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c© 2017 Tomáš Maĺıček. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
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Abstrakt

Svět kolem nás je plný neprozkoumaných dat. Tato diplomová práce se
zaměřuje na jejich prozkoumáńı pomoćı symbolické regrese, která je založena
na hledáńı vzorečku nejlépe popisuj́ıćıho hodnoty funkce použité pro vytvořeńı
datasetu. Evolučńı algoritmy, genetické programováńı a symbolická regrese
a jej́ı užit́ı jsou teoreticky popsány. Na základě teoretické části je navržena
a implementována paralelńı verze symbolické regrese pomoćı genetického pro-
gramováńı v jazyce Scala za užit́ı clusterového enginu Apache Spark. Jsou
provedeny experimenty stran škálovatelnosti navrženého řešeńı. Výsledky
těchto experiment̊u ukazuj́ı, že symbolická regrese může být navrženou paralelńı
implementaćı významně urychlena.

Kĺıčová slova symbolická regrese, paralelizace, Scala, Apache Spark, cluster,
škálovatelnost, genetické programováńı, evolučńı algoritmus
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Abstract

The world around us is full of unexplored data. This thesis focuses on their
exploration using symbolic regression, which searches for a symbolic formula
that best approximates values of the function used for the generation of the
dataset. Evolutionary algorithms, genetic programming, and symbolic regres-
sion and its applications are theoretically described. Based on the description,
a parallel implementation of symbolic regression using genetic programming
is proposed. The program is implemented in the Scala language based on
Apache Spark. Experiments about the scalability of the parallel implement-
ation are performed. The results of these experiments show that the parallel
implementation can significantly speed-up symbolic regression.

Keywords symbolic regression, parallelization, Scala, Apache Spark, cluster,
scalability, genetic programming, evolutionary algorithm
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Introduction

Motivation

Computer systems and other electronic devices are producing large amounts
of data. The main purpose is to find relationships in datasets and derive useful
wisdom to push forward expert knowledge in many fields. Various regression
techniques have been proposed to explain the underlying essence of data.

Conventional regression techniques are based on an invariable structure
with parameters, which are used to adjust a model with that structure for
a particular dataset. However, in a particular field, there can be a lack of
knowledge about an underlying system that is described by a dataset; there-
fore it can be difficult to choose the regression technique. An approach called
symbolic regression was proposed for these cases. This type of regression is
unique for its less limited structure of models, which are built in each exe-
cution from scratch using a subset of evolutionary algorithms called genetic
programming. At the beginning, a set of random models is created by ran-
domly combining functions, constants, and variables. Each model from this
group is evaluated to gain knowledge about how well it fits a selected dataset.
Better models are used for further improvements of the set of models by re-
combining them together. This process is repeated until a sufficient error rate
of the best model is reached, and that model represents the final solution.

Goals

The goals of the thesis are following:

1



Introduction

• Theoretically describe evolutionary algorithms, genetic programming,
and symbolic regression.

• Propose a parallel implementation of symbolic regression using genetic
programming and implement it.

• Evaluate the scalability of the proposed solution.

Structure

This thesis consists of five chapters.

1. The first chapter introduces and describes evolutionary algorithms.

2. The second chapter describes genetic programming (GP), methods used
in GP, and its parameters.

3. The third chapter introduces symbolic regression, its applications, de-
tails, and an example run.

4. The fourth chapter describes the proposed parallel implementation of
symbolic regression, used technologies, and the structure of the imple-
mentation.

5. The last chapter describes and presents experiments about the scalabil-
ity of the implementation of symbolic regression. The experiments are
properly evaluated.

2



Chapter 1
Evolutionary algorithms

Evolutionary algorithms (EAs), where genetic programming belongs, come
from the family of algorithms for global optimization, which are inspired by
biological evolution. These algorithms are based on a population of individuals
representing candidate solutions of a given problem. During each iteration of
the EA, the population is evolved to improve a fitness (quality) of candidate
solutions. This process of improvement is composed of operators such as
selection, crossover, reproduction and mutation. Populations in each iteration
of the EA are called generations.

Essential for the design of the EA is the decision about the representa-
tion of individuals. Candidate solutions should be encoded in a way that is
easily handled by computers. It is necessary due to the enormous quantity
of evaluations of individuals in the population during the evolution process.
A difficult representation can significantly slow down the progress toward the
final solution. Individuals represented in the form of values in arrays are suit-
able for computer processing. The initialization of the population is performed
using a random generation of these individuals. However, it can be helpful to
incorporate domain knowledge about good solutions into the population [1].

The quality of candidate solutions is determined using the fitness function,
which should take into account all conditions and restrictions about the final
solution. In the case of more fitness objectives (e.g., the quality and the age of
individuals [2]), it can be problematic. In this situation, the decision about the
importance of particular goals to cover objectives appropriately in the fitness
function is crucial. Furthermore, it is possible to replace fitness evaluation by
fitness approximation [3]. This approach can be helpful in dealing with a high
computational complexity of a particular problem.

3



1. Evolutionary algorithms

A common setup of the EA includes selection, crossover, reproduction,
and mutation. Choosing a specific type of each operator is necessary. Three
major methods for selection are tournament, roulette wheel and rank selec-
tion. The crossover operator can be implemented in three basic forms, namely
single-point, two-point and uniform crossover. Reproduction has only one
form (i.e., copying of an individual to the next generation). Elitism, which
denotes automatic reproduction of the best individual from the whole popu-
lation to the next generation without any selection, can be included as well.
The method of mutation depends on the individual representation and can be
implemented either as an inversion of a particular bit or an addition of a value
from a probability distribution.

The last step in the construction of the EA is parameters adjustment.
The performance of a particular EA is closely linked to the selection of these
parameters. The following list shows the core set of parameters, which should
be adjusted:

• population size,

• number of generations or error threshold,

• probability of crossover,

• probability of reproduction,

• probability of mutation.

Additional specific parameters can be added to this set, depending on a par-
ticular EA.

When all steps, mentioned in the previous paragraphs, are completed, the
construction of the EA is finished. In Figure 1.1 is depicted the whole process
in a nutshell. At the beginning, a population is initialized, and it is directed
to the wheel of evolution. In the wheel, all evolutionary operators mentioned
above are used over and over again in the circle. One such circle represents
one generation of candidate solutions. After a specified number of generations
or when the error of the best individual in the current generation is below the
selected threshold, the evolution wheel is terminated, and the best solution is
provided. A significant advantage of this process is the fact that in the case
where prior knowledge is not included in the initial population, the EA does
not make any assumptions about the fitness landscape. Therefore EAs have
a good performance in the approximation of solutions of all types of problems.

4



Figure 1.1: Scheme of a generic evolutionary algorithm.
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Chapter 2
Genetic programming

Genetic programming (GP) belongs to the group of EAs. The unique at-
tribute of GP is the evolution of the whole structure, the size and the shape
of potential solutions [4]. The population in GP is formed from candidate
solutions, which represent particular solutions in the search space for a given
problem.

The whole process of evolution in GP is depicted in Figure 2.1. During
evolution, GP tries to build suitable solutions step by step without any do-
main knowledge using the performance of random solutions (which are cross-
bred and mutated). No domain knowledge can be both an advantage and
a disadvantage, but in any case, candidate solutions are not limited by any

Figure 2.1: Scheme of the evolution process in GP.
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2. Genetic programming

predefined structure. Nevertheless, the limitation could also be dependent on
a set of objects from which candidate solutions can be built.

Candidate solutions, which represent the final solutions in GP, are used
to cover the search space of solutions for a particular assignment. These
solutions can be derived from the random process of evolution. This process
does not guarantee the discovery of the best solution. On the other hand, it
generates randomness, which can be helpful in the ability to escape traps that
deterministic methods may be captured by [5].

2.1 Representation of Individuals

Candidate solutions in GP are usually represented in the form of a syntax
tree. However, the syntax tree is not the only possibility. Another option is
to represent individuals as strings of instructions aligned into an array. This
approach is used in linear GP [5]. However, this work describes the common
approach, where potential solutions are represented by syntax trees.

Individuals in the population of GP are candidate solutions for a particular
problem. The most of the programming languages are not suitable for direct
usage in GP because individuals need to be valid after potential crossover
or mutation during the evolution process. These operators are combining
individuals together or changing pieces of their content, and languages such
as C++ or Java are inappropriate for application in GP. There would be
a high probability of invalid candidate solutions after random initialization,
crossover or mutation. Functional programming languages provide the best
functionalities for the representation in the form of syntax trees in GP.

A typical example of a functional programming language suitable for GP
is Lisp [6]. The logic of Lisp is based on s-expressions. These s-expression
are composed in the prefix notation and can be considered as functions with
parameters that give results as a return value [5]. The prefix notation initially
states the type of a function or operator, and subsequently, all parameters
are provided. All constants and variables in parameters can be replaced by
another s-expressions. Whole Lisp programs are composed using this prin-
ciple, and since each s-expression can represent one subtree, Lisp programs
are applicable to the tree structure of candidate solutions.

An example of the s-expression looks as follows:

8



2.1. Representation of Individuals

(min (− (/ y 2) x) (+ x (∗ 3 y))),

where min represents the minimum function, and both x and y represents
variables. This s-expression uses classical mathematic operators +,−, ∗, / and
function min. Evaluation is typically done using the top-down approach. This
approach takes the first function or operator and tries to evaluate it. In a case
some of its parameters are s-expressions, it proceeds down to find their results.
This approach is applied at all levels of the Lisp program. The same instance
in the infix notation would look as follows:

min((y / 2) − x, x + ( 3 ∗ y)).

Since the s-expression is equivalent to a subtree in the syntax tree, it is
possible to swap some s-expressions without invalidation of the Lisp program.
This fact provides an option to use the same approach with the candidate
solutions of GP. In crossover, subtrees can be swapped without any invalida-
tion. During mutation, a random part of the syntax tree is changed. If the
same number of parameters is retained, it is safe for the validity of candidate
solutions to perform these mutations.

Figure 2.2: a syntax tree with an instance from the prefix notation.

A syntax tree is composed of nodes and edges. Nodes represent atomic
elements of expressions such as operators, functions, variables and constants.
These nodes can be further divided into terminals and non-terminals. Since

9



2. Genetic programming

constants and variables have no arguments, they are considered as terminal
symbols due to their ability to terminate branching of the syntax tree. Ter-
minal symbols represent leaves of the syntax tree. Functions and operators
belong to the non-terminal elements of the syntax tree, and they are called
inner nodes of the syntax tree. These inner nodes require arguments for suc-
cessful execution and computation of results. The number of arguments can
vary; therefore the arity of the syntax tree is not fixed on two. Edges between
nodes represent a data flow. The nodes that are directly connected to a node
above them can be called their children. An example of a syntax tree is de-
picted in Figure 2.2. The same formula as in the s-expression, discussed in
the previous paragraph, is used.

Each node has to return the calculated result to its parent using the edge
between them. The syntax tree evaluation is executed from the root node
through his children down to terminals. Terminals return values to their
parents, and this mechanism goes back up to the root node. The root node
returns its return value, which represents the final result of the whole candidate
solution.

Figure 2.3: The evaluation of the syntax tree with the instance from the prefix
notation.

The whole process of the evaluation is demonstrated in Figure 2.3. The
evaluation proceeds through the syntax tree in the same way as the depth-
first search algorithm. This algorithm always firstly goes to the first child.
Secondly, it evaluates the second child and finally it provides the result to his
parent. The whole syntax tree is evaluated using this approach. After passing
all nodes, the result of this candidate solution is located in the root node.

10



2.2. Fitness Function

To summarize, a syntax tree is an ideal structure to represent individuals.
This type of representation is suitable both for computers and humans. Dur-
ing the evolution process, candidate solutions can be easily combined using
crossover without any invalidation. As a result, the syntax tree representation
of candidate solutions is one of the most used representations in GP.

2.2 Fitness Function

The choice of the fitness function is one of the most important decisions made
during the setup of the GP algorithm. Based on this function, the direction
of the whole evolution process toward the best solution for a particular as-
signment is set. The same function is used for the whole population. Hence,
it defines the main objective of the evolution process.

The fitness of all individuals is evaluated by the fitness function. It should
take into consideration various inputs, conditions, and environments in which
candidate solutions are tested.

The importance of the fitness function is not based only on the measure-
ment of the qualities of candidate solutions but also on the amount of the
computational effort needed for its evaluation. All candidate solutions in the
population have to be executed using the training dataset to obtain exact
values of fitnesses. This execution is made once for each generation of the
population. The effect is that most of the computation time of the whole
evolution process is spent on the evaluation of candidate solutions. Therefore
the set of functions used in individuals and its computational demands should
be wisely considered beforehand.

2.2.1 More Objectives

Another inconvenience emerges when the consideration of more than one ob-
jective is desirable. More objectives can be combined in one fitness function.
For example, candidate solutions can be handicapped in case of a higher depth
of the syntax tree than some specific threshold [5]. It can be accomplished
using the subtraction of the depth multiplied by some coefficient. More ob-
jectives are approached by multi-objective GP. It is divided into the usage
of [5]:

• more fitness values during one generation,

• one fitness value where the fitness function is evolved during the evolu-
tion of candidate solutions.

11



2. Genetic programming

These two types are described in the following two subsections.

2.2.1.1 Pareto Dominance

Pareto dominance is employed for evaluation of Pareto dominant solutions,
which are used when more fitness values for all candidate solutions coexist
within one generation. The essence of this method is to find the Pareto front of
the entire population. The Pareto front is composed of the candidate solutions
that are not dominated by any other solution. A solution is Pareto dominant
over another solution only by being better in at least one objective and better
or equal in all objectives represented by fitness values [2]. By using the Pareto
front, the best solutions are easily obtained from the whole population even
with the present of more objectives at the same time.

2.2.1.2 Dynamic and Staged Fitness Functions

The second type of multi-objective fitness evaluation are dynamic and staged
fitness functions.

The dynamic fitness function is based on evolution of the fitness function
throughout evolution of candidate solutions. At the beginning, the first ob-
jective is set to the fitness function. When the first objective is satisfied, the
second objective is set to the fitness function, and this process continues until
the last objective in the list [5]. Objectives should be wisely chosen because
the following objectives can eliminate the previous ones. This is the main
disadvantage of dynamic fitness functions.

The staged fitness function is similar to the dynamic function. It is also
setting the following objectives when the previous objectives are fulfilled. How-
ever, since the preceding objectives are still checked and have to be satisfied,
it does not allow to damage them [5]. Otherwise, it should return to the first
objective that is not met.

2.3 Terminal Set

The terminal set is composed of elements that can be used in the leaves of the
syntax tree. It means that those elements have no arguments, i.e., zero arity.

The content of the terminal set is crucial. If a too small set is used, the GP
algorithm will not be able to find a good solution. On the contrary, in case
of a large terminal set, the GP algorithm cannot be time effective. This issue
was studied on the formula [4]: x3+x2+x on 20 test cases with the population
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size of 1000 candidate solutions. In 50 generations with one variable in the
terminal set, the correct solution was found in 99.8% of runs [4]. In the case of
32 extra variables, only 35% runs were successful [4]. This experiment shows
a significant difference in performance that should be taken into account.

The following sections describe two types of terminals: variables, and con-
stants.

2.3.1 Variables

The first type of terminals are variables. Variables consist of names and values.
During the evaluation of candidate solutions, the values of variables are ap-
pointed from the dataset, and results of individuals are calculated. Therefore
the evaluation using any dataset would be meaningless without the presence
of at least one variable.

2.3.2 Constants

Constants are divided into two groups. The first group are constants used as
pre-specified, randomly generated numbers during the tree creation process or
created using mutation. Pre-specified constants can be used when it is evident
that a specific number (e.g., π) should be included in the population. This
number can be used as a hint for the GP algorithm.

The second group of constants is called ephemeral random constants [5].
These constants are randomly generated using a probability distribution dur-
ing the creation of the population of candidate solutions [4]. It means that
a different random number is generated for each instance of this constant.
However, during the evolution process, no mutation is allowed and the value
of this constant stays fixed.

2.4 Function Set

The function set includes all functions that can appear in the non-terminal
nodes of candidate solutions. This set should include functions that are ne-
cessary to cover the essence of a given problem.

2.4.1 Closure

Most function sets are required to have an important property known as clos-
ure [5][4], which guarantees no invalidation of candidate solutions during the
evolution process. It is divided into type consistency and evaluation safety [5].
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2.4.1.1 Type Consistency

Type consistency is required due to crossover and mutation operators, and also
for the correct initialization of candidate solutions. Since candidate solutions
can be initialized, crossed and mutated randomly, results can be set to function
arguments from any other terminal or non-terminal symbol. For that reason,
results from all symbols should be compatible with all their arguments [5].
Hence, it is important to be able to convert between various data types that
can appear during fitness evaluation. For instance, a number can be converted
to a boolean based on its positivity or negativity.

2.4.1.2 Evaluation Safety

Evaluation safety is an attribute assuring that all functions included in the
function set return correct values as their results. During the evaluation pro-
cess, various problems can appear, and functions should be able to handle them
correctly and return a specific value in case of problems [5]. For example, if
zero is used in the division as the divider, number one can be returned instead
of a not a number value.

2.4.2 Types of Functions

Various types of functions can be included in a function set. The following
list contains examples of functions that can be included in a function set.

• Arithmetical functions: addition, subtraction, multiplication, divi-
sion.

• Mathematical functions: sine, cosine, exp, power.

• Logical functions: and, or, not, xor.

• Conditionals: if-then-else.

• Loops: for, while, repeat.

• Variable assignment: =.

• Problem specific functions: e.g., some kind of filter.

2.5 Initialization of Population

The population of candidate solutions is typically randomly initialized before
the evolution process is started. This process can significantly influence the
evolution process. Three methods of initialization are available.
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2.5.1 Full Method

This method is based on random initialization of a syntax tree where all
terminal nodes (leaves) are in the same depth [6]. The depth is given as
a parameter of the method. At the beginning, the top-down random genera-
tion of the syntax tree is started from the root node. A random function is
chosen from the function set, and the generation process expands recursively
the node’s children based on the number of function parameters. In the last
layer, symbols from the terminal set are randomly chosen. By using this type
of initialization, it is assured, that all terminals are in the same depth.

2.5.2 Grow Method

The second method for initialization is called the grow method. The process
of the random syntax tree creation is similar to the full method. The only
difference is that between the first and the last layer of the depth, both func-
tions and terminals can be chosen. Hence, terminal symbols can appear in all
depths except the first one. A disadvantage of this method is that the size of
the function set and the terminal set can greatly affect the size of the gener-
ated syntax tree [6]. In a particular setup of these sets, the grow method can
have almost the same behavior and success rate as the full method. This be-
havior can be adjusted using a probability of choosing a terminal or a function
symbol when it has to be decided.

2.5.3 Ramped Half-and-half Method

This method is a derivation and merge of full and grow methods [4]. It uses
both methods to initialize the population. The probabilities of usage of each
method are 50%. The depth of the syntax tree is randomly selected from
2..maxDepth using the uniform distribution.

According to Koza’s [4] experiments with initialization, the ramped half-
and-half method is the most successful. During that experiment, all three
initialization methods were tested on four problems (including symbolic re-
gression). The ramped half-and-half method had the highest success rate in
three problems. In one of these three problems, it was very close to the best
solution. In all four problems, the full method had the lowest success rate.
From these results can be seen that the combination of previous methods is
fruitful because the advantages of both approaches are incorporated in the
population and help to find better solutions.
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2.5.4 Seeding

Another option that can be considered is seeding. Seeding is an addition of
a non-random candidate solution to the population; therefore these candid-
ate solutions are not created using any of the presented initialization meth-
ods. These individuals can be user-generated, they can come from another
algorithm, or the best solution from any previous run of GP can be used.
However, seeding does not necessarily improve the performance of GP [6].

Seeding should be wisely considered concerning other aspects of the GP
algorithm. In the case of only one seeded candidate solution, this individual
can be easily removed from the population in one generation of the evolution
process. On the other hand, if more solutions will be seeded, they can quickly
dominate the whole population, and any diversity will be lost [6]. It also
depends on the selection method used in the GP algorithm. For instance,
one great seeded solution can dominate the whole population. Seeding can be
helpful, however, the diversity has to be ensured during the evolution process.

2.6 GP Parameters

2.6.1 Selection Method

The selection method determines which individuals will be reproduced to the
next generation. It controls the selection pressure of the GP algorithm. The
selected candidate solutions do not have to be only reproduced as they are,
but also crossover can be made between them to create their offspring.

The aim of the selection method is to choose the best candidate solutions
for a particular problem and to maintain a healthy level of the diversity at the
same time. The diversity is critical for finding the global optimum instead of
a local one. It is not suitable to strictly eliminate a little bit worse solutions,
and some chance should be given to them to evolve in better solutions. How
strict the GP algorithm is with the preservation of only the best solutions
is called the selection pressure. Three most common selection methods are
described in more detail.

2.6.1.1 Tournament Selection

The tournament selection method is based on a comparison of fitness values.
The size of the tournament is selected by a parameter. This number of candid-
ate solutions is randomly selected to one round of the tournament. In a single
round, the individual with the highest fitness value is selected. This method
does not take into consideration the scale of fitness values. It causes that any
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rescaling of fitness values does not change the results of tournament selection.
The selection pressure can be increased by a higher size of the tournament.
The commonly used size of the tournament is two. Since tournament selection
is easy to implement and provides automatic fitness rescaling, it is commonly
used in GP [5].

2.6.1.2 Fitness Proportionate Selection

The second important selection method is fitness proportionate selection,
which is also called roulette wheel selection. This selection method is based
on the actual values of fitnesses [7]. Any candidate solution can be selected
with the following probability:

pi = fi∑N
j=1 fj

,

where p denotes the probability, N is the number of candidate solutions,
and f is the fitness value of the i-th candidate solution. The selection pres-
sure is directly connected to fitness values, and rescaling can change it. It is
a disadvantage of this method because in the case of high variance of fitness
values, there will be a high selection pressure. On the other hand, when all
fitness values are almost the same, there is a shortage of the selection pressure.

2.6.1.3 Rank Selection

The third popular method for selection is called rank selection. Compared
to fitness proportionate selection, this one is not influenced by actual fitness
values but by the ranking in the whole population based on fitness values [8].
Therefore, it removes the disadvantage of the previous method and preserves
the same selection pressure during various variances in fitness values across
the population. The only difference in the implementation compared to fitness
proportionate selection is that it sorts candidate solutions and gives them rank
numbers. These numbers start with the number one for the worst candidate
solution and go up to N for the best solution, where N denotes the number
of individuals in the population.

2.6.2 Crossover

The crossover method determines how the candidate solutions will be recom-
bined. From this recombination process, an offspring, which takes part in the
next generation, is created. The recombination is usually done using a swap
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of a particular pair of subtrees from the parent trees. These subtrees are selec-
ted using a crossover method, and each method applies its strategy to choose
crossover points, which determine root nodes of the subtrees.

2.6.2.1 Subtree Crossover

The most commonly used form of crossover in GP is subtree crossover [5].
This method randomly selects crossover points in both parents. After that,
the subtree from the first parent rooted at the crossover point is replaced by
the subtree rooted at the crossover point from the second parent. Usually,
only one offspring is created. However, it is possible to breed more offspring.

Crossover points can be chosen with the uniform probability distribution.
However, it leads to crossover of small subtrees. In extreme cases, it results in
a swap of solely terminal symbols. For that reason, the probability distribution
of 90% for functions and 10% for terminals is recommended by Koza [4].

2.6.2.2 One Point Crossover

This crossover method uses the identification of a common region in both
parent trees. The common region is composed of two parts in both parent
trees where they have the same arity of all nodes [9]. Each of these nodes also
needs to have the same type (terminal or non-terminal). Both parent trees
are scanned for the common region from the root node. Subsequently, the
crossover of subtrees is made using a crossover point chosen from the common
region.

2.6.2.3 Uniform Crossover

This type of crossover is based on the common region as well. Crossover
is made with 50% probability on each node in the common region that is
inherited from the first or the second parent tree [10].

2.6.2.4 Size-fair Crossover

Size-fair crossover aims to limit the size of the offspring tree. In the first
parent tree, the crossover point is randomly chosen. After that, the size of
the selected subtree is calculated and using this size the crossover point in the
second parent tree is selected [11]. Using this approach, both subtrees have
similar size. Therefore the offspring tree has a similar share of nodes from
both parent trees.

18



2.6. GP Parameters

2.6.3 Mutation

Mutation is a random change in the candidate solution. This change aims to
randomly search in the search space of a particular problem. Nevertheless,
mutation is not necessary for GP runs and can be omitted [5]. On the other
hand, its influence on overall performance depends on a particular problem
and the algorithm configuration, and mutation is still widely used in GP.

2.6.3.1 Subtree Mutation

Subtree mutation is a simple mutation method, which chooses a random node.
The subtree rooted at that node is replaced by a randomly generated tree [12].
There can also be included a limit for the depth of the new subtree.

2.6.3.2 Expansion Mutation

Expansion mutation selects a random terminal symbol from the candidate
solution, and this symbol is replaced by a new random tree [6]. This method
can be considered as a subset of subtree mutation.

2.6.3.3 Shrink Mutation

Shrink mutation can also be considered as a subset of subtree mutation. How-
ever, it works reversely in comparison with the expansion mutation method.
A randomly chosen subtree is replaced by a random terminal symbol [13]. The
main motivation of this method is tree size reduction.

2.6.3.4 Size-fair Subtree Mutation

Size-fair subtree mutation initially finds a random subtree. After that, this
subtree is replaced by a new random subtree. The new subtree is generated
based on the size of the original subtree. The size of the new subtree is chosen
randomly in the range s/2 to 3s/2, where s denotes the size of the original
subtree [14]. Therefore the new subtree is be produced in average with the
same size as the original tree.

2.6.3.5 Point Mutation

This type of mutation is also called node replacement mutation. A random
node is replaced by a randomly generated node with the same arity [15].
Therefore, the new node needs to have the same number of input arguments.

2.6.3.6 Hoist Mutation

Hoist mutation is based on a random selection of a syntax tree. After that,
the selected tree replaces the original syntax tree [16]. A tree that used this
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mutation method is always smaller than the original one; therefore this method
can be beneficial in the struggle with a bloated population.

2.6.3.7 Permutation Mutation

This type of mutation performs a random permutation of arguments on a ran-
domly selected node [4]. Since no permutation of arguments influences the
results of commutative functions, this mutation method should be used only
for non-commutative functions (if any effect is desired).

2.6.3.8 Constants Mutation

This method can mutate only the values of constants. Constants are mutated
using the addition of random noise to the original values. The noise usually
comes from the Gaussian distribution [17].

2.6.4 Population Size

The population size is a critical parameter of the GP configuration. Using
this attribute, the effectivity of a search of the search space can be greatly
influenced. The search space in GP is enormous, and the structure of candid-
ate solutions is not very limited; therefore the population size should be as
high as possible to provide a great diversity. The size should be at least 500
candidate solutions, and populations of thousands of candidate solutions are
often used [6].

2.6.5 Number of Generations

This parameter denotes how much time, measured by the number of genera-
tions, is given to the population to evolve and find the best possible solution to
a particular problem. The productive progress of the best solution is usually
located in the first 50 generations [5].

However, the end of the evolution process can be indicated in a different
way than using the fixed number of generations. A problem specific success in-
dicator can be used to detect the situation when the best solution is sufficient.
For instance, an error threshold can be used as an indicator for a symbolic
regression problem.

2.6.6 Elitism

Elitism is a parameter that determines, if the best candidate solutions and
how many of them, will be included in the next generation. It can be done
in various ways. One of them is to copy m best solutions to the next genera-
tion and breed fewer candidate solutions using crossover and reproduction [6].
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Another way is to breed full size of the next generation and replace m worst
candidate solutions by m elitists. The number of elitists is usually two and
should be chosen with caution to do not allow elitists dominate the whole
population quickly and eliminate the diversity.

2.6.7 Operator Rates

Operator rates define the probabilities of operators usage during the evolution
process. They can look as follows [6]:

Operator Rate r
Crossover rc ≥ 90%
Mutation rm ' 1%
Reproduction rr ' 100%− rc

Elitism re ' 2

The mutation rate is performed by choosing a candidate solution with
rm rate. The individual is mutated afterward. Crossover and reproduction
operators work in the same way. The elitism rate is denoted by a number of
elitists that are reproduced to the next generation.

2.7 Bloat

Bloat denotes excessively large parts of candidate solutions [6]. During fitness
evaluation, bloated candidates solutions require an enormous computational
effort, and a run of the GP algorithm takes more time. Any implementation
of GP should incorporate a tool for bloat protection. The following measures
can be used [6]:

• Maximum depth of candidate solutions can reasonably limit the depth
to prevent their syntax trees from uncontrolled growth. This measure
can potentially limit the search space and restrict the performance of
the best solution.

• Suitable genetic operators can be included. For instance, the size-fair
crossover method is applicable to this case. This method produces an
offspring of a size similar to the size of its parents. Subtree mutation can
be adjusted to limit the depth of the mutated candidate solutions. Hoist
mutation eliminates code to decrease the size of candidate solutions.
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• a penalty for deep solutions can be performed in the selection method.
Fitness values can be reduced by the depth of candidate solutions. An-
other way is to lower to zero the probability of the selection of the
candidate solutions that are deeper than the average depth.

• In multi-objective optimization, the depth of candidate solutions
can be used as a second fitness value. By using the Pareto front, the
depth can be included in the selection process.
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Chapter 3
Symbolic Regression

Symbolic regression is an application of GP, which is looking for a mathemat-
ical expression in a symbolical form [4]. This mathematical expression, which
can also be considered a formula, should provide the lowest possible error on
a particular dataset composed of input and output variables. It means that
symbolic regression tries to find the formula that fits a given sample of data.
Unlike other types of regressions, whose structure is prespecified, both the
structure and the parameters of the formula are subject to search [2].

3.1 Application

Due to the unlimited structure of formulas, symbolic regression can be used
to solve a variety of different problems, including the following list (taken
from [4]):

• discovery of trigonometric identities,

• econometric modeling and forecasting,

• empirical discovery of scientific laws, such as Kepler’s Third Law,

• symbolic differentiation yielding a function in symbolic form,

• solution of a differential equation yielding a function in symbolic form,

• solution of integral equations yielding a function in symbolic form,

• solution of inverse problems yielding a function in symbolic form,

• solution of general functional equations yielding a function in symbolic
form,
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• solution of equations for numeric roots,

• sequence induction,

• programmatic image compression.

3.2 Differences from the Generic GP Algorithm

Some restrictions exist in symbolic regression in comparison with the gen-
eric GP algorithm. First of all, the function set includes only arithmetical
and mathematical functions. Other types of functions such as logical func-
tions, conditionals and loops are not allowed. Therefore candidate solutions
are represented in the form of mathematical expressions (formulas). These
restrictions help to guarantee that only mathematical expressions are present
in the population.

3.3 Types of Errors

During fitness evaluation, the fitness function is executed on each candidate
solution from the population. This execution covers the calculation of the
difference, which is called an error, between the results provided by the can-
didate solution and outputs from the dataset, by using input variables from
the dataset.

More approaches are used for error calculation. All candidate solutions are
executed on every single row of the dataset to calculate partial errors. The
following types of partial errors can be applied to each row [18]:

1. the absolute error: e = |s(X)− y|,

2. the squared error: e = (s(X)− y)2,

3. the logarithmic error: e = ln(s(X)− y),

where s denotes a candidate solution (a formula), X represents the set of
input variables of a row from the dataset and y is the output variable (the
correct result) of one row from the dataset.

These partial errors of all rows from the dataset have to be combined into
the one fitness value (the size of the error) for each candidate solution. It can
be performed in a variety of different ways:
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1. the total error: f(s) =
∑N

i=1 e(i),

2. the mean error: f(s) = 1
N

∑N
i=1 e(i),

3. the minimum error: f(s) = min∀i∈R e(i),

4. the median error: f(s) = median∀i∈R e(i),

5. the maximum error: f(s) = max∀i∈R e(i),

where f denotes a fitness value, s is a candidate solution, N is the number
of rows in the dataset, R is the set of rows from the dataset and i represents
a row.

3.4 Dataset

The dataset represents the training data, which are used for the evolution
process of symbolic regression. It is composed of rows, where each of them
consists of columns with input and output variables. Input variables, which
are called independent variables, are values that are set to candidate solutions
during fitness evaluation. The output variable, which is called the dependent
variable, is a target value for the formula result. The fitness value, which
represents the error, should be as low as possible after a run of symbolic
regression. Besides, the dataset may be divided into a training data and
a testing data on which the performance of the best solution is validated.
Potential overfitting (when a solution works only on a particular training
dataset) can be discovered using this approach. Overfitting can be reduced
using a limited size of candidate solutions and a sufficiently large dataset.

The values of variables in the dataset can be user generated using setting
of random values to the desired formula. The dataset can also be compiled
from real-world data. In the case of using this type of data, noise should be
considered in the creation of the potential termination criteria.

3.5 Example Symbolic Regression

An example of symbolic regression to show the processes of initialization,
crossover, mutation and evaluation of particular solutions will be performed
on the following formula:

x4 + x3 + x2 + x.
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Table 3.1: Training dataset.

Row number x y
1 0.19250727 0.23807383
2 0.28349912 0.39311582
3 0.44879782 0.7811837
4 -0.044144154 -0.042277675
5 0.9041548 3.129093
6 0.61086416 1.3512108
7 -0.016869068 -0.016589222
8 -0.6885911 -0.31610864
9 0.945609 3.4848776

10 -0.1093992 -0.09859709

Figure 3.1: a candidate solution initialized using the grow method.

By using this formula, the training dataset in Table 3.1 was generated. The
variable x represents an independent variable, and y is a dependent variable.

At the beginning of symbolic regression, candidate solutions can be initial-
ized using the ramped half-and-half method described in 2.5.3. The ramped
half-and-half method is using both the grow and the full method. The ex-
ample of a candidate solution initialized using the grow method is depicted in
Figure 3.1 and for the full method in Figure 3.2.

After the initialization, the evolution process is started. During this pro-
cess, crossover, reproduction, and mutation are performed. An example of
crossover of two candidate solutions using the subtree crossover method, which
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Figure 3.2: a candidate solution initialized using the full method.

is described in 2.6.2.1, is depicted in Figure 3.3. In that figure, mutation is
also executed, and it is highlighted in the offspring candidate solution.

Fitness evaluation is performed on all candidate solutions in each gener-
ation of the evolution process. It is depicted in Figure 3.4, where the final
candidate solution for the particular formula is evaluated using the first row
of the dataset. Intermediate results of inner subtrees can be found next to
non-terminal nodes. In the root node, the final result is calculated. It can be
seen that the result in Figure 3.4 is the same as the y value in the first row of
the dataset in Table 3.1. Therefore, the error for the first row of the dataset
is zero.

3.6 Coevolution of Fitness Predictors

The coevolution of fitness predictors is a technique that replaces fitness eval-
uation by an approximation [3] and it can be used as an improvement of
symbolic regression. This approach comprises from the following three popu-
lations [3].

1. The population of candidate solutions in symbolic regression in-
cludes candidate mathematical expressions.

2. The population of fitness predictors is evolved in a similar manner
(using selection, crossover, and mutation) as the population of candid-
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Figure 3.3: Crossover using the subtree crossover method, and point mutation.

ate solutions. Individuals of this population, fitness predictors, repres-
ent subsets of rows of a particular training dataset. At the beginning
of evolution, fitness predictors are randomly initialized. Subsequently,
the current best fitness predictor is used for fitness approximation of
candidate solutions. Fitness approximation is performed in the same
way as fitness evaluation but using the subset of the dataset specified
by the best predictor and not the whole training dataset. The fitness
evaluation of predictors is based on the difference between the accurate
fitness of fitness trainers and the fitness approximated using a particular
predictor.

3. The population of fitness trainers is composed of candidate solu-
tions. These candidate solutions, which are called fitness trainers in this
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Figure 3.4: Fitness evaluation of the final solution.

population, are used to measure the qualities of fitness approximation
of fitness predictors. During initialization, fitness trainers are chosen
randomly from the population of candidate solutions, and their accur-
ate fitnesses are evaluated and saved. During the evolution of fitness
predictors, one new fitness trainer, which has the highest variance of the
fitness approximated by all fitness predictors, is added to the popula-
tion of fitness trainers. This addition is not performed each generation
of fitness predictors to give them time to adapt on the current fitness
trainers. The interval of this addition is usually based on the number
of generations of fitness predictors. Old trainers can be gradually re-
moved from this population to speed up the fitness evaluation of fitness
predictors.
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Figure 3.5: Evolution of fitness predictors.

During coevolution, these populations are cooperating and enhancing each
other to find the best possible solution for a particular problem. The evolution
of fitness predictors can be faster than the evolution of candidate solutions,
and more generations of fitness predictors can be evolved per one generation
of candidate solutions. In Figure 3.5 is depicted one round of the evolution
of fitness predictors. Before the start of evolution, random initialization of
predictors and trainers is performed. After that, the process of the evolution of
fitness predictors in Figure 3.5 is started from the left side. Specified amount of
generations of fitness predictors is evolved, and the best predictor is provided
for the fitness approximation of candidate solutions. After initialization, the
process in Figure 3.5 is repeated in each generation of candidate solutions.

3.6.1 Advantages

The main benefit of the coevolution of fitness predictors is the reduction of the
computational effort. Since the fitness of each candidate solution does not have
to be evaluated using the whole dataset, fitness evaluation (approximation
in this case) takes less time, and it depends on the size of predictors, which
determines the size of the subset used for fitness approximation. The evolution
of fitness predictors ensures that the approximation evolves over time.

According to [3], this type of coevolution helps to destabilize local optima,
therefore a higher diversification of the candidate solutions is present. It can
also contribute to reduce bloat in candidate solutions and find better solutions
in a shorter computational time [3].
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3.6.2 Coevolution Objectives

3.6.2.1 Solutions

The primary objective is to find the candidate solution with the highest fitness
for the current generation. In GP, this objective looks as follows [3]:

s∗ = max
∀s∈S

f(s),

where S is the population of candidate solutions for a particular prob-
lem, f is the fitness value obtained by fitness evaluation, and s∗ represents
the optimal candidate solution. In the coevolution of fitness predictors, fit-
ness evaluation is replaced by fitness approximation using a particular fitness
predictor. The same objective using fitness predictors is following [3]:

s∗ = max
∀s∈S

pb(s),

where f was replaced by pb, which approximates the fitness using the
current best fitness predictor.

3.6.2.2 Predictors

The second objective is to find the best fitness predictor in the current genera-
tion. The fitness of predictors is evaluated based on the difference between the
accurate fitness of fitness trainers and the fitness approximated using a partic-
ular predictor. The objective is to find a predictor with the lowest difference
(fitness). It can be seen in the following equation [3]:

p∗ = min
∀p∈P

1
Nt

∑
∀t∈T

|f(t)− p(t)|,

where p∗ is the best predictor, P is the population of fitness predictors,
T represents the population of fitness trainers and Nt is the number of fitness
trainers.
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3. Symbolic Regression

Table 3.2: Coevolution parameters

Parameter value
Crossover rate 75%
Mutation rate 5%
Size of predictor 8 rows
Size of predictor population 8 predictors
Size of trainers population 10 trainers
New trainer interval 100 generations

3.6.2.3 Trainers

The third objective is to periodically search for the most unpredictable can-
didate solution and add it to the population of trainers. This is measured
by the size of variance among all fitness predictors in the current generation
using the following formula [3]:

t∗ = max
∀s∈S

1
Np

∑
∀p∈P

(p(s)− p(s))2,

where t∗ is the new trainer, Np is the number of fitness predictors and p(s)
represents the average predicted fitness for a particular candidate solution
across all fitness predictors.

3.6.3 Algorithm Details

According to [18] and [3], algorithm parameters shown in Table 3.2 can be
used in the fitness predictors coevolution.
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Chapter 4
Parallel Implementation

Parallel implementation of symbolic regression using GP is built on the found-
ation of the JGAP1 library, written in the Java language. This library provides
a rich implementation of the genetic algorithm and includes the support of GP.
The parallel implementation is based on the GP part of JGAP and several
ways of parallelization are covered as well as the sequential evaluation. Fur-
thermore, the coevolution of fitness predictors is implemented, alongside with
possible ways of its parallelization.

1Java Genetic Algorithms Package http://jgap.sourceforge.net

Figure 4.1: Parallel fitness evaluation.
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4. Parallel Implementation

Figure 4.2: Master-slave model.

4.1 Parallelization

Since fitness evaluation can require a large computational effort [5], the paral-
lelization of symbolic regression is established on the parallel fitness evaluation
of candidate solutions. During fitness evaluation of one generation, individual
solutions are independent of each other. Therefore they can be easily sep-
arated for the computation of fitness value. This approach is depicted in
Figure 4.1.

Parallelization will be implemented by the master-slave model [5] shown
in Figure 4.2. This model is composed of one master node, which is called the
driver, and a given number of slave nodes, which are called executors.

The master node is responsible for the whole evolution process except
fitness evaluation. Therefore initialization, selection, crossover, reproduction
and mutation are all performed on the master node. Fitness evaluation is
distributed by the master node to the set of slave nodes, which executes the
actual fitness computation for each candidate solution. After evaluation, the
values of fitness are collected from slave nodes and saved in particular candid-
ate solutions as their fitness. By using this principle, fitness can be evaluated
faster than using the sequential evaluation.
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4.2. Technology

4.2 Technology

Apache Spark2 is used for the implementation of master-slave model. The im-
plementation of symbolic regression is written in the functional programming
language Scala3 and it is based on the JGAP library written in Java.

Apache Spark is an open-source engine for fast, large-scale big data pro-
cessing on a cluster. It provides API4 for effective distribution of computa-
tional tasks between the master node and slave nodes. The total number of
available nodes in Apache Spark is equal to the number of logical cores of all
installed processors. For the fitness evaluation on Apache Spark, a MapReduce
model is utilizied. This model is commonly used in functional programming,
and the procedure of this method is to split data, apply an evaluation on them,
and combine their results. These functionalities are represented in Scala by
the map function, which divides data into many smaller parts, and reduce
function, which synthesizes the results. Therefore, the MapReduce model is
suitable for parallel fitness evaluation on Apache Spark using the Scala lan-
guage.

4.3 Classes

The implementation is divided into many classes, and the most important
ones are shown in Figure 4.3. The classes with thinner frames are used during
the coevolution of fitness predictors. The roles of classes are following.

• SymbolicRegressionProblem generates the dataset, creates a new
instance of GPGenotype and starts the evolution process. Following at-
tributes are determined in this class: the desired formula, the function
set, the terminal set, variables, the size of the dataset and the type of
parallelization. Other more detail parameters can be set using GPCon-
figuration in this class.

• GPGenotype includes initialization and the evolution process of can-
didate solutions, and in the case of the coevolution, also the evolution of
fitness predictors. This class holds the population of candidate solutions,
the type of the parallel evaluation, the configuration and the best-found
candidate solution.

• GPConfiguration is used for setting various parameters such as the
sizes of populations, the probabilities of crossover, reproduction, and

2http://spark.apache.org
3http://www.scala-lang.org
4Application Programming Interface
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4. Parallel Implementation

Figure 4.3: Overview of classes.
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4.3. Classes

mutation and the maximum size of candidate solutions. This class also
holds the types of selection and crossover methods using INaturalGPSe-
lector class and CrossMethod class.

• GPPopulation serves as a representation of the population of candid-
ate solutions. It contains all candidate solutions in the form of instances
of GPProgram class.

• GPProgram represents a candidate solution and holds its Program-
Chromosome, computed fitness value and other parameters.

• ProgramChromosome represents the syntax tree of a particular can-
didate solution, and is composed of instances of CommandGene, which
represents one node of the syntax tree.

• GPFitnessCalculator represents the way of fitness evaluation. The
type of possible parallelization can be set by a relevant subclass of this
abstract class. In the case of the parallel version of GPFitnessCalculator,
it holds SparkContext.

• GPPredictorPopulation holds predictors in the form of intances of
the GPPredictor class.

• GPPredictorFitnessCalculator has the same function as the GPFit-
nessCalculator but for predictors. It can also hold SparkContext.

• GPTrainerPopulation possesses trainers in the form of GPPrograms.

• GPTrainerFitnessCalculator is a calculator designated for the fitness
evaluation of trainers. In the case of the parallel evaluation, it holds
SparkContext.

• SparkContext is a class provided by Apache Spark, which gives access
to parallel computation on a cluster using Apache Spark engine.

4.3.1 Fitness Calculators

Fitness calculators determine the way of fitness evaluation. They are divided
into three types: fitness calculators for candidate solutions (GPFitnessCalcu-
lator class), for fitness predictors (GPPredictorFitnessCalculator class), and
for fitness trainers (GPTrainerFitnessCalculator class). The last two types
are used during the coevolution of fitness predictors. The three types of cal-
culators exist because of optimization of the parallel evaluation. All three
populations could be evaluated using the first type, however, it would be
slower than using its type of calculator.
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4. Parallel Implementation

Figure 4.4: Scheme of sequential fitness calculation.

Figure 4.5: Scheme of parallel fitness calculation with a large dataset.

4.3.1.1 Fitness Calculators for Candidate Solutions

The aim of this calculator is to evaluate the fitness of candidate solutions.
The parallel versions of fitness calculator on Apache Spark are implemented
in two ways to support various parameters of the implementation. The types
of fitness calculators for candidate solutions are following.
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4.3. Classes

• SeqGPFitnessCalculator is used for sequential fitness evaluation. The
structure of fitness evaluation using this calculator is depicted in Fig-
ure 4.4. In the calculator, iteration is executed over all trees of candidate
solutions, and inside this iteration, each tree launches its loop over all
rows of the provided dataset. At the end, results of all rows for a par-
ticular tree are combined into one value. Fitness values of all candidate
solutions are evaluated by using this approach.

• MultiThreadGPFitnessCalculator employs the same approach as
SeqGPFitnessCalculator. The main difference is that the trees of can-
didate solutions are saved in Scala’s parallel collection, which supports
multi-thread evaluation using all logical cores of the installed processor.

• SparkPopGPFitnessCalculator uses parallelization on Apache Spark
cluster. During the initialization of this calculator, the dataset is saved
to all nodes of the cluster. Therefore, since the dataset does not have to
be sent to all nodes in the cluster in each round of evaluation, fitness cal-
culation can be considerably accelerated. This calculator uses the same
approach shown in Figure 4.4. The main difference from SeqGPFitness-
Calculator is parallelization of trees of candidate solutions among the
slave nodes of the cluster. Therefore, each executor calculates fitness for
a subset of trees of candidate solutions.

• SparkDatasetGPFitnessCalculator is designed for fitness evaluation
using Apache Spark with large datasets, which cannot fit altogether to
the memory of each slave node. The structure of this calculator is de-
picted in Figure 4.5. It iterates over the rows of a dataset parallelized
among executors, and fitness evaluation of all trees of candidate solu-
tions for a particular set of rows is executed on single slave nodes. At
the end, results for all trees using all rows are combined into one fitness
value for each candidate solution.

4.3.1.2 Fitness Calculators for the Coevolution of Fitness
Predictors

The second and the third group of fitness calculators are proposed for fitness
evaluation of fitness predictors and trainers. Both groups have the same four
types of calculators as the first group has. Therefore, there are sequential
calculators, multi-thread calculators, parallel calculators parallelizing popu-
lation, and parallel calculators parallelizing datasets. During execution, the
same type of all fitness calculators should be utilized to ensure the same level
of parallelization in all populations.
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4. Parallel Implementation

Table 4.1: Main parameters of the implementation

Parameter Name of method
Initialization method Ramped half-and-half method
Selection method Tournament selection
Crossover method Subtree crossover
Mutation rate Point mutation
Error measure Mean error of absolute errors

4.4 Implementation Parameters

The main parameters of the implementation are shown in Table 4.1.
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Chapter 5
Experiments

This chapter describes experiments about the scalability of the proposed im-
plementation of symbolic regression. It is composed of three sections. The
first section describes the proposed experiments and their details. The second
section shows and discusses the results of experiments not using the coevolu-
tion of fitness predictors. The last section presents outcomes of experiments
conducted using the coevolution of fitness predictors.

5.1 Description

The experiments are divided into two main sections, with the coevolution of
fitness predictors, and without it. The same setup of experiments, except the
usage of the coevolution, is applied in both of these sections.

All experiments are focused on a speed-up of a parallel execution in com-
parison with a sequential execution. The speed-up of the parallel evaluation
is defined by the following formula:

S = ts
tp
,

where S represents the speed-up of the algorithm, ts is the time of the
sequential evaluation, and tp is the time of the parallel evaluation.
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5. Experiments

5.1.1 Searched Formulas

A set of five formulas, selected from the symbolic regression benchmark func-
tions5, is used for the experiments. The set contains the following formulas:

f(x) = 0.3 ∗ x ∗ sin(2 ∗ π ∗ x),

f(x) = x3 ∗ exp(−x) ∗ cos(x) ∗ sin(x) ∗ (sin(x)2 ∗ cos(x)− 1),

f(x) = x4 + x3 + x2 + x,

f(x) = log(x+ 1) + log(x2 + 1),

f(x, y) = 1
1 + x−4 + 1

1 + y−4 .

The datasets for symbolic regression are generated using these formulas,
where input values are random numbers uniformly distributed over the interval
〈−5, 5〉.

5.1.2 Fixed Parameters

Many parameters are fixed during all experiments. Some parameters were
mentioned in the previous chapters, in Table 4.1, and in Table 3.2 for the ex-
periments that use the coevolution of fitness predictors. These parameters are
used along with parameters in Table 5.1, where the last parameter determ-
ines the number of predictor’s generations per one generation of candidate
solutions.

5.1.3 Variable Parameters

Four parameters are changeable during experimentation. These parameters
are stated in the following list, alongside their sets of values:

• the size of the dataset ∈ {1000, 10000, 100000},

• the size of the population ∈ {100, 1000, 10000},

• the number of available nodes ∈ {2, 4, 8, 16},

• the type of parallelization ∈ {Sequential, SparkPopulation,
SparkDataset,MultiThread}.

5http://dev.heuristiclab.com/trac.fcgi/blog/gkronber/symbolic_regression_
benchmark
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5.1. Description

Table 5.1: Fixed parameters for experiments

Parameter Value
Number of generations 50
Crossover probability 90%
Mutation probability 5%
Elitism 1
Maximum depth of candidate solution 17
Error mean absolute error
Terminal set {x, y, random mutable constant}
Function set {+,−, ∗, /,pow, sin, cos, exp, log}
Size of tournament 2
Size of predictor’s tournament 2
Size of predictor’s evolution interval 3

Table 5.2: Fitness calculators used in experiments

Type of parallelization Used fitness calculator
Sequential SeqGPFitnessCalculator
SparkPopulation SparkPopGPFitnessCalculator
SparkDataset SparkDatasetGPFitnessCalculator
MultiThread MultiThreadGPFitnessCalculator

The names of various types of parallelization are derived from the names
of fitness calculators. These fitness calculators can be seen in Table 5.2.
Moreover, during the coevolution of fitness predictors, corresponding fitness
calculators for predictors and trainers are used as well.

The size of the dataset and the size of the population are not tested for all
its combinations. During the testing of various sizes of the dataset, only the
underlined size of the population is used. The same applies for tests regarding
various sizes of the population where the underlined size of the dataset is used.
Therefore, these two parameters are used in six combinations in total.

The number of available nodes denotes the number of available logical
cores of processors. For the MultiThread type of parallelization, it means the
number of logical cores available on a particular computer. For parallelization
on Apache Spark it denotes the number of logical cores available in a cluster of
computers. However, these experiments are conducted on a single computer,
where 16 logical cores are available; therefore the MultiThread does not have
a disadvantage regarding the number of available nodes. On the other hand,
the evaluation using Apache Spark has a significant advantage in its possible
scalability on a cluster, which the MultiThread using Scala’s parallel collections
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5. Experiments

cannot offer.

Only sixteen nodes (the last option in the set) is tested with all six com-
binations of sizes of the dataset and the population. All the other options of
the number of nodes are examined with two of these combinations. The first
combination is the largest dataset and the underlined size of the population.
The second one is the highest size of the population with the underlined size
of the dataset. By using this approach, 6 + 3 ∗ 2 = 12 combinations of sizes
of the dataset, sizes of the population, and the numbers of available nodes
are obtained. Each of these combinations is evaluated using the SparkPop-
ulation, the SparkDataset, and the MultiThread. Since the number of nodes
does not affect the sequential evaluation, the Sequential is evaluated only with
the six combinations of sizes of the dataset and sizes of the population. It is
12∗3+1∗6 = 42 combinations of variable parameters on which all five formu-
las are evaluated using both the coevolution of fitness predictors and classical
symbolic regression without the coevolution. In total, 42∗5∗2 = 420 combin-
ations of variable parameters, formulas, and potential usage of the coevolution
are conducted in the experiments. Each measurement of time (the speed-up
is calculated from these values) is performed five times, and the values of the
speed-up represent the average value for a particular setup of parameters.

5.1.4 Types of Experiments

In both sections of actual experiments, four types of experiments with own
types of graph are conducted. In each of four graphs, four types of paralleliz-
ation are shown as four groups of points in a graph, and the y axis represents
the speed-up in comparison with the sequential evaluation. The Sequential is
included as well with the value 1.0. The x axis represents a particular vari-
able parameter on a logarithmic scale (with the base ten for the sizes of the
dataset and the population, and with the base two for the number of nodes).
The types of graphs and their parameters are following:

1. Variable size of the dataset

• Fixed parameters:

– the number of nodes = 16,
– the size of the population = 1000.

• Variable parameters:

– the size of the dataset ∈ {1000, 10000, 100000}.

2. Variable size of the population
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5.2. Experiments without the Coevolution of Fitness Predictors

• Fixed parameters:
– the number of nodes = 16,
– the size of the dataset = 10000.

• Variable parameters:
– the size of the population ∈ {100, 1000, 10000}.

3. Variable number of nodes with the large dataset

• Fixed parameters:
– the size of the population = 1000,
– the size of the dataset = 100000.

• Variable parameters:
– the number of nodes ∈ {2, 4, 8, 16}.

4. Variable number of nodes with the large population

• Fixed parameters:
– the size of the population = 10000,
– the size of the dataset = 10000.

• Variable parameters:
– the number of nodes ∈ {2, 4, 8, 16}.

5.2 Experiments without the Coevolution of
Fitness Predictors

5.2.1 Variable Size of the Dataset

The result of this experiment is depicted in Figure 5.1. The MultiThread
has the highest speed-up (around six) in all three sizes of the dataset, how-
ever, with the increasing size of the dataset, the SparkPopulation’s speed-up
is getting closer to the MultiThread. The SparkDataset’s speed-up is also in-
creasing with the increasing size of the dataset (up to 3.88), but it is lower in
comparison with the SparkPopulation.

5.2.2 Variable Size of the Population

Similar results as in the previous experiment can be observed in Figure 5.2.
The MultiThread’s speed-up is the highest one. The SparkPopulation is slower
than the MultiThread, but the speed-up is increasing with the size of the pop-
ulation. Using the SparkDataset, the speed-up does not increase significantly
with larger populations.
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Figure 5.1: Graph showing the speed-up with a variable size of the dataset
and without the coevolution.

5.2.3 Variable Number of Nodes with the Large Dataset

There is a positive correlation between the number of nodes and the speed-
up. According to Figure 5.3, all types of evaluation (except the Sequential)
evince higher speed-ups (up to 5.57 using the MultiThread) with the increasing
number of nodes. The SparkDataset is again lagging behind the MultiThread
and the SparkPopulation as in the two previous experiments.

5.2.4 Variable Number of Nodes with the Large Population

In this experiment, depicted in Figure 5.4, similar results as in the previous
experiment with the large dataset are noticeable. However, the speed-up of
the SparkDataset is considerably lower than in the previous experiment (3.88
vs. 2.38 using sixteen nodes).

5.2.5 Discussion

In all four experiments described above, it is evident that the parallel evalu-
ation provides a significant speed-up in comparison with the sequential eval-
uation. The highest speed-up was 6.71 for the MultiThread in the second
experiment using the largest population. In general, the MultiThread demon-
strated the highest speed-up in all four experiments, the SparkPopulation has
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Figure 5.2: Graph showing the speed-up with a variable size of the population
and without the coevolution.

the second highest speed-up (up to 5.91), and the SparkDataset is the third
(up to 3.88). However, each of them is more suitable in different situations.

The MultiThread provides the best speed-up, but it utilizes only logical
cores of processors in one computer. In the case of more available computers
(a cluster), the MultiThread can be executed only on one of them. This at-
tribute provides an advantage to the MultiThread, which does not have to
perform extra work to support the generality of multiple nodes across the
whole cluster of computers. This fact loads both the SparkPopulation and the
SparkDataset with extra tasks. On the other hand, once the extra work is
done, the evaluation using Apache Spark can benefit from the support of mul-
tiple nodes across the cluster. From the experiments can be seen that with the
large dataset, the evaluation using the SparkPopulation has almost the same
speed-up as the MultiThread. This indicates that the evaluation using Apache
Spark is suitable for large amounts of data, and in comparison with Scala’s
parallel collections, it is scalable across the whole cluster of computers. The
SparkPopulation provides the best performance on Apache Spark, however, it
cannot be used with a dataset that will not fit in the memory of each node.
For this purpose, the SparkDataset is suitable, which supports execution on
a cluster with a large dataset.
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Figure 5.3: Graph showing the speed-up with a variable number of nodes
using the large dataset and without the coevolution.

5.3 Experiments with the Coevolution of Fitness
Predictors

5.3.1 Variable Size of the Dataset

The results of this experiment are depicted in Figure 5.5. The speed-ups of
the SparkPopulation and the SparkDataset are considerably lower (the highest
is 0.12) than using Sequntial. Therefore, with the coevolution of fitness pre-
dictors, the evaluation using Apache Spark is slower in comparison with the
sequential evaluation. The highest speed-up achieved by the MultiThread is
1.53. This is a significantly lower speed-up than without the coevolution of
fitness predictors.

5.3.2 Variable Size of the Population

This experiment, depicted in Figure 5.6, shows similar results as the previous
experiment. Only the MultiThread is faster than the Sequential.
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Figure 5.4: Graph showing the speed-up with a variable number of nodes
using the large population and without the coevolution.

5.3.3 Variable Number of Nodes with the Large Dataset

Similar results as in the previous experiment can be seen in Figure 5.7. The
highest speed-up is 1.53 using the MultiThread and sixteen nodes.

5.3.4 Variable Number of Nodes with the Large Population

This experiment, which results are depicted in Figure 5.8, indicates similar
results as in the three previous experiments using the coevolution of fitness
predictors. Only the MultiThread tends to be faster than the Sequential (in
this case only using eight or sixteen nodes).

5.3.5 Discussion

According to these four experiments, it can be concluded that the coevolution
of fitness predictors is not suitable for parallel evaluation (and especially on
a cluster). All results using Apache Spark were slower than the sequential
evaluation. Using the MultiThread, the highest speed-up was 1.53.

During the coevolution of fitness predictors, smaller amounts of data have
to be evaluated, in comparison with the parallel implementation without the
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Figure 5.5: Graph showing the speed-up with a variable size of the dataset
and with the coevolution.

coevolution of fitness predictors. This fact produces a high granularity of the
parallel implementation with the coevolution. Besides the population of can-
didate solutions, also the populations of predictors and trainers have to be
evaluated. These populations are of a very small size (eight predictors and
ten trainers in this case), and any overhead, necessary for the parallelization,
is not worth its results (especially in the case of Apache Spark). Also, the pop-
ulation of fitness predictors requires an extra time for its evolution (selection,
crossover, and mutation), which is done sequentially and is difficult to paral-
lelize. Furthermore, during the evaluation of candidate solutions, only small
subsets of the dataset (based on the size of the predictor, which is eight in this
case) are used for the evaluation of individuals. Thus, only a small part of the
evaluation can be parallelized. All these facts, mentioned above, generates an
inability of the coevolution of fitness predictors to be well parallelized.
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Figure 5.6: Graph showing the speed-up with a variable size of the population
and with the coevolution.
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Figure 5.7: Graph showing the speed-up with a variable number of nodes
using the large dataset and with the coevolution.
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Figure 5.8: Graph showing the speed-up with a variable number of nodes
using the large population and with the coevolution.
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Conclusion

This thesis was focused on symbolic regression, which searches for a symbolic
formula that best approximates values of the function used for generation of
the dataset. Symbolic regression is typically approached by genetic program-
ming, which belongs to the group of evolutionary algorithms. Evolutionary
algorithms, genetic programming, and symbolic regression were theoretically
described in detail. Based on this description, a parallel implementation of
symbolic regression using genetic programming was proposed.

Symbolic regression was implemented in two versions: without the coe-
volution of fitness predictors, and with the coevolution of fitness predictors.
The functional programming language Scala and the Apache Spark engine,
which enables parallel execution on a cluster, were utilized for the parallel im-
plementation. Two types of possible parallelizations using Apache Spark and
one type using Scala’s parallel collections were implemented. On both versions
of the implementation, without the coevolution of fitness predictors, and with
the coevolution of fitness predictors, experiments about the scalability were
performed.

The experiments evaluating the scalability of the parallel implementation
showed that symbolic regression not using the coevolution of fitness predict-
ors can be significantly speeded up. The highest speed-up, 6.71, was achieved
using Scala’s parallel collections. However, Scala’s parallel collections cannot
be used on a cluster. These collections utilize only logical cores of processors
in one computer. For an execution on a cluster the best performance (with
the speed-up of up to 5.91) is provided by the parallelization of the population
of candidate solutions using Apache Spark. Nevertheless, the evaluation using
Apache Spark needs to perform extra work to support the generality of mul-
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tiple nodes across the whole cluster of computers. This is the main reason for
the slower evaluation using Apache Spark in comparison with Scala’s parallel
collections. Once the extra work is done, the parallel evaluation can benefit
from the computational power of the whole cluster. Therefore, the scalab-
ility of the evaluation using Apache Spark is significantly better. Also, the
results of the experiments indicated that with the large dataset, the speed-up
using the parallelization of the population using Apache Spark was almost as
high as the parallelization using Scala’s parallel collections (5.50 versus 5.57,
respectively). It signals that the evaluation using Apache Spark is suitable
for large amounts of data, and in comparison with Scala’s parallel collections
it is scalable across the whole cluster of computers. On the other hand, the
parallelization of the population using Apache Spark cannot be utilized in the
case of a large dataset that cannot fit into the memory of each node. For this
purpose, the parallelization of the dataset using Apache Spark was implemen-
ted. The speed-up of this type of parallelization, based on the experiments,
was up to 3.88.

The experiments about the parallel implementation of symbolic regression
using the coevolution of fitness predictors showed that the coevolution is not
convenient for parallelization. All types of the parallelization using Apache
Spark demonstrated slower evaluation than when using the sequential evalu-
ation (the highest speed-up value was 0.21). This fact is caused by a higher
granularity of the parallel implementation with the coevolution of fitness pre-
dictors. In addition to the population of candidate solutions, also the popula-
tions of predictors and trainers have to be evaluated. These populations are
very small (eight predictors and ten trainers in this case), and any overhead,
necessary for the parallelization, is not worth its results (especially in the case
of Apache Spark). Furthermore, the fitness predictors require an extra time
for its evolution which is difficult to parallelize. Also, during the evaluation
of candidate solutions, only small subsets of the dataset are utilized for the
evaluation of individuals. Therefore, only a small part of the evaluation can
be parallelized and using Apache Spark, there is no speed-up at all. Only the
parallelization using Scala’s parallel collection was faster than the sequential
evaluation. However, the speed-up is not as significant as in the experiments
without the coevolution (up to 1.53).

In conclusion, the parallel evaluation of classical symbolic regression not
using the coevolution of fitness predictors can significantly speed up the evalu-
ation process and is well scalable using Apache Spark across the whole cluster
of computers. On the other hand, symbolic regression using the coevolution
of fitness predictors is not suitable for the parallel evaluation due to its high
granularity.
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Appendix A
Acronyms

API Application Programming Interface

GP Genetic Programming

EA Evolutionary Algorithm

JGAP Java Genetic Algorithms Package
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Appendix B
Contents of enclosed CD

readme.txt ....................... the file with CD contents description
src.......................................the directory of source codes

impl........................................implementation sources
thesis..............the directory of LATEX source codes of the thesis

text..........................................the thesis text directory
DP Malicek Tomas 2017.pdf...........the thesis text in PDF format
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