in the
propositional layer and the values of the StartT imea variables through the
index determined by the value of StartLayera.

The authors then experimented with the representation and found out that
the more appropriate representation is to make the solver process the boolean
variables as simple finite domain problems. The method used for the boolean
network (Binary Decision Diagrams) have proven to be memory expensive and
made the problem crash.

As the decision variables of the problem they used the numerical variables
StartLayer, EndLayer, StartTime and EndTime, as all the other variables are
then positively determined by the constraint propagation.

The difference between our problem and the plan validation problem in
the paper manifests itself in the simplifying constraint over all start variables
limiting their sum to one, thus the action can take an effect only once. And not
only this, the ({Start,End}, {Layer, Time}) variables are only one per action,
which would make the same implication. We could make multiplication or
cloning of those actions to allow more instances, but we don’t know that in
advance. The limitation is thus not suitable.

Another limitation implicated by the previously picked actions is the fact
that we can’t ignore some actions if they are not needed - every action has to
have its valid time assigned. This could be solved by introducing possible null
values interconnected by constraints, however as the model is unsuitable due
to the reasons stated above, this modification wouldn’t make it more suited
to our needs.

6.2.4 Durative action decomposition

The previous model, apart from building on the aforementioned works on the
Graphplan CSP algorithms, also utilises some transformations from the paper
by M. Fox and D. Long [32] which desribe the modification of the planning
graph to encode durative actions.

45

6. Research for our solution

The authors start from the PDDL 2.1 description of the durative actions
and then propose decomposition. It splits the action into the start action with
a duration and two instantaneous actions, one representing the end of the ori-
ginal action and one its invariant. In order to manage the start and end point
as a pair, the intermediate actions have a requirement of a proposition, that is
achieved by the start action, and an effect, that is required by the end action.
The invariant action must be enforced to appear on every layer between the
start and end points in order to enforce the invariant check. By default the
Graphplan scheme would introduce no-ops to persist the effect of the first
invariant action. The solution is to introduce an additional proposition as the
effect of the invariant required by the end action. Additionally the graph-
plan must be restrained from the introduction of no-ops for the propositions
generated by the start and invariant actions.

A graphplan modification of time handling is also proposed, as the tech-
nique used was originally based on the TGP system, which prohibited paral-
lelism of durative actions. The model of the TGP system resembles the model
proposed and criticised in 6.2.2, as it uses uniform increments between the lay-
ers. Contrary to that the authors propose a model, where the propositional
layer are labelled with times and are used only to capture the points where
something happens. It is however also noted, that this modification causes the
algorithm to lose its time optimality, as a more time-optimal solution using
two actions is explored later than a solution using one long action.

The search is the component most modified. It gradually introduces con-
straints, that the start and end layers must be exactly duration away. Also
there are constraints introduced that state that the layers between the start
and end actions must have a duration less than the duration of the associated
action. Those constraints allow the authors to formulate the problem as a
linear programming instance, that can be solved by a simplex algorithm (or
other LP methods), effectively minimising the total duration of the plan. The
form of the constraints is kept in a matrix, with as many columns as there are
layers in the plan and as many rows as there are durative actions in the current
plan (so on the start there are no rows). They modify this matrix every time
an end action is added (a row is added and a corresponding position is set to
1), an invariant constraint is added (corresponding position is set to 1) or the
start action is added (the equality constraint is formed). Backtracking makes
the matrix revert in the exact same way (positions set to zero, reformulation
of the constraint or a deletion of a row).

This approach is indeed complex and there is a difficulty that has to be
addressed regarding the timed initial literals. We may have troubles repres-
enting them, as they represent time intervals during which some actions can
be executed. As this model uses the durations of the layers, searching for
the solution through backtracking, this would mean that the TILs would be
checked at the very end where all durations would be assigned and thus we
would know at what times the actions are supposed to be executed.

46

6.3. The Activity-Based search

These problems would arise if we would represent the TILs as durative
actions, as we proposed in the section 6.2.2. The same would apply if we
would reformulate the TILs as constraints on the start and end times of the
affected actions, as, again, we are not sure about the time when the plan
execution would start and what would be the exact times of their application.

6.3 The Activity-Based search

During the intermediate experimentation we have found that the idea of our
search is impractical and slow. We experimented with other search variants
already implemented in the Choco Solver and found one, that had in general
much faster search than the forward-chaining-like alternative. The activity
based search is based on recording of the activies of the variables during the
search. For every variable it keeps an activity counter. The values of the
counters are then used during the variable selection phase of the search. For
the value selection there are also activity counters for the values, which are
computed in a different way.

We will describe the rough idea of the algorithm. The mathematical for-
mulas describing the process are very well written in the source paper [33].
The search, after every decision and subsequent propagation made, differenti-
ates between two sets of variables. The Passive set contains variables whose
domains did not change as a result of the propagation after the assignment.
The other Active set contains variables which have shrunk as an effect of the
current decision, usually an assignment of a value to a variable. We can see
that the sets are disjoint and their union equals the total variable set X from
the CSP problem definition (section 4.1).

6.3.0.1 Variable selection

After every step the activity counter is either increased by 1 iff x P Active
or, if x P Passive ^ |Dpxq| ¡ 1 it is multiplied by a decay constant µ, while
0 ¤ µ ¤ 1. The condition of |Dpxq| ¡ 1 is in place because otherwise the
variables which are instantiated early would quickly have their activity counter
reduced to 0.

For the variable selection the algorithm picks the variable, which has the
largest ratio Apxq

|Dpxq| . The Apxq is the activity counter. The division by the
domain size lessens the advantage of variables with greater domains, because
naturally the variables with more values in their domain should react to more
external constraints. If there are multiple choices of variables with the same
ratio, the winner is randomly selected between the tied ones. This method
clearly follows the fail-first principle, as the most influenced variable, therefore
possibly the one most difficult to instantiate, is picked.

47

6. Research for our solution

6.3.0.2 Value selection

The algorithm also records activity counters for the values in the domains in
order to define relevant value selection. The activity of a value is however
defined differently. An action of a value is defined as a size of the Active
variable set after the application of the decision which assigns the value to
the variable (Akpx � valueq � |Active|q [33]. This activity value however
differs at different nodes of the search tree, therefore an average sum over the
activity values for each value in each variable domain is proposed. Because
we don’t have the information about the whole search tree, a weighted sum
gradual scheme is proposed, which takes into the account the previous value
of the counter multiplied by a coefficient and the activity value of the current
node.

As for the value selection, the value with the lowest activity is selected,
clearly following the best-first principle.

6.3.0.3 Initialization

The algorithm requires some initialization, as there is no information at the
very start and all the activity counters are initialized to 0. The initialization
therefore features paths, where every path of a length k is ank-tuple of assign-
ments in the form of px � valq where x P X and val P Dpxq. The paths used
for the initialization are short and randomly generated and also called probes.
All the probes constribute to the estimation of the mean activity of the vari-
ables and the values in the same way as was described in the variable and
value selection, although without the decay. The number of probes is chosen
so much to provide a statistically significant estimate of the mean value – in
practice it means that the probing halts when the 95% confidence interval of
the t-distribution for the mean value is sufficiently small.

48

Chapter 7
Design and implementation

The biggest issue that was tackled was the formulation of the durative actions.
Prior to that, the graphplan framework with modifications and enhancements
proved useful for initial planning problem tests. This inspired us to explore
the possibilities foreshadowed above and see how the implementation would
work with the technology we chose to use. The main problem is that none of
the approaches deal with all of the features that are present in the problem,
although some could be resolved through some additional propositions, which
would have to be analysed and tested for soundness and eventual efficiency.

Also there is a possibility of decomposition of the problems into a sub-
problem to make the plans only for discrete parts that would be determined
by, for example, resources. The resetting of the wind turbine may be very well
handled by the helicopter alone and a helicopter is usually less costly to rent
than a ship, taking into consideration its speed and the lease cost per hour, as
the Workboat is a bit less expensive, however it faces additional limitations,
which the ship doesn’t have. Of course the ship also has its own limitations,
but it doesn’t have the constraints on the fuel reservoir and on the operation
by night.

This idea of decomposition is similar to the handmade solution, as we can
make a plan for each repair and then join them together, if possible, as it
would decrease the total time and thus the total cost.

However, in the end we resort to the all-in-one approach, where we create
a planning graph that contains all the features needed. There is a risk that the
model will be too big and the search will take a very long time, as when an all-
in-one approach is used, the completeness is traded off by a worse scalability
of the model.

49

7. Design and implementation

7.1 The source PDDL domain & problem -
detailed description

The authors encode the domain in theWINDY-SIMPLE andWINDY-COMPLEX
encodings. They are very much alike except for some details in the lease policy
of the vehicles.

(:types component turbine ?windfarm vehicle landable ?factory - locatable
turbine port - landable
airport seaport - port
ship helicopter - vehicle
workboat heavyship - ship
cmsv barge - heavyship
barge - airport
seaport airport warehouse factory turbine windfarm port landable - location
;warehouse factory windfarm landable
gearbox blade lru - component
)

Figure 7.1: Type hierarchy as presented in WINDY-COMPLEX

The type hierarchy of the domain is present on the figure 7.1. The entry
point to our model are the locations. We can see there are factories where com-
ponents can be produced, warehouses which can have the components stored,
airports for helicopters, seaports for boats and windfarms with turbines.

The boats are further divided into workboats and heavyboats, while a
heavyboat can be either a Cmsv or a Barge. Unfortunately the authors don’t
mention what a Cmsv is, but we can imagine it as a ship big enough to
transport bigger components, however lacking the equipment to make a repair
of the wind turbine.

The turbines consist of components which can break. The blade and the
Gearbox are large components which require a barge to be repaired. A LRU
(Line-replaceable unit) is a small part of the wind turbine made to be easily
replaceable in case of a failure and small enough to be transportable by any
vehicle.

There are engineers freely available at the ports (seaports or heliports)
which are needed for the on-site repairs and inspections.

7.1.1 Actions and Durative actions

There are 10 actions and 20 durative actions in the model. The actions and
their meaning are listed on the table 7.1. Detailed descriptions with precon-
ditions, effects and possible invariants are not that important to list as they
are inspected later in the modelling phase.

50

7.1. The source PDDL domain & problem - detailed description

Actions Note
lease unintrusive - leases a vehicle
purchase-component instantaneous - makes component available to the model
disable-turbine instantaneous – disables turbine
enable-turbine instantaneous – enables turbine
embark-vehicle-from-port loads one engineer from unlimited pool
embark-vehicle-from-port-bulk loads engineers to full capacity from unlimited pool
embark-vehicle-from-turbine loads one engineer from turbine
embark-from-turbine-bulk loads all engineers from turbine
disembark-vehicle-to-turbine unloads an engineer to turbine
disembark-vehicle-to-port unloads an engineer

Durative actions
refuel-helicopter refuels a helicopter
reset-turbine resets a turbine
inspect-turbine inspects and resets a turbine
pickup-engineer loads one engineer from turbine
enter-site-heli while at a windfarm, fly to a turbine
enter-site-ship while at a windfarm sail to a turbine
leave-site-heli while at a turbine, begin flight and fly to windfarm
leave-site-ship while at a turbine, set sail and sail to windfarm
sail-between sail between the turbines of the same windfarm
fly-between Fly between the turbines of the same windfarm
sail-to link sea
fly-to link air
load-component loads a component on a heavy ship
unload-component unloads a component on a location
manufacture-part creates a working component
deliver-component move component from A to B
replace-gearbox replaces a gearbox
replace-blade replaces a blade
replace-lru replaces a LRU
transfer-to-barge move a component from a cmsv to barge

Table 7.1: Actions and Durative actions as proposed

51

7. Design and implementation

7.1.2 Logical inconsistencies of the source PDDL domain

Since we hardcode the domain and make the solver one-purpose, a deeper
inspection of the domain and the problem specifications must have been made.
This inspection has uncovered some questionable properties of the model,
which result in illogical behaviour. We address these fallacies in this section
and note how they could be solved or specified differently to make more sense.
As the authors of the domain state that it has been made in cooperation with
industry, we have to retain as much properties as possible, because we don’t
have any additional info at our disposal to rule which way the domain should
look like in reality.

7.1.3 Domain specification - Type hierarchy

In the definition of the object types there are some relations which demand
attention. As we can see on the figure 7.1, some types are added more than
once in the scheme. For example a turbine is a landable, yet both of them
appear in the locatable definition. This may be a PDDL requirement, however
in the definitions of actions it doesn’t seem that is the case. This problem is
not a grave one and has no impact on the functionality.

The fact that a windfarm and fatory are locatable and thus may be located
at some place is more questionable. Since working with those types requires
no further information on their location, because the distance between their
instances is encoded in the problem specification, this relation is wrong. Even
the fact that the airports and seaports are not used further on except as
separate entities makes us assume that the relation for them is also wrong.
Finally the relation which specifies that a barge is also an airport - it is
reasonable to consider the fact that a helicopter could land on a barge (and
be transported elsewhere). Nevertheless this property is not used anywhere
in the model and therefore the relation is redundant.

The model however doesn’t require a change as these mistakes only add
unimportant properties to the model which we will ignore.

7.1.4 Domain specification - Actions and durative actions

The actions are well defined. The durative actions however have several issues
which are inconsistent with the specification and/or the logic of the model.

The pickup-engineer durative action, which represents a pickup of an en-
gineer from a turbine by a vehicle is a durative duplicate of the instantaneous
embark-from-turbine action. It is not logical to have it present when both of
them would be available - the instantaneous action should always be used.
The reason it is present in the model probably is because the authors found
it reasonable to introduce some time requirements for the pickup. They may
have struggled with the specification of the requirements for the action and

52

7.1. The source PDDL domain & problem - detailed description

without it the durative action is meaningless. We therefore remove the dur-
ative action from the model definition.

The enter-site-heli durative action, which represents flying to a specific
turbine after entering the windfarm has a different duration and the helicopter
range resource consumption specified. It may be possible that the two differ,
as the landing procedure may consume more fuel, but it is not consistent with
all other actions. As a starting point we consider the duration and resource
consumption to be equal and may propose the modification in the possible
future work section.

The fly-between durative action, which represents a helicopter flight between
two turbines of the same windfarm has a weird precondition which doesn’t
make sense. We consider it a typo and ignore the condition.

The manufacture-part durative action, which represents a manufacturing
of a component is reasonable, however incompatible with the problem spe-
cifications the authors propose. The authors propose concrete components
with concrete names and as the goal they have them placed on previously
specified positions. This is a conflict of two levels of planning, one where the
components are described by an Id and one where they are only fluents. We
resort to not using this action altogether.

The replace-lru durative action, which represents an installment of a LRU,
is applicable for all vehicles, however the loading action is present only for the
barge. As the LRU is a small component, which should fit into any vehicle,
this is a hole in the definition which can be solved by a definition of a dedicated
action, load-lru. This decision can be questioned as we don’t have accurate
data about how big the LRUs are in reality.

7.1.5 Problem specification

The problem specification has issues mainly in the consistency of the model.
As it was developed, there are some remnants which were not removed or
finalized and they state obsolete or unimportant information.

The first (minor) issue is the question between the relation of the link-
land property definition and the time-to-deliver propertu definition. It is not
clear whether the program should report an error when there is the link-land
declared between two locations in the instance specification, but no time is
assigned. The problems are well defined in this matter, however we feel that
there is redundant information in there easily breakable.

Next issue is connected to the type hierarchy mentioned above (7.1.3)
regarding the airports. The airports are declared as locatables, so they are
supposed to have a location to belong to. This is actually the case in the
declaration, as (e.g. in the problem pfile01-tn.pddl) northheliport belongs to
the northport, windfarmAheliport belongs to the windfarmA and windfarmB-
heliport is present at the windfarmB. However, this structure is not used in
any way in the model. The windfarmAheliport and windfarmBheliport can

53

7. Design and implementation

never be used. This is not only an issue of unimportant information, but the-
oretically if those airports would be present and available at the windfarms,
the usability of the helicopters would be much increased, as they could refuel
on-site. We don’t know whether there are resources on the windfarms or not,
so we will resort to the ’harder’ version where helicopters must return to the
northport for fuel.

Inconsistent information is also present in the daylight specification. In
the problem there are comments assuming that there are 14 hours of daylight
in a day and 10 hours of darkness (actually 8 hours of darkness, but it doesn’t
add up). This is however not the case even in the first few daylight cycles
defined where they are defined randomly (10h, 14h, 12h, 12h, . . .) . To
make things even worse, for some reason the definition of the daytime even
switches after 326 hours and out of a sudden there are 14 hours of darkness
and 8 hours of daylight. The most important inconsistency is present from the
problem 4 onwards - the daylight TIL is not defined until 326th hour, making
the daylight span for all those 325 hours and solving the problems without
daylight restrictions.

The resolution for the daylight TIL is to make a static assumption that
there are indeed 14 hours of light and 10 hours of darkness starting with the
light hours and extend this constraint to the whole plan. While it is clearly a
step back in the specificity of the problem, the faulty definition of the problem
may produce invalid plans and this approach is less error prone. Possibly we
could make the daylight cycle configurable.

7.2 Implementation overall
The program is created from 3 parts - the Parser, the Logical & Filtering layer
and the Model (project). They are developed as maven java projects, linked
together by the maven dependencies. In this section the basic structure and
responsibilities are outlined. The more thorough descriptions of filtering and
modelling is

7.2.1 The Parser

The Parser handles the load and basic conversion of the PDDL specification
of the problem instance to some organized program structure. As we have the
PDDL domain given and static (we don’t expect it to change), it can be safely
hard encoded in the model, instead of an implementation of a general parser
for the domain, as it would multiply the time required to finish the problem.

The parser consists of a simple java tokenizer and an implementation of
the push-down automaton. It is not very flexible and some rules have to be
followed to consider the problem well-formed, however it is quick and it suffices
for our needs. If the model is not well-formed, the parser reports an error in
the form of a runtime exception.

54

7.2. Implementation overall

It identifies the objects and stores them in a hashmap. There are 12 final
object types altogether with 9 possible interfaces to implement. The hierarchy
tree can be seen on the figure . The objects follow the hierarchy that has been
outlined by the domain and the original solution, even with the inconsistencies
discussed above 7.1.3.

Note the RAirport class, which is a representation of a real airport. The
reason for it to be introduced is that all other classes (instances) are marginal
nodes of the hierarchy graph. The airport is the only one that isn’t because of
the questionable relation stating that a barge is also an airport. It is therefore
easier to define new class RAirport for the real instances of an airport and to
declare the Airport an interface.

The predicates that are true at the start of the plan, therefore the condi-
tions that have to be contained and true in the initial layer, are parsed into the
Model and Object state (MAOstate) class. It consists of several hashmaps,
which store the property values according to the string names of the objects.
There are no logical checks present, so all properties are considered valid at
this point. The MAOstate also contains the daylight TILs and constants, that
need to be specified (such as gearbox repair time) or model properties that
are constant throughout the model (such as a lease cost of a helicopter).

The Goal predicates, similar to the initial predicates, contain the predic-
ates that must be true at the end, in the final layer. It however doesn’t
duplicate the information about the constraints and properties of the model.

The links between the places, be it the link-air or a link-land which serve
different purposes, are stored separately in the Link state.

The output of the Parser is a ParsedModel class which contains all the
parsed information organized in the aforementioned structures (Initial predic-
ates, Goal predicates, MAOstate and Links) and hashmaps.

7.2.2 The Logical & Filtering layer

The Logical & Filtering layer (L&F) contains some of the more important
logic in the model pre-processing, quite resembling the similarities with the
beyond the graphplan section of the acrticle written by Lopez and Bacchus
[27]. Its input is the ParsedModel from the Parser.

The main purpose of the L&F is to construct the classes, implementing the
interfaces relevant to the final representation and to decorate those classes with
their relevant properties. The L&F is the first layer of consistency checking
and if there are some errors in the semantics of the PDDL instance, it is
detected here, as it requires all relevant properties to be defined and loaded.
Also it prevents the fallacious definitions to have any effect on the model, so
even if there is a max windspeed defined for a ship, without the change of the
mapper it doesn’t have any effect on the model.

The model of the L&F is different from the one in the Parser, although
it shares the same basic structure and hierarchy of classes (see figure 7.2). It

55

7. Design and implementation

Figure 7.2: The type hierarchy as used in the CSP. The white rounded rect-
angles are the interfaces. The yellow ovals are classes defined as objects in the
Parser and the PDDL, however without any stateful variables and therefore
reduced to the collections of IDs. The green ovals represent stateful classes.

is preparing the classes to be of a greater use and through the ’decoration’
the important constants and information about the initial and final state are
added to the classes. Also, as can be seen on the figure, it is differentiated
between the stateful and stateless classes in the CSP model. The stateless
classes are de facto constants and do not require to have variables initialized.
In the case of mobile vehicles, the information about their possible moves is
also recorded and saved in the model.

Another functionality implemented in this layer is a filtering procedure
aimed on the removal of irrelevant information in order to make the model
and possibilities as small as possible. We can declare and define filters, which
statically check different aspects of the model and remove the unreachable
values of the model. Details are given below in the subsection 7.3.

One other purpose of the L&F layer is a numerical conversion. Although
the authors state that the OPTIC solver operates on the integer domain, the
times and lease prices are represented in doubles. It is therefore important
to have a unified conversion from doubles to integers. We chose to have the
times multiplied by 10 and rounded up and the prices to be multiplied by 100
and rounded.

The output of the L&F is a Model, which is just another collection of
information, translated from the ParsedDomain into a more usable form. It is
accessed through the CreateModel class and the main translation logic from
the PDDL information to the internal representation is done in the Converter

56

7.3. Filtering in the L&F program layer

class.
There is one final important thing that happens in the L&F layer - the

conversion of the string names to the integer IDs. This part is particularly
important for the CP nature of the problem, as the IDs create bases of the
domains used in the CP model. Those IDs are created only once and the
responsibility of their successful assignment is delegated to the aforementioned
Converter class.

7.2.3 The Model

The Model by itself has a responsibility of the planning graph creation and
the definition of the CP model along with an algorithm that would lead to
the solution of the problem.

The solution search algorithm is a configurable loop, where if there is no
solution found in n steps, a graph with n � 1 steps is constructed and the
search continues. The term graph construction encapsulates a set of not only
graph construction as it is, but also the creation of the action and global
constraints on the model. There is a large amount of types of constraints and
actions, see 7.1, and every action requires special instantiation, based on the
objects involved. The insides of the plan graph construction are described in
the section below 7.4 as it is the main logic part of the model and its design
is based on the research we have summarized mainly in section 6.

When a solution is found, the program prints the final state of the graph
and its value – variable pairs.

This is the entry point a user will actually use, except for the instance
specification file, which determines how will the graph look and what nodes
will be generated.

7.3 Filtering in the L&F program layer
There was an idea, implemented in some models [27] that the model should be
transformed according to the static knowledge we have before the computation
starts. Sometimes those modifications are simple and possibly irrelevant, for
example in the work of Lopez and Bacchus [27] the authors propose, that all
the variables which have only one value in their scope are therefore constants
and should be removed from the model. In our case however we have a great
advantage in the form of the domain knowledge. We know exactly what the
domain looks like and therefore we may impose more relevant constraints on
the model or remove objects and relations that are irrelevant more effectively
than the researchers in the general planning case.

This idea gave birth to the notion of filters. Instead of blindly transforming
the parsed information into the CP model, we apply the so called filters on
the intermediate model. The filters implement an interface accepting the
ParsedModel model into its only filter method.

57

7. Design and implementation

7.3.1 The Vehicle Access Filter

There is a very important filter which modifies the model in a way that it
changes its functionality. The helicopters have got a maximum windspeed
constraint which makes them unable to travel from/to any location when there
is a windspeed higher than allowed for that helicopter. The same applies for
ships (and heavyships) with their restriction on the maximum wave height in
which they are allowed to travel.

We could keep the information in the actions, so a fly-to action could be
activated iff the wind speed on both endpoints is lower than the threshold
(max-windspeed). However, upon the observation of the instance PDDL de-
scription we noted that the windspeed and wave height properties are actually
constants preset for the instance and do not change over time (as we would
expect). This inflexibility of the model allows us to remove all links from the
previous ParsedModel leading either from or to the places where this limit is
exceeded. The reduction of the number of actions in case of this filter applic-
ation is significant, as every place is usually connected to all other accessible
places in a complete-graph manner. If it is true and we remove one of the n
places, we remove n�pn�1q

2 � pn�1q�pn�2q
2 � n� 1 edges. If the initial position

is removed, the position still stays in the model, there are just no links to it,
so the helicopter/ship can’t move and thus participate in the solution.

7.3.2 Other filters

We have got two additional filters, which are order-dependent - the Healthy
Turbine Filter and the Healthy Windfarm Filter.

Those filters are based on the relevancy analysis of the locations in relation
to the initial and goal state. If the locations or objects are not relevant in any
way to the initial state or the final state, they can be removed. This can be
very well applied to turbines and windfarms, as the instance description is
usually copied with the same number of turbines on the same windfarms, but
only a few of them are relevant, because an action (inspection or a repair) is
usually required only for a subset of them.

The Healthy Turbine Filter therefore removes turbines, which require no
action to be executed and don’t have any complex conditions in either the ini-
tial or the goal state. The filtering however must regard also the prepositions
laid on the other objects, because there may be a condition that requires a
vehicle to be present at the turbine at the end of the plan and the removal
would cause all plans to be unsolvable.

The Healthy Windfarm Filter works on a similar principle, removing only
the windfarms which have no turbines participating in the solution of the
problem and also when they themselves don’t participate in any initial or final
state conditions.

58

7.4. The CSP Model – Objects

It is possible that more filters could be derived, however with every ad-
ditional filter it must be taken care not to render the plan insoluble. Other
filters, as well as constraints, may also restrain the model, so the solution would
be found more quickly, however more complex plans would be impossible to
explore.

7.4 The CSP Model – Objects

The CSP model contains the biggest part of the design work in this thesis.
It uses the hierarchically organized information from the previous L&F step
and extensively uses the Choco Solver technology. [24] The variables used in
our model are of an integer nature, from the technology we use IntVars and
BoolVars. BoolVars are effectively encoded as Integer Domain Variables (In-
tVars), however using (Boolean Domain Variables) BoolVars has advantages
as special propagation algorithms are implemented just for BoolVars. While
exploring the technology, we can refer for example to the sum constraint which
handles the equality or inequality of a sum of a set of variables to some value.
There it is explicitly noted that the BoolVar version of the sum is ’much faster
than the one over integer variables’. [24]

As the planning graph we want to construct is quite large, we have to
choose an entry point to the model description. Let the first model items
described be the objects received from the L&F layer and their mapping into
the planning graph. The class for the propositional layers, which we are going
to explore first, is called a Fact Layer.

The planning graph of a size n has got n � 1 propositional layers and n
action layers. The propositional layers contain the variables which describe
the state at the time i where 0 ¤ i n (as for now we consider the plan
time to be increasing in an uniform manner as is the case in the classical
planning graph). Those variables however have got connections to the states
of real items, or ’objects’ for that matter. For example if we would have a
proposition at(helicopter, windfarm), we can clearly see that in fact it is very
relevant to the Helicopter, less to the Windfarm and probably not relevant
at all to other objects like Ships. We can therefore organize the propositions
(effectively represented by variables) using lists of Java objects.

The IntVar/BoolVar representation of the variables is quite similar to the
integer representation of the propositions in the planning graph as proposed
in [28]. The propositions that can be effectively true or false (a turbine is
activated/deactivated) are very well modelled by the BoolVars. The proposi-
tions which have got multiple possibilities (a helicopter can be on a point A,
B or C) are modelled by IntVars, where the domain is generated from the IDs
of the objects generated in the L&F layer.

It can be noted that the variables of the PDDL objects are in fact strongly
connected to the PDDL functions and predicates (albeit not the same). Some

59

7. Design and implementation

of the PDDL predicates and functions are used as constants because they do
not change over time. Therefore they are used in the static filtering in the
L&F layer or during the definition of the domains.

Even when we still follow the general hierarchical structure of the model at
the transformation of these objects into the CP model is not 1:1 compatible, for
example we don’t need to have variables for warehouses, ports and windfarms,
because they are not stateful and therefore they are omitted.

7.4.0.1 Helicopters

The first model object we translated was a helicopter object. The reason we
chose this object to be the first was the testing of the plan, as a helicopter has
more constraints than a ship and yet can fulfil some basic tasks and achieve
some typical goals present in the problem instances such as inspection or a
resetion of a turbine.

A helicopter, or a heli (encoded in the class Heli) has got three stateful vari-
ables – the remaining range, thenumber of engineers aboard and the position
at . The domains for the remaining range is from 0 to max-range defined in
the instance. The number of engineers aboard is from 0 to the capacity defined
in the instance. The domain of at is a set of integers extracted from the links
from the previous model (effectively the ids of windfarms and airports) com-
bined with the ids of the turbines and with a zero added. The meaning of
the zero in the domain is the possible position of a helicopter somewhere in
between places, for example when it flies or orientates on a windfarm.

7.4.0.2 Turbines

Turbine was the second model to be translated for testing. A turbine is static
(it is constantly a part of a windfarm and doesn’t move away) yet not state-
less. It has got BoolVars inspected, reset and operating with straightforward
meanings. It also has got an IntVar which tracks the number of engineers
available on the turbine. The domain is between 0 and 1, 1 being an arbit-
rarily picked constant, as there is never a need for more than 1 engineer to be
available on the turbine.

7.4.0.3 Workboats, Cmsvs and a Barges

Those three models are all implementing the interface Ship, and Cmsv with
Barge also implement the interface Heavyship (these facts are used during the
creation of actions). Otherwise they all share the same properties, they all
have an IntVar engineers aboard with a domain between zero and their capa-
city and a position with an initialisation similar to the one of the helicopter.

60

7.5. The CSP Model – Action layers and Durative actions

7.4.0.4 Components - Blades, Gearboxes and LRUs

The Blade, Gearbox and LRU objects implement the interface Component.
All of them have two IntVars - a variable part of with a domain sonsisting
of all possible turbine ids and a zero (not part of anything) and a position
variable at. The domain for at is however different for the LRUs, if we accept
the inconsistency solving proposal at 7.1.4. In general it contains the IDs of
the turbines, barges, cmsvs, seaports and warehouses. LRU however adds the
possibilities of helicopters and workboats, as the LRUs are supposed to be
small enough to fit on both.

7.4.0.5 Construction of propositional layers

To correctly initialize the propositional layers, based on the information avail-
able we create the first one with objects that are defined in the instance.
Then we define a cloning procedure for the objects and for the layer and the
following layers are created in a same manner.

There are some extra variables in the propositional layer denoting the
daylight and its time. The constraints and the logic behind those CP variables
are mentioned below The time of the propositional layers is an important
factor, as it

7.5 The CSP Model – Action layers and Durative
actions

The action layers are collections of durative actions and instantaneous actions.
All durative actions consist of three activity BoolVars, start, middle and end
(denoted in the program as s, m and e). Additionally they consist of the
constraints using these variables to declare effects, conditions and invariants
(effetively conditions) of the durative action. The model of the durative ac-
tions is heavily inspired by the previous works [31], [32] although the usage is
modified.

The durative actions also always contain a constant duration, which is
defined in the instance or by the model. If it is defined in the model, a constant
is used in the program, always converted by the unified convertor from the
L&F layer. This ’constant’ approach has an advantage, that we eliminate a
need of a variable for the actions, however it also has a disadvantage, that we
lose a flexibility and therefore the duration-mutable actions like a fly to must
generate each combination separately.

Firstly, we define that an action is active, if it starts, ends or is in progress.
The activity is indicated by the middle variable being true. Secondly, when
an action starts, the start variable is true and the same goes for the action
end and the end variable. Therefore we define valid and invalid combinations

61

7. Design and implementation

Start Middle Stop Effect
0 0 0 Action is not active
0 0 1 Invalid
0 1 0 Action is in progress
0 1 1 Action ends
1 0 0 Invalid
1 0 1 Invalid
1 1 0 Action starts
1 1 1 Action starts and ends in the next layer

Table 7.2: Valid and invalid combinations of the Durative action BoolVars

of the variable values with the description. Details can be seen on the table
7.2.

The implementation of the restriction of the durative actions is achieved
through the table constraint with negative examples – we define just the invalid
combinations.

7.5.1 Durative actions and time

As was mentioned in the description of the propositional layers, they have got
a variable which indicates at which time they start (7.4.0.5). We propose a
scheme that would interconnect the activity BoolVars with the integer dura-
tions and the propositional layer times. This schemes decorates the durative
actions with two additional integer variables named StartOfDA and EndOfDA
with domains from 0 to MAXTIME and they signify the start time and the
end time of the action respectively. Note that the MAXTIME is an arbitrarily
chosen constant, chosen to be 10000 in our model.

The StartOfDA variable is directly linked to the time of the previous pro-
positional layer on the start of the action. If the action is in progress or ends
but doesn’t start, then the start value is transferred between the layers by an
equality constraint. Mathematically

l P r0, size� 1s,
@a P ActionLayerl, A � pstarta,l,middlea,l, enda,lq :
A P tp1, 1, 0q, p1, 1, 1qqu ñ StartOfDAa,l � Timea,l (7.1)

pl ¡ 0q^A P tp0, 1, 0q, p0, 1, 1qqu ñ StartOfDAa,l � StartOfDAa,l�1 (7.2)
(7.3)

where starta,l, middlea,l, enda,l and StartOfDAa,l belong to the durative
action representation a in the current layer, Timea,l belongs to the propos-
itional layer before the durative action and StartOfDAa,l�1 is contained in

62

7.5. The CSP Model – Action layers and Durative actions

the representation of the same durative action in the previous action layer.
The variable l is constrained between 0 and the size of the graph - 1, although
the implication 7.2 is not applicable on the first action layer.

The EndOfDA is a bit more complicated. When a durative action ends,
it is equal to the time of the following propositional layer. Therefore if an
action starts and ends in the same action layer, the time difference between
the neighbouring propositional layers must be equal to the duration of the
action. The decision whether the action ends or not is not a trivial one if
there would be no search direction defined. If however we proceed with the
search from the start to end and not in a backward manner, we can define a
technique to choose which action should end based on the actions which are
active. Logically it has to be the one that has got a smallest endtime defined.

l P r0, size� 1s,@a P ActionLayerl, A � pstarta,l,middlea,l, enda,lq :
A P tp0, 0, 0qu ñ EndOfDAa,l �MAXTIME (7.4)
A R tp0, 0, 0qu ñ EndOfDAa,l � StartOfDAa,l � duration (7.5)
enda,l � 1 ñ EndOfDAa,l � Timel�1 (7.6)

We can decide which actions end in the current layer when we have decided
on the activity of all of the actions. We do it by taking of the minimum
out of the EndOfDA values. The MAXVALUE to which the EndOfDA is
instantiated when the durative action is not active is a guarantee that when
a minimum endtime is picked, it is of the action that currently ends. Note
that the condition 7.6 would be enough, however taking the minimum results
in better pruning of the model.

Timel�1 � min
@aPActionLayerl

EndOfDAa,l

The schema can be seen on the figure 7.3.

7.5.2 Durative actions and general sequential constraints

We have defined the valid (or rather invalid) action BoolVar combinations of
the durative action, however we also need to define the sequential constraints
on actions and their activity variables. We want to ensure that when an action
has started, it will be either in progress or finishing in the next layer. Similar
reasoning goes for the state when an action has finished or is inactive in the
previous action layer – the action can either remain inactive or start.

63

7. Design and implementation

Figure 7.3: The time schema used in the model. Blue variables have a boolean
domain. Green cells are constants. Yellow cells show the end activity variables
of actions which could try to end.

l P r1, size� 1s
@a P ActionLayerl,

A � pstarta,l,middlea,l, enda,lq,

GroupA � tp0, 0, 0q, p1, 1, 0q, p1, 1, 1qu,
GroupB � tp0, 1, 0q, p0, 1, 1qu :
middlea,l�1 � 0_ enda,l�1 � 1 ñ A P GroupA (7.7)
middlea,l�1 � 1^ enda,l�1 � 0 ñ A P GroupB (7.8)

Here l P r1, size�1s, because we always take into consideration the durative
action representation from the previous layer.

7.5.3 Nondurative actions

We have got several nondurative actions in our model, such as embarking
and disembarking of the engineers. The advantage of our model is that those

64

7.6. The CSP Model – Durative actions and the PDDL

are very easily represented without major modifications to the plan. They
are simply considered as actions with their duration equal to 0. To help the
model with pruning, we also reduce the possible combinations to two, as the
nondurative actions can be either inactive or must start and end at the next
layer.

Therefore

l P r0, size� 1s
@a P ActionLayerl ^ a P NondurativeActions

A � pstarta,l,middlea,l, enda,lq,

A P tp0, 0, 0q, p1, 1, 1qu (7.9)

7.6 The CSP Model – Durative actions and the
PDDL

The PDDL defines properties of the durative actions as the conditions which
must hold at the start, at the end or during the whole time the action is
executed as well as the start and end effects of the actions. Here we define
the combinations of the boolean activity variables of the durative actions and
their effects start, middle and end. The combinations are similarly used in
[31], however extended by the effects of the start layer.

7.6.0.1 Effects

There are effects, that can be present at the start of the action or at the
end. Those are bound to the start and end variables. Here the Effect is a
set of constraints, usually instantiating values, that must hold in the following
propositional layer.

@a, l : starta,l ñ Effecta,l�1 (7.10)
@a, l : enda,l ñ Effecta,l�1 (7.11)
The equivalent of (at start EFFECT) and (at end EFFECT)

7.6.0.2 Start and End Conditions

The conditions of the durative actions are represented in a similar manner as
the effects, however they are recorded in the conditions section of the PDDL
specification. In the logical model in case of the backward search those con-
ditions are effectively effects that are applied on the previous propositional
layer. The Condition is a set of constraints that must hold in the starting
propositional layer.

65

7. Design and implementation

@a, l : starta,l ñ Conditiona,l (7.12)
@a, l : enda,l ñ Conditiona,l (7.13)
The equivalent of (at start CONDITION) and (at end CONDITION)

7.6.0.3 Invariants

The invariants are conditions which must be satisfied throughout the whole
execution of the action. Now there is an interesting part - there is a PDDL
construct mentioned above, the over all. This construct however excludes the
endpoints as is defined in the specification [8]. In the source PDDL description
the authors do not consider this PDDL property explicitly, so even when
logically it would be sound to have the preconditions defined, it is not the case.
This could cause some troubles if we wouldn’t notice it, so instead during the
transformation of this condition to our model, we differentiate between the
conditions which should hold from the start to the very end and those which
should hold in between.

As it may seem, if an action would start and end in the same layer, the
over all condition would not be enforced at all. If we would bind it only to
the middle variable, it would be enforced on the start layer as well and that
might not be the desired effect. For example when a helicopter is flying and
we have a value for the in flight state, a condition affecting the start layer as
well would make it fail. In general the transformation looks like the following:

@a, l : startal
^middlea,l ñ Conditiona,l (7.14)

The equivalent of (overall CONDITION)

In our model we sometimes omit the invariants, as it is not necessary -
there is usually a mutex between the actions of a single vehicle and it can be
determined that if an action doesn’t change the position of the helicopter and
other actions are mutex with that action, the position can’t change.

7.7 The CSP Model – Durative actions and the
Object types

Every object has its own set of actions. In the program there are action
factories for every type or supertype of objects. The supertype factories are
useful for action grouping, as some actions are identical for different objects,
as can also be seen in the PDDL problem instance specifications (e.g. the
Embark-From-Port). It can be noted that all of the actions defined for an
object are together limited to one resource – the object itself, therefore we may
define a mutex constraint over all of these actions. A simple way to mutex

66

7.7. The CSP Model – Durative actions and the Object types

multiple actions is to create a sum constraint over their middle variables and
make it lesser or equal to 1 (equation 7.15), therefore either one or zero actions
can be active.

@o P Objects, l :
¸

aPActionso,l

middlea ¤ 1 (7.15)

The action descriptions are located between the two layers. It is depend-
ent on instantiation in which state they will be during the search, therefore
everything is defined in one set of logical formulas. The actions are connected
by preconditions or effect relations with variables from the previous and fol-
lowing (denoted as next) propositional layers. As was noted, 7.4 the variables
in propositional layers are organized in objects, usually to which they belong
(Vehicle actions to vehicles etc.), but this connection is ambiguous in some
cases, where multiple object types are connected to one action. The Disembark
to turbine action is connected to both a vehicle and a turbine. When we make
statements like ’a number of engineers available at a turbine in the following
layer is increased by1’, effectively we mean that the variable engineers avail-
able defined in the section 7.4 that corresponds to the aforementioned turbine
is increased by 1 relatively to the variable indicating the same information in
the previous layer (or there is at least an attempt to increase it by 1, it might
fail due to inconsistency). Also, if we write that an action takes a vehicle as
a parameter, it effectively means that during the initialization of the action,
we require the variables belonging to the vehicle from both the previous and
the next propositional layer to be present for us to be able to link them with
a logical formula.

For the referencing of the variables, we use function-like notation. To
reference a variable at of a vehicle in the previous layer, it would be written as
ATprevpvehicleq. The object variables are written in uppercase, the constants
are lowecase and sets and collections start with a capital letter.

7.7.1 Vehicle Actions

The vehicles, in our model represented by ships and helicopters, have got
several collective instantaneous actions covering the embarkment and disem-
barkment of engineers from and to ports and turbines. As all the actions are
instantaneous, the logical formulas can be bound to the start variable only.

7.7.1.1 Embark from port, Embark bulk from port

These two actions both take a Helicopter as a parameter as well as the list
of IDs of the airports and seaports present in the model. The only difference
between those actions is that the bulk action loads the vehicle up to its capacity
and that the bulk action has a precondition that the vehicle must not be at

67

7. Design and implementation

full capacity already. Embark form port is represented by a logical formula
7.16 and the bulk version is described by a formula 7.17

startñATprevpvehicleq P Ports

^ENGIABOARDnextpvehicleq � ENGIABOARDprevpvehicleq � 1
(7.16)

startñATprevpvehicleq P Ports

^ENGIABOARDprevpvehicleq � capacitypvehicleq � 1
^ENGIABOARDnextpvehicleq � capacitypvehicleq � 1 (7.17)

7.7.1.2 Disembark bulk to port

Since there is an abundance of engineers, it doesn’t make sense to create a
special action for a disembarkment of a single engineer. This action takes a
vehicle as well as the list of port IDs as a parameter. The vehicle must be at
a port and must have some engineers aboard.

startñATprevpvehicleq P Ports

^ENGIABOARDprevpvehicleq ¡ 0
^ENGIABOARDnextpvehicleq � 0 (7.18)

7.7.1.3 Disembark to turbine, Embark from turbine

Those actions are opposites, one meaning a drop off of an engineer on a tur-
bine and one his pickup. Both take a vehicle and a turbine as parameters.
Intuitively, in order for this action to be active, the vehicle must be present at
the turbine and it must have some engineers aboard or there must be engineers
available at the turbine for disembarkment or embarkment respectively.

Embark from turbine:

startñATprevpvehicleq � idpturbineq

^ENGIABOARDprevpvehicleq ¡ 0
^ENGIABOARDprevpvehicleq � ENGIABOARDnextpvehicleq � 1
^ENGIAV AILnextpturbineq � ENGIAV AILprevpturbineq � 1

(7.19)

and Disembark from turbine:

68

7.7. The CSP Model – Durative actions and the Object types

startñATprevpvehicleq � idpturbineq

^ENGIAV AILprevpturbineq ¡ 0
^ENGIABOARDnextpvehicleq � ENGIABOARDprevpvehicleq � 1
^ENGIAV AILprevpturbineq � ENGIAV AILnextpturbineq � 1

(7.20)

7.7.2 Helicopter Actions

The helicopter has a got its own rich set of actions, as there are no other
flying vehicles with fuel resources. Helicopters are vehicles, so it contains all
the actions from the section 7.7.1. On top of that a helicopter has a set of
flying actions to fly between the locations and/or turbines.

7.7.2.1 Fly to

The Fly to action (7.21) has been mentioned a few times already as it is one
of the more interesting actions. We define a Fly to action for every air link
there is and from the link, which it takes as a parameter, it also loads its
duration on initialization. Now, this action has got certain issues regarding
the PDDL specification, namely its initial effect AT plocation, helicopterq.
One possibility to which we have the domain prepared is to make an initial
effect that would make the helicopter appear at location 0. This was our
initial choice, which has its problem - what if the action ends as well? We
could also resolve the situation by making sure that no other action involving
the helicopter can execute - this is actually quicker, yet more error prone.

startñATprevpheliq � fromplinkq

^RANGEprevpheliq �RANGEnextpheliq � duration

^ATnextpheliq � fromplinkq

endñATnextpheliq � toplinkq (7.21)

7.7.2.2 Enter site heli, Leave site heli

The PDDL domain has been designed in such a way, that if we fly from an
airport to a turbine, we must first fly to the windfarm and then enter the site
(eq. 7.22), therefore fly to a certain turbine. Similarly if the helicopter wants
to fly from a turbine to an airport, it must first leave the site and then fly
away.

It takes as a parameter the helicopter, an id of the windfarm, a set of
turbine ids present at the windfarm and a daylight variable from the previous
layer. As it may occur, to successfully navigate the helicopter to a turbine,

69

7. Design and implementation

there must be daylight. Here is one of the situations where we are not sure
about the daylight condition, whether it is necessary to have it at start or at
the end. We suppose that it is needed at all times.

startñATprevpheliq � idpwindfarmq

^RANGEprevpheliq �RANGEnextpheliq � duration

middleñDAY LIGHTprev � 1
endñATnextpheliq P TurbinesAtWindfarm

^DAY LIGHTnext � 1 (7.22)

A Leave site action doesn’t need the daylight at all.

startñATnextpheliq P TurbinesAtWindfarm

^RANGEprevpheliq �RANGEnextpheliq � duration

endñATprevpheliq � idpwindfarmq (7.23)

7.7.2.3 Fly between

The Fly between action is an action that allows the helicopter to fly between
the turbines of the same windfarm. This action however breaks the assumption
that when in flight, the helicopter is at a location 0, because we don’t define
the Fly between action for every pair of actions, but generally we constrain
the helicopter to be on some turbine of the windfarm at the start and on some
turbine at the end. This however allows the helicopter to fly from and to the
same turbine. This can be resolved by not making the helicopter appear at
a location 0, but instead to make it remain on the same position until the
end of the action and to constrain the from–to relationship . Constraining
other actions by mutex (which is done by default) prevents the helicopter
from interacting with the turbine, however it appears present at the previous
turbine until the very end of the action.

startñATnextpheliq P TurbinesAtWindfarm

^RANGEprevpheliq �RANGEnextpheliq � duration

middleñDAY LIGHTprev � 1
endñATnextpheliq P TurbinesAtWindfarm

^DAY LIGHTnext � 1
^ATprevpheliq � ATnextpheliq (7.24)

70

7.7. The CSP Model – Durative actions and the Object types

7.7.3 Turbine actions

Turbine is a stateful object and there are some actions related to it as well.
Fortunately it doesn’t involve any other objects and therefore they require
only turbine objects and some of them the daylight information as well.

7.7.3.1 Enable/Disable turbine

These actions can happen at any time and they are also instantaneous. For
the enable turbine action 7.25 it requires that no engineers are on site and
that the turbine is not operating. The Disable action 7.26 can be applied
whenever the turbine is operating.

startñ OPERATINGprevpturbineq ^OPERATINGnextpturbineq

^ENGIAV AILprevpturbineq � 0 (7.25)

startñOPERATINGprevpturbineq ^ OPERATINGnextpturbineq
(7.26)

7.7.3.2 Reset/Inspect turbine

The Reset (eq. 7.27) and Inspect (eq. 7.28) turbine actions are very similar,
only the effect and duration differ. They can be executed only during the day
and with at least one engineer on site.

startñ RESETprevpturbineq

middleñ OPERATINGprevpturbineq

^ENGIAV AILprevpturbineq � 0
^DAY LIGHTprev � 1

endñRESETnextpturbineq

^DAY LIGHTnext � 1 (7.27)

startñ INSPECTEDprevpturbineq

middleñ OPERATINGprevpturbineq

^ENGIAV AILprevpturbineq � 0
^DAY LIGHTprev � 1

endñINSPECTEDnextpturbineq ^RESETnextpturbineq

^DAY LIGHTnext � 1 (7.28)

71

7. Design and implementation

7.7.4 Ship actions

The ship actions very much resemble the helicopter actions, except for the
range constraints as the ships do not have a limited range. The ship actions
Sail to, Enter site ship, Leave site ship and Sail between correspond to the
actions Fly to, Enter site heli, Leave site heli and Fly between defined above
at 7.7.2. The logical formulae are almost the same.

7.7.4.1 Heavyship actions

The heavyships are ships that are in general slower than the Workboat and
also can carry cargo required for the repairs such as wind turbine blades and
gearboxes (and LRUs).

7.7.4.2 Load/Unload component

The heavyship actions are therefore a Load component and Unload a com-
ponent. Both load and unload take a heavyship as a parameter as well as the
component.

It is beneficial on the load (eq. 7.29) to make the component appear
instantly on the ship, as it prevents other heavyships possibly present at the
same location from attempting to load the component as well. The ship that
actually loads the component is prevented from further actions until the action
finishes.

startñATprevpcomponentq � ATprevpheavyshipq

^ATnextpcomponentq � idheavyship (7.29)

For the same reason it is more advantageous during the unload (eq. 7.30) to
make the component appear at the location at the end of the action, preventing
other ships from accessing it before the action finishes.

startñATprevpcomponentq � idheavyship

endñATnextpcomponentq � ATprevpheavyshipq (7.30)

7.7.5 Barge actions

The barge has got equipment to replace a wind turbine blade, gearbox or a
LRU. Therefore after it approaches the turbine, it can execute the repairs,
exchanging the bad part of the turbine for a working one.

72

7.7. The CSP Model – Durative actions and the Object types

7.7.5.1 Replace Blade/Gearbox/LRU

For these operations the barge has got three similar actions – Replace Blade,
Replace Gearbox and Replace LRU. The actions have the components as para-
meters and they look exactly the same for all types of components. It is how-
ever necessary to keep them apart as we want only the parts of the same type
to be exchanged. The logical formula presented (7.31) represents a general
case with a component, nevertheless in the actions the component types are
the same.

There are actually two components present in the model as parameters
(two pairs), one considered present on a barge and one being part of a turbine
at which the barge is currently located. The component on the barge is de-
noted as bargecomponent and the other is called turbinecomponent, although
after the end of the action the role switches.

middleñOPERATINGprevpturbineq � 0
^ATprevpbargeq � PARTOFprevpturbinecomponentq

^ATprevpbargecomponentq � idbarge

endñPARTOFnextpbargecomponentq � PARTOFprevpturbinecomponentq

^PARTOFnextpturbinecomponentq � PARTOFprevpbargecomponentq

^ATnextpbargecomponentq � ATprevpturbinecomponentq

^ATnextpturbinecomponentq � ATprevpbargeecomponentq (7.31)

During the definition of pairs of possible replace actions we may very well
control which swaps are possible. In the original PDDL model it has been
hardcoded in the instance which component should end where.

7.7.6 Component actions (Land operations)

Even though the model mostly revolves around the vehicles and the actions
on the sea, we need an action that would connect the warehouses to the ports
to allow the transportation of the components. The links are declared in the
instance usually in a complete graph manner. If it wasn’t true, it is easy to
create the complete graph if it is connected.

7.7.6.1 Deliver component

The deliver component takes as a parameter the component and a land link.
It is a simple action that moves the component between two land-linked loc-
ations.

middleñATprevpcomponentq � fromplinkq

endñATnextpcomponentq � toplinkq (7.32)

73

7. Design and implementation

7.7.6.2 Timed initial literals – Daylight

Although it doesn’t correspond to any object, the Daylight TILs also fall into
the category of actions in our model. It is very easily represented by actions,
which have predefined durations.

7.7.6.3 Day and Night

The Daylight TIL is represented by two actions. The Day action (eq. 7.33)
has a duration of 16 hours (appropriately transformed) and the Night action
(eq. 7.34) has a duration of 8 hours. Using the sequential constraints we
will connect them together so when one action ends, the other must start
in the following layer. 7.8.3 The effects of the actions are straightforward –
they determine the state of the daylight variables which do not belong to any
object. Therefore instead of having objects on its input, the actions are using
the BoolVars of the previous and following propositional layers.

middleñdaylightprev � 1
endñdaylightnext � 0 (7.33)

middleñdaylightprev � 0
endñdaylightnext � 1 (7.34)

Note that we don’t have to define the frame axiom for the daylight, as the
actions determine the values by themselves. In the program the frame axiom
constraints are redundantly created even for this variable.

7.8 The CSP Model – other constraints and the
frame axiom

Now we have defined the scheme for the creating of the planning graph, we
have created the durative actions and constrained their effects, preconditions
and possible states they can appear in.

7.8.1 Initial and Final state

Every problem instance has its initial state and some goals to be achieved.
To encode this information into the model, we need to constrain the values
of the variables in the first and last propositional layer. In our program it
is done through the InitialConditionFactory and the FinalConditionFactory.
The states are defined again object-wise. In theory some variables do not
have to have a defined state on the start because we don’t know/care about
the state at the time. In our model almost all initial state specifications are

74

7.8. The CSP Model – other constraints and the frame axiom

required. It doesn’t apply to the goal state though, so the final position of
the components can be left blank as well as the operation of turbines. For
the vehicles however it is necessary to have them in some state at the end,
because we rent them and want to have them returned to the lessor.

All the constraints are simple arithmetic constraints determining the initial
and final value.

The model is prepared for the graph extension – the goal constraints are
generated and collected together and then posted. The reference is retained
so they can be unposted, the graph extended and new goal constraints gen-
erated. It is not fully implemented in the program as for now, so with every
planning graph size increase the old graph is discarded and replaced by a
newly constructed one.

7.8.2 The Frame axiom

Throughout the design we have mentioned the frame axiom a few times. We
use the implementation inspired by [34], therefore we record the affecting
actions for every variable and we make the model observe whether they are
activated. There are alternative approaches where the actions are recorded as
achievers of a positive or negative value of a variable. When those actions are
active, the corresponding value is set. When no achiever is active, the value
is the same as it was in the previous layer.

In our model we have got two catches. The first catch is that we are
operating with the variables which have integer domains. If we were to literally
copy the approach, we would have to record the achievers of the values in those
domains. Therefore for every variable we record an action that has the variable
in its effects.

The second catch is with the durative action design. Normally we would
collect the activity variables of the actions and decide on the value based on
them being true or false. The durative actions however have possibilities of
effects when they start, end or are in progress. We have designed a scheme,
where on creation of the durative actions we can record a specific activity
BoolVar of the action and a variable it affects. For example for the Unload
action at 7.30 it may be seen that the at variable of a component is modified at
the end of the action, therefore we record the pair pend,ATnextpcomponentqq.

We collect the supports into a (hash)map Support with lists as values and
the variables as the keys and then create a constraint for every variable.

@vl P PropositionalLayerl :
� ¸
@sPSupportpvlq

s � 0
�
ñ vl � vl�1 (7.35)

75

7. Design and implementation

7.8.3 Global constraints and Sequential constraints

To help the model with solving a problem, it is good to add some extra
constraints to help it prune the search tree. One of the useful constraints is a
constraint that limits the number of action usages to 1 or to force a condition
that in every action layer at least one action must finish. This limits the model
to a subset of the possible solutions, so the search isn’t complete.

7.8.3.1 Helicopter flight

The helicopter has one interesting property, which has to be considered during
modelling – it flies and all the time it flies it consumes the fuel, lowering its
remaining travelling range. We create a sequential constraint on the Fly to
actions, where the to part of the action is a windfarm, to enforce the Enter
site heli action. The helicopter can land on a turbine to preserve fuel and also
it wouldn’t make sense to fly to a windfarm and then to wait until a certain
time.

The constraint is formed in the following manner:

@wto PWindfarms,

@flytol P FlyTopheli, from, to � wtoql,

@enterSitel�1 P EnterSitepheli, windfarm � wtoql�1 :� ¸
@flytol

endpflytolq
�
¡ 0 ñ startpenterSitel�1q (7.36)

The same goes for the Leave site action. After the helicopter leaves the
site, we want it not to hover and wait, but to fly somewhere straight away
because otherwise we could always find a plan better than the one where it is
allowed to hover.

@wfrom PWindfarms,

@flytol�1 P FlyTopheli, from � wfrom, toql�1,

@leaveSitel P LeaveSitepheli, windfarm � wfromql :

startpleaveSitelq ñ
� ¸
@flytol�1

startpflytol�1q
�
� 1 (7.37)

7.8.3.2 Fly force not fly

Non-mandatory condition can be also applied on the fly action. As there are
always routes defined for the complete graph (or the graph can be easily trans-
formed to such form), we can constrain the flight action not to happen after
the flight. The effectiveness is questionable, because some solvers reported

76

7.8. The CSP Model – other constraints and the frame axiom

TwofoldImplication(BoolVar activity, Constraint constraint):
// standard A => B
model.ifThen(activity, constraint)

// logically equivalent notB => notA
model.ifThen(not constraint, not activity)

Figure 7.4: Twofold constraint posting for implications

that additional sequence constraints actually worsen the performance of the
model. [27]

@flytol P FlyTopheli, from, toql,

@flytol�1 P FlyTopheli, from, toql�1 :¸
@flytol

endpflytolq ¡ 0 ñ
¸

@flytol�1

startpflytol�1q � 0 (7.38)

7.8.4 Propagation enhancement

During the experimentation with the model we have noticed, that the implica-
tions prune the model in a one-sided way. Through the logical equivalency we
know that Añ B � B ñ A. The Choco solver however doesn’t recognise
this equivalency and as we have used the implications extensively throughout
the definition of the preconditions and effects, it is beneficial for the prun-
ing strength of the model to post even the transformed constraint. What it
means is that if we have two BoolVars A and B and a constraint Añ B and
B � 0, after propagation the domains would still be DompAq � t0, 1u and
DompBq � t0u, although the value 1 is not acceptable any more.

Therefore we have defined a method, that posts both forms of the implic-
ation, taking a BoolVar and a constraint as parameters to match the most
frequent use in the model.

7.8.5 Cost optimization

There were concerns about the price optimization in the original solution, as
the solver considered the total price after finding a solution, therefore too
late to utilize it during the search. We propose a model modification and a
specification to help the model find a solution. We also analyze the setbacks
mentioned in the previous solution and whether our model tackles them.

77

7. Design and implementation

7.8.5.1 Cost computation

The cost computation proposed is based on a simple idea – the vehicle must be
rented if it doesn’t appear on its starting/finishing position (they are usually
the same). If it is indeed rented, there is an IntVar variable for each vehicle,
which is then set to the time of the previous propositional layer subtracted
from the time of the current propositional layer. The total lease cost of a
vehicle is therefore determined by a sum of the values of those variables. The
total lease cost, the target optimization variable, is computed as a sum of the
lease costs of the vehicles.

@v P V ehicle :

leaseCostpvq � leasePerHourpvq �
¸

@l : atHomepvql

Timel � Timel�1

totalCost �
¸

@vPV ehicle

leaseCostpvq (7.39)

The great advantage is that using a good propagation algorithm for a
sum, after finding an initial solution, the other solutions are more effectively
pruned. The model can use the domain filtering to make a node in the search
tree inconsistent when the total time so far is greater than the previously
found solution.

7.8.6 Possible issues

One of the first issues of the cost computation is the definition itself. Perhaps
it would be necessary to join the lease into one big lease action which must
start as late as possible and finish as soon as possible. This is a bit unrealistic
in the sense that we can rent the vehicles at different days, not paying for the
time between. There could be constraints defined for theduration of the time
the vehicle is not leased, but those would be tricky to implement.

Another issue, not so problematic, is to enforce the leased state when there
is a component located on the heavyshiip. The exact conditions would have to
be discussed however, because usually the model doesn’t include the position
of faulty components in the goal state, so even in the PDDL model it may
remain on the ship in the end.

7.9 Search

The extensive modelling work we have done has been done at the expense
of the CSP search research. The theory behind the search was to simulate a

78

7.9. Search

chain-forward procedure, as was the case in the base solution 3.3. The chain-
forward procedure would require a hard-coded order of the decision variables
as well as deciding which of the variables in the model are indeed needed for
the decision.

The direction of the search is advantageous for several reasons. First, while
instantiating the n-th layer, we have the previous n�1 layers already fixed and
are sure that the state the layer corresponds to is reachable from the initial
state. Secondly, we are working with time and resources, which are depleting
over time. As we are sure, that the current state is reachable from the initial
state, we also have current values for the time and resources. If we would use
a backward search as in the usual planning graph models, which do not have
durative actions, we wouldn’t have much information about the time or the
resources until the first layer was reached.

The planning graph models usually use the variables indicating the activity
of the actions as decision variables. The same goes for our model, we use the
action activity variables as decision variables. Since there are three activity
variables per action and our primary direction of the search is start to goal, it is
reasonable to instantiate the variables by layers. In every layer we instantiate
the start activity variables first, middle second and end last.

This approach however wasn’t very thoughtful, as there were simply too
many possibilities to explore and the search got very slow for greater instances.
We cover the failure of the search in the details.

Because of the failure of the direct forward-chaining-like approach, we
experimented with some other searches present in the model. The backward
search approach resulted in an even worse time than the forward approach.
Finally we settled for the activity based search, which has proved to be the
best for the current model.

79

Chapter 8
Results

8.1 Experiment

We have used just the simple minimal domain with one or two vehicles and
we have observed the behavior of the model. While testing the searches, there
was no need to set up a statistical evidence of the behaviour and to stat-
istically prove the significancy of the results, because usually the directional
search as proposed in 7.9 took hours to complete or didn’t complete at all for
more complex instances, while the Activity-Based search found a solution in
minutes.

The experiment has been done on a computer with 16GB of RAM memory
and an Intel Core i3-6100 processor.

8.2 Modelling

We have created a model which is flexible enough to contain all the features
required by the problem. The framework is structured so it is easy to add new
actions after their definition. Regarding the expressivity and completeness of
the model, it is a success, as it tackles some more issues present in the domain,
including the use of the previously found total cost as a pruning tool during the
search. Also we have identified some under-specification and inconsistencies
in the domain, which could be used in its redefinition or update.

8.3 Search results and implications

While trying to find solutions, we ran into very big issues with its compu-
tational complexity. As the durative actions model has 3 activity BoolVars
instead of 1, the number of possibilities has risen significantly. With the num-
ber of possibilities also the time rises, so the plan length we can check is
prohibitively limited. For example it is acceptable to make a plan for one

81

8. Results

helicopter and one turbine inspection. The time it takes however is � 23s if
we know the number of layers it will require. If we need more inspections, the
time needed to solve the model rises even more.

A similar complexity rise we see on a vehicle addition. A vehicle alone
consists of 2-3 variables in every layer, which is not a huge raise. The actions
and the constraints generated in every of the n� 1 action layers is very high
nonetheless, and the combination of possible starts and ends is extremely
high. For example for every solution we find for treatment of an inspection
requirement of a turbine by a ship, by adding another ship we multiply the
number solutions by 2k while taking into consideration only the actions where
the unused ship does nothing but embark and disembark engineers. This is a
huge setback of the model we chose, which encodes everything at once.

Another reason for the slowness is that we don’t know the number of
steps required for the plan. Even if it would be short enough to finish in a
time of days, it doesn’t have a fast fail mechanism, which would quickly scan
the problem and find that it is unsolvable. Therefore it takes a lot of time
exploring smaller plans, which have no solution. Because during the search
we don’t know that the plan of a lesser than acceptable length doesn’t have
a solution, we have to perform a full search which would prove that it indeed
doesn’t.

8.3.1 Example

For example we can take an instance of a problem, whose optimal graph length
is 9, it has only one inspection to do but it can choose from two vehicles – the
helicopter and a workboat. A plan with only one choice of the vehicle finds
a plan in less than 2 minutes or 23s if we correctly estimate the plan length
in advance. When the choice of the two vehicles is introduced, the search
takes 6 hours or 3.2 hours if we know the plan length in advance. For the
vehicle choices we present a graph monitoring the rising time complexity and
the number of variables and constraints present (figure 8.1).

We can see that, since the y-axis is logarithmical, the time complexity
raises exponentially.

8.3.2 Possible resolution of the issues

8.3.2.1 Decomposition

As we can see, the all-in-one planning is inapplicable. We could improve
the problem through decomposition, as we proposed at 7. The plans can
be decomposed by vehicles and problems, effectively shrinking the problem
to acceptable sizes. It would still not be enough for all the issues, as even
a problem with one helicopter and multiple turbines takes a lot of time to
finish. The question we would have to deal with is a quick rough estimation

82

8.3. Search results and implications

● ●

●

●

●

●

●

●

●

−
4

−
2

0
2

4
6

8
Time requirement by number of layers

Number of layers in the graph

T
im

e
to

 s
ol

ve
 (

ln
(s

))

1 2 3 4 5 6 7 8 9

20
00

40
00

60
00

80
00

10
00

0
12

00
0

14
00

0

Counts per layer

Number of layers

C
ou

nt

1 2 3 4 5 6 7 8 9

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Variables
Actions

Figure 8.1: The time and the number of constraints and variables by the
number of layers

of the solution efficiency, so we could separate the goals and pair them with
the vehicles assigned to those goals.

8.3.2.2 Omission and reformulation

There have been many improvements on the model through the static inform-
ation at hand. There are many more possibilities to precompute and select
many properties of the model. For example we can be sure that renting a
barge or use it for simple reset & inspection work is probably never a solution,
because the cost of the rental of a barge for an hour is � 17 times more than
a rental of a helicopter and � 25 times more than the rental of a workboat.
Similar, yet lesser counts go for the cmsvs. Based on this knowledge, we might
figure out that we will never use a cmsv or a barge for the simple work, there-
fore the reset & inspection tasks should be divided between the workboat and
helicopter only.

The same goes for the barge. As there is actually no restriction on the
capacity, the barge can load an unlimited number of components onboard.
As it doesn’t have fuel requirements, the problem is completely reduced on
the route finding. If there was a limitation of only one item onboard, then
there would be the interesting role played by the cmsv, which can reload the
turbine components onto the barge and transport them from the ports while
the barge does the maintenance on the turbines.

Even the barge scenario has its buts however. As we have noticed in the
section 7.1.4 and after some research in the industrial domain, assigning a
barge to a replacement of a LRU is a resource-wise overkill, since the LRUs
are supposed to be easily replacable units. It is possible that only the barge

83

8. Results

has got the equipment to make such a replacement. We are quite sceptical
about that claim and it would require more consultations with the industrial
specialists which helped in the creation of the problem domain.

Another twist in the barge scenario is the scheduling part for the cmsv
in case of the capacity constraints (defined after consultation with industrial
specialist). As every repair takes a lot of time, in all the domains it requires
184 hours to replace a blade or a gearbox, the scheduling for the cmsv is trivial.
Every time the barge would be about to finish an operation, the cmsv would be
rented, the next component loaded and both of the heavyships would arrive at
the point of the next repair at the same optimal soonest possible time. Then
the component would be loaded onto the barge, the repair would start and
the cmsv would return into its base port and its lease would end for another
week.

8.4 Further pointers

The information in 8.3.2.2 lead us to an easier an much more lightweight rep-
resentation, which would surely overshadow our model in performance while
losing flexibility. The alternative model we could use would only work with
subproblems, which could, by themselves, be further reduced.

Take for example the structure of the windfarms and the turbines located
at the windfarms. Although a good organizational structure to maintain, the
information of a windfarm can be stripped in the CSP model, because we don’t
need it in any way. If there is some limitation present, be it the windspeed or
the wave height, we know it in advance thanks to the staticity of the parameter
in the domain and therefore we can apply the filters as we have done in our
case. While stripped of the windfarm information, we can define straight links
between the turbines and ports and work with them.

To help the computation even more, we might try to use the information
about the inspection and reset duration, so we could answer a question – how
many engineers does a vehicle need to service all the turbines in the windfarm
while minimizing the time and therefore the cost? Now we are talking about
the scheme where the vehicle would leave an engineer on the turbine and
fly/sail to other turbine, returning for the engineer eventually.

The answer to the question above is – it depends. If only resets are needed,
the answer is 1, because the reset take the same time as the travel between
the turbines. We choose either to wait for the reset to finish and to embark
the engineer right afterwards, doing only one visit to the turbine which makes
up to one hour per turbine (30 mins for the reset, 30 min transport to the
next turbine), or (if we had unlimited number of engineers aboard) we would
only drop them off and travel around, doing the work and travel in parallel.
This would however mean that we would have to visit every turbine twice, so
while we would do some work in parallel, in the end it again adds up to 1 hour

84

8.4. Further pointers

(a) a solution for 4 turbines (b) a solution for 5 turbines

(c) a solution for 6 turbines (d) a solution for 7 turbines

Figure 8.2: Optimal solutions for serial inspection with a vehicle using 4 en-
gineers

(30 minutes per travel to the turbine, 2 travels needed). This is regardless of
the vehicle, because the time distance between the turbines is the same for
helicopters and ships.

The answer for the inspections on the same windfarm is 4. We suppose
that there is a lot of turbines to be inspected and again we can do the reasoning
the same way as for the resets. We either have to wait, which adds up to 2.5
hours (30 mins of transport, 2 hours of inspection), or we can pick up the
engineer when his work is done, therefore visiting every turbine twice. Since
the inspection time takes 2 hours, the number of steps after which we can
return is 4. Another resoning is that since we have to visit every turbine twice
and we start on a random turbine of a windfarm, the optimal number of steps
is n � 2� 1 and we can easily propose the solution that covers that case (fig.
8.2).

85

8. Results

For higher numbers of turbines, the schema is similar. For n turbines
on the same windfarm, we decompose the turbines to n � x � 4 � a, where
a P r4, 7s. For a turbines the schema from the figure 8.2 apply. For x � 4
turbines the solution for 4 turbines apply and they are interconnected by the
initial/final edges denoted by the red and green arrows on the schema.

The optimal number of engineers to solve the problem with inspections is
important in relation to the capacity of the vehicles. The workboat, � 3.3
times slower than the helicopter yet � 1.5 times less costly has a maximal
capacity of 5 engineers. Therefore we know that when it arrives on the wind-
farm, it may service the turbines nonstop, maybe until a daylight constraint
is reached. A question remains – when is it more advantageous to use the
workboat rather than a faster heli? We can compute an estimate for every
windfarm as was done in the equation 8.1 and therefore the least number of
turbines required for the workboat to be more efficient.

helirange � 8.5,
timeToTravelheli � 1.7,
timeToTravelworkboat � 5.5
costHeli

costWorkboat
� 1.5,

refuelT imeheli � 0.5:

1.5 � t

8.5� 1.7 � 2 � p0.5� 2 � 1.7q � 1.5 � t 11� t

t 6.7 (8.1)

This only addresses a very specific problem present only on one windfarm,
the situation would be different if we took into consideration other windfarms
as well, however it well demonstrates the hidden simplificating property of the
problem.

86

Conclusion

We have successfully implemented a model that contains all the information
encoded in the source PDDL domain. It works well for small instances of the
problem, nevertheless for bigger instances or for more vehicles, as required by
the source instances, there would have to be further research into the search
algorithm of the CSP.

We have explored implementation possibilities and technologies around the
planning graph approach to our problem, which is at the border of scheduling
and planning, taking the complexities of both. We have designed a constraint
model that extends the traditional planning graph that utilizes time and timed
initial literals, which has not been done in any of the articles researched. In
the process of the implementation we took inspiration from various papers
using different technologies to deal with either durative actions in the CSP or
improving the representation of the planning graph.

Finally we have analyzed the issues present in the model and have proposed
pointers for the implementation of a different CSP model (or another search
algorithm in general, as the information we analyzed is universal), which would
use the decomposition and simplification of the problem. Through the sim-
plification and utilization of the outlined properties the computational model
created using the information analyzed would be much simpler and faster,
although lacking the flexibility of the model implemented by us.

87

Bibliography

[1] Pattison, D.; Xie, W.; et al. The WINDY domain ? a challenging real-
world application of integrated planning and scheduling. In Proceedings of
the Twenty-Third International Conference on Automated Planning and
Scheduling, edited by D. Borrajo; S. Kambhampati; A. Oddi; S. Fratini,
Association for the Advancement of Artificial Intelligence (AAAI), 2013.
Available from: http://strathprints.strath.ac.uk/47365/

[2] Barták, R. Guide to constraint programming - Consistency Tech-
niques. 1998, http://ktiml.mff.cuni.cz/~bartak/constraints/
consistent.html.

[3] Mohr, R.; Henderson, T. C. Arc and Path Consistence Revisited. Ar-
tif. Intell., volume 28, no. 2, Mar. 1986: pp. 225–233, ISSN 0004-3702,
doi:10.1016/0004-3702(86q90083-4. Available from: http://dx.doi.org/
10.1016/0004-3702(86q90083-4

[4] International Renewable Energy Agency. Wind Power Techno-
logy Brief’. March 2016, http://www.irena.org/DocumentDownloads/
Publications/IRENA-ETSAP_Tech_Brief_Wind_Power_E07.pdf.

[5] International Renewable Energy Agency. Renewable Energy Stat-
istics 2016’. July 2016, http://www.irena.org/DocumentDownloads/
Publications/IRENA_RE_Statistics_2016.pdf.

[6] Ghallab, M.; Howe, A.; et al. PDDL - The Planning Domain Defini-
tion Language. October 1998, http://icaps-conference.org/ipc2008/
deterministic/data/mcdermott-et-al-tr-1998.pdf.

[7] Edelkamp, S.; Hoffmann, J. PDDL2.2: the Language for the Clas-
sical Part of the 4th International Planning Competition. 2004,
http://www.plg.inf.uc3m.es/ipc2011-deterministic/attachments/
Resources/edelkamp-hoffmann-tr-2004.pdf.

89

http://strathprints.strath.ac.uk/47365/
http://ktiml.mff.cuni.cz/~bartak/constraints/consistent.html
http://ktiml.mff.cuni.cz/~bartak/constraints/consistent.html
http://dx.doi.org/10.1016/0004-3702(86)90083-4
http://dx.doi.org/10.1016/0004-3702(86)90083-4
http://www.irena.org/DocumentDownloads/Publications/IRENA-ETSAP_Tech_Brief_Wind_Power_E07.pdf
http://www.irena.org/DocumentDownloads/Publications/IRENA-ETSAP_Tech_Brief_Wind_Power_E07.pdf
http://www.irena.org/DocumentDownloads/Publications/IRENA_RE_Statistics_2016.pdf
http://www.irena.org/DocumentDownloads/Publications/IRENA_RE_Statistics_2016.pdf
http://icaps-conference.org/ipc2008/deterministic/data/mcdermott-et-al-tr-1998.pdf
http://icaps-conference.org/ipc2008/deterministic/data/mcdermott-et-al-tr-1998.pdf
http://www.plg.inf.uc3m.es/ipc2011-deterministic/attachments/Resources/edelkamp-hoffmann-tr-2004.pdf
http://www.plg.inf.uc3m.es/ipc2011-deterministic/attachments/Resources/edelkamp-hoffmann-tr-2004.pdf

Bibliography

[8] Fox, M.; Long, D. PDDL2.1: An Extension to PDDL for Expressing
Temporal Planning Domains. J. Artif. Int. Res., volume 20, no. 1, Dec.
2003: pp. 61–124, ISSN 1076-9757. Available from: http://dl.acm.org/
citation.cfm?id�1622452.1622454

[9] Blum, A. L.; Furst, M. L. Fast planning through planning graph analysis.
Artificial intelligence, volume 90, no. 1, 1997: pp. 281–300.

[10] Benton, J.; Coles, A. J.; et al. Temporal Planning with Preferences and
Time-Dependent Continuous Costs. In ICAPS, volume 77, 2012, p. 78.

[11] Coles, A.; Coles, A.; et al. Forward-chaining Partial-order Planning.
In Proceedings of the Twentieth International Conference on Interna-
tional Conference on Automated Planning and Scheduling, ICAPS’10,
AAAI Press, 2010, pp. 42–49. Available from: http://dl.acm.org/
citation.cfm?id�3037334.3037341

[12] Rossi, F.; Van Beek, P.; et al. Handbook of constraint programming. El-
sevier, 2006.

[13] Ginsberg, M. L.; Frank, M.; et al. Search Lessons Learned from Crossword
Puzzles. In AAAI, volume 90, 1990, pp. 210–215.

[14] Wallace, R. J. Why AC-3 is Almost Always Better Than AC-4 for Es-
tablishing Arc Consistency in CSPs. In Proceedings of the 13th Interna-
tional Joint Conference on Artifical Intelligence - Volume 1, IJCAI’93,
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1993,
pp. 239–245. Available from: http://dl.acm.org/citation.cfm?id�
1624025.1624059

[15] Bessière, C. Arc-consistency and arc-consistency again. Artificial Intel-
ligence, volume 65, no. 1, 1994: pp. 179 – 190, ISSN 0004-3702, doi:
http://dx.doi.org/10.1016/0004-3702(94q90041-8.

[16] Bessière, C.; Régin, J.-C.; et al. An Optimal Coarse-grained Arc Consist-
ency Algorithm. Artif. Intell., volume 165, no. 2, July 2005: pp. 165–
185, ISSN 0004-3702, doi:10.1016/j.artint.2005.02.004. Available from:
http://dx.doi.org/10.1016/j.artint.2005.02.004

[17] Chmeiss, A.; Jégou, P. Path-consistency: When Space Misses Time.
In Proceedings of the Thirteenth National Conference on Artificial In-
telligence - Volume 1, AAAI’96, AAAI Press, 1996, ISBN 0-262-51091-
X, pp. 196–201. Available from: http://dl.acm.org/citation.cfm?id�
1892875.1892904

[18] van Hoeve, W.-J. The alldifferent constraint: A survey. arXiv preprint
cs/0105015, 2001.

90

http://dl.acm.org/citation.cfm?id=1622452.1622454
http://dl.acm.org/citation.cfm?id=1622452.1622454
http://dl.acm.org/citation.cfm?id=3037334.3037341
http://dl.acm.org/citation.cfm?id=3037334.3037341
http://dl.acm.org/citation.cfm?id=1624025.1624059
http://dl.acm.org/citation.cfm?id=1624025.1624059
http://dx.doi.org/10.1016/j.artint.2005.02.004
http://dl.acm.org/citation.cfm?id=1892875.1892904
http://dl.acm.org/citation.cfm?id=1892875.1892904

Bibliography

[19] Barták, R. Lecture notes Programování s omezujícími podmínkami.
1998, http://ktiml.mff.cuni.cz/~bartak/podminky/lectures/
lecture08.pdf.

[20] Laburhe, F. CHOCO: implementing a CP kernel. In Techniques for im-
plementing constraint programming Systems, a post-conference workshop
of CP-2000, edited by N. Beldiceanu; W. Harvey; M. Henz; F. Laburhe;
E. Monfroy; T. Muller; L. Perron; C. Schulte, Science Drive 2, Singa-
pore 117599: Morgan Kaufmann Publishers Inc., 2007, pp. 71–85, 55.
Available from: http://cse.unl.edu/~choueiry/Documents/Choco.pdf

[21] Downing, N.; Feydy, T.; et al. Explaining Alldifferent. In Proceedings
of the Thirty-fifth Australasian Computer Science Conference - Volume
122, ACSC ’12, Darlinghurst, Australia, Australia: Australian Computer
Society, Inc., 2012, ISBN 978-1-921770-03-6, pp. 115–124. Available from:
http://dl.acm.org/citation.cfm?id�2483654.2483668

[22] Gent, I. P.; Miguel, I.; et al. Generalised arc consistency for the
AllDifferent constraint: An empirical survey. Artificial Intelligence,
volume 172, no. 18, 2008: pp. 1973 – 2000, ISSN 0004-3702, doi:
http://dx.doi.org/10.1016/j.artint.2008.10.006. Available from: http://
www.sciencedirect.com/science/article/pii/S0004370208001410

[23] OscaR Team. OscaR: Scala in OR. 2012, available from
https://bitbucket.org/oscarlib/oscar.

[24] Prud’homme, C.; Fages, J.-G.; et al. Choco Documentation. TASC, IN-
RIA Rennes, LINA CNRS UMR 6241, COSLING S.A.S., 2016. Available
from: http://www.choco-solver.org

[25] van Beek, P.; Chen, X. CPlan: A Constraint Programming Approach to
Planning. In Proceedings of the Sixteenth National Conference on Arti-
ficial Intelligence and the Eleventh Innovative Applications of Artificial
Intelligence Conference Innovative Applications of Artificial Intelligence,
AAAI ’99/IAAI ’99, Menlo Park, CA, USA: American Association for
Artificial Intelligence, 1999, ISBN 0-262-51106-1, pp. 585–590. Available
from: http://dl.acm.org/citation.cfm?id�315149.315406

[26] Do, M.; Kambhampati, S. Planning as constraint satisfaction: Solving the
planning graph by compiling it into CSP. Artificial Intelligence, volume
132, no. 2, 11 2001: pp. 151–182, ISSN 0004-3702, doi:10.1016/S0004-
3702(01q00128-X.

[27] Lopez, A.; Bacchus, F. Generalizing graphplan by formulating planning
as a CSP. In IJCAI, volume 3, 2003, pp. 954–960.

91

http://ktiml.mff.cuni.cz/~bartak/podminky/lectures/lecture08.pdf
http://ktiml.mff.cuni.cz/~bartak/podminky/lectures/lecture08.pdf
http://cse.unl.edu/~choueiry/Documents/Choco.pdf
http://dl.acm.org/citation.cfm?id=2483654.2483668
http://www.sciencedirect.com/science/article/pii/S0004370208001410
http://www.sciencedirect.com/science/article/pii/S0004370208001410
http://www.choco-solver.org
http://dl.acm.org/citation.cfm?id=315149.315406

Bibliography

[28] Barták, R.; Toropila, D. Reformulating Constraint Models for Classical
Planning. In FLAIRS Conference, 2008, pp. 525–530.

[29] Barták, R. A novel constraint model for parallel planning. PlanSIG2010,
2010: p. 15.

[30] Barták, R.; Toropila, D. Enhancing Constraint Models for Planning Prob-
lems. In FLAIRS Conference, 2009.

[31] Barták, R. A Flexible Constraint Model for Validating Plans with Dur-
ative Actions. Planning, Scheduling and Constraint Satisfaction: From
Theory to Practice. Frontiers in Artificial Intelligence and Applications,
volume 117, 2005: pp. 39–48.

[32] Fox, M.; Long, D. Fast Temporal Planning in a Graphplan Framework. In
AIPS Workshop on Planning for Temporal Domains, volume 2, Citeseer,
2002, pp. 9–17.

[33] Michel, L.; Van Hentenryck, P. Activity-based search for black-box con-
straint programming solvers. In International Conference on Integration
of Artificial Intelligence (AI) and Operations Research (OR) Techniques
in Constraint Programming, Springer, 2012, pp. 228–243.

[34] Barták, R.; Salido, M. A.; et al. New trends in constraint satisfaction,
planning, and scheduling: a survey. The Knowledge Engineering Review,
volume 25, no. 03, 2010: pp. 249–279.

92

Appendix A
Acronyms

AC Arc consistency

CP Constraint programming

CSP Constraint satisfaction problem

COP Constraint optimization problem

FC Forward checking

GAC General arc consistency

GCC Global cardinality constraint

PDDL Planning domain definition language

RC Required concurrency

TIL Timed initial literals

93

Appendix B
Contents of enclosed CD

readme.txt the file with CD contents description
ChocoProject..................the directory of the main maven project
PreprocessingAndModel............the directory of the required logical
transformation maven project
PDDLParser....the directory of the required PDDL parser maven project
domains...the directory with the PDDL domains of the original problem

plans.......the directory with re-created plans by the OPTIC solver
problems the directory of the original PDDL problem definitions
newproblems...the directory of the testing PDDL problem definitions
domain-windy-complex.pddl ..the modelled complex PDDL domain
domain-windy-simple.pddlthe simplified PDDL domain

windy the directory with the Windy domain information
thesisthe directory with the thesis source code
DP_Prochazka_Martin_2017.pdf the thesis in the pdf format

95

	Introduction
	Light problem introduction
	Baseline solution
	Problem encoding

	Technologies used in the baseline solution
	PDDL
	PDDL2.2
	The OPTIC solver

	Constraint programming
	CSP
	Search
	Consistency
	Constraint propagation
	The modelling toolkit
	Constraint optimisation problem

	Technology of our solution - the Choco solver
	Propagation
	Search & other features

	Research for our solution
	CP planning starting point - the Graphplan
	Durative actions
	The Activity-Based search

	Design and implementation
	The source PDDL domain & problem - detailed description
	Implementation overall
	Filtering in the L&F program layer
	The CSP Model – Objects
	The CSP Model – Action layers and Durative actions
	The CSP Model – Durative actions and the PDDL
	The CSP Model – Durative actions and the Object types
	The CSP Model – other constraints and the frame axiom
	Search

	Results
	Experiment
	Modelling
	Search results and implications
	Further pointers

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

