
Ing. Michal Valenta, Ph.D.
Head of Department

prof. Ing. Pavel Tvrdík, CSc.
Dean

Prague November 8, 2016

CZECH TECHNICAL UNIVERSITY IN PRAGUE

FACULTY OF INFORMATION TECHNOLOGY

ASSIGNMENT OF BACHELOR’S THESIS

 Title: Functional Programming for Web Frontend

 Student: Jan Luxemburk

 Supervisor: Ing. Robert Pergl, Ph.D.

 Study Programme: Informatics

 Study Branch: Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2017/18

Instructions

- Perform a brief review of programming paradigms.
- Perform a review of the functional programming (FP) paradigm.
- Perform a brief review of the selected FP languages: Haskell, ClojureScript, JavaScript.
- Perform a review of the state of the art of Functional Reactive Programming (FRP).
- Formulate an analysis of differences between Elm's and Javascript's libraries and development tools.
- Develop and test a sample Elm application.
- Comment your results.

References

Will be provided by the supervisor.

Czech Technical University in Prague

Faculty of Information Technology

Department of Software Engineering

Bachelor’s thesis

Functional Programming for Web Frontend

Jan Luxemburk

Supervisor: Ing. Robert Pergl, Ph.D.

10th May 2017

Acknowledgements

I would like to thank my supervisor Ing. Rober Pergl, Ph.D. for his guidance
and helpful approach.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on 10th May 2017 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2017 Jan Luxemburk. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Luxemburk, Jan. Functional Programming for Web Frontend. Bachelor’s
thesis. Czech Technical University in Prague, Faculty of Information Techno-
logy, 2017.

Abstract

Primary focus of this thesis is the programming language Elm. Elm is thor-
oughly investigated; on a theoretical level, in the context of functional pro-
gramming concepts like function purity, side effects, and immutability. From
a practical point of view, I review the quality of Elm’s tooling and its libraries,
and I compare them to JavaScript. A sample Elm application is also part of
the thesis.

Keywords Elm, functional programming, frontend development, JavaScript

ix

Abstrakt

Tato práce se věnuje novému programovaćımu jazyku Elm. Elm je d̊ukladně
prozkoumán. Na teoretické úrovni, v kontextu koncept̊u functionálńıho pro-
gramovańı jako jsou “pure” funkce, “side” efekty nebo perzistentńı datové
struktury. Z praktického pohledu se věnuji dostupným vývojářským nástroj̊um
a knihovnám. Součást́ı práce je i ukázková Elm aplikace.

Kĺıčová slova Elm, funkcionálńı programováńı, frontend developement, Java-
Script

x

Contents

Introduction 1

1 Goals and Approach 3
1.1 Goals . 3
1.2 Methodology and Structure . 3

2 Review 5
2.1 Programming paradigms . 5
2.2 Declarative programming . 5
2.3 Functional programming . 6

2.3.1 Lambda calculus . 6
2.3.2 Higher-order functions 8
2.3.3 Currying . 10
2.3.4 Control flow and side effects 10
2.3.5 Pure functions . 11
2.3.6 Immutable data structures 11

2.4 Functional programming languages 11
2.4.1 Haskell . 12
2.4.2 JavaScript . 13
2.4.3 Clojure & ClojureScript 14
2.4.4 PureScript . 14

2.5 Functional reactive programming 15
2.6 Elm language . 16

2.6.1 Syntax . 16
2.6.2 Type system . 16
2.6.3 Operators . 18
2.6.4 Data structures . 19
2.6.5 Elm Architecture . 21
2.6.6 JavaScript interop . 24

xi

3 Application in Elm 25
3.1 Analysis . 25

3.1.1 Requirements . 25
3.1.2 Domain model . 26
3.1.3 Use cases . 27
3.1.4 Activity diagram . 27

3.2 Architecture . 28
3.3 Implementation . 28

3.3.1 Deployment diagram . 29
3.3.2 Testing . 30

4 Elm development tools analysis 33
4.1 Development tools . 33

4.1.1 Compiler . 33
4.1.2 Elm Reactor . 34
4.1.3 Code auto formatter . 34
4.1.4 Package repository . 34
4.1.5 REPL . 34
4.1.6 Debugging . 34
4.1.7 Testing . 35

4.2 Libraries . 35
4.2.1 View rendering . 35
4.2.2 State management . 36
4.2.3 Immutability . 36
4.2.4 Type checking . 36
4.2.5 Other more specialized libraries 36

4.3 Summary . 37

Conclusion 39

Bibliography 41

A Acronyms 47

B Contents of enclosed USB drive 49

xii

List of Figures

2.1 Mapping a function m on a list . 8
2.2 Filtering a list with a predicate f 9
2.3 Reduction of a list . 9
2.4 Explanation of Elm union types and type variables 18

3.1 Domain model of the inbox . 26
3.2 Activity diagram of sending an email 27
3.3 The Elm Architecture diagram . 28
3.4 Deployment model of an Elm application 29
3.5 Screenshot of the application . 31

xiii

Introduction

Functional programming has its roots in Lambda calculus, a mathematical
formal system from the 1930s. It was mostly used by academia and was con-
sidered hard to learn. This is changing with the rise of the programming
language JavaScript. JavaScript is the core of modern web pages and it is the
only programming language that is supported without plugins by all modern
web browsers. Consequently, it is used everywhere on the web. Because Java-
Script encourages a functional style of programming, more and more people
get to know it; and they soon find the advantages that this style brings. These
are particularly better code modularity, reusability, and expressiveness.

Nevertheless, JavaScript is not flawless; particularly, it gives a programmer
too much freedom. One solution is to use other, better-designed programming
languages that are then compiled to JavaScript. Programming language Elm
is one of these languages.

1

Chapter 1
Goals and Approach

1.1 Goals

This thesis has three goals: (1) to perform a review of functional program-
ming, its languages, and especially the Elm language, (2) to develop a sample
Elm application, with a focus on concepts of functional programming, and
(3) to formulate an analysis of differences between Elm’s and JavaScript’s
development tools and libraries.

Research questions of this thesis are:

1. How does Elm implement the key concepts of functional programming?

2. Are Elm and its development tools ready for real-world use?

1.2 Methodology and Structure

I start with reviewing programming paradigms, chiefly focusing on the func-
tional one; then I introduce functional programming languages that influenced
the Elm language and are important for web development. The rest of Review
Chapter is about the Elm language. In Chapter Application in Elm, I perform
a brief analysis of selected domain and discuss the implementation, architec-
ture, and testing of the application. I use UML 2 to model the application. In
the last chapter, I use experience gained by working on the sample application
and my experience with JavaScript web development to formulate an analysis
of differences between Elm’s and JavaScript’s development tools and libraries.

3

Chapter 2
Review

2.1 Programming paradigms

There is a huge amount of problems in programming and solving them re-
quires different techniques. That is why we have hundreds of programming
languages, each of them suitable for specific tasks. Languages vary in syntax
and design, but some of them use similar programming concepts and style. A
programming paradigm is a set of ideas, rules or concepts that a group of pro-
gramming languages shares in common. For example imperative languages,
languages supporting imperative paradigm, share that they “use a sequence
of statements to changes program’s state”. [1] A programming language can
belong to more than one paradigm.

2.2 Declarative programming

Declarative programming languages provide a higher and more abstract level
of programming, which leads to reliable and maintainable programs. [2] From
a programmer point of view, the basic property is that programming is lifted
to a higher level of abstraction; at this higher level of abstraction the program-
mer can concentrate on what is to be computed, not necessarily how it is to be
computed. [3] In Elmulating JavaScript authors point out that a declarative
approach to writing code helps manage growing complexity of web develop-
ment. [4] The author of the Elm language agrees: “User interfaces become a
lot simpler to write when a lot of irrelevant details can be left to compiler.” [5]

Frans Coenen summarizes characteristics of declarative programming: [6]

• Model of computation based on a system where relationships are spe-
cified directly in terms of the input data.

• Made up of sets of definitions or equations describing relations which
specify what is to be computed, not how it is to be computed.

5

2. Review

• Order of execution does not matter (no side effects).

• Programmer no longer responsible for control.

Declarative programming includes other paradigms, for example func-
tional programming, logic programming, or domain-specific languages (SQL,
HTML).

2.3 Functional programming

Functional programming is called so because its fundamental operation is an
application of a function to arguments. Functions in functional programming
are called first-class, which means that they are treated like any other values
and can be passed as arguments to other functions or be returned as a result
of a function. “A main program itself is written as a function that receives the
program’s input as its argument and delivers the program’s output as its result.
Typically the main function is defined in terms of other functions, which in
turn are defined in terms of still more functions, until at the bottom level the
functions are language primitives.” [7]

Functional programming originates in a mathematical formal system named
Lambda calculus.

2.3.1 Lambda calculus

In the 1930s two distinct formal systems describing computability were in-
troduced: Turing’s Turing machines and Alonzo Church’s Lambda calculus.
“Both are well defined in terms of a simple set of primitive operations and
simple set of rules for structuring operations; most important, both has a proof
theory.” [8] They have been shown formally to be equivalent to each other
and also generalize von Neumann machines – digital computers. [8]

Basics of Lambda calculus

Lambda calculus is a surprisingly simple, yet powerful system for manipulat-
ing lambda expressions. It is based on function abstraction – to generalize
expressions by introducing names, and function application – to evaluate gen-
eralized expressions by giving names proper values. [8]

Consider this lambda expression:

λx.x

It is an identity function. To use this function we would use a function ap-
plication to apply it on arguments – for example on itself:

(λx.x λx.x)

6

2.3. Functional programming

Generally, a λ expression can be defined as follows:

<expression> ::= <name> | <function> | <application>

A λ expression may be a name to identify a function, a function introducing
an abstraction, or a function application to specialize an abstraction. [8] A λ
function has the form:

<function> ::= λ<name>.<body>

where:

<body> ::= <expression>

The name is called a bound variable and is like a function parameter. “The
‘.’ [dot] separates the name from the expression in which abstraction with
a name takes place.” [8] A λ function can have only one parameter. To
achieve functions with more parameters, the body expression can be another
λ function. For example:

λfirst.λsecond.first

This chaining of one-parameter functions is called currying in functional pro-
gramming languages. A function application has the form:

<application> ::= (<function expression> <arguments expression>)

where:

<function expression> ::= <expression>
<arguments expression> ::= <expression>

There are two approaches to evaluating function applications. “Either argu-
ments are reduced to simplest terms before being passed into functions (called
eager, strict, or applicative evaluation), or are passed into functions and be
reduced only once that function needs the value (called normal evaluation).” [9]
In both cases, the function expression is evaluated to return a function. All
occurrences of the function’s bound variable in the function’s body expression
are then replaced by a value of the argument expression or by the unevalu-
ated argument expression – depending on the evaluation order. Finally, the
function’s body expression is evaluated. [8]

Formally, the replacement of the bound variable with an argument in a
function’s body is called a beta reduction. It is one of three reduction rules that
Lambda calculus defines for simplifying lambda expressions without changing
their value. [9]

7

2. Review

Evaluation strategy

Evaluation strategy is an important characteristic of programming languages.
Most of programming languages use strict evaluation. There are more versions
of strict evaluation, e.g., call-by-value or call-by-reference. Haskell, on the
other hand, utilizes a type of normal evaluation called lazy evaluation. [10]

Functional programming languages use a number of concepts that come
from Lambda calculus. Some of them are reviewed in the following sections.

2.3.2 Higher-order functions

A higher-order function is a function that takes other functions as arguments
or returns a function. [11] “Functional languages allow functions that are
indivisible in conventional programming languages to be expressed as a com-
bination of parts — a general higher-order function and some particular spe-
cializing functions. Once defined, such higher-order functions allow many
operations to be programmed very easily.” [7] John Hughes also advocates
that modularity, which is highly increased by higher-order functions, is the
key for successful and efficient programming. [7]

Common use of the higher-order functions is in data structures processing.
Three most used higher-order functions for a list and array manipulation are
map, filter, and reduce. They are even implemented in non-functional lan-
guages such as Java [12], C++ [13], PHP [14], or Python [15].

Map

A mapping function applies a function on each element of a list and returns
the list of these applications.

Figure 2.1: Mapping a function m on a list (e1, e2, . . . en) [16]

8

2.3. Functional programming

Filter

A filtering function applies a predicate (a boolean function) on every element
of a list. Only elements for which the predicate returns true are returned in a
new list. [16]

Figure 2.2: Filtering a list with a predicate f [16]

Reduce

Reduce, also known as fold, is a function for getting a single value by operating
on a list of values. “Fold is a family of higher order functions that process a
data structure in some order and build a return value.” [17] The result value
can also be another list. Map and filter functions can be implemented with
the reduce function. [18]

Figure 2.3: Reduction of a list [16]

9

2. Review

2.3.3 Currying

Currying is a technique of transforming a function that takes multiple argu-
ments into series of functions that take parts of the arguments by one. In
Haskell, “All functions are considered curried: That is, all functions take just
one argument.” [19] Curry function signature:

curry : ((a,b) → c) → (a → (b → c))

where:

(a,b) → c

is the uncurried version of a function; it takes a and b as arguments and
returns c, and:

a → (b → c)

is the curried version that takes only one argument a, and returns a function
with signature b → c. Both forms are equally expressive [19], and when we
supply two arguments to either curried or uncurried version of the function,
the result is always the same. The difference is that curried functions allow a
use of partial application, which is a process of fixing a number of arguments to
a function or in other words: “Passing less than the full number of arguments
to a function that takes multiple arguments.” [20]

2.3.4 Control flow and side effects

A function or an expression is said to have side effects if it modifies some
state outside of its scope or if it has any observable interaction with its calling
function or outside world. [21] Functions in a mathematical sense only map an
input to an output. Any other behavior than mapping an input to an output,
which is in the context of programming any other behavior than computing
return value from supplied arguments, is called a side effect. Examples of side
effects are modifying a global variable or an argument, raising an exception,
writing data or reading a file.

John Hughes in [7] summarizes advantages of eliminating side effects:
“Since no side-effect can change an expression’s value, it can be evaluated
at any time. This relieves the programmer of the burden of prescribing the
flow of control. Since expressions can be evaluated at any time, one can freely
replace variables by their values and vice versa — that is, programs are referen-
tially transparent. This freedom helps make functional programs more tractable
mathematically than their conventional counterparts.” This mostly applies to
pure functional languages – those which completely prohibit side effects, for
example Haskell. [11] Other non-pure functional languages do not restrict side
effects, but it is customary for programmers to avoid them. Because impure
code is more prone to errors, it is usually beneficial to write a significant part

10

2.4. Functional programming languages

of a program in a purely functional fashion, without side effects, and keep the
code involving state and input/output to the minimum. [11]

Redux, a JavaScript frontend library, separates a state mutation from the
rest of codebase; as result, it lowers code complexity and makes the state
mutation predictable. Redux also use immutable data structures and pure
functions. [22] This is one of many examples how functional programming
influences current web development technologies.

2.3.5 Pure functions

A function is called pure if: (1) it does not cause side effects, (2) its return
value is not affected by side effects, and (3) given the same arguments, it
returns the same value each time it is evaluated. Examples of pure functions
are mathematical functions or a function length(s) returning a length of the
string s. Any function accessing a global variable is not pure because the
value of the global variable can change during program execution and thus
the function’s return value can differ between evaluations.

2.3.6 Immutable data structures

Purely functional programs typically operate on immutable data. [11] Im-
mutability is achieved by using persistent data structures. A persistent data
structure is a “data structure that always preserves the previous version of
itself when it is modified. Such data structures are effectively immutable, as
their operations do not (visibly) update the structure in-place, but instead al-
ways yield a new updated structure”. [23] Common parts of the original and
modified structures are often shared, which saves memory. [11]

2.4 Functional programming languages

Ever since Lambda calculus was introduced in the 1930s, new functional lan-
guages continue to emerge. Two important languages of the 20th century are
Lisp and ML (MetaLanguage). Lisp was created in 1958 and is the second old-
est programming language. [24] A prominent feature of Lisp and its dialects
is that data and program (source code) share common structure – a linked
list. [8] ML originated in the mid-1970s as a language for building proofs in
a formal reasoning system. [8] ML’s most known dialects are Standard ML
and Caml. In ML was for the first time used the Hindley–Milner type sys-
tem, whose type inference algorithm can automatically assign types of most
expressions without requiring explicit type annotations. [25]

I briefly review functional languages that are relevant to frontend devel-
opment. Elm is reviewed in its own Section 2.6.

11

2. Review

2.4.1 Haskell

Haskell is a general-purpose, statically typed, lazy-evaluated, purely functional
language, “incorporating many recent innovations in programming language
design”. [26] [11] Haskell is standardized and the Glasgow Haskell Compiler
is its main implementation. It supports higher-order functions, powerful ab-
stractions, user-defined algebraic types, pattern matching and much more. [26]

Abstractions

The key feature of programming languages is their capability for designing
abstractions (an example of an abstraction that almost all languages support
is a function). Haskell tends to use more rigorously defined mathematical ab-
stractions, some examples are Monad, Applicative, Functor, Monoid. Haskell
represents these abstracts through type classes along with a set of laws that
their instances must obey. [27] Once a programmer learns these abstractions,
they help him in solving various programming challenges.

Monads

Monads come from a mathematical theory called Category theory. In Haskell,
monads are used for example for handling input/output, state, exceptions,
and nullability. [28] Monads can be thought as value containers with two
important functions, return and bind. The return function creates a monad
by wrapping a value and the bind’ function serves to compose monads with
functions or other monads.

IO monad “Input/Output is incompatible with a pure functional language
because it is not referentially transparent and side-effect free.” [29] A function
cannot directly cause a side effect but it can construct a monad describing
that side effect. [30] IO monad holds an IO action, a description of an in-
put/output operation. The IO actions are “combined within the IO monad,
in a purely functional manner, to create more complex IO actions”. [29] The
Haskell’s runtime system performs these operations at a convenient time and if
necessary, returns values, for example when reading a file. This is how Haskell
separates pure and impure, by representing side effects as pure values, com-
bining them in a functional manner and actually performing them “outside”
of Haskell. [31]

Pattern matching

Pattern matching enables a programmer to specify different function bodies for
different arguments using patterns. When a function is called, the appropriate
body is chosen by comparing the actual arguments with the various patterns;
the form and/or the content of the arguments is compared. [32] After a

12

2.4. Functional programming languages

case (function’s body) is selected, the argument or parts of it may be assigned
to variables in the selected body. Example use of pattern matching is the
following function for computing the length of a list (“:” is an infix operator
for list concatenation).

listlength :: [a] -> Integer
listlength [] = 0
listlength (first:rest) = 1 + listlength rest

where the first line is a type signature telling that the function listlength ac-
cepts a list and return an integer. The list can contain values of any type. The
function listlength has two cases, for an empty and non-empty list. The pat-
tern “[]” matches an empty list, and zero is returned. The pattern “(first:rest)”
matches any non-empty list – then the list without first element is assigned to
variable rest and the function is called recursively. Patterns in this example
have the form of a list; another widely used forms of patterns are tuples or
algebraic data types.

Algebraic data types

In Haskell and other languages featuring algebraic data types, it is easy and
straightforward for a programmer to introduce new data types. An algebraic
data type is a composite type, i.e., a type formed by combining other types.
[33] Two common classes of algebraic types are product types and sum types,
hence the name “algebraic”.

A product type is often called a tuple type since it is “essentially just
a cartesian product of other types”. [34] On the other hand, a sum type
represents an alternation. A sum type has several different but fixed types
and only one of the types can be used at a time. “It can be thought of as
a type that has several cases, each of which should be handled correctly when
that type is manipulated.” [33] It is important that “sums and products can be
repeatedly combined into arbitrarily large structures”. [35] Another name for
a sum type is a union type.

Pattern matching is used for manipulating algebraic data types, e.g., if a
function accepts a sum type, it uses patterns for matching different cases of
that type. If a programmer forgot to handle any case, the compiler would
warn him.

2.4.2 JavaScript

JavaScript is an interpreted, dynamically typed, high-level programming lan-
guage. [36] It has been standardized in the ECMAScript language specification
and its main interpreters, also called JavaScript engines, are V8 (Chrome,
Node.js) and SpiderMonkey (Mozilla Firefox). [37] The specification is de-
veloped by a committee of browser vendors and other big tech companies.

13

2. Review

The latest version of JavaScript is ECMAScript 7; ECMAScript 8 is currently
being developed. [38] Because not all web browsers support all new features
of the latest version, it is common practice to transpile source code to the
older version of JavaScript (this is possible with most new features but not all
of them). JavaScript supports an object-oriented, imperative and functional
style of programming.

Object-oriented JavaScript has prototype-based inheritance and objects
are extensively used throughout the language. Even functions are by type
objects. Classes were added in ECMAScipt 5 but only as “syntactic sugar”,
internally the inheritance remains prototypal. [39]

Functional JavaScript functions are first-class – they are treated as values
and can be passed as arguments or returned by other functions. When func-
tions are moved around, they keep the connection to the variables of their
surrounding scopes and they are called closures. [39] Since ECMAScipt 5,
JavaScript supports arrow functions, more concise syntax for function expres-
sions. There is no built-in support for currying but it is possible to implement
own curry function. Map, reduce and filter functions are defined for arrays and
a programmer is free to introduce other higher-order functions. Immutable
data structures can be supported with third-party libraries. [40] There are no
restrictions regarding side effects. Overall, JavaScript encourages a functional
style of programming.

Imperative JavaScript includes many of the imperative programming con-
structs, e.g., if-else statement, while and for loops, switch statement, or
try/catch/finally statement for handling the exceptions.

2.4.3 Clojure & ClojureScript

Clojure is a dialect of Lisp programming language. It is a functional language
promoting immutability and designed for concurrency. [41] ClojureScript is
a compiler for Clojure that targets JavaScript. “ClojureScript is designed to
be a ”guest” language. This means that the language works well on top of
an existing ecosystem such as JavaScript.” [42] ClojureScript inherits, with
some exceptions [43], properties of Clojure, plus it has a JavaScript interop
that enables consuming arbitrary JavaScript code and mapping values from
JavaScript to ClojureScript, and vice versa.

2.4.4 PureScript

PureScript is a Haskell-like language that compiles to JavaScript. Unlike
Haskell, PureScript is strictly evaluated (because JavaScript is strict). Its most

14

2.5. Functional reactive programming

notable feature is that it offers high-level abstractions (the same as Haskell,
for example type classes). [44]

2.5 Functional reactive programming

Functional reactive programming (FRP) is a subset of both functional and
reactive programming. A reactive program is event-based, acts in response
to input, and is viewed as a flow of data instead of the traditional flow of
control. [45] In FRP, dynamic time-varying values are first-class; they can be
combined together and passed into and out of functions. Time-varying values
are called behaviors and Conal Elliott, one of FRP authors, describe them:
“Behaviors are built up out of a few primitives, constant (static) behaviors and
time (clock), and then with sequential and parallel combination. n behaviors
are combined by applying an n-ary function (on static values), point-wise,
i.e., continuously over time.“ [46] To account for discrete phenomena, FRP
has events. An event has a stream of occurrences and each occurrence has a
time and a value. [46] In recent formulations of FRP, ideas of behaviors and
events are combined into signals.

Reactive program

An example of how a simple reactive program looks like, in pseudo-code:

x = <mouse-x>
y = <mouse-y>

In imperative programming, these lines would be executed only once. The
coordinates of the mouse would be assigned to x and y, but the moment
the mouse moves, x and y would no longer hold the correct position. In
FRP, however, x and y are “synced” and always have the current mouse
position. The underlying implementation of FRP is ensuring that. To extend
the program:

minX = x - 10
minY = y - 10
maxX = x + 10
maxY = y + 10

We have now defined new behaviors, time-varying values, and we can combine
them into:

rectangle(minX, minY, maxX, maxY)

This way, a rectangle box is drawn around the mouse pointer all the time
whenever the mouse moves.

15

2. Review

Implementations

Functional reactive programming is implemented as a lightweight library in
many programming languages. [45]

2.6 Elm language

Evan Czaplicki designed Elm in his thesis “Elm: Concurrent FRP for Func-
tional GUIs” in 2012. Elm is a functional programming language for graph-
ical user interfaces targeting the most widespread GUI platform – the web.
[5] It compiles to JavaScript, HTML, and CSS, and can be therefore run in
any modern web browser. Elm has a “very strong emphasis on simplicity,
ease-of-use, and quality tooling” [47] which, combined with a far-reaching web
platform, makes Elm good choice for functional programming beginners. Elm
has several features reviewed earlier in this thesis: (1) all data structures are
immutable, (2) functions take one argument and are curried, and (3) side ef-
fects are managed by the Elm runtime. In the following sections, I review
Elm’s syntax, operators, data structures and common practices. JavaScript is
sometimes used for comparison.

2.6.1 Syntax

Elm’s syntax is similar to Haskell’s. When compared to JavaScript’s, the
main differences are: (1) indentation is used for blocks and function bodies
instead of curly brackets “{}”, (2) in function calls, parentheses are omitted
and arguments are separated by spaces, (3) no semicolon is necessary for
terminating statements, and (4) function bodies contain implicit return. This
more concise style is common in functional languages but could be confusing
for beginners.

2.6.2 Type system

Type system is one of the Elm’s most recognized features, not because it
brings anything extraordinary new (in fact, it is quite simple in comparison
to Haskell), but rather that JavaScript is dynamically typed and many web
developers have no experience with static type system. Elm uses static type
checking and type inference. Static type checking is “the process of verify-
ing the type safety of a program based on analysis of a program’s text (source
code)” [48], and with type-inference, most expressions don’t have to be expli-
citly type-annotated; rather Elm’s compiler analyzes source code and deduces
all necessary types.

16

2.6. Elm language

Type annotations

Although type annotations are voluntary, it is customary to annotate all func-
tions. By writing type annotations to functions, a programmer expresses his
intent and it is a kind of code documentation. The compiler compares the
annotated type with the inferred type and shows a warning if they differ.

1 connectWords : String -> String -> String
2 connectWords firstWord secondWord =
3 firstWord ++ secondWord

Listing 2.1: Example of a type annotation in Elm

On the first line is a type annotation that consists of a function name, a colon,
and a type. The colon separates the name from the type and it can be read as
“has type”. Symbol of an arrow indicates a function; on the left of the arrow is
the type of an argument (functions are curried and accept one argument); on
the right is the return type. connectWords is a function that accepts String
and returns other function with type annotation of “String -> String”. An
imprecise interpretation would be that it accepts two Strings and returns a
String. A programmer can annotate other values than functions, for example
tuples, let expressions, or records.

Union types & type constructors

Union types, also called tagged unions, are similar to sum algebraic data types
explained in the Haskell Section 2.4.1. Their purpose is to model complex
data naturally. [47] Union types are tightly coupled with a case-of expression,
which is a pattern matching mechanism for consuming union types and data
structures.

1 type Day = Mon | Tue | Wen | Thu | Fri | Sat | Sun
2
3 dayString = Day -> String
4 daString aDay =
5 case aDay of
6 Mon -> "Monday"
7 Thu -> "Tuesday"
8 ...

Listing 2.2: Example of a union type in Elm

This snippet shows how a union type works together with the case-of
expression. The keyword type is used for introducing new types. In the first
line, type options for the type Day are listed on the right side of the equals
sign – Mon, Tue, Wen, . . . , and are called data constructors. They are called
constructors because they create values. In the dayString function, case-of is
used to match aDay argument against all type options of the type Day, when
a match succeeds, the appropriate string is returned.

17

2. Review

Maybe is a built-in type that allows expressing the idea of a missing
value. [49]

1 type Maybe a = Just a | Nothing

Listing 2.3: Maybe type in Elm

Two important things have changed from the previous example, (1) the Maybe
type is declared with a type variable a, and (2) the second type option Just
carries a payload, in other words, it wraps a value. Just is a data constructor
accepting one argument of yet unspecified type a. Type variables enable to
declare polymorphic types. Maybe itself is called a type constructor ; it cannot
be used as a type until an argument is supplied for the type variable a – only
then is created a valid type, like Maybe Int or Maybe String.

Figure 2.4: Explanation of Elm union types and type variables [50]

Type alias

The keyword type alias creates a new name for an existing type. It does
not create a new type. Aliasing simplifies long type definitions (as shown in
Section 2.6.4).

2.6.3 Operators

Elm has standard operators for arithmetics (including exponentiation and
integer division), for boolean and bitwise operations and for comparing. The
operator “++” appends things together, e.g., strings or lists. The operator
“::” adds an element to the front of a list. Operators in Elm are like any other
functions; they take two arguments and can be also used in a prefix form. It
is possible to define own operators.

18

2.6. Elm language

Function operators

Elm has operators that are special for functional programming languages. The
function composition operator, “<<”, is used for pipelining the result of one
function to the input of another and it creates entirely new function.

1 (<<) : (b -> c) -> (a -> b) -> a -> c
2 (|>) : a -> (a -> b) -> b

Listing 2.4: Type signature of Elm functional operators

By examining the signature, the function composition operator takes two
functions and it is necessary that the type of the output of the second function
(type variable b) matches the type of the input of the first function (also b).
This operator is equivalent to the mathematical function composition (f ◦ g).
The function composition operator exists also in the opposite direction – “>>”.

The forward “|>” and backward “<|” function application operators are
used for applying a function to an argument; they have lower precedence
than a normal function application by adjacency. The primary use of the
functional application operators is to avoid parenthesis and to write code in
a more natural way. [51] Consider the following code example of creating a
pentagon:

1 scale 2 (move (10,10) (filled blue (ngon 5 30)))

Listing 2.5: Creating a pentagon without the function application operator

Which can be written as:
1 ngon 5 30
2 |> filled blue
3 |> move (10,10)
4 |> scale 2

Listing 2.6: Creating a pentagon with the function application operator

2.6.4 Data structures

Elm provides multiple data structures. List, Record, and Tuple are implicitly
imported and thus available in all Elm files. [52] Array, Set, and Dict are
defined in the Elm’s core package (the core package is like a standard library)
and they have to be imported explicitly. All data structures are immutable
and any mutation of a data structure yields a new one.

List

A list is a common data structure of functional languages. Conceptually, a list
is divided into two parts: a head and a tail. The first element is called the head;
the tail is another list representing the rest of the elements. Every element in

19

2. Review

a list must have the same type. A list is created with square brackets and each
element separated by a comma. The List module provides various functions
for list operations, such as sorting, splitting, filtering, mapping or reducing
(see 2.3.2). Lists are suitable for traversing elements in a linear order, from
beginning to end. Elements in a list cannot be accessed by index.

Array

Array elements can be accessed by index and they all must have the same
type. Unlike lists, arrays do not have literal for creation; they are created by
functions from the Array module, such as repeat, initialize or fromList. The
Array module also provides functions get and set for an indexed access and
other functions for an array manipulation.

Tuple

A tuple can contain values of different types, but once created, the number
of its elements cannot be changed. Tuples are created with parenthesis, and
their elements separated by commas. The empty tuple, “()”, has a special
meaning in Elm; it is used as a placeholder for an empty value. The Tuple
module contains accessing and mapping functions only for tuples of size two.
It is advised to use records instead of tuples for sizes bigger than two. [53]

Record

Unlike in so far discussed data structures, values in records have associated
names. Records contain key-value pairs, called fields, and the values can have
different types. Records are created with curly brackets, fields separated by
commas, and values from keys separated by equals signs. The first way to
access fields of records is a standard dot notation. The second way is by a
special accessing function – a dot plus field name (“.title” in the following
example). It is not possible to add fields to a record or remove them. The
compiler checks that only the existent fields are accessed. The syntax for
updating a field value is shown on the eighth line of the following example.

1 myBook : { title: String, author: String, pages: Int }
2 myBook =
3 { title = "The Trial", author = "Karel Capek", pages = 255 }
4
5 myBook.title -- The Trial
6 .title myBook -- The Trial
7
8 { myBook | author = "Franz Kafka" }
9 myBook.author -- Franz Kafka

Listing 2.7: Syntax of records in Elm

20

2.6. Elm language

The type aliasing is convenient for simplifying record’s type annotation,
and also it creates a record constructor. [54] This is a special case – type alias
creates a constructor only when used with records. Record constructor is a
function that serves as another way of creating records. Arguments to the
constructor must be supplied in the same order as their labels appear in the
type alias definition.

1 type alias Book = { title: String, author: String, pages: Int }
2 Book : String -> String -> Int -> Book -- record constructor
3
4 myBook = Book "Man’s Search for Meaning" "Viktor E. Frankl" 154

Listing 2.8: Type aliasing record’s signature in Elm

2.6.5 Elm Architecture

The Elm Architecture is a pattern for building web applications. It is pro-
moted by authors of Elm and also by the rest of the Elm community, and
it is a standard way of creating Elm applications. Having a prescribed re-
cipe for creating applications is not common in other programming languages.
For example in JavaScript, different frameworks have different approaches for
designing applications and there is a multitude of ways of solving particu-
lar problems. Elm promotes the idea of having one, correct way of doing
things – this is possible chiefly because Elm specializes only for GUIs.

The architecture

Every Elm application contains these parts: (a diagram of the architecture
can be found in Section 3.2)

• Model – the state of application

• Update – a way to update the state

• View – a way to view the state as HTML

Model A model represents the state of the application. Usually a type-
aliased record is used as the model, but for simple applications, it can be a
single value, e.g., string or integer. The type annotation of the model precisely
describes the form of the application’s state – names of fields, their types, and
how they are nested.

1 type alias Model =
2 { blogTitle : String
3 , articles : List Article
4 , filter : Bool
5 }

21

2. Review

6 type alias Article =
7 { title : String
8 , content : String
9 }

10
11 model : Model
12 model =
13 { blogTitle = "Example Blog"
14 , articles = []
15 , filter = False
16 }

Listing 2.9: Model definition (code is formatted according to standard rules)

Because the model is a record, no fields can be added to it or removed from
it. Only the values of fields can change. The model’s type annotation thus
represents the form of the state throughout the application’s execution. A
model is once initialized (in this example on lines thirteen to eighteen) and
after that, the only way to change it is via the update function.

Update Changes of a model happen through the update function. Under
the hood, the Elm runtime invokes the update function with various messages.
These messages come from three sources: (1) from user’s interaction with the
graphical interface, e.g., a user submits a form or an input field gets focus,
(2) from listening for external inputs, such as keyboard events or a websocket
communication, and (3) from runtime’s responses to commands. Commands
are used for impure actions, e.g., sending HTTP request or reading current
time. Instead of doing such actions directly, a programmer tells the runtime to
do them by returning a command from the update function; when the result
of the command is ready, the runtime sends a message back to the update
function.

Messages define all possible actions or events that can happen in an Elm
application. They are represented as a union type; each type option is a
message, optionally carrying data.

1 type Msg
2 = Roll
3 | NewFace Int
4
5 update : Msg -> Model -> (Model, Cmd Msg)
6 update msg model =
7 case msg of
8 Roll ->
9 (model, Random.generate NewFace (Random.int 1 6))

10 NewFace newFace ->
11 ({ model | diceFace = newFace }, Cmd.none)

Listing 2.10: Example of the update function, messages, and commands [47]

22

2.6. Elm language

The update function takes a message, a model (the current state of an
application), and returns a tuple of type “(Model, Cmd Msg)”. The “Model”
in the return tuple is the new state of the application. The “Cmd Msg” is
a command for the Elm runtime. By returning a command from the update
function, a programmer tells the runtime to execute it.

The code would be run as follows:

1. Update receives a Roll message, for example, because the user clicks on
a “Roll Dice” button.

2. Roll pattern-matches the first case of the case-of expression. In the
return tuple (line nine), the model is returned unchanged and a new
command is created. The Random.generate is a function that as the
first argument accepts a data constructor (see Section 2.6.2). The data
constructor tells the runtime what message it should send back. In this
case, the runtime will send a NewsFace message (line three) containing
an integer.

3. The Elm runtime generates a random number, wraps it in a NewsFace
message, and sends it to the update function (“sending a message to the
update function” means invoking it with that message).

4. Update receives a NewFace message. The message matches the second
pattern “NewFace newFace”; by this pattern, the wrapped integer is
extracted to the variable newFace, which is afterward used to update the
model (the model is a record with a diceFace field). The “Cmd.none”
stands for no command.

View The view is represented by functions that create HTML markup.
Their input is the model or a part of it, and their output is a markup that
represents the current state of the application. Every HTML element (div,
input, button, . . .) has defined a corresponding function in the Html module.
These functions have in common that they take a list of attributes as the first
argument and a list of children elements as the second.

1 view : Model -> Html Msg
2 view model =
3 div
4 [class "blog"]
5 [h1 [] [text model.blogTitle]
6 , p [] [text "Welcome to my blog"]
7 , section
8 [class "articles"]
9 (List.map viewArticle model.articles)

10]

Listing 2.11: Example of a view function in Elm

23

2. Review

The Elm’s style of writing HTML is different from writing normal “.html”
files. In Elm, HTML is written in the same files as code; it is indistinguishable
from code. It is more “powerful” because a programmer can use all language
features, as in this example on the ninth line, List.map is used to generate
HTML markup for every article.

Elm uses a virtual DOM for an optimization of HTML rendering. DOM,
Document Object Model, is a tree structure that web browsers use for repres-
enting HTML documents. Changing DOM means re-rendering the page and
it is a resources expensive operation. Instead of always manipulating DOM
directly, the Elm runtime has a virtual DOM and change the real DOM only
when necessary. According to performance benchmarks of Evan Czaplicki [55],
Elm has the fastest HTML rendering among React, Angular, and Ember by
roughly 120 to 150 percent.

Subscriptions

A subscription is a way of telling the Elm runtime that the application is
interested in listening for some external input, for example keyboard events,
mouse movements, browser location changes (changes of URL), or a websocket
communication. Similarly as with commands, a programmer must specify
what type of message should the runtime send to the update function every
time a subscribed event happens.

2.6.6 JavaScript interop

Elm offers a way to communicate between JavaScript and Elm. On the Elm
side, a programmer can use a keyword port to create a communication channel
between the two runtimes. Commands are used for sending data from an Elm
application to JavaScript, and by subscribing to a port, the Elm application
receives data from JavaScript. On the JavaScript side, ports are available as
properties of application’s object – an Elm application is initialized from Java-
Script and a programmer can save the reference to it. Ports in JavaScript have
methods send and subscribe. Data coming from JavaScript are type validated
and when invalid data are sent, an exception is thrown on the JavaScript side.

24

Chapter 3
Application in Elm

The purpose of creating this application is to show principles of functional pro-
gramming and to demonstrate the Elm programming language. I developed
a simplified email inbox (think of it as a clone of Gmail). The sample ap-
plication is a single-page application (SPA) website that users visit in a web
browser and use to send, receive and manage emails. A single-page application
does not use extra queries to the server to download pages; all necessary code
– HTML, JavaScript, and CSS – is retrieved with a single page load. After
that, the page does not reload nor does control transfer to another page. All
interactions and communication are handled by JavaScript in the user’s web
browser.

I focus on what is Elm specialized for, on the frontend. I therefore do not
develop, nor design the backend of the application.

3.1 Analysis

The inbox provides a graphical interface for email communication.

3.1.1 Requirements

The main entities of this application are User, Email Address, Email, Inbox.
Functional requirements are:

• A user can own multiple email addresses; if so, the inbox shows emails
of all the user’s addresses.

• A user can send emails, either replying to an existing conversation or
starting a new one. If a user owns multiple addresses, he can choose from
which he wants to send an email. A user can save an email as a draft.

• The inbox has various capabilities for management of emails, such as
categorizing, searching, filtering and sorting. A user can attach labels

25

3. Application in Elm

to emails or mark them as important. A user can search for emails by
author, recipients, subject or by a combination of these.

• A user can add filters to the inbox. When an incoming email matches a
filter’s rule, the specified action is performed. Filter actions are: marking
an incoming email as read or as spam, deleting it, or archiving it.

Non-functional requirements are:

• When a user is writing an email, the inbox saves the email in the local
storage of the web browser; therefore no emails are lost in case of a
network connection loss or a web browser failure.

• The application must be compatible with all standard web browsers.
Responsibility for various screen sizes is required, but it is not necessary
to support mobile devices.

3.1.2 Domain model

Figure 3.1: Domain model of the inbox

26

3.1. Analysis

3.1.3 Use cases

• UC1 Send an email (modeled in diagram below)

• UC2 Search for emails from a particular person

• UC3 Mark all emails in inbox as read

There is only one actor - the User, and he is associated with all use cases.

3.1.4 Activity diagram

Figure 3.2: Activity diagram of sending an email

27

3. Application in Elm

3.2 Architecture

I adhered to Mode-Update-View Elm Architecture that was discussed in Sec-
tion 2.6.5. The symbol in the middle of the following diagram, which is the
logo of the Elm language, stands for the Elm runtime.

Figure 3.3: The Elm Architecture diagram [56]

3.3 Implementation

The application was implemented in Elm version 0.18. Webpack was used
for building and bundling. Using Webpack is a standard for developing web
applications. Webpack on its own understands only JavaScript files; for Elm
support, I used elm-webpack-loader and elm-hot-loader. Hot reloading is a
technique of watching for changes in source files, recompiling them when
needed and then swapping only those that changed. It enables faster and
more convenient development. I used Csscomb for auto-formatting CSS files;
not so important but still useful, especially if the application would grow in
size. All these tools were installed by the Yarn package manager (alternative
to NPM) and executed in the Node.js environment.

28

3.3. Implementation

3.3.1 Deployment diagram

The following diagram shows how the application would be deployed; it also
aims to explain how is an Elm application executed in a web browser.

Figure 3.4: Deployment model of an Elm application

29

3. Application in Elm

3.3.2 Testing

The application is tested with a set of unit tests. I used the elm-test package,
which is maintained by Elm Community, an “unofficial group for shared work
on Elm packages and documentation” [57], and which is a usual way of testing
Elm applications. It provides basic functionalities for unit testing (asserting,
test naming and grouping) and a test runner for Node.js. A test runner for
browser exists in an individual package. Elm-test also has support for fuzz
testing. Fuzz testing is a technique of generating random data of specified
type (strings, numbers, booleans) and supplying it as an input for a test. “If
the fuzzer [data generator] can make test fail, it also knows how to shrink that
failing input into more minimal examples, some of which might also cause the
tests to fail. In this way, fuzzers can usually find the smallest or simplest
input that reproduces a bug.” [58] Test examples:

1 test "compose modal should be closed after saving message as draft" <|
2 \() ->
3 initialModel
4 |> update ComposeEmail
5 |> Tuple.first
6 |> update (ComposeMsg SaveDraft)
7 |> Tuple.first
8 |> .composedEmail
9 |> Expect.equal Nothing

Listing 3.1: Example of Elm unit test

1 describe "compose email’s"
2 [fuzz string "body should change according to input" <|
3 \randomString ->
4 initialModel
5 |> update ComposeEmail
6 |> Tuple.first
7 |> update (ComposeMsg (UpdateBody randomString))
8 |> Tuple.first
9 |> .composedEmail

10 |> .body
11 |> Expect.equal randomString
12]

Listing 3.2: Example of Elm fuzz test

In the second example, the fuzz test is called with random strings approxim-
ately one hundred times. Each time it is checked whether the email’s body
was updated correctly.

30

3.3. Implementation

Figure 3.5: Screenshot of the application

31

Chapter 4
Elm development tools analysis

In this chapter, I discuss differences between JavaScript’s and Elm’s develop-
ment tools and libraries.

4.1 Development tools

Development tools are an important part of a programming language (not
literally part of the language, but part of the experience working with the
language). When a developer, or a team of developers, consider working in a
new programming language, quality, maturity, and availability of important
tools play a major role in the decision.

4.1.1 Compiler

A compiler is probably the Elm’s strongest advantage. Together with a type
system, it catches almost all bugs before running in production. It is often
said that Elm has no runtime exceptions. Evan explains: “Unlike hand-written
JavaScript, Elm code does not produce runtime exceptions in practice. Instead,
Elm uses type inference to detect problems during compilation and give friendly
hints. This way problems never make it to your users. NoRedInk [company]
has 80k+ lines of Elm, and after more than a year in production, it still has
not produced a single runtime exception.” [59] The compiler messages are
helpful, always saying what is wrong, underlining the exact position of the
problem and offering a solution. I personally also like the “humanity” of the
compiler; for example, this is a part of an error message caused by a type
mismatch: “As I infer the type of values flowing through your program, I see
a conflict between these two types...”

JavaScript has no compiler, and therefore, for example, one misspelled
property name can crash a whole program. To some extent, a linter can help,
but the number of bugs that can a linter find is definitely limited. Another
option how to make JavaScript safer is to type check it, see Section 4.2.4.

33

4. Elm development tools analysis

4.1.2 Elm Reactor

Elm Reactor is several features bundled together: Elm compiler, watching
source files for changes, and a local web server. Together it offers interactive
development. An Elm application is served on the localhost, change in a
source file triggers re-compiling and after refreshing the page, a new version
of the application is available. This is known as live reloading.

Elm Reactor has limited features; it does not have functionality for asset
loading (CSS, images), bundling, or hot module reloading. It is not suitable
for a real-world use. I think the best solution is to use JavaScript’s Webpack.

4.1.3 Code auto formatter

Another handy tool is elm-format; it formats Elm source code according to a
standard set of rules based on the official Elm Style Guide. Almost all Elm
code I have ever seen was formatted with elm-format. Once one get used to
it, it helps readability. Recently, a similar tool in the JavaScript ecosystem
started to be popular and widely used; it is named prettier and it does basically
the same for JavaScript as elm-format does for Elm.

4.1.4 Package repository

Elm has its own package repository and a command line tool elm-package for
installing and publishing packages. Source code of packages is hosted on Git-
hub. Elm’s core packages, like Core, Http, Html, are also hosted in the reposit-
ory along with their documentations. A prominent feature of the repository is
that it enforces semantic versioning, a system for increasing package versions
in a way that one can safely update dependencies. The repository detects any
changes in API of the uploaded package, and if there is a change, it requires an
increase of the major version. Versions consist three numbers: major, minor,
and patch. Backward-non-compatible changes require increasing the major
version.

4.1.5 REPL

Both JavaScript and Elm have read-eval-print-loop. Elm has elm-repl, and for
JavaScript, one can use either Node.js REPL or services like JSFiddle.

4.1.6 Debugging

As of April 2017, it is not possible to debug Elm code (in the meaning of
setting breakpoints and stepping through functions). Elm code is compiled to
JavaScript code and then run by a web browser. Technically, a programmer
can still use Chrome Development Tools to debug the JavaScript code, but the
code is completely different from the original Elm code. Elm, however, has a

34

4.2. Libraries

different type of debugging that is possible because of the Elm Architecture.
In debug mode, every message that passes through the application (through
the update function) is stored, along with the current state of the application
(model). It is then possible to (1) rewind the history – to go back in time,
to specific past message and the application state is updated according to the
to past state, and (2) to import and export the history of messages. This is
called time travel debugging and is definitely a handy tool.

I think that the lack of classic debugging in Elm is not a big problem,
mainly because every function is pure and can be tested in isolation, and
there is no shared state. And from my personal experience, a lot of bugs that
I debug in JavaScript, would, if I was working with Elm, be earlier caught be
the Elm compiler.

4.1.7 Testing

In Section 3.3.2, I write about testing in Elm; to sum it up, a community
package elm-test provide functionality for unit testing and it has one extra
feature named fuzz testing, which most JavaScript test frameworks do not
support. Fuzz testing is taking advantage of the purity of Elm functions. elm-
test or any other Elm test package do not support test coverage, a measure
used to describe the degree to which the source code of a program is executed
when tests are run.

4.2 Libraries

There is an important group of libraries that exist in JavaScript and are hugely
used, but are not present in Elm. Not because nobody created them, but be-
cause their functionality is incorporated in the Elm language itself, and they
are therefore not needed. View rendering, state management, immutability,
type checking; these are functionalities that in JavaScript are provided by
multiple libraries, but in Elm, they are just in the language. I think that
the JavaScript’s diversity brings benefits (probably mostly for the web devel-
opment community as a whole), but also that the Elm’s approach of having
one clear way of doing things can increase productivity and free programmer’s
mental resources for other and more complicated matters.

4.2.1 View rendering

Rendering the view is an important part of developing a web application. In
JavaScript, there is a multitude of libraries (React, Vue, Cycle.js, . . .), each
with its own approach, philosophy, and API. A view written in one library
is not compatible with other libraries and developers need specific knowledge
of frameworks. On the other hand, view rendering in Elm is just a couple of
functions, pure functions as everything else.

35

4. Elm development tools analysis

4.2.2 State management

The situation with state management is the same as with view rendering.
These are some examples of how can the state be handled in JavaScript:
Flux, Redux (Redux is inspired by Elm’s state management), MobX, local
state, global state. Elm offers one recipe – the Elm Architecture.

4.2.3 Immutability

A widely used JavaScript library for immutability is Facebook’s Immutable.js.
It provides many persistent immutable data structures including List, Stack,
Map, OrderedMap, Set, OrderedSet, and Record. One caveat is that using
immutable and mutable structures together in one project may confuse de-
velopers and make them remember, or constantly check, what type of struc-
ture they are just working with. In Elm, the immutability of data structures
is built in the language and is not optional.

4.2.4 Type checking

Elm is statically typed (for a review of Elm’s type system see Section 2.6.2). In
JavaScript, there are two major ways how to introduce types. (1) With a static
type checker, such as Facebook’s Flow, a programmer can type-annotate his
JavaScript code. A type checker then infers types, validate them, and remove
type annotations to produce valid JavaScript code (code with type annota-
tions is invalid for an interpreter). (2) Use TypeScript, a typed superset of
JavaScript. Both these solutions share that their type system is fault tolerant
(TypeScript with default settings outputs JavaScript code even in presence of
type errors) and that they support gradually typing of JavaScript code (both
Flow and Typescript have type any that basically turns off type checking for
values annotated by it). TypeScript from version 2.3 defaults to strict type
checking, i.e., no implicit any type and strict null checks.

4.2.5 Other more specialized libraries

So far I discussed libraries that are useful for almost any project. Regarding
more specialized libraries (graph visualization, UI kits, databases), I think it
is safe to say that JavaScript has much more of these, which also have more
features and are better maintained. Simply because there are many more
JavaScript developers, who had more time (JavaScript is over twenty years
old), and also there is a lot of companies that have they businesses build
around JavaScript (especially Node.js, React, Vue, Angular). In contrast to
Elm that has fewer developers and around three years of existence. Elm is also
an evolving language, for example changes from version 0.16 to 0.17 (current
is 0.18) were breaking changes, backward-non-compatible.

36

4.3. Summary

4.3 Summary

In my opinion, the Elm’s approach of having one clear way of doing things and
the fact that some important functionalities are incorporated in the language,
together make a better developer experience, lower complexity, and lead to an
increased productivity. Regarding the productivity, I am speaking from my
experience of working on the prototype Inbox application and my experience
with JavaScript web development.

To sum up, a compiler is the Elm’s biggest strength and its tooling is
sufficient. Elm has fewer libraries than JavaScript, but some important ones
are built in the Elm language.

37

Conclusion

Important concepts of functional programming had been reviewed, which to-
gether with the introduction of programming languages Haskell and Java-
Script, laid a basis for an inspection of the Elm language. The inspection had
three levels. (1) A theoretical level in Review Chapter focused on the syntax,
the type system, data structures, and on the Elm Architecture. (2) A practical
level in Application in Elm Chapter focused on testing, deployment, and on a
software development process. (3) In Elm development tools analysis Chapter
focused on the compiler, packages, debugging, and also on development tools
and available Elm libraries.

The first research question, “How does Elm implement the key concepts of
functional programming?”, was answered in Elm language Section 2.6. The
key Elm’s functional properties are that all functions are pure and curried, all
data structures are immutable, and side effects are managed by the runtime.
The answer to the second research question, “Are Elm and its development
tools ready for real-world use?”, was elaborated in Chapter 4. My conclusion
is that Elm is ready for real-world use.

This thesis together with application’s source codes might be a useful
study material for the Elm language and I plan to share it with Elm developer
communities.

Personal growth

I have learnt a lot by writing this thesis. I have got to know a delightful
programming language and I have hugely improved in written English.

39

Bibliography

1. Overview of the Four Main Programming Paradigms [online] [visited on 2017-
02-11]. Available from: http://people.cs.aau.dk/˜normark/prog3-
03/html/notes/paradigms_themes- paradigm- overview- section.
html#paradigms_imperative-paradigm-overview_title_1.

2. HANUS, Michael. Multi-Paradigm Declarative Languages. In: Logic Program-
ming [online]. Berlin: Springer Berlin Heidelberg, 2007, vol. 4670, pp. 45–
75 [visited on 2017-02-23]. ISBN 978-3-540-74608-9. Available from DOI:
10.1007/978-3-540-74610-2_5.

3. TORGERSSON, Olof. A Note on Declarative Programming Paradigms and
the Future of Definitional Programming. Das Winteroete [online]. 1996,
vol. 96, no. 1996, pp. 13 [visited on 2017-02-23]. Available from: http:
//www.cse.chalmers.se/˜oloft/Papers/wm96/wm96.html.

4. ERIKSSON, Nils; ÄRLERYD, Christofer. Elmulating JavaScript [online]. 2016
[visited on 2017-02-23]. Available from: http://www.diva-portal.org/
smash/record.jsf?pid=diva2:954012.

5. CZAPLICKI, Evan. Elm: Concurrent FRP for Functional GUIs. Harvard Uni-
versity, 2012. Available also from: http://www.testblogpleaseignore.
com/wp-content/uploads/2012/03/thesis.pdf.

6. Declarative Programming [online] [visited on 2017-02-11]. Available from: http:
//cgi.csc.liv.ac.uk/˜frans/OldLectures/2CS24/declarative.
html#detail.

7. HUGHES, J. Why Functional Programming Matters. The Computer Journal
[online]. 1989, vol. 32, no. 2, pp. 98–107 [visited on 2017-02-23]. ISSN 0010-
4620. Available from DOI: 10.1093/comjnl/32.2.98.

8. MICHAELSON, Greg. An Introduction to Functional Programming through
Lambda Calculus. Dover ed. Mineola, N.Y: Dover Publications, 2011. Dover
books on mathematics. ISBN 978-0-486-47883-8. OCLC: ocn630478012.

41

http://people.cs.aau.dk/~normark/prog3-03/html/notes/paradigms_themes-paradigm-overview-section.html#paradigms_imperative-paradigm-overview_title_1
http://people.cs.aau.dk/~normark/prog3-03/html/notes/paradigms_themes-paradigm-overview-section.html#paradigms_imperative-paradigm-overview_title_1
http://people.cs.aau.dk/~normark/prog3-03/html/notes/paradigms_themes-paradigm-overview-section.html#paradigms_imperative-paradigm-overview_title_1
http://dx.doi.org/10.1007/978-3-540-74610-2_5
http://www.cse.chalmers.se/~oloft/Papers/wm96/wm96.html
http://www.cse.chalmers.se/~oloft/Papers/wm96/wm96.html
http://www.diva-portal.org/smash/record.jsf?pid=diva2:954012
http://www.diva-portal.org/smash/record.jsf?pid=diva2:954012
http://www.testblogpleaseignore.com/wp-content/uploads/2012/03/thesis.pdf
http://www.testblogpleaseignore.com/wp-content/uploads/2012/03/thesis.pdf
http://cgi.csc.liv.ac.uk/~frans/OldLectures/2CS24/declarative.html#detail
http://cgi.csc.liv.ac.uk/~frans/OldLectures/2CS24/declarative.html#detail
http://cgi.csc.liv.ac.uk/~frans/OldLectures/2CS24/declarative.html#detail
http://dx.doi.org/10.1093/comjnl/32.2.98

Bibliography

9. CARL, Burch. Lambda Calculus [online] [visited on 2017-02-24]. Available
from: http://www.toves.org/books/lambda/.

10. Lazy Evaluation. In: HaskellWiki [online] [visited on 2017-02-24]. Available
from: https://wiki.haskell.org/Lazy_evaluation.

11. HaskellWiki [online] [visited on 2017-02-24]. Available from: https://wiki.
haskell.org/Haskell.

12. Java Documentation - Java.Util.Stream [online] [visited on 2017-02-26]. Avail-
able from: https://docs.oracle.com/javase/8/docs/api/java/util/
stream/package-summary.html.

13. Cpp Reference [online] [visited on 2017-02-26]. Available from: http://en.
cppreference.com/w/cpp/algorithm.

14. PHP: Array Functions - Manual [online] [visited on 2017-02-26]. Available
from: http://php.net/manual/en/ref.array.php.

15. Python 3.6.0 Documentation [online] [visited on 2017-02-26]. Available from:
https://docs.python.org/3.6/library/functions.html.

16. Mapping and Filtering [online] [visited on 2017-02-26]. Available from: http:
/ / people . cs . aau . dk / ˜normark / prog3 - 03 / html / notes / higher -
order-fu_themes-map-filter-section.html.

17. Fold. In: HaskellWiki [online] [visited on 2017-02-26]. Available from: https:
//wiki.haskell.org/Fold.

18. DILLER, Antoni. Haskell Unit 6: The Higher-Order Fold Functions [online]
[visited on 2017-02-26]. Available from: http://www.cantab.net/users/
antoni.diller/haskell/units/unit06.html.

19. Currying. In: HaskellWiki [online] [visited on 2017-02-26]. Available from:
https://wiki.haskell.org/Currying.

20. Partial Application. In: HaskellWiki [online] [visited on 2017-02-26]. Available
from: https://wiki.haskell.org/Partial_application.

21. Side Effect. In: Wikipedia [online]. 2017 [visited on 2017-02-26]. Available from:
https : / / en . wikipedia . org / w / index . php ? title = Side _ effect _
(computer_science)&oldid=760895851.

22. Redux [online] [visited on 2017-03-05]. Available from: http://redux.js.
org/docs/introduction/CoreConcepts.html.

23. Persistent Data Structure. In: Wikipedia [online]. 2016 [visited on 2017-03-
04]. Available from: https://en.wikipedia.org/w/index.php?title=
Persistent_data_structure&oldid=734240973.

24. Lisp (Programming Language). In: Wikipedia [online]. 2017 [visited on 2017-
03-05]. Available from: https : / / en . wikipedia . org / w / index . php ?
title=Lisp_(programming_language)&oldid=767986041.

42

http://www.toves.org/books/lambda/
https://wiki.haskell.org/Lazy_evaluation
https://wiki.haskell.org/Haskell
https://wiki.haskell.org/Haskell
https://docs.oracle.com/javase/8/docs/api/java/util/stream/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/package-summary.html
http://en.cppreference.com/w/cpp/algorithm
http://en.cppreference.com/w/cpp/algorithm
http://php.net/manual/en/ref.array.php
https://docs.python.org/3.6/library/functions.html
http://people.cs.aau.dk/~normark/prog3-03/html/notes/higher-order-fu_themes-map-filter-section.html
http://people.cs.aau.dk/~normark/prog3-03/html/notes/higher-order-fu_themes-map-filter-section.html
http://people.cs.aau.dk/~normark/prog3-03/html/notes/higher-order-fu_themes-map-filter-section.html
https://wiki.haskell.org/Fold
https://wiki.haskell.org/Fold
http://www.cantab.net/users/antoni.diller/haskell/units/unit06.html
http://www.cantab.net/users/antoni.diller/haskell/units/unit06.html
https://wiki.haskell.org/Currying
https://wiki.haskell.org/Partial_application
https://en.wikipedia.org/w/index.php?title=Side_effect_(computer_science)&oldid=760895851
https://en.wikipedia.org/w/index.php?title=Side_effect_(computer_science)&oldid=760895851
http://redux.js.org/docs/introduction/CoreConcepts.html
http://redux.js.org/docs/introduction/CoreConcepts.html
https://en.wikipedia.org/w/index.php?title=Persistent_data_structure&oldid=734240973
https://en.wikipedia.org/w/index.php?title=Persistent_data_structure&oldid=734240973
https://en.wikipedia.org/w/index.php?title=Lisp_(programming_language)&oldid=767986041
https://en.wikipedia.org/w/index.php?title=Lisp_(programming_language)&oldid=767986041

Bibliography

25. Hindley–Milner Type System. In: Wikipedia [online]. 2017 [visited on 2017-
03-05]. Available from: https://en.wikipedia.org/wiki/Hindley%E2%
80%93Milner_type_system.

26. Haskell 2010 Language Report [online] [visited on 2017-03-09]. Available from:
https://www.haskell.org/onlinereport/haskell2010/.

27. Haskell: Type Classes [online] [visited on 2017-04-28]. Available from: https:
//www.haskell.org/tutorial/classes.html.

28. All About Monads. In: HaskellWiki [online] [visited on 2017-03-10]. Available
from: https://wiki.haskell.org/All_About_Monads.

29. IO Monad. In: HaskellWiki [online] [visited on 2017-03-11]. Available from:
https://wiki.haskell.org/All_About_Monads#The_IO_monad.

30. Monad. In: Wikipedia [online]. 2017 [visited on 2017-03-10]. Available from:
https://en.wikipedia.org/w/index.php?title=Monad_(functional_
programming)&oldid=767819858.

31. Monad. In: HaskellWiki [online] [visited on 2017-03-11]. Available from: https:
//wiki.haskell.org/Monad.

32. Pattern Matching [online] [visited on 2017-03-09]. Available from: https://
www.haskell.org/tutorial/patterns.html.

33. Algebraic Data Type. In: Wikipedia [online]. 2017 [visited on 2017-03-10].
Available from: https://en.wikipedia.org/w/index.php?title=
Algebraic_data_type&oldid=763558354.

34. Types in Haskell [online] [visited on 2017-03-10]. Available from: https://
www.haskell.org/tutorial/goodies.html.

35. Algebraic Data Type. In: HaskellWiki [online] [visited on 2017-03-10]. Avail-
able from: https://wiki.haskell.org/Algebraic_data_type.

36. FLANAGAN, David. JavaScript: The Definitive Guide. Fifth edition. O’Reilly,
2006. ISBN 978-0-596-10199-2.

37. JavaScript Engine. In: Wikipedia [online]. 2017 [visited on 2017-03-11]. Avail-
able from: https://en.wikipedia.org/w/index.php?title=JavaScript_
engine&oldid=762516278.

38. TC39 - ECMAScript [online] [visited on 2017-03-11]. Available from: https:
//www.ecma-international.org/memento/TC39-M.htm.

39. RAUSCHMAYER, Axel. Exploring ES6 [online]. Leanpub, 2015 [visited on
2017-03-11]. Available from: https://leanpub.com/exploring-es6.

40. Immutable.Js [online] [visited on 2017-03-11]. Available from: https://facebook.
github.io/immutable-js/.

41. Clojure [online] [visited on 2017-03-11]. Available from: https://clojure.
org/.

43

https://en.wikipedia.org/wiki/Hindley%E2%80%93Milner_type_system
https://en.wikipedia.org/wiki/Hindley%E2%80%93Milner_type_system
https://www.haskell.org/onlinereport/haskell2010/
https://www.haskell.org/tutorial/classes.html
https://www.haskell.org/tutorial/classes.html
https://wiki.haskell.org/All_About_Monads
https://wiki.haskell.org/All_About_Monads#The_IO_monad
https://en.wikipedia.org/w/index.php?title=Monad_(functional_programming)&oldid=767819858
https://en.wikipedia.org/w/index.php?title=Monad_(functional_programming)&oldid=767819858
https://wiki.haskell.org/Monad
https://wiki.haskell.org/Monad
https://www.haskell.org/tutorial/patterns.html
https://www.haskell.org/tutorial/patterns.html
https://en.wikipedia.org/w/index.php?title=Algebraic_data_type&oldid=763558354
https://en.wikipedia.org/w/index.php?title=Algebraic_data_type&oldid=763558354
https://www.haskell.org/tutorial/goodies.html
https://www.haskell.org/tutorial/goodies.html
https://wiki.haskell.org/Algebraic_data_type
https://en.wikipedia.org/w/index.php?title=JavaScript_engine&oldid=762516278
https://en.wikipedia.org/w/index.php?title=JavaScript_engine&oldid=762516278
https://www.ecma-international.org/memento/TC39-M.htm
https://www.ecma-international.org/memento/TC39-M.htm
https://leanpub.com/exploring-es6
https://facebook.github.io/immutable-js/
https://facebook.github.io/immutable-js/
https://clojure.org/
https://clojure.org/

Bibliography

42. ANTUKH, Andrey; GÓMEZ, Alejandro. ClojureScript Unraveled [online] [vis-
ited on 2017-02-11]. Available from: https : / / funcool . github . io /
clojurescript-unraveled/.

43. Differences from Clojure [online] [visited on 2017-03-11]. Available from: https:
//clojurescript.org/about/differences.

44. PureScript [online] [visited on 2017-04-28]. Available from: http : / / www .
purescript.org/.

45. BLACKHEATH, Stephen; JONES, Anthony. Functional Reactive Program-
ming. Shelter Island, NY: Manning Publications Co, 2016. ISBN 978-1-
63343-010-5. OCLC: ocn907203779.

46. Terminology - What Is (Functional) Reactive Programming? [online] [visited
on 2017-03-12]. Available from: http://stackoverflow.com/questions/
1028250/what-is-functional-reactive-programming.

47. CZAPLICKI, Evan. An Introduction to Elm [online] [visited on 2017-04-01].
Available from: https://guide.elm-lang.org/.

48. Type System. In: Wikipedia [online]. 2017 [visited on 2017-03-17]. Available
from: https://en.wikipedia.org/w/index.php?title=Type_system&
oldid=769381407.

49. Elm Package - Maybe [online] [visited on 2017-03-30]. Available from: http:
//package.elm-lang.org/packages/elm-lang/core/latest/Maybe.

50. POUDEL, Pawan. Elm Programming [online] [visited on 2017-03-17]. Available
from: http://elmprogramming.com.

51. Elm Package - Basics [online] [visited on 2017-03-28]. Available from: http:
//package.elm-lang.org/packages/elm-lang/core/2.1.0/Basics.

52. Elm Package - Core [online] [visited on 2017-03-30]. Available from: http:
//package.elm-lang.org/packages/elm-lang/core/latest/.

53. Elm Package - Tuple [online] [visited on 2017-03-30]. Available from: http:
//package.elm-lang.org/packages/elm-lang/core/5.1.1/Tuple.

54. Elm Guide - Type Alias [online] [visited on 2017-03-30]. Available from: https:
//guide.elm-lang.org/types/type_aliases.html.

55. CZAPLICKI, Evan. Blazing Fast Html Round Two [online] [visited on 2017-
04-01]. Available from: http://elm- lang.org/blog/blazing- fast-
html-round-two.

56. Elm-Lifecycle - A Symmetrical Simplified Elm Lifecycle Diagram [online] [vis-
ited on 2017-04-16]. Available from: https://github.com/plaxdan/elm-
lifecycle.

57. Github - Elm-Community/Elm-Test [online] [visited on 2017-04-20]. Available
from: https://github.com/elm-community/elm-test.

44

https://funcool.github.io/clojurescript-unraveled/
https://funcool.github.io/clojurescript-unraveled/
https://clojurescript.org/about/differences
https://clojurescript.org/about/differences
http://www.purescript.org/
http://www.purescript.org/
http://stackoverflow.com/questions/1028250/what-is-functional-reactive-programming
http://stackoverflow.com/questions/1028250/what-is-functional-reactive-programming
https://guide.elm-lang.org/
https://en.wikipedia.org/w/index.php?title=Type_system&oldid=769381407
https://en.wikipedia.org/w/index.php?title=Type_system&oldid=769381407
http://package.elm-lang.org/packages/elm-lang/core/latest/Maybe
http://package.elm-lang.org/packages/elm-lang/core/latest/Maybe
http://elmprogramming.com
http://package.elm-lang.org/packages/elm-lang/core/2.1.0/Basics
http://package.elm-lang.org/packages/elm-lang/core/2.1.0/Basics
http://package.elm-lang.org/packages/elm-lang/core/latest/
http://package.elm-lang.org/packages/elm-lang/core/latest/
http://package.elm-lang.org/packages/elm-lang/core/5.1.1/Tuple
http://package.elm-lang.org/packages/elm-lang/core/5.1.1/Tuple
https://guide.elm-lang.org/types/type_aliases.html
https://guide.elm-lang.org/types/type_aliases.html
http://elm-lang.org/blog/blazing-fast-html-round-two
http://elm-lang.org/blog/blazing-fast-html-round-two
https://github.com/plaxdan/elm-lifecycle
https://github.com/plaxdan/elm-lifecycle
https://github.com/elm-community/elm-test

Bibliography

58. Elm Package - Fuzz [online] [visited on 2017-04-20]. Available from: http:
//package.elm-lang.org/packages/elm-community/elm-test/3.1.
0/Fuzz.

59. Elm Lang Page [online] [visited on 2017-04-27]. Available from: http://elm-
lang.org/.

45

http://package.elm-lang.org/packages/elm-community/elm-test/3.1.0/Fuzz
http://package.elm-lang.org/packages/elm-community/elm-test/3.1.0/Fuzz
http://package.elm-lang.org/packages/elm-community/elm-test/3.1.0/Fuzz
http://elm-lang.org/
http://elm-lang.org/

Appendix A
Acronyms

API Application Programming Interface

CSS Cascading Style Sheets

DOM Document Object Model

FRP Functional Reactive Programming

GUI Graphical user interface

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

REPL Read–eval–print loop

SPA Single-page application

SQL Structured Query Language

UML Unified Modeling Language

47

Appendix B
Contents of enclosed USB drive

readme.txt.................the file with USB drive contents description
app

normal.....................the directory of the compiled application
debug....... the directory of the compiled application in debug mode

src.......................................the directory of source codes
app the directory of source codes of the application
thesis..............the directory of LATEX source codes of the thesis

text..the thesis text directory
thesis.pdf...........................the thesis text in PDF format

49

	Introduction
	Goals and Approach
	Goals
	Methodology and Structure

	Review
	Programming paradigms
	Declarative programming
	Functional programming
	Lambda calculus
	Higher-order functions
	Currying
	Control flow and side effects
	Pure functions
	Immutable data structures

	Functional programming languages
	Haskell
	JavaScript
	Clojure & ClojureScript
	PureScript

	Functional reactive programming
	Elm language
	Syntax
	Type system
	Operators
	Data structures
	Elm Architecture
	JavaScript interop

	Application in Elm
	Analysis
	Requirements
	Domain model
	Use cases
	Activity diagram

	Architecture
	Implementation
	Deployment diagram
	Testing

	Elm development tools analysis
	Development tools
	Compiler
	Elm Reactor
	Code auto formatter
	Package repository
	REPL
	Debugging
	Testing

	Libraries
	View rendering
	State management
	Immutability
	Type checking
	Other more specialized libraries

	Summary

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed USB drive

