CzECH TECHNICAL UNIVERSITY IN PRAGUE
FACULTY OF INFORMATION TECHNOLOGY

ASSIGNMENT OF MASTER’S THESIS

Title: Analysis of bank data

Student: Bc. Evgeniya Nenenko

Supervisor: doc. RNDr. Ing. Marcel Jifina, Ph.D.

Study Programme: Informatics

Study Branch: Knowledge Engineering

Department: Department of Theoretical Computer Science
Validity: Until the end of winter semester 2018/19

Instructions

The aim of the work is to analyze transactional data (bank data of financial account transactions) to identify
different patterns of customer behavior. These can then be used, e.g., to optimize sales and marketing
activities of the bank.

1) Get familiar with the structure of the transaction data and the problems of detecting patterns in time series.
2) Explore the transaction data in order to detect anomalies and identify interesting patterns of customer
behavior.

3) Propose methods and algorithms to analyze the transactional data.

4) Design the proposed methods and algorithms in an appropriate analytical tool or implement them using
appropriate programming language.

5) Verify the methods and algorithms on real data and evaluate the results.

References

Will be provided by the supervisor.

doc. Ing. Jan Janousek, Ph.D. prof. Ing. Pavel Tvrdik, CSc.
Head of Department Dean

Prague February 18, 2017

CZECH TECHNICAL UNIVERSITY IN PRAGUE

FacuLTYy OF INFORMATION TECHNOLOGY

DEPARTMENT OF THEORETICAL COMPUTER SCIENCE

Master’s thesis

Analysis of bank data

Bec. FEvgeniya Nenenko

Supervisor: doc. RNDr. Ing. Marcel Jifina, Ph.D.

9th May 2017

Acknowledgements

I’d like to thank the supervisor of my thesis work doc. RNDr. Ing. Marcel
Jitina, Ph.D. for advices, help and patience. Also, I'd like to thank Data
Science department of KB bank, namely Tomas Lancinger, Karel Simanek and
Toméas Hubinek for the participation and cooperation. Last but not least, I'd
like to thank my parents who were always supportive and caring throughout
the years of my studies.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on 9th May 2017

Czech Technical University in Prague

Faculty of Information Technology

© 2017 Evgeniya Nenenko. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Nenenko, Evgeniya. Analysis of bank data. Master’s thesis. Czech Technical
University in Prague, Faculty of Information Technology, 2017.

Abstrakt

Cilem této prace bylo analyzovat bankovni transakéni data za ucelem ziskani
vzorcl chovani zakaznikd. Osnovu této prace tvori data mining periodickych
vzorcu v databazich Casovych rfad. Pro navrh vhodného analytického ramce
byl proveden vyzkum dostupnych feseni s pozdéjsi adaptaci vhodnych algor-
itmu tak, aby co nejlépe odpovidaly pozadavkim zadani. Poté bylo provedeno
vyhodnoceni vysledki a nabidnuta doporuceni tykajici se nastaveni tohoto
ramce, budouciho vyvoje a vyuziti vysledki.

Klicéova slova Vytézovani dat, dobyvani znalosti, databdze casovych rad,
periodické vzorce

Abstract

The aim of this work was to analyse bank transactional data in order to find
patterns in the customers’ behaviour. The main focus being periodic pattern
mining in time series databases. To provide a suitable analytical framework,
the research of the existing solution was made with a later adaptation of
available algorithms to suit the requirements of the assignment. Finally, the

ix

result evaluation took place with suggestions regarding framework settings
and future usage.

Keywords Data mining, knowledge discovery, time series database, periodic
patterns

Contents

Iintroductioa

Motivation for this WOI‘kI
Definition of the problen{
(Goal of this workl

Outliné

h Time series datz{

1.1 Time series]
1.2 Pattern mining in time series databasel
1.3 Time series in bank and financial transactions]

I‘Z State-of—the-ard
.1 Existing algorithms{
.2 Chosen algorithmsl

E Analvsig

B.l Data structure, example, statisticsi

E Desiga

1.1 Data requirements]
1.2 Periodic pattern mining in time series databasesl
1.3 Periodic outlier patterns and anomalies in time series databasel
1.4 Parameters and experiments with therd

b Implementatiod

5.1 Development environmentl
5.2 Python librariesi
6.3 Algorithm limitatiod

xi

11
11
18

21
22

51
o1
92
93

55

6.1 Example resultsi
6.2 Result evaluatiod

|7 Discussior]

7.1 Marketing and Salesl
7.2 Management and Business Intelligencel
7.3 Future usd

|A Contents of enclosed flash drivel

xii

61
61
62
63

65
65
66

67

71

List of Figures

.1

Example of application of segmentation system in time series data]

hdopted from [1] o 6
|1.2 Typical example of motif discovery, adopted from [l]l 6
D.1 The suffix tree for string {abcabbabb$}. adopted from [11]. 13
.2 Annotated suffix tree of string {abcabbabb} after bottom-up tra—l

ersal, adopted from [11]. 14
|2.3 Periodic patterns of length 1-3 for time series string {accx acxd

Iaxdd bacx}. adopted from [7]| 15
D4 periodicity detection algorithm, adopted from [11] 16
D.5 Suffix trie of {abcc abdc acdc abdc$}, adopted from [14‘ 17
I3.1 The simlified database diagram of project owner’s historical datal .24

U1

Histogram of example company’s transactions distribution, amountl

D - 50 o o 28
|4.2 Histogram of example company’s transactions distribution, amountl

BO - 500 . o o o e e e e e e e 29
1.3 Pseudocode of periodic pattern mining algorithm, adopted from [7]| 31
1.4 Discretization function, adopted from [7]. 32
1.5 Example of transaction amount distributiod 37
1.6 Periodicity detection algorithm, adopted from [14]| 41
1.7 Occurrence vector processing algorithm, adopted from [17]| 47
1.8 An example of the impact of different binning type for the trans—l

lactional history with 515 eventsi 49
7.1 The distribution of different size companies on the market| 62
7.2 The distribution of different size companies on the market| 63

xiii

List of Tables

.1

Example of analogous database of a company’s working hours forl

Emglozeeé 7

3.1 The given data set statisticsl 23

3.2 Example of the transactional data records] 23

3.3 The description of the derived attributes of the transactional datal
e 24

B.4

The description of the transactional data joined with the additional

Ettributeé 26

1.1 The description of the transactional data ageregated for the analysis] 30
1.2 An example of the ageregated time series of transactional data . . 34
1.3 An example of the aggregated time series of transactional data]

that was artificially stretched 35
|4.4 An example of composed symbol in the proposed discretizing tech—l

et 36
1.5 Occurrence vectors of two distinct eventsl 38
1.6 Occurrence vectors of two patterns of length QI 39
1.7 Example of mined patternsl 43
b.l The structure of the result patternsl 56

XV

Introduction

Modern data analysis technologies these days enable streamline accumulation
of hundreds or thousands of records daily. Whether it is meteorological data
that register changes in the temperature, atmosphere pressure or air humidity,
stock market data that register changes in stock values, these types of inform-
ation are vital to create a descriptive conception of changes that develop in
time. These measurements, collected in order to observe changes and detect
trends are called time series data.

Apart from perceiving time series data as a set of data points that was
gathered in equal periods of time, another way to do so is in the form of
records, which besides mere changes in one particular value, also contain at-
tributes that describe these records. For instance, logbook of employees’: such
records might contain type of log, whether it is a log-in or log-out, timestamp,
identification of facility and others. When such records are distributed uni-
formly during the day, this logbook is said to be time series database.

The bank sector is one of the most bountiful ground for innovative data
analysis. Gathering vast amount of transaction data daily, it is truly the
sphere of advanced data analysis technologies that enable multifaceted data
mining. However, there exists an opinion that bank institutions tend to have
historically rigid policies towards adapting new technologies and methods.
This might be caused by several reasons: very strict regulations, conservat-
ive senior management, strong best practices traditions etc. Nevertheless,
changes in this sector caused by natural market competitiveness, young tech-
nically advanced players, loss of exclusiveness of bank products offer brings
the necessity of implementing an innovative approach to data analysis.

Same as to any other companies on the market, understanding data for
bank institutions is a major question in modern business reality. The import-
ance of creating the right data policy cannot be by any means overestimated,
as the right business strategy is key to create a successful competitive ability.
The capacity to propagate future events in time series data is important for the
decision making process. This is why discovering knowledge from historical

INTRODUCTION

time series data is a very interesting and promising area of research.

In the framework of this thesis paper, I'd like to focus on the problem
of time series data mining with particular consideration for periodic pattern
mining, and as a result suggest a number of innovations that will provide new
perspectives of bank transactions’ time series data and will add value to the
company.

Motivation for this work

The motivation for this work was born and defined in KB bank’s Data Science
department. It was agreed that with considerable amount of historical data
that was owned by KB at the moment of creating the technical specification
for this thesis work, it was the highest time to make an attempt at discovering
new successful and productive ways of utilizing it, to use it as a source of fur-
ther innovations and creating a more advanced approach to bank transactions
analysis. For the KB bank (further referred to as project owner) the main
points of interests were questions such as:

e Do companies with similar characteristics interact in a similar manner
with other companies?

o Are there patterns that can be detected and how can they be possibly
represented and stored?

e Can the anomalies in the customers’ behavior be discovered in a more
efficient way rather than in a brute force observation and monitoring
approach?

o Can we state, that by discovering common patterns for a group of com-
panies, based on the type of activity (NACE code and turnover amount),
we can project such patterns to individual clients?

e Can those detected and proven to be frequent and periodic patterns be
used in order to predict customers’ behavior?

e In what other ways can such patterns be used?

To be able to answer those questions, it was needed to create an analytical
framework that would be able to recognize repetitive events discovered in his-
torical data. More specifically, detect patterns in aggregated time series. Raw
transaction data can be represented as records with standard attributes such
as what amount of money was sent or received, account number of a trans-
action origin, recipient account number and additional details like timestamp
etc., together with foreign keys as a reference to the other fact tables that
contain further information about such transactions.

Definition of the problem

Analyzing historical data in the domain of individual transactions, how-
ever, may detract from the whole image of business reality, as they tend to be
matchless, exclusive and either repeated constantly, and therefore redundant,
or randomly and thus not periodic. However, while analyzing aggregated time
series, e.g. transaction amount per category or market sector, that perspective
enables one to ignore insignificant intermediate results and concentrate on the
major trends and patterns. Aggregated time series are, in a way, data that
were grouped by all of the record attributes, except for one, for example —
total amount of money that was received, with beforehand defined time gran-
ularity. Such aggregated time series of bank transactions data are the subject
of study in this thesis.

The output of the whole analytical framework may be then intended for
better understanding the interconnection between different market sectors,
event propagation and therefore improvement of the decision making process.

Definition of the problem

The main question that was given by the project owner as a definition of
the problem and was tried to be answered in this work is: is it possible to
detect a repetitive behavior for a particular company or a group of companies
in order to identify regularities in one’s business or a business sector? That
is a primary question that invokes several other points of interest. Among
them are for example: can these patterns be sector-specific? Does there exist
particular seasonality in such behavior?

While the approach for detecting and mining periodic patterns in time
series data remains universal, the result set of patterns may have various
characteristics that respond to different business needs based on the input
data and the post-evaluation:

e sequential patterns in time series data;

o patterns that indicate seasonality in market sectors and their interac-
tions’ cash flow;

e patterns in time series that appear to be sector-specific;

e meta patterns as a group of events that lead to particular deviations in
customers’ behavior

Goal of this work

In order to answer the given questions, the research upon the matter of time
series data mining took place with later adaptation of the most suitable al-
gorithms. The main goals of this work were to:

INTRODUCTION

1. Get familiar with bank transactions data structure.

2. Consult and create appropriate discretizing method for the events in
data.

3. Design an approach that will be used as a tool to generate, detect and
mine periodic patterns in transactional data.

4. Embody this approach in an analytical tool.

5. Create a framework to find unusual changes in customers’ behavior and
notify business analytics about such events. (In the boundaries of this
work notification is not meant to be sent or generated automatically).

6. Analyze and evaluate the outcome, consult the results’ significance and
value with the experts.

7. Propose a possible future use of the results.

Outline

The rest of this thesis work is organized as follows: chapter 1 is focused on the
brief introduction to the theory of time series data and database, its use in
general data mining. Chapter 2 represents research that was made in order to
find appropriate methods of time series pattern mining. Chapter 3 is dedicated
to further problem analysis and description of the given data set. Chapter 4
describes the suggested design of analytical framework and methods that were
selected, including the adaptation of the chosen algorithms, its’ alternations
and extensions. Programing language, environment and libraries that were
used are described in chapter 5. Finally chapter 6 is dedicated to the results’
evaluation. In chapter 7 there is a discussion of the achieved outcome and its
potential future use.

CHAPTER].

Time series data

There are several ways to represent a bank transactional history database.
One of them is the time series data or time series database. The purpose of
this chapter is to provide a brief introduction into the problem of time series
database and common data mining approaches to it. Also in this section, some
preliminary terminologies are introduced to provide necessary background for
better understanding of time series databases and pattern mining algorithms
that will be discussed later.

1.1 Time series

These days, many aspects of everyday scientific and financial activities involve
constant measurements and the storing of those resulting values in order to
discover hidden knowledge in such data. These organized measurements col-
lection are called time series. The process of discovering hidden knowledge is
known as data mining.

In existing literature there can be found at least two main approaches to
the time series data. The first one represents time series as a contiguous set
of data points or a signal, whereas the second one suggests that time series
consist of discrete multi-dimensional records or events.

A time series T is an ordered sequence of n real-valued variables, as shown
in Formula

T =(ty,tn) ti € R (1.1)

Often, time series is a result of the observations of a particular underlying
process in the course of which, values are collected from the measurements
made at uniformly spaced time instants and according to a given sampling
rate. A time series can thus be defined as a set of contiguous time instants [I].
Such data often represent only data points chosen by sampling or importance

1. TIME SERIES DATA

level to scale out, simplify or smooth data. To illustrate the above-mentioned
definition, see Figure below:

AN AN

IIlIlIIIIlIIIIlIIIIIIII]III IIIlllllIIIIlllllIIIIlII LELELI

(a) (b)

Figure 1.1: Example of application of segmentation system in time series data,
adopted from [Iil]

The main issue with data mining this type of time series is the high di-
mensionality of it. To eliminate this constraint, time series databases mainly
consist of merely simplified versions of time series.

This type of time series is further analyzed with the aim of extracting
knowledge from the shape of the data, as illustrated in Figure @ The initial
tasks that are often required to preprocess data for further analysis are data
representation and indexing. The core tasks for the time series data min-
ing are segmentation and similarity measure between two time series. The
data mining upon these time series may then include tasks like dimensional-
ity reduction @], segmentation [E], shape-based pattern discovery [@] or [E],
clustering [6] and many others.

llllllllII[III|IIII|IIlllllr!llllllllrl'['llll]ITI'l'I‘T'I'I]Il'lT'[T]llil

Figure 1.2: Typical example of motif discovery, adopted from [Eh

Another way to understand time series data is to imagine them as a set of
records uniformly distributed in time that kept all of their attributes, thus did
not fall under dimensionality reductions and are treated as events, see Table

. Such set of events is called time series database.

A time series database is a set of observations taken at specified times,
usually at “equal intervals”. Mathematically a time series database is defined
by a set of values Y1, Ys, ... , Y, of a variable Y at times t1, to, .. , t5.

Thus, the relation among the variable and time values can be defined as
Y = F(t).

6

1.2. Pattern mining in time series database

Table 1.1: Example of analogous database of a company’s working hours for
employees

Day Duty slot | Event

0 | 12/3/2016 | 08:00 - 10:00 | Login
1 10:01 - 12:00

2 12:01 — 14:00

3 14:01 — 16:00 | Logout
4 16:01 — 18:00

5| 14/3/2016 | 08:00 — 10:00

6 10:01 - 12:00 Login
7 12:01 — 14:00

8 14:01 — 16:00

9

16:01 — 18:00 | Logout

In the rest of this work we only consider this type of time series databases.

1.2 Pattern mining in time series database

Time series mining is a branch of data mining that consists of sequences of
values or events that were obtained with respect to a certain time interval
such as daily, weekly and monthly. In real-life applications, when there exists
a certain possibility for an event to occur repeatedly after an equal period of
time, the techniques of time series data mining are mostly used to discover
interesting knowledge from the repeated events in the time series databases
as for instance, stock market transactions and price changes, transaction ana-
lysis in supermarkets, computer logs, analysis of climate indicators such as
temperature, ocean level, air pollution and others.

With the aim of effective analysis of time series, time series databases
are often represented as a sequence of events, instead of tabular form. The
procedure known as discretization [[7] will transform a list of record into the
ordered set of symbols, where each symbol represents a certain range of events.
Consider the example above in Table . Each work day has 5 time slots,
designated for an employee to log in and log out.

Imagine every slot of the time schedule is represented with one distinct
symbol, where “a” stands for log-in, “c” for log-out, “b” for the time slot,
describing the time spent at work, “d” for after-work hours and “x” for pre-
work hours. Then the time series database from example in Table u, can be
represented as shown in equation [1.2:

T = {abbed xabbe} (1.2)
Pattern mining is one of the most important areas in data mining that

7

1. TIME SERIES DATA

includes frequent pattern mining, sequential pattern mining, and periodic pat-
tern mining.

A promising field of data mining is time series analysis, where a sequence
of items or events can be found with respect to a fixed time interval. When
an event or a sequence of events, also called pattern, repeats itself in a time
series dataset with a specific time interval, it is known as periodic pattern.

For instance, in the example event sequence 7' = {bbaa abaa abac abdd},
the pattern “ab” is periodic where the period value p = 4 and starting position
= 4.

Periodic pattern mining is an interesting research topic that allows possible
prediction of future events or trends in different applications, for example
business or scientific. Periodic pattern mining refers to the discovering of
patterns, that appear to be frequent and periodic in the given time series
database. Periodicity detection, that is a part of periodic pattern mining, is a
process for checking regularities of patterns’ occurrences within the time series
database. In general, these three types of periodic patterns can be detected
in a time series database:

e Symbol periodicity
e Sequence periodicity or partial periodic patterns
e Segment or full-cycle periodicity

If at least one symbol is repeated periodically in a time series database,
such time series database is said to have symbol periodicity. In the same way,
if a pattern consists of more than one symbol and is proven to be periodic in a
time series database, this type of periodicity is called partial periodic patterns.
Lastly, if the whole time series database can generally be represented as a
repeated occurrence of a pattern or a segment, then this type of periodicity is
called segment periodicity or full-cycle periodicity.

Pattern mining techniques that allow certain level of event skipping while
scanning a database for the pattern occurrences is called flexible pattern min-
ing. Flexible pattern is an ordered set of records or events, that might contain
the do-not care symbol or “*”, for example {a * b}, {a * *b} or {a(x)?b}. Usu-
ally, the maximum amount of skipped events, denoted by 0, is defined by the
user. The ability to skip events is very advantageous for the pattern mining
technique, as time series databases are not always perfectly structured or may
contain unnecessary events.

1.3 Time series in bank and financial transactions

Among many examples of well-known real life datasets, which are widely used
for time series database analysis, where periodic patterns can be discovered to

8

1.3. Time series in bank and financial transactions

anticipate interesting information, there are financial and bank transactional
data.

While stock market time series, that mostly represent stock prices evolving
in time, tend to be much demanded for time series analysis and pattern mining,
for example [§] or [9], to perform so called “technical analysis” and “funda-
mental analysis”, there are few if any studies, that suggest the ready-made
approach for bank transactional data.

In the next section I'm introducing the result of existing work and al-
gorithms research, which was made in order to choose suitable ones for the
purpose of this work.

CHAPTER 2

State-of-the-art

Periodic patterns in time series data is this work’s main point of interest.
In order to design the pattern mining approach and create an appropriate
analytical tool, I did the research of the existing methods and algorithms that
are commonly used in a field of time series data mining. Pattern mining in
time series databases is a very interesting data analysis problem that has been
widely researched in the recent years.

Due to the nature of the task, it was vital, that we observe the events
from a wider perspective and not only recorded changes of a one parameter in
time. That said, it is extremely complicated to detect interesting patterns in
transactional data if we only consider simplified time series, e.g. the balance
curve of a particular company, the amount of money transferred between
two particular companies, again, represented as a continuous variable. On the
contrary, it was essential to have the ability to keep as much record dimensions
as possible. That is why, algorithms that consider shape of the data were not
suitable for the purpose of the given task.

As it was discussed in chapter El], in the boundaries of this work I have
approached time series database as a set of sequential events collected over
equal time periods. Also, it was decided together with the project owner, that
only historical data would be taken into consideration, so algorithms that
mine patterns in the streaming data, such as for example method of pattern
recognition with “sliding window” [10], were not suitable for this task. In the
rest of this chapter I discuss algorithms that were considered and chosen for
the implementation.

2.1 Existing algorithms
Most of the works that concentrate on the problem of periodic sequence pat-
tern mining in time series databases have two main steps in their approaches,

where first step is to find and trace repeated subsequences of time series data-

11

2. STATE-OF-THE-ART

base and nominate those subsequences to be periodic patterns, and the second
step represents the periodicity detection and check for such patterns to elim-
inate the false periodic patterns or not regular patterns. Here are presented
some of the most suitable approaches for the purpose of this work.

First and the most discussed approach for periodic pattern mining in time
series database is called “Efficient Periodicity Mining in Time Series Databases
Using Suffix Trees”, it has been used as a main reference in many works, which
appeared after the time of its publishing. It is based on a suffix tree of time
series string traversing [L1]. The idea of this work served as a starting point
for most of the works discussed in this section. In this algorithm the first step
for the periodic pattern mining process is to create a suffix tree of time series
string.

Suffir tree is a widely used data structure for string processing. Suffix tree
for a string represents all of its suffixes. For each suffix of the string there
exists a particular path from the root of the suffix tree to a corresponding
leaf node, see illustration in Figure . A string of length n can possibly
have exactly n suffixes, consequently the suffix tree for such string contains
exactly n leaves. Each edge in such suffix tree is then labeled by the string,
which it represents. Each leaf node stores a number, which represents the
starting position of given suffix and is being yielded when traversing from the
suffix tree root to that leaf. Each intermediate node stores a number which
represents the length of the substring when traversing from the root to that
intermediate node. Each intermediate edge reads a substring (from the root
to that edge), which is repeated at least twice in the original string.

Having a suffix tree for the given time series string constructed, the al-
gorithm of [11] then has it traversed bottom-up from each leaf to annotate
intermediate nodes. Each intermediate node in a suffix tree represents pat-
terns as individual symbols or a time series string subsequence that repeats
itself inside a time series string more than once. Then, after occurrence of such
patterns is recorded, see Figure @, the periodicity of each pattern is calcu-
lated. The [11] work is known to be the first algorithm, that overcame the
necessity of periodicity specification from the user. It means, that instead of
testing the pattern for periodicity of user input, it assumes a range of possible
period values and gradually checks each value.

This method tends to outperform other algorithms mentioned in this
study’s related works section, however, together with other studies based on
the suffix tree approach, it has a limitation, that is, if we use a suffix tree to
generate patterns and detect periodicity, we will fail to generate flexible and
interesting patterns. Furthermore, using a suffix tree, it is not possible to skip
a particular character in a generated pattern. The inability to skip characters,
which represent particular events in time series database, turned out to be a
limitation in the domain of bank transactional data, as they appear to be less
regular, than the data set of oil market prices, for example.

Noise resilience is a major factor that increases the quality of the result set

12

2.1. Existing algorithms

ab b cabbabb$
b E n cabbabb$ °
abbabb$ P
abb$~3

) OOTEE

Figure 2.1: The suffix tree for string {abcabbabb$}, adopted from [[11]

of patterns, eliminates unwanted output and also improves the performance
of the mining process, as no redundant events are included in the pattern or
undergo posterior analysis. However, it is needed to mention, that in terms
of time series databases, noise in data seldom represents error data points
that do not belong to the data. Even if an event acts as an outlier, it is still
considered to be a meaningful record. Nevertheless, noise in the description
of the algorithm’s mechanism may actually represent an event that does not
reflect value or interest in comparison to the others in time series database.

Another method, which was studied and taken into consideration, is the
work of [12] that is called “A sequential pattern mining algorithm using rough
set theory” and is an extended version of [13]. This work suggests the use of
so-called itemsets. As the name of itemset suggests, it is a set of certain events
in the time series database. This algorithm computes subsequences of a fixed
size that are regarded as local patterns hidden inside sequences. A time series
database is then represented not by symbols, which refer to a designated range
of events, but rather by such itemsets. For instance:

e s1 = aabcac
e 59 = bca
e s3 = cbha

13

2. STATE-OF-THE-ART

ab .

(0.3.6) cabbabb
4,5,7,8
b a ' cabbabb$ °
(3, 6) abbabb$ 47
" ° () (=) o ° (1)
aoloh abb$

$
° 6 4 7

Figure 2.2: Annotated suffix tree of string {abcabbabb} after bottom-up tra-
versal, adopted from [[L1]

The pattern mining algorithm then searches the time series database for
the subsequence of an itemset present in different itemsets. The work of au-
thors Kaneiwa and Kudo [12] includes exhaustive research that proves their al-
gorithm to be effective. Nonetheless, the mentioned algorithm was not proven
to be suitable for the purpose of this work, as itemsets turned out to be prob-
lematic data structure for bank transactional data.

Next work of Nishi et al. [7] titled “Effective periodic pattern mining
in time series databases”, also greatly refers to the work of Rasheed et al.
[11]. The main point of interest of research in this paper was the requirement
to overcome the limitation of generating flexible patterns by allowing event
skipping in between interesting events. Using a suffix tree, it is not possible
to skip a particular character in a generated pattern where the pattern is a
combination of several characters and each one is the representation of each
of the independent event in a time series database.

To get a clearer idea, consider a scenario where the time series database
is represented as a string T as shown in

T = {abcd abed} (2.1)

Nishi et al. [7] argue that a suffix tree algorithm is only able to generate
the eight types of patterns abcdabed, bedabed, cdabed, dabed, abed, bed, ed
and d.Assume the situation when the desired output represents generating a

14

2.1. Existing algorithms

pattern by skipping any intermediate symbol that stands for an unimportant
event. It means, for example, that the desired result presumes “a”, “b” and
“d” to be in the first, second and fourth position in the patterns respectively,
and also the third positioned character is meant to be represented as don’t
care event. By considering this description, the result pattern is {ab * d}.

However, when using a suffix tree, it is not possible generate patterns like
the aforementioned {abxd} due to algorithm’s inability to skip any intermedi-
ate event in a generated pattern. Therefore, it is not possible to generate the
pattern, which represents the combination of the important and unimportant
events from the user’s point of view, using a suffix tree. As a consequence,
from T' = {abcd abed}, the algorithm proposed by Nishi et al. will result
that {ab * d} occurs in the position [0, 4] in the form of {abcd} and {abed}
respectively.

The ability to generate flexible patterns in time series string is very import-
ant for the purpose of this work, if not the most significant. The records that
represent bank transactions might not necessarily appear in the same order
throughout time series. Also, it is likely, that in between important events of
transactional data, there may appear additional less significant transactions,
which must be possible to skip in order to successfully state the appearance
of the pattern.

This ability of the algorithm to skip intermediate events in between the
important ones is achieved by mining patterns in a special fashion and not
using suffix trees, but by apriori based level-by-level sequential pattern min-
ing approach to mine a specific pattern. First, single events are being mined
and then the algorithm proceeds with generating gradually larger patterns by
joining interesting and periodic smaller patterns in each pass. For instance,
having time series string T' = {accracxdazddbacx}, the gradual periodic pat-

tern generating is illustrated in Figure below:
Fatterns of length 1 Patterns of length 2 Patterns of Length 3
2} (b) (e} (d) (x) Lac) Lacx)
Occ Ve Ooc_ Ve Oo_Veco Ooc_Vec O Vec Occ_Vec Difl_Vec Occ_Veo Diff_Vec
ED(a) EID(b) EID{e) EID(d) EID(x) ED(a) ED () EID (a) EID(c) EID (x)
0 12 1 7 3 o 1 0 1 o 1 3 0 [1.2]
4 2 10 6 0 2 0 2 0 2 3 0 [2.1]
8 5 11 -] 4 3 4 1 4 5 6 4 [11]
13 14 15 13 14 13 1 13 14 15 13 [11]
()
EID(c) EID(x

[——

Figure 2.3: Periodic patterns of length 1-3 for time series string {accx acxd
axdd bacx}, adopted from [[7]

Nishi et al. [[7] have adopted the periodicity detection and check algorithm
from the work of Rasheed et al. [L1] but also suggest, that in fact, any

15

2. STATE-OF-THE-ART

periodicity check algorithm might be used after the patterns are constructed
in each pass of pattern generating algorithm. Later, it was argued in [14],
that it fails to find some significant periods. For instance, for the time series
string T' = {abcc abde acde abdc}, the occurrence vector or the indexes of
time series string is {2, 3, 7, 9, 11, 15}. As the previous periodicity detection
algorithm as shown in Figure @ searches periods linearly, it fails to generate
patterns with period = 6, which can be easily found from the difference of the
274 and the 4" occurrence vector elements 3 and 9. The same period value
is also identified for the 4*" and the 6" occurrence vector elements 9 and 15,
respectively. As a consequence, a good amount of periods remain undetected.

Input: a time series database of size n
Output: positions of periodic patterns
1 foreach occurrence vector, occur_vec of size k for pattern X do
2 for 3 = 0te kdo
3 p = occavec]jt 1]-oceavecl]
4 stPos = oco_vec(j]
5 endPos — oee_veelk]
[} for ¢ =3 to k do
7 if (stPos mod p==occur-vec(i/mod p) then
8 I increment count(p)
2] end
10 end
11 conf(p) = count(p)/ PP(p, stPos, X)
12 if (conf(p) >= threshold) then
13 | add p to the period list
14 end
15 end
16 end

Figure 2.4: periodicity detection algorithm, adopted from [[11]

The work of [14] “An efficient approach to mine flexible periodic patterns
in time series databases” presents a very interesting approach to the given
problem. It utilizes the suffix trie, see Figure , as a data structure for
finding all the repeating subsequences of time series string, and also allows
skipping events to the maximum number that is defined by the user. However,
the improvements that were made in this work, that distinguish performance
level from several other existing approaches, including [[7] and [11] were, as
it appeared, hardly achievable in practice. Among them are: the assumption
that period length must be known in advance and the very strict threshold
of allowed skipped events. The problems with period length and regularity,
together with capacity to use event skipping threshold are discussed in

The most recent studies of periodic patterns “A new framework for mining
weighted periodic patterns in time series database” [15] suggest, that existing
algorithms generate vast amount of non-interesting patterns in dense data-
bases that are not important enough to participate in the decision making
process. This algorithm is once again based on the suffix trie traverse prin-
ciple allowing event skipping and, as a novel feature, supporting different

16

2.1. Existing algorithms

c
OB @B
C

Figure 2.5: Suffix trie of {abcc abdc acdc abdc$}, adopted from [@]

weights to prioritize events or items in time series database. Even though the
idea of weights in sequence pattern mining was researched before, e.g. work
of [@], the authors of [15] succeeded in creating an algorithm that is modern
and considers all of the achieved improvements of the previous studies.

In my opinion, the latter work might have interesting use for the project
owner, but only after they become acquainted with the problem and output
in full range. Another prerequisite for adapting these ideas from [15] is to be
able to specify time series database with a fixed length of the period for all of
the subjects (bank clients) which seemed to be problematic at the moment of
writing this thesis paper. Before that, it is more of an advantage that chosen
algorithms, make an exhaustive search of time series database and produce
many patterns, taking into consideration every particular event with the same
importance level.

17

2. STATE-OF-THE-ART

Another interesting work is concentrated on the problem of outlier peri-
odic patterns in time series databases. “A Framework for Periodic Pattern
Detection in Time-Series Sequences” [17] argues, that most of the existing
algorithms (at the time of publishing in 2014), that detect and mine periodic
patterns in time series data, tend to produce vast amount of redundant pat-
terns, that appear not to be interesting, nor are valuable in decision making
processes. To overcome this tendency, they focused on the patterns in time
series, which are still periodic, but less frequent and thus, more valuable for
the user. Such unusual patterns in general time series may represent, for
example, a decline in the economy or unusual natural phenomena.

The mining process of these outlier patterns begins once again with suffix
tree of a time series database that was discretized to a string. After detecting
all of the repeated subsequences in a string, one extra step in the analysis
appears — every pattern in the set is being tested for its surprise level. Sur-
prise level of the pattern shows, how unusual this pattern is in comparison
to other patterns with the same length. After periodic outlier patterns were
nominated, the algorithm proceeds with periodicity check for each pattern.
Unlike previously mentioned periodicity detection algorithms, the one that is
used in [17] does not require strict periodicity.

2.2 Chosen algorithms

The algorithms that I used as an inspiration for my work are based on the
idea of sequential pattern mining in time series databases that were described
above. However, for the purpose of this work, none of these approaches ap-
peared to be suitable for a straightforward implementation, due to particular
constraints such as the period length of bank transactional data that is de-
scribed in and the capacity to determine the maximum event skipping
threshold. The alternations and extensions that were needed to apply first,
are described in section .

In order to create an extensive pattern database, it was decided, to prepro-
cess the given dataset in order to assemble it in accordance to the definition
of the time series database. This process is described in detail in section

After the given dataset is preprocessed, its records are discretized to
the set of so called symbols and time series database is then treated as time
series string. Finally, my chosen algorithms are: [[7] for detection and mining
frequent periodic patterns as it allows the most exhaustive time series string
search for presence of all types of patterns: symbol, sequence and segment pat-
terns. This is achieved through the flexibility of a maximum skipping event
threshold that may be set in advance as big as the period length itself, or even
omitted. To escalate the effectivity of the periodicity check of found candidate
patterns, I decided to use the patterns’ periodicity detection algorithm from
[14] in time series data. This will guarantee, that no interesting patterns are

18

2.2. Chosen algorithms

left abandoned and therefore will not proceed in the next level of the pattern
generating algorithm.

For detecting periodic outlier patterns, I added an optional extra step in
between the pattern detection and the pattern periodicity check in the form
of pattern surprise level check that is inspired by the work of [17]. That said,
when patterns of every length are nominated to be periodic in every pass of
the algorithm, only patterns that achieve the necessary user given surprise
threshold level proceed to the periodicity check. This approach is then a form
of pattern mining algorithm extension.

19

CHAPTER 3

Analysis

In this chapter I'd like to introduce the analysis that was made upon the given
data set of the project owner’s transactional bank data in order to define the
necessary data preprocessing steps and identify the required data form.

One of the requirements for the implementation was the ability to approach
data from different sectors in the same manner. This means that companies
with different amounts of partners, transactions and turnover category must
be still comparable in terms of their interaction with other market subjects,
as the objective of the analysis wasn’t creating clusters of similar companies,
but rather investigate the similar interconnections.

Another important feature, that was meant to be available as part of the
implementation, was the capacity to change the perspective of the time period.
Whether it is a year, a month or even a week or a day, it should be available to
mine patterns of different time granularity from the same data set and then,
compare the different output sets.

The main challenge in the implementation was the data fuzziness and
the need to adjust methods that are oriented to the exact output and do
not allow semantic interpretation. This means, that sometimes, the expected
results of periodic pattern mining might not only be handled differently, in
terms of business meaning, but also, such patterns might allow a certain level
of tolerance towards a set of events in the resulting pattern.

First, there was a problem of data representation and preparation. As
an alternative to creating a continuous line graph that would represent the
constant development of the balance of one company, it was decided to keep
the discrete nature of data and rather than monitoring the balance curve of
one company, instead keep track of its interaction with other business subjects.
Not only would it allow to create more efficient data transformations, but also,
the aggregation and dimensionality reduction would be less of a problem.

For this purpose, I have suggested the aggregation and discretizing tech-
nique, meant exactly for the transactional bank data, to transform data set of
bank transactions into a sequence of events. The technique and implementa-

21

3. ANALYSIS

tion are described in chapter .

Second, I managed the problem of period length. The result sequence of
event did not and could not have the same length of period due to:

« Different clients interact with different categories and amount of other
subjects

e The bank records for each client naturally start at different a moment
in time

o There could be any amount of skipped events (the absent payments
towards a particular group of adverse parties)

More details about overcoming this limitation is presented in section .

Anomalies in time series in a domain of bank transactional data can be
observed in two ways: where the first is the unusual events in a set of pattern
events that appear less frequently. Imagine a set of usual transactions that
lead to one particular event that happens every 3 years. These patterns don’t
have to be extensive, these anomalies can also be represented as single events in
transactional history. The second way to imagine the observation of anomalies
in bank data are certain trends that happen to be sector-specific. To detect
such anomalies, it is needed to aggregate data without considering individual
subjects, but rather whole sectors in general. These outliers can be obvious
from the data visualization, however, due to the range of the data, it is needed
for them to be searched automatically.

3.1 Data structure, example, statistics

For the purpose of creating suitable data procession steps and testing, the
data set was extracted from the historical data of the project owner’s database
cluster. The structure of the data extracted from the database doesn’t have
to be strict. However, it is recommended, that the result data set has the
same structure and properties, after following the steps of preprocessing and
aggregating.

The data set that was given to be used as an inspiration and test data for
the purpose of this work was represented as bank account transactions history.
That included these parameters:

o Transaction id
e Transaction timestamp
e Account id of transaction origin

e Type of transaction

22

3.1. Data structure, example, statistics

o Account id of transaction adverse party, including bank code

o Transaction amount

Original set of data did not contain many attributes and they were mainly
added later through joining other tables with information about bank clients.
That said, information about recipient of transaction, in case it is not client
of bank, are limited. However, some attributes were still available:

e Party Id, derived from account id
e Party Id NACE code: identification of company economical activities

e Information about NACE code of adverse party

As it was mentioned before, it was agreed, that the analysis would only
be held on the existing data, so, further on, data set will be referred to as
historical data. Statistical description of a given historical data is described
in the Table El]

The sample data set that was extracted from historical data, using Apache
Impala, consists of transactions covering years 2011 — 2016. The transactions
in the sample set were taken for the companies with primary NACE codes
1, 41, 42, 43, 55, 77 and turnover categories 1, 2 or 3 for each NACE code
respectively. In each category there are approximately 100 companies.

Table 3.1: The given data set statistics

Description Value

Total amount of transactions 41645807

Total amount of transactions with known NACE of adverse party | 32026582

Period of time covered 1/2011 - 12/2016
Total Partylds 1623

Project owner’s historical data are stored in the format shown below. Table
contains several examples of transactions. Table @ contains the descrip-
tion of the derived attributes.

Table 3.2: Example of the transactional data records

id tran__ tran__ account | tran_ | tran__ adv__ | adv__
date time sign amount | bank | account
20%**14 | 2016-09-27 | 03:17:00 | 00***08 | 1 600.00 2010 00***77
20%**20 | 2016-09-27 | 13:40:00 | 00***47 | 1 1500.00 0300 00***07
20%%*43 | 2016-09-27 | 16:56:00 | 00***97 | 1 30000.00 | 0100 00***87
20***31 | 2016-09-27 | 15:49:00 | 00***37 | 1 1000.00 0100 00***00
20%**09 | 2016-09-27 | 10:47:00 | 00***67 | -1 11000.00 | 0100 00***57

23

3. ANALYSIS

Table 3.3: The description of the derived attributes of the transactional data

records
Attribute Data type Descriprion
id decimal(16, 1) | Unique identifier of the tranasction, primary key
tran__date date The date of transaction
tran__time string The time of the transaction
account string The account number of the Party Id
tran__sign int The sign of the transaction where ”1” stands for

the incoming payment and ”-1” for the outgoing
one

tran__amount

decimal(17, 2)

Transaction amount in local currency

adv__bank

string

Code of the adversary party bank

adv__account

string

Account number of the adversary party

The Party Id that is mentioned in the account description refers to the
There is a relation 1 to N between Account number and
Party Id in the project owner’s database, suggesting that one customer — per-
son or company — may have several bank accounts at the same time, see Figure

. The only bank clients that were chosen for this analysis are companies,
which have their corporate accounts at the project owner’s bank. For the
sample set, transactions from several bank accounts of clients were merged
together under one Party Id identification.

bank’s customer.

Partyld

(31 party_id

account

party_turnover
party_nace
party_nace_other

Relation

Accountld ¥ LY. .

1 mocount
party_id
created_at
updated_at
active

Adverseld
______ T UsETTTTTT aavid 1'6
>| czmace § adv_account
NACE_code :g:—ﬁ;i‘;”m
Description adv_nace_other
Relation
Transactions AdvAccountld
id 1 adv_account S J
tran_date : adv_id 1n
tran_time H .
______ account Uge

tran_sign [
tran_amount
adv_bank |
adv_account

Figure 3.1: The simlified database diagram of project owner’s historical data

Another relation is between Party Id and CZ_NACE and is of type 1 to
(0, 1). In most cases, the main field of activities of a bank customer is known

24

3.1. Data structure, example, statistics

and is described by so called NACE code.

"NACE code is the classification of economic activities in the European
Union (EU). NACE is a classification providing the framework for collecting
and presenting a large range of statistical data according to economic activity
in the fields of economic statistics (e.g. production, employment and national
accounts) and in other statistical domains developed within the European stat-
istical system (ESS)” [18].

It is worth mentioning, that common practice for companies is to have
several NACE codes listed as a description of its activities, while having one
as primary. That primary NACE code is a major descriptive attribute and
will be used in the further analysis. When aggregating companies in clusters,
only the first two digits of the primary NACE were used.

Similarly to NACE codes, another characteristic is the company’s turnover
category. This attribute may have values of:

e 1:1-29999 999 CZK

e 2: 30 000 000 - 99 999 999 CZK

e 3 : from 100 000 000 CZK

The transaction data set was then joined with additional parameters such
as the customer’s primary NACE code and turnover category and the adverse
party NACE code, if available. The prerequisites for the sample data set were:

e Party Id must be a company with a corporate account or accounts at
the project owner’s bank

e Party Id’s account history must have at least 5 years of records

e Additional data like primary NACE code and turnover category must
be available

25

3. ANALYSIS

Table 3.4: The description of the transactional data joined with the additional

attributes

Attribute Data type Descriprion

id decimal(16, 1) | Unique identifier of the tranasction, primary key

tran__date date The date of transaction

tran__time string The time of the transaction

party__id bigint The bank client company that originated the
transaction

party__nace string Description of company’s main economic activ-
ity

party__turnover | int The range of company’s yearly turnover

tran__sign int The sign of the transaction where ”1” stands for

the incoming payment and ”-1” for the outgoing
one

tran__amount

decimal(17, 2)

Transaction amount in local currency

adv__bank string Code of the adversary party bank
adv_1d int Identification of the adversary party company
adv__nace string Description of adverse party conpany’s main

economic activity

The result data had the form that is shown in Table @

26

CHAPTER 4

Design

This chapter describes the process of designing an approach for frequent peri-
odic pattern mining, embodying it into an analytical tool and discussing the
results and experiments that were made upon the given sample set of the
project owner’s data.

It contains prerequisites for input data, the preliminary data preprocessing,
and the description of the algorithms that were implemented. Then there are
described the constraints that were encountered during this implementation
and experiments with algorithm parameters, the alternations and extensions
that took place in the course of implementation.

The rest of the chapter is organized as follows: the first part is dedicated
to the description of input data form and the statistics of the sample set
provided by the project owner. The second part contains the description of the
algorithm for periodic pattern mining that was adopted, its implementation
and extension. The third part is a study of the experiments with framework
attributes. The fourth part describes the anomaly detection approach, its
description, implementation and results.

4.1 Data requirements

This chapter consists of the description of the preliminary work that was
made upon the given data set. Partly, this topic was already discussed in the
previous chapters, namely section 2 and 2.1, what type of time series data
representation will be chosen and reasons for this choice. Here, I describe the
raw data and its characteristics, such as structure and attribute.

It is worth mentioning, that the solution in this work is being designed
based on the project owner’s requirements and that otherwise, the structure
of input data is not mandatory and may vary in other implementations. The
important points are the final data set attributes and data types.

The data set is described in the next sections.

27

4. DESIGN

4.1.1 Data preprocessing and aggregation

As it was already discussed before, for the purpose of this work, the repres-
entation of time series was chosen in the form of a database as an ordered set
of events, distributed in time over equal periods of time. However, the raw
data set’s unique transactions do not satisfy one of the main conditions of
time series definition, as per one day there might be several transactions just
as there might be none. In order to balance such irregularity, it was needed
to first adapt the data.

While there are several ways to do so, including choosing random data
points, smoothing the data points’ curve, using regression, most of these ap-
proaches are leading to a particular loss of data. On the other hand, setting
data points’ granularity to just one second as a minimum regular period is not
a meaningful representation of transaction history for this particular analysis,
as the amount of transactions per day differ from company to company. See
Figures , below. Histogram of amount of transactions per day from
history data that covers 1 year and represents a total of 109000 transactions
of 210 companies.

1000 Histogram of transactions amount per day

800

=
=

2

Frequency

200

Figure 4.1: Histogram of example company’s transactions distribution,
amount 0 - 50

Aggregation however, will preserve the important attributes such as iden-
tification of the adverse party and the total transaction amount. Naturally,

28

4.1. Data requirements

Histogram of transactions amount per day

25

20 i

Freguency
=
LA

[
=

0 T T

1l
50 100 150 200 250 300 330 400 450 500

Figure 4.2: Histogram of example company’s transactions distribution,
amount 50 - 500

in order to be used effectively, the data set was aggregated into meaningful
records. Such aggregated time series data are then represented in the form of
data, grouped by a combined key, where all the records’ attributes are part
of that key, except for the data’s studied numerical value.

Another reason to create an aggregated set of records, instead of choosing
data points of, for example, a balance curve of one particular company, was
to retain the whole perspective of the cash flow. Keeping the records with
more than two attributes, such as timestamp and balance value, allows to see
into data with a wider perspective. It allows to not only monitor one state
throughout the time, but also follow and notice differences in a particular
company’s or the whole market’s behavior from the position of cooperation.

So it was decided with the project owner, that records, which describe
transactions or a set of transactions will be kept in the form of events, rather
than data points. In order to approach transaction data as a sequence of
events, it has to indeed be aggregated and reduced to a meaningful number of
records. On the other hand, the resulting events must still be descriptive and,
in a way, unique. After consulting with the project owner, it was decided, that
monthly granularity is a sufficient trade-off between the representativeness of
data and a meaningful amount of records. The important attributes were
preserved:

29

4. DESIGN

e Customer’s identification, including turnover category

e The general identification of adverse party as a description of financial

operations

o Time granularity

¢ The sum of transaction amount

To identify the bank customer both composed_id and turnover category
were used. The final data set then has the following structure as shown in

Table [1.1]

Table 4.1: The description of the transactional data aggregated for the analysis

Attribute

Data type

Descriprion

composed__id

bigint

The composed id of bank client, used for the
purpose of the data anonymization

nace__subject int The primary NACE code of the client — only
first two digits

nace__partner int The primary NACE of the adverse party - only
first two digits

tran__sign int Describes the nature of the transaction

turnover__category | int As described in the analysis section

tran_month int Transaction month

tran_ year int Transaction year

tran__amount float Sum of transaction amounts for this aggregated
record, in CZK

tran__count bigint Amount of transactions, that belong to this ag-

gregated record

4.2 Periodic pattern mining in time series

databases

In this section I describe the algorithm adaptation steps, together with the
constraints that were encountered in the process of implementation. Also, here
are showcased the original approach ideas and the algorithm alternations, that
were created with the aim to better suit the objectives of this work.

As it was mentioned before, the approach for periodic pattern mining in
this work was mainly inspired by the “Effective periodic pattern mining in time
series database” algorithm. Although, I did not use the whole implementa-
tion and suggested numerous adaptations and extensions, here I provide the
description of Nishi et al. [[] work.

30

4.2. Periodic pattern mining in time series databases

beg

=TI - T N

-

5d
56 end

Input: a time series database of size n, Users interested pattern & = E‘l{tjrl E;...E,_l[x})': 1E,

Confidence Threshold &, Maxireurs Event skipping Threshold @

that period

in
Perform Discretization Operation and Construct event-string sequence, 5
foreach Alphabet (a...z/[A. 2], o € S do
| Construct Occurence.V ector,, by processing S
end
Set Occ.Vec = Vo {Occurence Veetora } where a € §
Set @ := ELIMINATE STARS(4)
Set phose := LENGTH(®")
Set Pass, 1 :=1
while Jee_Vee '= NIL and i« < phase do
Generate Patterns of Length, ¢ by Joining any two ¢ — 1 length patterns P and Py, ¢ 2 2 and
SUFFIX; 3(P) = PREFIX, 3(Fy)
Store the Patterns in P
forcach generaled pallerns eq,ez..60 € P i > 2 do

where EId{X,) <EId{Xq) <EId(X3) <BEId(X;_1) <EId(X;)
foreach sccurrence vector do
Calculate Difference vector 21, Za3, Z3,..., Zi—1
for (=14 <1, j++) do
if (¥, = %) then
Assert “Search Paltern is absent”
Exit{)
end
end
end
end
foreach occurrence vector of size 1 for patiern p do
for (7=0<n/254++) do
g=occur.vec|j+1]-oceur vec(j];StPos=occur_vec[j];endPos =occur.vecli]
for fl=j ;l<i; l++;) do
il stPos mod g==occur vee/llmod ¢ then
| increment countiq);
end

end
conf{g)=count(q) /Perfect Periodicity({qg,stPos, p)
if feonfg) == threshold) then
| add q Lo the peried list;
end

end
end
foreach Pattern, p € P do
Calculate conf = CONFIDENCE(p)
if (conf > o) then
Set ¥ = MuUp
Set Occ Voo .= Occ Vee U Ocourence Vectory

end
end
Set P = P*
Seti:=i41

end

foreach Paliern, p € " do

foreach difference vector do
set p’ = Generate e (+)4 " leg(¢)43Leg. ey (#)4—1 1o, Patterns
Calculate periodicity of ¢’ using the periodicity of p

end

end

Calculate Occurrence vector X, Xz, Xy, X by Joining the ccourrence wvectors X, X, X,

Output: positions of periodic patterns, The occurrence vectors and The number of times the period is generated in

G

Figure 4.3: Pseudocode of periodic pattern mining algorithm, adopted from

A

31

4. DESIGN

4.2.1 Original algorithm

The idea of this method is to effectively find all the repeating sub-sequences
of events from a time series database that appears to be frequent, periodic
and interesting. By interesting, authors recognize patterns or sub-sequences,
consisting of events that are of interest to the user and that don’t take into
account all of the “don’t care” or skipped intermediate events. The pseudocode
of the algorithm is illustrated in Figure above.

The initial step in this method is to apply discretization technique to the
time series database. The discretization can be thought of as a mapping among
the range of values of an entity and an ASCII character which represents a
ﬁciﬁc event and can be defined as a function of v, f(v) see formula in Figure

S(ro), if veTo
. Sir), ifren
flv)=
Sirrl—]}- if VCTha

Figure 4.4: Discretization function, adopted from [[7]

where, S() is a function, that returns a specific symbol based on the given
value r; and rg, ri, .., r, are ranges defined for the value of an entity [[7].

In other words, there exists particular symbols for designated range of
events. The discretization function takes every event in the time series data-
base and returns the respective symbol pertaining to that event. The final set
of symbols is then represented in the form of string, having all symbols set in
the same order they were sorted in the original data set. This string is later
used in the mining process.

Having original data set discretized, the next step is to generate interesting
patterns, starting from patterns of length 1, and incrementing length with each
pass, until the user’s defined length is achieved or no more patterns can be
generated, by joining interesting and periodic patterns. To start with, the
patterns consisting of single events are first mined. For every single event, the
occurrence vector of its appearance inside the time series string is recorded
in the form of a set of indexes inside the string. An occurrence vector is also
constructed for patterns in each pass.

After an occurrence vector is constructed, the algorithm generates all pos-
sible exclusive interesting patterns by allowing skipping intermediate events.
The allowed number of skipped events, also referred to as not interesting
events, and described as don’t-care symbol or “*” is defined as maximum
event skipping threshold 8. That means that for every found pattern, for in-
stance {abc} and having maximum event skipping threshold § = 1, the time
series string is searched for different versions of {abc} like {a*bc} or {ab*c}.

32

4.2. Periodic pattern mining in time series databases

Each pattern in the set is then checked for periodicity. Periodicity de-
scribes how frequent a given pattern is within the board of a certain period
value. Perfect periodicity is the number of occurrences that was theoretically
possible, given the first occurrence of the pattern in time series string and
pattern’s period. Confidence is then calculated as a proportion of the pat-
tern’s actual periodicity and perfect periodicity for given period, see Formula

. Patterns that satisfy the condition of confidence threshold are kept and
proceed to the next algorithm iteration.

ActualPeriodicity(p,StPos, X)

StPos, X) =
conf(p, 0s, X) PerfectPeriodicty(p,StPos,X)

(4.1)

with conf = confidence level of periodicity of pattern X, with periodicity
p and starting position StPos.

Increasing the length of generated patterns is possible by joining two ex-
isting patterns in the set. In order to suggest a new pattern in the pass ¢ of
algorithm with pattern length 7, the algorithm merges together two patterns
of length ¢ — 1 if the suffix of length ¢ — 2 of the first pattern is the same as
the prefix of length i — 2 of the second pattern. Events in both patterns must
be ordered sequentially.

4.2.2 Algorithm adaptation

While approaching the implementation of the [[7] algorithm, it was clear, that
some functionality aspects might not be used without adapting the algorithm
first, given the special domain of data structure used in this analysis. In sec-
tions .2.2.]] - |4.2.2.d I’d like to describe the alterations that were made upon
the original ideas and definition, and also describe my suggested extensions.

From this moment, it is important that we distinguish the two meanings
of the term “period”, as it may become confusing in some literature, when it
is used together with different connotation. The first meaning is connected
with time series database, as it contains data taken over regular intervals of
times. For instance, consider the string of events “abcd abdd abed aabb” from
a time series database, which represents values in a measuring device that are
taken every 6 hours, every day. It can be said, that the period of time series
string is one day and the period value is 4, hence every 4 measures signifies
one day of measures. Then, it can be said, that two events, for instance “a”
and “b” belong to the same period, while two events “a” don’t.

The second meaning of the term “period” is connected with the periodicity
of patterns. For example, pattern “a” from the previous example appears in
every period in positions [0, 4, 8, 12, 13]. Therefore pattern “a” is periodic and
its period value is 4, with occasional deviations that are tolerated. Pattern
“c” however appears in every second period of string in positions [2, 10]. So
the period value of pattern “c” is 8 — or two periods of time series string.

33

4. DESIGN

One of the main constraints in implementing the work of Nishi et al. [7],
which required a special approach, was the irregularity of the period length of
time series database. Even after the data set was preprocessed and aggregated
into time series database, particular gaps still exist. The period of such time
series database is a year, or, for companies with more dense transactions
history and more various interactions, a month. During a period of time series,
there could be found various aggregated transactions with different partners.
That said, the set of partners, amount of transactions and its density differ
from period to period.

My first idea of how to deal with such irregularities was to fill the empty
slots of a missing group of transactions with zero value symbols. However,
not only did that increase the length of original time series database tremend-
ously, sometimes as much as 18 times, and therefore affected the algorithm’s
effectivity, but also provided numerous meaningless outputs that reduced the
overall quality of the result pattern set.

Here is an example of the original dataset with numerous gaps and the
artificially stretched one in the Tables @,

Table 4.2: An example of the aggregated time series of transactional data

compo- nace_ | nace_ | tran_ | turno- tran_ | tran_ | tran_ | tran__
sed__ | sub- | part- | sign | ver__ | month year | amo- | count
id ject ner cat- unt
egory

0 77184 77 46 1 1 4 2015 7000 1

1 77184 77 01 -1 1 9 2015 29187 | 1

2 77184 77 01 1 1 9 2015 1407 1

3 77184 77 01 -1 1 7 2016 5500 1

4 77184 77 01 -1 1 8 2016 2017 1

5 77184 77 01 -1 1 12 2016 11859 | 1

The irregularity of the period length also affected the possibility to use
threshold and its utility measure. It is visible from the example above, that
as soon as it cannot be guaranteed that the period length will be set to have
equal length, it becomes problematic to set the maximum amount of skipped
events. Whether it can be a month, a year or just a subset of records of
a particular adverse party, the 8 threshold is dynamic and cannot be set or
calculated for the whole time series database in advance.

Another constraint was the impossibility to use a single symbol that would
represent the whole range of events. Even though 95 ASCII symbols might be
sufficient for the data of one Party ID, it is not enough to use across the whole
time series database, even after the data set was cleaned and aggregated.

The next sections describe the modifications that were required in order
to implement the algorithm mentioned above.

34

4.2. Periodic pattern mining in time series databases

Table 4.3: An example of the aggregated time series of transactional data,
that was artificially stretched

compo-| nace_ | nace_ | tran_ | turno- tran_ | tran_ | tran_ | tran__

sed__ | sub- | part- | sign | ver__ | month year | amo- | count

id ject ner cat- unt

egory

0 77184 | 7T 1 -1 1 1 2015 | 0O 0
1 77184 | 77 1 1 1 1 2015 | 0O 0
2 77184 | 77 46 -1 1 1 2015 | 0O 0
3 77184 | 77 46 1 1 1 2015 | 0O 0
4 77184 | 77 1 -1 1 2 2015 | 0O 0
5 77184 | 77 1 1 1 2 2015 | 0O 0
6 77184 | 77 46 -1 1 2 2015 | 0O 0
7 77184 | 77 46 1 1 2 2015 | 0O 0
8 77184 | 7T 1 -1 1 3 2015 | O 0
9 77184 | 77 1 1 1 3 2015 | 0O 0
10 | 77184 | 77 46 -1 1 3 2015 | 0O 0
11 | 77184 | 77 46 1 1 3 2015 | 0O 0
12 | 77184 | 77 1 -1 1 4 2015 | 0O 0
13 | 77184 | 77 1 1 1 4 2015 | 0O 0
14 | 77184 | 77 46 -1 1 4 2015 | 0O 0
15 | 77184 | 77 46 1 1 4 2015 7000 1
32 | 77184 | 77 1 -1 1 9 2015 | 29187 | 1
33 | 77184 | 77 1 1 1 9 2015 1407 1
72 | 77184 | 77 1 -1 1 7 2016 | 5500 1
76 | 77184 | 77 1 -1 1 8 2016 | 2017 1
92 | 77184 | 77 1 -1 1 12 2016 11859 | 1

4.2.2.1 Discretize the events

In order to create a set of events for further analysis, data records with multiple
attributes, event by event, were supposed to be represented as a simple ASCII
symbol. However, it was obvious, that this amount of symbols was not enough
to describe each event in the bank transaction time series database history. I
suggested a technique of discretizing every event that took into account three
main attributes:

e The NACE code of the adverse party

35

4. DESIGN

e The nature of the payment — income or expense

e The amount of payment

See Table Q for detalils.

Table 4.4: An example of composed symbol in the proposed discretizing tech-

nique
NACE Transaction | Binned Description
code sign transaction
amount

61 0 001 Payment towards adverse party with
NACE code 61, with transaction
amount (0, 1 *bin_ size |

52 1 07 Payment from adverse party with
NACE code 52, with transaction
amount (6 * bin__size, 7 x bin__size
]

To use the particular identification of the adverse party was not possible as
these data were deprecated during the data aggregation and even if such data
were still available, the uniqueness of each event would not allow the pattern
to be discovered in the other companies’ data.

NACE code was then represented as the symbol’s two first digits. The
nature of the transaction was simply replaced with an integer next to the
NACE code, where 0 stands for the outgoing payment and 1 for the incoming
one.

The transaction amount in Czech crowns should also be binned, of course,
as putting the actual transaction amount into an event ‘symbol’ would once
again create a set of unique events rather than grouping and describing the
similar ones. My initial approach was to create a binning system, based on
the statistical data of payment amounts for each subject. That said, I looked
into the data, particularly, the median of the transaction amount for the given
Party ID and then declared, that 50% of events should fit into 3-10 bins, based
on the maximum amount value in the data. It might have created much more
bins on the right side, but most of them would be empty, so the uniqueness of
the event if not affected. This way, the pattern itself would be easily decoded
from the event it contains.

For example, an event in the result set with name “id_ 1234 bin_ 1000”
and symbol “350003” would be translated to: the outgoing payment to partner
company with NACE code 35 and of amount in range 3000 to 4000 CZK. The
highest amount of transaction in this set could be in a range of 1000 crowns
x 100 and 1000 crowns x 999 as there are three digits in the symbol, reserved

36

4.2. Periodic pattern mining in time series databases

for the bin identification. The precise bin range of 1 thousand crowns will of
course be evident in the particular event.

Another approach, that I considered, was to create the same amount of
bins on both left and right side from the median amount. That would create
a similar output, but the data representation would be lost, as an additional
track of transaction data should be kept onside. The common practice is, that
the distribution of the transaction amount is more regular on the left side from
median, than it is on the right side. Therefore, this approach would also put
in the same bin, transactions with approximately 1 standard deviation from
mean together with the absolute maximum, see Figure {.5.

EBansaction amount distribution with median amount 34413.8

J
=]
1

Frequency
[
(¥,]
1

10 4

0 || M1 1 U L L I
0 500000 1000000 1500000 2000000 2500000 3000000 3500000

Transaction amount

Figure 4.5: Example of transaction amount distribution

My next personal approach was to use the logarithmical value of the trans-
action amount. That approach would serve as binning itself, giving the idea
of transaction amount. However, for companies with a wide range of amounts
of transactions, it might create an unnecessary precision of binning. This way,
logarithmical values might be binned as well. Therefore, an additional option
when using this approach was to put the binned logarithmical value into the
transaction symbol.

The last approach was to first analyze the nature of both outgoing and
incoming payments of adverse party. That said, we cannot easily compare
two patterns containing the same event, for example “350000”, if in the first
case the bin range of 1000 crowns was used and in the latter case 5000. So

37

4. DESIGN

instead of doing additional work post factum, it was suggested to create a
particular range of bin for every adverse party. The record of NACE codes,
nature of payment and bin range should be kept aside, but the comparison of
every pattern throughout the whole result set would be easier.

4.2.2.2 Create the occurrence vector

The first step in pattern generating is to get the patterns of length one, in
other words all the unique events. The time series string is then searched for
all the occurrences of single events. Once that’s done, patterns with single
occurrence are filtered out, as clearly, they cannot be periodic.

Most of the works listed in section 2.1 suggest, that from the moment
of discretization, the time series should be treated as a string of symbols.
However, it must be mentioned, that such a string assumes the same length of
all the periods it represents, as a structure of data points taken at the equal
time deltas. For example, string “aabd aabc abbc abed” stands for the time
series of a total of 16 events, with 4 periods of length 4.

However, the usage of this implementation has its limitations, as it cannot
be guaranteed, that the given data will have the same amount of events in
each period. As it was already illustrated in , some periods or its sectors,
respectively years and months in time series database, might be missed or
incomplete in general. It was decided, to keep the table organization of data,
in order to maintain the period denotation alongside the event and its index
in the time series.

In this manner, the occurrence vector does not only consists of a pattern
identifier and an array of its positions in time series, but also, an array of
period identifiers that refer to those positions. Consider an abstract example
in the Table , which shows an occurrence vector of two events that were
discretized in the manner that was described above.

Table 4.5: Occurrence vectors of two distinct events

Pattern | Occurrence_ vector | Period__vector
12 2011
” ” 32 2012
610001 35 2012
46 2013
11 2011
73510007 14 2011
36 2012

This additional attribute will be needed while generating patterns of length
two and up.

38

4.2. Periodic pattern mining in time series databases

4.2.2.3 Increase the length of pattern

A pattern of length i is constructed from two patterns of length i — 1 if the
suffix of the first one matches the prefix of the second one. First, we compare
the suffix and the prefix of all the existing patterns pairwise and if they match,
we suggest it can be a new pattern.

Generating patterns of length two is different from generating patterns of
length three and up. When generating patterns of length two, the step of
comparison suffix and prefix is omitted as clearly, patterns of length one, from
which those patterns are generated cannot contain neither suffix, nor prefix.
So a pair of single events is nominated to be a new bigger pattern if the first
event happens to be situated before the second one. That is a compulsory
condition of ordering events in a pattern in sequential order.

Another condition is that all events in a pattern must belong to the same
period. It was solved very elegantly in Nishi and al’s work [[7], simply by
calculating the difference vector between two events. Within the boundaries
of the implementation of this work, to make such a period check, we access the
period label array of both patterns, accordingly to the position, that is being
checked at the moment. Consider the example from table 5 that showcases two
example patterns ‘610001’ and ‘351000’ We say, that both [‘610001’, ‘351000’]
and [‘351000’, ‘610001’] could be candidates for the new, bigger pattern. In
the case of ['610001°, ‘351000’], the possible pairs of event identifiers are: [12,
11], [12, 14], [12, 36], [32, 11], [32, 14], [32, 36], [35, 11], [35, 14], [35, 36], [46,
11], [46, 14], [46, 36].

First, the condition of right order of events is being checked. This check
declined pairs [12, 11], [32, 11], [32, 14], [35, 11], [35, 14], [46, 11], [46, 14] and
[46, 36] as they do not follow the sequential order. Then, the right ordered
pairs are checked so as to guarantee the events belong within the same period.
Even though pair [12, 36| satisfies the right order of events, it cannot be
accepted as this pair of events belong to different periods of the time series
string. The result occurrence vector for pattern [‘610001°, ‘351000°] is [12, 14],
ﬁ, 36], [35, 36]. Similarly, we test pair [‘351000, ‘610001’], see result in Table

below:

Table 4.6: Occurrence vectors of two patterns of length 2

Pattern Occurrence__vector | Period_ vector
[12,14] 2011
[7610001”, 7351000”] (32, 36] 2012
[35, 36] 2012
(73510007, ”7610001"] [11, 12] 2011

The pair of patterns is nominated to be a new longer pattern if two condi-
tions are met: the event identifier of the first one precedes that of the second
one and they both belong to the same period. In order to do so, we create the

39

4. DESIGN

Cartesian product of all the patterns from the set and compare their event
identifiers and responding period labels pairwise.

Then we compare the event identifiers of all the events in the pattern —
must be in ascending order and then we confirm that both patterns belong
to the same period. The approach in the paper suggests that we check the
difference between event identifiers, whereas in our case, such

4.2.2.4 Periodicity detection

After a certain step in the pattern generating algorithm is finished, the result
set of patterns is being checked for periodicity and then the confidence level
of each particular pattern. It was already mentioned in section 2.1, that the
periodicity check algorithm in the work of Nishi et al. [[7] is not effective and
tends to abandon interesting patterns by not being able to find its actual
periodicity. To overcome this ineffectiveness, I have suggested to use a more
advanced periodicity check algorithm from the work of [14]. The pseudocode
for this algorithm is presented in Figure below:

This algorithm is proven to be more effective, as it suggests a period length
value based on the actual occurrences of the pattern in time series string.
However, not having the same period length in time series string once again
enforces the alternated solution. While both the proposed algorithms check
the periodicity of the pattern by calculating the difference of its occurrences,
I proposed to transfer this algorithm to the domain of period labels.

Consider we have an example abstract pattern "abc” that appears at the
positions [3, 11, 14, 28, 36, 44, 67] of the time series string. While calculating
its periodicity from the occurrence identifiers might appear misleading, if we
first transfer the occurrence vector to the domain of period label vector, then it
will be represented as [2000, 2003, 2003, 2005, 2008]. That allows to proceed in
the algorithm execution, however another addition is still needed. To calculate
perfect periodicity, indicated as PP in the pseudocode above, see Formula 4.2,
we need to also adapt the total length of the time series string value, indicated
as |T| in the pseudocode.

T —st+1

PP:
period

(4.2)

Therefore, it is clear that the length of such time series string might not
be used, nor can the unique values of period labels be used, as some of the
periods might not be covered by transactional data. To calculate the time
series string length we must refer to the first and last occurrence of the events
in the time series string itself. Then, we store the period labels of these
events and fill the total period list with the labels in range (minPeriodLabel,
maxPeriodLabel + 1) in the PeriodList. Then, to calculate the upper part of
the perfect periodicity equation, we replace it with Formula #.3:

40

4.2. Periodic pattern mining in time series databases

Input: An oce_vee of pattern X with size k, confidence threshold o
Output: Periods with corresponding occ_vec: OF
1 bhegin
2 for ¢ :== 1 lo (k-1) do
3 Set st := occ_vee|i-1]
4 for 7 ;=1 to (k-1) do
5 Set § := oce_vec|j]
6 Set period := d - st
7 Initialize V = 0
8 Add st and § in V
9 for m := (3+1) to (k-1) do
10 if (oce_vec[m[-st) % period == () then
11 | V=V | occ_vec|m)]
12 end
13 end
14 PP:=| T2 |
15 conf ;= size(V) / PP
16 if conf >= o then
17 | OP = 0P |J V, with period
18 end
19 end
20 end
21 end

Figure 4.6: Periodicity detection algorithm, adopted from [@]

PeriodLi irstPeriodL :
PP L] eriod zst[fzrs-t eriodLabel :] |
period

| (4.3)

Meaning that we only consider the length of the PeriodList that includes
period labels, starting from the first period label that is recorded for the
particular pattern.

That approach allows to use the periodicity check for all of the chosen time
granularity of time series data. So that when having patterns mined at the
yearly periodicity, the time period label of time series string will be designed
in an appropriate manner — 2000, 2001, 2002 etc. When mining patterns that
appear monthly, the label will be adjusted to the form of (2000, 2001, 2002)
* 12, meaning 24000, 24012, 24024 etc. Same applies for the weekly or daily
periodicity.

In the result implementation, it became obvious that the aforementioned
algorithm works well for the sparse time series data, meaning it has a small

41

4. DESIGN

ratio of amount of period labels and events in time series data. However, it
appeared to have different results in terms of effectiveness when it was used
on different types of time series. Here is an example, consider a company with
136 events of 6 years history in the aggregated time series data. Then, if we
consider yearly periodicity, there exist on average 22.6 events that belongs to
one period label, while if we consider monthly granularity, there is only 1.8
events per period label. This difference has influenced the output.

While providing good results for time series with a monthly period with a
wide period range and relatively small amount of occurrences, it seemed to be
unnecessarily complex for the yearly time series, which have a small range of
periods — there are rarely more than 10 years in the time series database for
such type of analysis — and also, there are more occurrences for one pattern.
To deal with this irregularity, I have suggested to separate dense and spare
time series data, based on the period granularity.

To adapt periodicity detection algorithm for the dense time series data
with yearly granulariry, I have suggested an extencion of the original approach
from Nishi et al. [[]] Wheh the occurrence vector is paired with period labels,
we take all the distinct labels and calculate the difference between the pairs
of adjoining labels. After this we take the most probble difference and call it
a period length of a pattern. If there exist several differences with the same
probability, the least is chosen.

4.2.2.5 Generated patterns mining

This fragment of the original method didn’t require any additional adjust-
ments, but was not implemented as the output was neither meaningful, nor
illustrative. The term “mining” in the context of this method refers to the
search and illustration of the generated pattern variations. With the aim of
excluding ambiguities in understanding this term, it must be mentioned, that
such form of mining is applied on already generated and found patterns within
time series database.

This step is omitted in the result implementation as it is irrelevant due
to the nature of the data. Basically, there can be as many do-not-care sym-
bols as possible, in fact, the whole period sector might be represented with
such symbols. The reason is, once again, that it is not effective to set the
fixed period length and thus the theta constraint or maximum event skipping
threshold cannot be used effectively.

For instance, there are mined patterns for pattern [7610001”, ”351000”]
from . The algorithm has successfully found three occurrences of this
pattern on positions 12, 32 and 35 of the time series string. Table @ shows
the patterns that were later mined, which are basically the variations of the
initial pattern. Here, “*” symbol represents the don’t-care symbol or skipped
events. Once again, the amount of such don’t-care symbols is bound by 6

42

4.2. Periodic pattern mining in time series databases

constraint or maximum allowed amount of skipped events. For the purpose of
reflectiveness, let’s agree that 6 threshold is 2.

Table 4.7: Example of mined patterns

Generated pattern | Occurrence | Difference__ Mined_ pattern
vector vector
(12, 14] 2 [76100017, %, 73510007]
[7610001”, ”7351000”] (32, 36] 4 [76100017, *, *, ”7351000”]
(35, 36] 1 [76100017, 73510007]

Having guaranteed a fixed length of the period in time series database,
this can be used as a very informative representation of pattern detection and
pattern search flexibility. In the case of the given bank data, however, usage of
f constraint was deprecated. To “mine” patterns, after they were detected in
the time series string, in the manner that is shown above, was also redundant
as:

1. There might be as many as |period length| - [number of events in pat-
tern| don’t care symbols in the result “mined” pattern and therefore it
obstructs the human perception of the result pattern set.

2. The amount of don’t care symbols is not in any way representative, as
it is not visible from the result data how many events the particular
period contains. It seldom correlates with the period length itself and
thus, doesn’t give the real perspective of that fraction of period or how
many period sectors were skipped.

3. From the managerial point of view, what matters the most is the ap-
pearance pattern in a given period. The exact position of a particular
event in the pattern’s chain of events is less important. Once again, cer-
tain deviation in the data is tolerated and handled by the final version
of algorithm implementation.

4.2.2.6 Check for the result pattern similarity

Here I describe the original extension of the aforementioned algorithm, idea
which originated from the collaboration with the project owner and is based
on the specificities of the given task and the business meaning of the result
interpretation. It was mentioned before, that a particular fuzziness in the
data events allows for semantic interpretation, while having a strong order
difference of the events might be occasionally tolerated. To describe this
tolerance, I proposed the extension of the algorithm that is being executed as
a post-procession part.

Once the patterns of desired length, together with its period, occurrence
vector and confidence level are mined, we look into what they actually rep-

43

4. DESIGN

resent and if there are sets of similar patterns. For example, two patterns
might consist of the same set of events, but in slightly different order. An-
other possible example: when having two patterns of length i, where i is the
final desired length of the output pattern, it’s visible that a particular event
is inserted in one pattern, which increments the position of the rest of the
events.

See the example below: having two example patterns p; and po, with the
maximum achieved pattern length is 8. If we compare two patterns by checking
every event in them pairwise, it may seem, that that those two patterns are
barely similar. However, it is clear that, event ”20114” is inserted in the
beginning of pattern po, even though the rest of the pattern is left unchanged.

« p1 = [7431077, 7431077, ”33108”, "68107”, "20112”, "43108”, "43107”,
"431077]

e« po = [7201147, 431077, 7431077, 33108”, "68107”, "20112”, "43108”,
"43107"]

When encountering such pattern similarity, we can then either pronounce
them to be the same pattern and merge their occurrences, or record the second
pattern as a variation of the first one. This merged pair of patterns is then
called “macro pattern”. Macro pattern is the set of events that describes
similar activities of the company behavior, with the assumption of a certain
level of deviation.

To compare patterns pairwise, an algorithm inspired by Levenshtein dis-
tance was used. Levenshtein distance algorithm is a string metric that is
commonly used to measure the difference between two sequences. This metric
counts the changes that must be provided to create a first string sequence
out of the second one or vice versa. These changes might be: deletion of a
string symbol, insertion of a symbol or substitution of a symbol. We use these
types of changes to check if a pair of patterns represents the variations of one
another.

When having the same sequence length for both patterns, it must be men-
tioned, that the deletion or insertion of one symbol from the pattern is always
accompanied by the opposite change: insertion or deletion respectively, to
keep the same amount of events in the pattern. Also, the relocation of two
symbols inside one sequence is counted as making one change. Keeping that in
mind, the threshold for amount of changes becomes a user defined parameter.

To merge two or more patterns into one macro pattern, there was the
question of which of the patterns must be chosen to represent the subset. To
solve this issue, I've suggested a pattern ranking system. The principle of this
system is that the result set of patterns is first sorted in a descending order
based on the rank value. Then, the top pattern checks its similarity against the
rest of the set, one pattern at a time. If changes or Levenshtein distance satisfy
the given threshold, the pattern with lower rank is recorded as a variation of

44

4.3. Periodic outlier patterns and anomalies in time series database

the top one and is taken out of the rest of the set. Then, the top pattern is the
next one in the rest of the pattern set. This algorithm iterates until no patterns
are left in the set, or all of the patterns have empty variations sets. To rank
the patterns in the pattern set, I assumed two characteristics of the patterns:
the number of occurrences, counting the interchanged event identifiers, and
the number of period labels, which respond to those occurrences, as one period
may have several occurrences. The sum of these two parameters creates the
rank and tends to be heterogeneous enough, so there is little chance, that two
patterns have the same length.

After patterns are sorted by rank, the algorithm checks the Levenshtein
distance between the top pattern and each lower rank pattern. If the Leven-
shtein distance is lower than the given threshold, the pattern which was con-
sidered as a possible variation of the top one, is listed in a variation array.
There are two use cases of such check, with different purposes. The first one is
to use the result of this similarity check in the business analysis purposes. In
this case, after all the patterns below the top one are checked, the top pointer
goes to the next pattern in the row and so on. This option keeps all of the
original data and leaves the interpretation to the data science team.

The second one is to be used for the future pattern search in the new
transactional time series. In this case, in the course of pattern check traversing,
once the pattern with lower rank is found to be similar to the top one, it is
removed from the original list and its occurrence vector is merged with the
top pattern ones. This obviously affects patterns’ periodicity and strengthen
its confidence. After this, the top pattern’s periodicity check is done again in
order to update its confidence level.

4.3 Periodic outlier patterns and anomalies in
time series database

Among many other possible statistical and economical descriptions, one way
anomalies in transactional time series can be represented is in the form of
either unusual transactions on companies’ accounts or the drastic fluctuation
in the market behavior, sector-wise. For the purpose of finding unusual events
or set of events, I decided to use an algorithm that utilizes the same principles
of periodic pattern mining in time series databases.

4.3.1 Algorithm and adaptation

Since the time of publishing of the last here quoted work of Rasheed, F. and
Alhaji, R. in [11], these two authors came up with the extension of their
suffix-tree based algorithms for time series database mining. Particularly,
they published “A Framework for Periodic Outlier Pattern Detection in Time-
Series Sequences” [17]. The aim of this work was to show, that while common

45

4. DESIGN

algorithms for periodic pattern mining are known for having a tendency of
producing large amount of not interesting and redundant patterns, the valu-
able ones may not appear very often or periodically, but on the other hand
are more valuable and descriprive.

This algorithm, apart from the main two steps — detection of repeating
subsequences in time series together with its occurrence vectors — has a one
additional intermediate step, which chooses patterns from the result set and
calculates the surprise level of the patterns in each pass of the algorithm before
the periodicity detection and check.

For the pattern detection this algorithm uses the suffix tree. The usage
of the suffix tree data structure to detect patterns has already been discussed
in _this paper, so this step was replaced with the one I have described in the
2.1

with the one I have described in the . After the set of patterns has
been calculated in each pass of the algorithm, for all of the patterns in the set,
the surprise level is calculated. Surprise level is then presented in Formula

: fX) 1—
surprise(X) =1 — m,w such that | X;| = | X| (4.4)
where p(f(X;)) is the mean of the frequency of all patterns of same length
as that of pattern X.

After this step, only patterns with surprise level higher than the user input
value threshold, proceed to the periodicity check. To understand the surprise
level threshold, here is an example: thesurpriselevel(X) = 0.1 means, that
pattern X occurs in time series 90% as often, as an average pattern with the
same length.

In their work [17] they suggest using the periodicity detection and check
algorithm, which is very similar to the one, that is being used in [11] see
Figure .7, however it has some limitations, one of them is that it only assumes
occurrences that happened before the end position, or last occurrence in the
time series data. This leads to the inconsistency in the results, as some pattern,
which has last ocurrence in the time string database somewhere in the middle,
might still get conidence = 1.0 and this is contradictive to the concept of
periodic patterns that was defined before.

To overcome these limitations, I suggest using the same periodicity detec-
tion algorithm, that was described in .

4.4 Parameters and experiments with them
The complete version of analytical framework has a set of parameters that are
defined by the user before each algorithms’ initiation. During the construction

of the analytical framework, I've observed different behavior of the framework

46

4.4. Parameters and experiments with them

Algorithm 3 Occurrence Vector Processing Algorithm

2:

W

13:
14:
15:
16:
17:

©

(S
—

SRS SN
th i b

)
-2

procedure PROCESSOCCURRENCEVECTOR(pattern X, list
occur, int minSegLen, real con fmin)
Ppre = —h, preCount PerCol = periodCol.Count
> ppre 18 previous period, preCountPerCol is previous count
of period collection
for m = 0; m<|occur| — 1; m++ do
il m<|occur| — 1 then
= oceurim + 1] — oceur[m],iss =
oceur|m], ignd = occur|[|ocour| — 1]
if ppre # p AND (icna+|X | —ist)>(minSegLen =
|s|) AND Not AlreadyT here(X,ist,iend,p) then
periodCol.add(X, ist,iend, p) > Add to test
period list
end if
Ppre =P
end if
> Verify current occurrence against test period list
for n = preCountFPerCol;n <periodCol.count; n++
do
il (periodCol[n].is; mod periodCol[n].p) ==
(oceur[m] mod periodCol[n].p) then
Increment period frequency: periodClol[n].f
periodCol[n].iena = occur|n]

end if
end for
end for
> Remove non-frequent and periods with shorter coverage
for Y = 0,k =

preCount PerCol; k<periodCol.count; k + + do

_ periodCollk].i.ng+1—| X |—periodCol[k].is 1
fma,:z: - periodCol[k].p +
conf(X,ist,tend, p) = Trax
il conf<eonfmin OR (iena + |X| — ist)

>(minSegLen = |s|) then
periodCol.remove(X , ist, iond, P)
end if
end for

: end procedure

Figure 4.7: Occurrence vector processing algorithm, adopted from []

together with different outputs, while running the algorithm recurrent pipeline
with different values of parameters. These parameters are:

1. Time period for time series database

2. Desired pattern length

3. Method of transaction amount binning

4. Periodicity confidence threshold

47

4. DESIGN

5. Difference threshold for macro patterns

In the sections - I discuss different values of the algorithm para-
meters and its impact on the results.

4.4.1 Time period label

In the course of the framework implementation and testing on the given data
set from the project owner, I've used two types of time series database period-
icity: yearly and monthly, however implementation is suitable to be extended
for other possible periods for finer granularity as well. For all companies in the
data set, there exists transactional history in range of years 2011 and 2016.

It was observed, that companies with less than 200 events are less likely to
have any monthly periods in its transactional data, however, the problem with
monthly period existing might be present even with more broad transactional
history. On the other hand, companies that have more than 750 events, might
take a vast time to compute patterns of length 6 and more. But of course, it
also depends on the intermediate results such as the amount of patterns and
probability of its matching for creating longer patterns.

In such cases, I suggest several optimization options:

1. Cut off the events, that contain NACE of adverse party that are no
interest in the case of a particular company

2. Focus only on the NACE codes of the adverse parties, that appears in
the patterns of companies with the same primary NACE and turnover
category

3. Separate years of transactional activity

The choice of such options are, of course in the competence of business
analytics, who are the final consumers of this analytical tool.

4.4.2 Target pattern length

The framework is design in such fashion, that if a desired pattern length
cannot be achieved, it returns the set of patterns of the maximum achieved
length. However, there are cases, like the one described in the previous sec-
tions, in which the desired pattern length cannot be achieved due to the
massive amount of consumed memory. To deal with such cases, above are
listed suggestions for the possible optimization.

4.4.3 Bin type

Different binning type options, basically different sizes of bins, provide dif-
ferent set of unique events and hence these events are more or less frequent

48

4.4. Parameters and experiments with them

in the given time series database, for illustration see Figure @ There is an
inverse dependency between the number of unique events, which create the
alphabet of time series database and the probability of creating longer pat-
terns. Generally speaking, while having many unique events, most of them
will have less occurrences than more general events would have and therefore,
less periodic patterns can be mined. However, it doesn’t necessarily mean less
meaningful results, as an abundance of patterns in the earlier phases of the
algorithm may lead to the quick escalation of the pattern number and hence,
either a big RAM consumption, or meaningless result set of patterns.

25 Difference in the binning types

Bl unique_events
B avg_occurrence

20 +

15 +

10 +

standard
og_no_bin
log_bin
nace

The type of binning that was used for transaction amount discretization

Figure 4.8: An example of the impact of different binning type for the trans-
actional history with 515 events

4.4.4 Confidence threshold

There is an inverse dependency between confidence thresholds for pattern
periodicity and amount of patterns in result set. As confidence threshold is
used in every pass of the algorithm to cut off the less periodic patterns that will
not proceed in generating longer patterns, this is a very important parameter.
It also appears, that a confidence threshold less than 0.8 might lead to useless
results in yearly period domain, while is tolerated for the monthly patterns.

49

4. DESIGN

4.4.5 Surprise level and confidence threshold for outlier
patterns

The surprise level of the outlier patterns is another user defined parameter
that affects the size of the result pattern set. While having a high surprise
level threshold may end up as a little or empty result pattern set, having
it set to low values may cause the result pattern set to overlap with the
actual frequent periodic patterns that can be a source of misleading result
interpretation. In my opinion, the appropriate range for this parameter is
[0.2, 0.5]. For the threshold of outlier patterns, I suggest using the threshold
value for the periodicity detection, reduced by the coefficient 0.3.

In order to find patterns, that consist of several evetns, but are not peri-
odic, but still are intresting as they represent certain deviation in the cus-
tomer’s behaviour, I suggest using high surprise level threshold and confidence
level = 0.

4.4.6 Macro patterns threshold

The threshold of pattern difference for the purpose of creating macro patterns
was initially designed as another user input parameter, but after consulting
the results of this post-processing of the result with the project owner, it was
decided to fixate this parameter with value 2. This means, that there might
be three possible differences in the pair of patterns:

o One event is absent in the pattern (another one is present, as two pat-
terns are same length): one insertion is always compensated with one
deletion and vice versa.

e Maximum of two events are replaced with others.
e Two events are interchanged inside the pattern.

More complex differences in between two patterns appear to be misleading,
as it appears, that patterns are too different and in such cases it can no longer
be perceived as semantic interpretation of business events.

20

CHAPTER 5

Implementation

As one of the main goals of this thesis work was to embody the suggested
algorithms and their alternation into an analytical framework, here I include
the description of the development environment and libraries that were used
for the implementation.

5.1 Development environment

The development and testing of the analytical framework implementation was
held on a single computer with the following characteristics:

e Operating system: Windows 8.1
e Processor: Intel Corei5-4210 CPU 1.70GHz 2.40 GHz

« RAM: 8 GB

System Type: 64-bit Operating system, x64-based processor

The programming language of choice for the analytical framework imple-
mentation is Python 2.7. Among many reasons to choose this programing
language, the main was a set of able libraries, designed for the needs of the
data analysis:

« Pandas

e NumPy

Matplotlib
e SciPy

o1

5. IMPLEMENTATION

These libraries are described in more details in the next section.

The development IDE of choice is IntelliJ IDEA Apache 2 licensed com-
munity edition. It is an open-source software developed by JetBrains s.r.o.

Another UI for the development that was used is Jupyter Notebook. It is
an open-source web application that allows its users to create and share so-
called Notebooks that represent documents with executable cells. These cells
are used for interactive code execution, equations, visualizations and text.
One of the advantages of using this application is the ability to control and
look into the analyzed data at any moment, which improves the programming
experience.

The diagram illustrations in the text of this work were created in Draw.io
web application. This application is used to create different types of diagrams,
including for example UML, engineering and business-processes. It is a free-
to-license and all of the produced content belongs to the user, who created
it.

5.2 Python libraries

Pandas is a software library, designed for data transformation and analysis.
Pandas includes data structures like DataFrame and Series. It offers features
like pivoting data sets, integrated handling missing data, data sets transform-
ation, merging, slicing and grouping, together with data reading from external
sources and writing into different formats. Pandas is a free software, released
under the three-clause BSD license. The stable release that was used is 0.18.1.
NumPy is a Python library that adds support for multi-dimensional arrays
and matrices. It also contains high-level math functions that are used to op-
erate on such arrays. NumPy is an open-source software with many active
contributors. It is licensed under a new-DSD license. The stable release that
was used is 1.11.2.

The data visualizations that are included in this work were created using
the matplotlib library. It is a plotting library for Python programming lan-
guage together with Python’s extension NumPy. It allows many plot options
like linear graphs, scatter graphs, histograms and more complex 3D visualiz-
ations. It is distributed under BSD-style license. The stable release that was
used is 1.5.3.

SciPy is another open source Python library. It contains modules for
scientific and technical computing. SciPy builds its functionality on NumPy
arrays. The set of scientific libraries is constantly developing, its development
is supported by an open community of developers. The SciPy is distributed
under the BSD-new license. Stable release that was used is 0.18.1.

02

5.3. Algorithm limitation

5.3 Algorithm limitation

It was mentioned in the work of [14] that the algorithm of Nishi et al. [{]
tends to have certain performance limitations, as it uses an apriori based se-
quential mining approach to produce periodic patterns. That includes certain
complexities in mining long sequences, such as, for P length pattern mining,
in worst case, 2P number of patterns need to be handled and at least P num-
ber of times the database needs to be scanned. These limitations lead to
an immense computational memory and time. Constrainst which I have also
encountered, while working on the implementation.

In order to alleviate this disadvantage, I suggested several implementation
alternations. One of which was to omit the on-the-fly check for the redundant
occurrences of the pattern, which was created from two similar occurrences of
patterns. Instead, the algorithm first collects all of the possible event identi-
fication of the pattern, then aggregates by pattern and then removes duplicate
event identifications. The occurrence list can then be represented as a distinct
set of itself, while referring to the event identifications by the first index.

93

CHAPTER 6

Results

This chapter showcases the achieved results, which represent the output of
the analytical framework. The sample set of results was given to the analytics
in KB’s department of Data Science, to evaluate the result pattern sets of
different companies, its accuracy and precision. As the evaluation of the result
pattern could only be done manually, only a few companies were chosen for
this task. The evaluation of the actual pattern sets’ size or the events that
are contained in those patterns against the expected values was limited due
to several reasons such as:

o Different parameter settings provide a different output for each com-
pany’s history. Therefore it is up to the experts’ opinion of what the
best suitable parameters set are for either different companies’ charac-
teristics, or different aim for the analysis.

e The expected set of patterns is a very subjective matter and thus cannot
be used as an impartial measurement object for the result to be tested
against.

The Data Science department has verified the provided results, but did
not allow the publication of the pattern interpretation due to data protection.
The demonstrative interpretation in the form of a case study would have
been considered as validation of the data anonymization and protection of
sensitive data. In the following sections I provide the results’ description and
the tendencies that are visible from those pattern sets.

6.1 Example results

The output of the analytical framework is then represented in the form of set
of patterns that have structure of Table p.1I:

Here I enclose the results’ statistics for group of companies, history length,
time granularity and parameters used in the framework.

95

6. REsuLTS

Table 6.1: The structure of the result patterns

Attribute | Example Description
P [7746000002”, Generated pattern
7461000027,
761000001"”]
occ [3, 440] Occurrence vector of the pattern
eid ((440, 441, 442), (3, 4, | Event identificators of every event in
6)) the pattern
period 32 The periodicity of the pattern
conf 1.0 The confidence level of the pattern
for the given periodicity
oceynfolded | (2013, 1, 2015, 9) The occurrences of the pattern
translated back to the original
period labels, in this case - months.

The companies’ classification that were taken for the test evaluation: 4
companies with NACE code 77 and of turnover category 3. Average length of
aggregated time series database: 559

e Chosen time granularity: Month

— Parameters used: Binning type: standard with bin size 50000 and
confidence level threshold 0.8
1. Average of maximum pattern length achieved: 3
2. Average amount of patterns found: 4
3. Average confidence of the result pattern set : 0.97
— Parameters used: Binning type: NACE and confidence level threshold
0.8
1. Average of maximum pattern length achieved: 3
2. Average amount of patterns found: 17
3. Average confidence of the result pattern set : 0.82
— Parameters used: Binning type: logarithmic value without binning
and confidence level threshold 0.8
1. Average of maximum pattern length achieved: 2
2. Average amount of patterns found: 3
3. Average confidence of the result pattern set : 0.9
— Parameters used: Binning type: logarithmic value with binning
and confidence level threshold 0.8
1. Average of maximum pattern length achieved: 2
2. Average amount of patterns found: 3

o6

6.1. Example results

3. Average confidence of the result pattern set : 0.9
e Chosen time granularity: Year

— Parameters used: Binning type: standard with bin size 50000 and
confidence level threshold 0.8
1. Average of maximum pattern length achieved: 10
2. Average amount of patterns found: 8
3. Average confidence of the result pattern set : 1
— Parameters used: Binning type: NACE and confidence level threshold
0.8
1. Average of maximum pattern length achieved: 10
2. Average amount of patterns found: 4
3. Average confidence of the result pattern set : 1
— Parameters used: Binning type: logarithmic value without binning
and confidence level threshold 0.8
1. Average of maximum pattern length achieved: 6
2. Average amount of patterns found: 6
3. Average confidence of the result pattern set : 1
— Parameters used: Binning type: logarithmic value with binning
and confidence level threshold 0.8
1. Average of maximum pattern length achieved: 9
2. Average amount of patterns found: 4

3. Average confidence of the result pattern set : 1

The key parameter for the result output is the type of transaction amount
binning in the process of time series data discretization. The smallest pos-
sible bin size leads to the statistically correct results, as it basically describes
the regularities in the single events, which is, however, meaningless from the
business point of view. In order to provide descriptive and significant results,
one has to find a balance in the tradeoff between bin size and the amount of
generated patterns.

Parameters were chosen with an aim to achieve the optimum results. Sug-
gestions for the parameters are:

e Binning type based on the wider transactional database, that creates
the right bin size based on the transactions of each segment throughout
the whole database.

o Confidence level: 0.8

o7

6.

RESULTS

e Maximum pattern length: 12 for the yearly granularity, where the

amount of events inside the aggregated time series is more than 250,
and 5 for the monthly granularity, where the amount of events inside
the aggregated time series is more than 350.

However, a further examination of the pattern settings is expected to take
place in order to find the applicable expert setting for the different types of
analysis.

6.2 Result evaluation

To estimate the framework’s effectivity, instead of a comparison of the expec-
ted and real results, here we compare the expected framework’s functionality
against the actual pattern result description. The project owner’s team had
several particular assumptions regarding the hidden knowledge in the trans-
actional data. Here is a list of hypothesis, which were defined and tested.

o8

e Hypothesis: technical

— Patterns

* Frequent

Confirmed: Yes

Description: There exists several types of events, that form
the group in the bank transactional history data and are
frequent.

x Periodic

Confirmed: Yes

Description: Among these groups of events or patterns
there exists a subset that is not only frequent, but also
periodic.

— Periodicity
x Detectability

Confirmed: Yes

Description: The periodicity of such patterns can be de-
tected. The patterns with detected periodicity can then be
tested for the confidence level of a pattern’s occurrence in
the time series data.

x Priority

Confirmed: Yes

Description: The patterns with different confidence level of
occurrences may be then priorities, based on the value of
the confidence level.

6.2. Result evaluation

— Anomalies

* Periodic
Confirmed: Yes

Description: There exist patterns with less occurrences in
longer or irregular periods of occurrences, that should also
be detected.

* Not periodic
Confirmed: Yes

Description: These less frequent patterns may not be peri-
odic at all, but represent a real unexpected behavior of the
subject.

— Macro patterns

* Confirmed: Yes

* Description: The result set of patterns might contain patterns
that basically represent the same set of events. These patterns
might be merged into the macro patterns.

— Gaps overcoming

* Confirmed: Yes

* Description: The final implementation would be able to deal
with gaps in the periods of aggregated time series of the trans-
actional data.

Apart from the technical hypothesis, there existed certain business expect-
ations, regarding what kinds of regular transactions it would be possible to
find and observe in the result patterns.

e Hypothesis: technical

— Regular fixed costs
* Confirmed: Yes
— Utilities
* Confirmed: Yes
Maintenance
* Confirmed: Yes
— Salaries
* Confirmed: No
— Supply chain: Customers dynamics
* Confirmed: Yes
— Supply chain: Suppliers dynamics

99

6. REsuLTS

* Confirmed: Yes
— Taxes
* Confirmed: Yes
The overall result evaluation proves the suggested analytical framework to

be sufficient and the work’s goals to be fulfilled. It creates a reconstructive
knowledge that corresponds to the business behavior.

60

CHAPTER i

Discussion

Once the project owner’s chosen part of the historical data are full-scanned
and the patterns’ extensive database is constructed, these will provide major
opportunities for future use. In the following sections, I have summarized this
database’s advantages, which different departments of KB bank may benefit
from.

7.1 Marketing and Sales

The contribution of this work to the project owner’s Sales department may
be described as a new tool and ability to create better planned sale offers for
the customers. Whether it is for a particular customer or the whole group
of companies, being able to propagate events in their financial interactions
is a mighty instrument that enables the creation of customer-oriented offers.
Considering a company’s financial situation and perspective of the upcoming
group of necessary payments that will take place with certain probability, it
is easier to create a tailor-made offer that consists of the right bank products
and appears at the right time.

The Figure illustrates regular payments that are made by the com-
panies and its purpose. Among others there are at least four main purposes:
taxes and deductions, utility payments such as energy, etc., telco payments
and different services.

Once these regularities are studied and understood, they might be removed
from the analyzed data completely, as the most important interconnections
that represent the great value to the project owner are the regularities in
the customers-suppliers interconnections on the market. The dynamics of the
interactions between companies is a major point of interest for the Marketing
and Sales department. In the course of the analytical framework suggestion,
these regular payments data were not removed from the sample data set as
they demonstrate the general regularities of the economical subjects and are

61

7.

DISCUSSION

Government

TA

Taxes

1\

Taxes

Taxes

A

. 11 “
Investments >
fi

Contracts
4
Trade /

N

Telco
Yy

$99IAl0G

>

r Y

Utilities

Figure 7.1: The distribution of different size companies on the market

a good source of training data.

7.2 Management and Business Intelligence

Another important output of the suggested analytical framework is the abilit
to analyze the customers’ behavior in the automated processes. As Figure @
below suggests, there exists a certain statistical dependency between the size
of the company, its turnover amount and the number of such companies in the
market. While the top corporate subjects are counted as units, and are well
studied throughout the years of partnership with banks, small and medium
businesses (SMB) are present in the wide range and could not be possibly
studied individually.

The knowledge of the regularities of the SMB subjects’ behavior is mostly
concentrated among senior business analytics, which have many years of ex-
perience in this field. However, with a certain level of staff fluctuation, it
becomes problematic to keep this knowledge capital within the company. An-
other knowledge management issue is the inability to successfully transmit
the experience in suitable and efficient form. The analytical framework, how-

62

7.3. Future use

Amount of
companies

Turnover
SMB

Corporate

Top corporate

Figure 7.2: The distribution of different size companies on the market

ever, enables the discovery of restorable knowledge for a bigger amount of
companies at once.

7.3 Future use

As it was mentioned in section 6.1, only a subset of the given data set was
presented to the project owner in the form of result pattern sets. The frame-
work will become a new module in the analytical portfolio of the project
owner’s department of Data Science.

So the first step for its future use implies the creation of the extensive
database of patterns. The final goal of the analytical framework for periodic
pattern mining was not to incorporate it in the everyday monitoring process,
but rather to create a database of patterns, that will serve for the purposes of
the different departments and will be maintained regularly. Next step assumes
an extensive verification of pattern set results and tuning the patterns to suit
different analysis goals.

The implementation of the given framework is intended for future develop-
ment. This development assumes adding functionality modules like different
time granularity options, apart from those shown in this work, being able to
track financial regularities not only between company sectors, but also between
particular chosen companies, etc.

63

Conclusion

In the course of working on this thesis I have focused on the problem of
data mining of time series databases of bank transactional historical data.
Periodic pattern mining in time series databases is a very promising field of
data analysis, as it allows discovering the hidden knowledge in the historical
or streaming data, such as, for example, bank transactional data. The goal
of this work was to suggest a set of appropriate algorithms to be embodied
into an analytical tool, which would be able to deal with the irregularities
in the bank transactional data and detect periodic patterns regardless of this
limitation. Here, I'd like to summarize the work that has been done.

Summary

To operate with transactional events effectively I have designed a discretizing
technique for the transactional data. This technique takes into consideration
the different nature or context of particular transactions so the result patterns
are both descriptive and accurate in terms of business reality.

Then I have successfully managed to overcome the problem of data irreg-
ularities such as missing periods or gaps inside those periods. Even though I
consider my solution to be efficient in terms of the output it provides, I suggest
parallelized implementation for the more wide-ranging databases or in order
to provide this analysis more often. Also, alternative algorithm concepts were
suggested in the state-of-the-art descriptions.

After this, I have improved the periodicity detection algorithm to suit
different time granularities in order to provide a set of significant patterns that
also have business value and importance. This periodicity detection algorithm
is then a part of the outlier detection module of the analytical framework.
Then, the added extra step in the analytical framework checks the pattern
similarity to create meta-patterns with higher confidence level.

Overall, I think that I have managed to design and implement useful and

65

CONCLUSION

effective methods of pattern detection and periodicity detection. An added
value to this work is the delivery of a mechanism detecting the regularities
in the behavior of business subjects, which have an extensive transactional
history that may not be fully scanned and analyzed by the analytics without
an automation in such analytical processes. An example of this historical data
might be the case of transactional data of SMB subjects, which is not often
possible to analyze in full range, given the amount of such subjects on the
market.

Future work

The work that was done within the boundaries of this thesis leaves a lot of
possibilities for improvement and further research. In my future work, I'd like
to engage in the problem of pattern detection in transactional time series data
in more detail. I’d like to propose working on a more precise analysis technique
that would provide results with added descriptive business meaning. As this
work only considered one main segment of the subject’s economic activity, the
result patterns might appear too complex. However, if it would be possible
to have several defined segments of economic activity for each company, the
resulting set of patterns might be then investigated to be composed of events
that are typical for any of those segments.

66

Bibliography

Esling, P.; Agon, C. Time-Series Data Mining. ACM Comput. [online],
volume 45, November 2012, [cit. 2017-03-09]. Available from: http://
doi.acm.org/10.1145/2379776.2379788

Krawczak, M.; Szkatula, G. An approach to dimensionality reduction in
time series. Information Sciences [online], volume 260, March 2014: pp.
15 — 36, [cit. 2017-03-07]. Available from: https://doi.org/10.1016/
j.ins.2013.10.037

Abonyi, J.; Feil, B.; et al. Modified Gath—Geva clustering for fuzz-
ing segmentation of multivariate time-series. Fuzzy Sets and Systems
[online], volume 149, 2005: pp. 39 — 56, [cit. 2017-03-07]. Avail-
able from: http://www.abonyilab.com/time-series-mining/1-s2.0-
50165011404003069-main.pdf 7attredirects=0

Miao, S.; Vespier, U.; et al. Predefined pattern detection in large
time series. Information Science [online], volume 329, 2016: pp. 950
— 964, [cit. 2017-03-04]. Available from: https://doi.org/10.1016/
j.ins.2015.04.018

Chen, Y.; Chen, K.; et al. Effective and Efficient Shape-Based Pattern
Detection over Streaming Time Series. TRANSACTIONS ON KNOW-
LEDGE AND DATA ENGINEERING [online], volume 24, 2012: pp. 265
— 278, [cit. 2017-03-07]. Available from: http://ieeexplore.ieee.org/
document/5620913/

J., L.; Keogh, E. Clustering of time-series subsequences is meaningless:
Implications for previous and future research. volume 8, 2005: pp. 154
— 177, [cit. 2017-03-05]. Available from: http://link.springer.com/
article/10.1007/s10115-004-0172-7#article-dates-history

67

http://doi.acm.org/10.1145/2379776.2379788
http://doi.acm.org/10.1145/2379776.2379788
https://doi.org/10.1016/j.ins.2013.10.037
https://doi.org/10.1016/j.ins.2013.10.037
http://www.abonyilab.com/time-series-mining/1-s2.0-S0165011404003069-main.pdf?attredirects=0
http://www.abonyilab.com/time-series-mining/1-s2.0-S0165011404003069-main.pdf?attredirects=0
https://doi.org/10.1016/j.ins.2015.04.018
https://doi.org/10.1016/j.ins.2015.04.018
http://ieeexplore.ieee.org/document/5620913/
http://ieeexplore.ieee.org/document/5620913/
http://link.springer.com/article/10.1007/s10115-004-0172-7##article-dates-history
http://link.springer.com/article/10.1007/s10115-004-0172-7##article-dates-history

BIBLIOGRAPHY

[7]

[10]

[12]

[14]

[15]

68

Nishi, M. A.; Ahmed, F. A.; et al. Effective periodic pattern min-
ing in time series databases. Expert Systems with Applications [online],
volume 40, 2013: pp. 3015 — 3027, [cit. 2017-04-21]. Available from:
http:/dx.doi.org/10.1016/j.eswa.2012.12.017

Zanin, M. Forbidden patterns in financial time series. Chaos: An Interdis-
ciplinary Journal of Nonlinear Science [online/, volume 18, March 2008,
[cit. 2017-03-04]. Available from: http://dx.doi.org/10.1063/1.2841197

Wan, Y.; Gong, X.; et al. Effect of segmentation on financial time series
pattern matching. Applied Soft Computing [online], volume 38, 2016: pp.
346 — 359, [cit. 2017-03-05]. Available from: http://dx.doi.org/10.1016/
j.as0c.2015.10.012

Moon, Y.; Whang, K.; et al. Duality-based subsequence matching in
time-series databases. In Proceedings of the 17th IEEE International
Conference on Data Engineering [online/, 2011, pp. 263 — 272, [cit.
2017-03-05]. Available from: http://ieeexplore.ieee.org/document/
914837/7reload=true&arnumber=914837

Rasheed, F.; Alshalalfa, M.; et al. Efficient Periodicity Mining in Time
Series Databases Using Suffix Trees. TRANSACTIONS ON KNOW-
LEDGE AND DATA ENGINEERING [online], volume 23, January
2011, [cit. 2017-03-07]. Available from: http://ieeexplore.ieee.org/
document/5467068/

Kaneiwa, K.; Kudo, Y. A sequential pattern mining algorithm using
rough set theory. International Journal of Approzimate Reasoning [on-
line/, volume 52, 2011: pp. 881 — 893, [cit. 2017-03-14]. Available from:
http:/dx.doi.org/10.1016/j.ijar.2011.03.002

Kaneiwa, K.; Kudo, Y. Local pattern mining from sequences using
rough set theory. In International Journal of Approximate Reasoning
[online/, Granular Computing (GrC), 2010 IEEE International Con-
ference on, August 2010, [cit. 2017-03-06]. Available from: http://
ieeexplore.ieee.org/document/5576058/

Chanda, A. K.; Saha, S.; et al. An efficient approach to mine flex-
ible periodic patterns in time series databases. volume 44, 2015: pp.
46 — 63, [cit. 2017-03-05]. Available from: http://dx.doi.org/10.1016/
j.engappai.2015.04.014

Chanda, A. K.; Ahmed, F. A.; et al. A new framework for mining
weighted periodic patterns in time series databases. Fxpert Systems with
Applications [online], volume 79, 2017: pp. 207 — 224, [cit. 2017-04-28].
Available from: http:/dx.doi.org/10.1016/j.eswa.2017.02.28

http:/dx.doi.org/10.1016/j.eswa.2012.12.017
http://dx.doi.org/10.1063/1.2841197
http://dx.doi.org/10.1016/j.asoc.2015.10.012
http://dx.doi.org/10.1016/j.asoc.2015.10.012
http://ieeexplore.ieee.org/document/914837/?reload=true&arnumber=914837
http://ieeexplore.ieee.org/document/914837/?reload=true&arnumber=914837
http://ieeexplore.ieee.org/document/5467068/
http://ieeexplore.ieee.org/document/5467068/
http:/dx.doi.org/10.1016/j.ijar.2011.03.002
http://ieeexplore.ieee.org/document/5576058/
http://ieeexplore.ieee.org/document/5576058/
http://dx.doi.org/10.1016/j.engappai.2015.04.014
http://dx.doi.org/10.1016/j.engappai.2015.04.014
http:/dx.doi.org/10.1016/j.eswa.2017.02.28

Bibliography

[16]

[17]

Yun, U. Efficient mining of weighted interesting patterns with a
strong weight and/or support affinity. volume 177, 2007: pp. 3477 —
3499, [cit. 2017-03-05]. Available from: http://dx.doi.org/10.1016/
j.ins.2007.03.018

Rasheed, F.; Alhajj, R. A Framework for Periodic Outlier Pattern Detec-
tion in Time-Series Sequences. TRANSACTIONS ON KNOWLEDGE
AND DATA ENGINEERING [online], volume 44, May 2014: pp. 569
— 582, [cit. 2017-03-04]. Available from: http://doi.acm.org/10.1109/
TSMCC.2013.2261984

Glossary: Statistical classification of economic activities in the
European Community (NACE). http://ec.europa.eu/eurostat/statistics-
explained/index.php/, [cit. 2017-03-05].

69

http://dx.doi.org/10.1016/j.ins.2007.03.018
http://dx.doi.org/10.1016/j.ins.2007.03.018
http://doi.acm.org/10.1109/TSMCC.2013.2261984
http://doi.acm.org/10.1109/TSMCC.2013.2261984

APPENDIX A

Contents of enclosed flash drive

readme.tXt.....oovvinienn... the file with flash drive contents description
< ol o2 the directory of source codes
tpattern_mining implementation sources

thesis............... the directory of IXTEX source codes of the thesis
o= P the thesis text directory
tthesis.pdf the thesis text in PDF format

thesis.pS..cvviiiiiiiiiiiiii i, the thesis text in PS format

	Introduction
	Motivation for this work
	Definition of the problem
	Goal of this work
	Outline

	Time series data
	Time series
	Pattern mining in time series database
	Time series in bank and financial transactions

	State-of-the-art
	Existing algorithms
	Chosen algorithms

	Analysis
	Data structure, example, statistics

	Design
	Data requirements
	Periodic pattern mining in time series databases
	Periodic outlier patterns and anomalies in time series database
	Parameters and experiments with them

	Implementation
	Development environment
	Python libraries
	Algorithm limitation

	Results
	Example results
	Result evaluation

	Discussion
	Marketing and Sales
	Management and Business Intelligence
	Future use

	Conclusion
	Summary
	Future work

	Bibliography
	Contents of enclosed flash drive

