Bachelor Project

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Open informatics

Virtual Bumper for Tracked Ground Robot
from Depth Data

Vit Zlamal

Supervisor: doc. Tomas Svoboda, Ph.D.
Field of study: Open informatics
May 2017

ii

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

BACHELOR PROJECT ASSIGNMENT

Student: Vit Zlamal
Study programme: Open Informatics
Spec'ialisation: Computer and Information Science

Title of Bachelor Project: Virtual Bumper for Tracked Ground Robot from Depth Data

Guidelines:
An outdoor tracked robot used in Urban Search and Rescue (USAR) operations must react
to possible obstacles in close vicinity regardless whether it is teleoperated or drives
autonomously [1]. The robot is equipped with variety of sensors also measuring depth (Lidar,
RealSense camera). Standard simple obstacle detections are not applicable as the robot can
actually traverse many almost-obstacles [2]. Time-to-collision problem is even more
complicated as the robot morphology is changing [2]. Research existing approaches, like [3]
and design, implement, integrate (ROS.org) and experimentally verify a virtual bumper
algorithm that provides an estimate of time-to-contact for any part of the robot. As a side
product the algorithm may provide data for the adaptive traversal algorithm [2]. Design and
implement a simple calibration procedure that aligns the RealSense data with the main
coordinate system of the robot. The calibration may use a simplified scene like with one
dominant horizontal plane.

Bibliography/Sources:

[1] Ivana Kruijff-Korbayova, Francis Colas, Mario Gianni, Fiora Pirri, Joachim de Greeff, Koen V.
Hindriks, Mark A. Neerincx, Petter Ogren, Tomas Svoboda, Rainer Worst: TRADR Project: Long-
Term Human-Robot Teaming for Robot Assisted Disaster Response. Kl 29(2): 193-201 (2015)

[2] Martin Pecka, Karel Zimmermann, Michal Reinstein, Tomas Svoboda: Controlling Robot Morphology
From Incomplete Measurements. IEEE Trans. Industrial Electronics 64(2): 1773-1782 (2017)

[3] Jia Pan and loan A. S and Sachin Chitta and Dinesh Manocha: Efficient Collision Detection and
Distance Computation with Realtime Sensor Data. In IEEE International Conference on Robotics
and Automation (ICRA), 2013

Bachelor Project Supervisor: doc. Ing. Tomas Svoboda, Ph.D.

Valid until: the end of the summer semester of academic year 2017/2018

L.S.

prof. Dr. Ing. Jan Kybic prof. Ing. Pavel Ripka, CSc.
Head of Department Dean

Prague, January 12, 2017

iv

Acknowledgements

I would like to thank my supervisor Tomas
Svoboda for his guidance, infinite patience
and for giving me the opportunity to be
involved in this spectacular project.

I am also grateful to Martin Pecka for
helping me with ROS and everything else
around project.

At last but not least I would like to
thank the team working around the robot
and cooperating on this project.

Declaration

I declare that I have developed the pre-
sented work independently and that I have
listed all information sources used in ac-
cordance with the Methodical guidelines
on maintaining ethical principles during
the preparation of higher education theses.

In Prague, 26. May 2017

Abstract

Human operator of an outdoor tracked
ground robot can overlook obstacles and
crash in to them. Those collisions can
damage the robot or in some cases whole
robot can be lost due to collision when
the robot gets stuck in dangerous area.

In this thesis we describe how to
build virtual bumper using depth data
(point clouds), which were captured by
Intel® RealSense™ (RealSense) sensor.

The result of our work is package for
Robot Operating System (ROS)[4], which
can stop the robot in critical situations
before collision. Whole project is imple-
mented in C++ and uses Flexible Colli-
sion Library (FCL)[3] for collision check-
ing.

Keywords: FCL, Flexible Collision
Library, RealSense, point cloud, ROS,
Virtual bumper

Supervisor: doc. Tomas Svoboda,

Ph.D.

vi

Abstrakt

Pasovy robot ovladany operatorem,
ktery vsak muze prehlédnout prekazky a
nasledné do nich narazit. Takovéto kolize
mohou vést k poskozeni robota, pripadné
i k jeho ztraté pokud robot ziistane neo-
vladatelny v nebezpecné oblasti.

V této préci popisujeme jak lze vytvorit
virtualni naraznik za pouziti hloubkovych
dat (point cloudu), ktery jsme snimli sen-
zorem Intel® RealSense™ (RealSense).

Vysledkem préace je balicek pro Robo-
ticky operaé¢ni systém (ROS)[4], ktery do-
kaze v kritické situaci zastavit robota
drive, nez dojde ke kolizi. Cely projekt
je implementovan v C++ a s vyuzitim

Flexible Collision library (FCL)[3].

Kli¢ova slova: FCL, Flexible Collision
Library, RealSense, point cloud, ROS,
Virtualni néraznik

P¥eklad nazvu: Virtudlni naraznik pro
péasového robota z hloubkovych dat

Contents

1 Introduction 1l
1.1 State of theart................
1.2 Motivation
1.3 Problem specification...........

2 Essential terms

2.1 Point cloud

22 0Obstacle.............

2.3 Robot Operating System
231ROScore
232 Nodes
233 Topics ..o
234 Rosspin ...t

2.4 Flexible Collision Library

3 Virtual bumper

3.1 Collision map
32 Geometry. ...
3.3 Collision checking..............
3.4 Speed of the algorithm

2l
3
3l
3l
5l
5l
7
9
9
4 Implementation 11
4.1 Parameters
4.2 Architecture 12l
4.3 Callback method for pointcloud
4.4 Collision detect 12l
4.4.1 Iteration through point cloud
4.4.2 Collision object
4.5 Collision handler 13
4.6 Flipper state
4.7 Visualization [14]
15|

9

23

26!

28

33l

5 Users guide

5.1 Installation

5.2 Setting up on robot
5.2.1 Calibration................
5.22 Running

6 Experiments
6.1 Stairs i
6.2 Pallet
6.3 High obstacle
6.4 Tilted plane..................
6.5 Wall
6.6 Pillars.......................
6.7 Testing drive
6.7.1 Pillar test
6.7.2 Stairs tests

vii

7 Conclusion
7.1 Limits of the method

Bibliography

Figures
2.1 Point cloud of stairs............ 3l
2.2 Different settings of flippers
3.1 Collision map of stairs..........
3.2 Bumper when flippers are up
3.3 Bumper when flippers are in
approaching state
5.1 RealSense mount
5.2 RealSense calibration.......... 116l
5.3 Pattern of robot.yaml file
6.1 Drive to the stairs graph.......
6.2 The robot approaching to stairs
and drive on them 21

6.3 The robot drive down the stairs [21
6.4 Change of the flippers state and

drive on the stairs
6.5 Drive towards the pallet
6.6 Drive on the pallet
6.7 Too high obstacle, flippers

observation
6.8 Too high obstacle, flippers

approaching....................

6.9 Tilted plane, flippers observation
6.10 Tilted plane, flippers

approaching....................
6.11 Robot approaching to the wall.
6.12 The wall under angle.........
6.13 White pillar, approaching with
middle of the robot
6.14 White pillar, approaching with
the truck of the robot
6.15 Black pillar, approaching with
middle of the robot 130l
6.16 Black pillar, approaching with the
truck of the robot............... 30
6.17 Large black pillar, flippers
observation 31
6.18 Large black pillar, flippers
approaching....................
6.19 Pillar test...................
6.20 Test drive up the stairs
6.21 Test drive down the stairs [33
7.1 Bumper under low ceiling

viii

Tables

Chapter 1

Introduction

Human operator of an outdoor tracked ground robot can overlook obstacles
and crash in to them. Those collisions can damage the robot or in some
cases whole robot can be lost due to collision when the robot gets stuck in
dangerous area.

In this thesis we describe how to build virtual bumper using depth data
(point clouds), which were captured by Intel® RealSense™ (RealSense) sen-
Sor.

The result of our work is package for Robot Operating System (ROS)[4],
which can stop the robot in critical situations before collision. Whole project
is implemented in C++ and uses Flexible Collision Library (FCL)[3] for
collision checking.

. 1.1 State of the art

Virtual bumpers designed for vehicles provides feedback in form of distance
measurement. Bumpers in modern cars provide audio alarm with frequency
increasing with decreasing distance of a car from an obstacle. This type of
bumper is not suitable for our robot, because urban search and rescue (USAR)
robots have different requirements. USAR robots can traverse obstacles
that would be considered like dangerous from simple distance measurement.
Therefor algorithm using ultrasonic sensors are not a good option for our
USAR robot, because shape of an obstacle can not be recognized [14].

Collision checking is essential for virtual bumpers where recognition of the
obstacles shape is needed. Plethora of collision checking algorithms has been
developed and placed into libraries such as Bullet [7], ODE [8], PQP [9] or
V-Collide [10] for wider use.

However, almost all these algorithms were originally made for environ-
ment where objects are represented in form of meshes or geometric prim-
itives. These representations are very different from data recorded by
Intel® RealSense™ (RealSense) camera in real situations. RealSense cap-
tures only part of an environment and the output can be noisy. An example
of point cloud is shown on figure/2.1.

Flexible collision library [I] is designed to handle data from depth sensors,
such as laser sensors or stereo cameras, and provide sufficient collision check

1. Introduction

system. FCL is also fast enough for real time collision checking, therefor it is
good choice for building virtual bumper.

. 1.2 Motivation

Robots used in Long-Term Human-Robot Teaming for Disaster Response
(TRADR)[6] project are designed to help rescue teams in USAR operations.
Various kinds of robots are collaborating with humans and exploring environ-
ment of disaster. This information improves team members understanding
how to operate in dangerous area.

Tracked ground robot is equipped with diverse sensors like thermal camera,
LIDAR and RealSense. The robot can be operated autonomously or by the
operator. When the robot is operated by human member of a team, mistakes
in steering are made and that leads to collisions. Sensors can be broken or in
some cases whole robot can be lost due to collision when the robot gets stuck
in dangerous area.

In effort to protect the robot before collision virtual Bumper have to be
developed. Bumper needs to stop the robot in dangerous situation before
crash.

B 1.3 Problem specification

The goal is to create virtual bumper for TRADR robot, that would be able
to evade collisions in harsh unstructured indoor and outdoor environments.
The robot have to be stopped by virtual bumper in risky situations as soon
as is possible for maximum safety. But it is also necessary to minimize false
alarm detection in order to not increase cognitive load of the robots operator.
Algorithm must adapt to robots ability to traverse obstacles which is changing
with robots flippers arrangement. Depending on the flippers configurations
some terrain may be recognized as a dangerous obstacle or a difficult but
traversable terrain[2]. Example of difficult terrain can be stairs because the
robot can traverse them only with right configuration of flippers.

For our purpose we decided to use RealSense sensor because of its speed
and ability to produce depth data. However depth data from RealSense are
burdened by random noises. In connection with light condition RealSense
produce different amount of data. Color of an object also can be factor in
density of data produced by RealSense. Virtual bumper has to deal with all
these inaccuracies.

Chapter 2

Essential terms

. 2.1 Point cloud

Point cloud is set of 3D points in a coordinate system. Our robot generates
point clouds through RealSense sensor in 3D coordinate system with origins
in middle of the sensor. Points in a point cloud can be understood as a sample
depth/distance measurements. It is not a complete representation. Only
directly visible scene parts are sampled. Density of samples varies depending
on the shape of the terrain/obstacles and its distance from the robot.

Figure 2.1: Point cloud of stairs

. 2.2 Obstacle

First of all we have to define what is danger obstacle that that have to be
recognized. Simply everything that can not be traverse is an dangerous
obstacle and everything else is not, but there is problem because these two
sets have a common intersection. Sometimes exactly the same obstacle can be
dangerous and safe depending on robots flippers state. As shown in figure [2.2
stairs are example of difficult obstacle. More common obstacles are walls,

3

2. Essential terms

pillars, debris and holes where we can strictly decide what is dangerous and
what is not.

Figure 2.2: Different settings of flippers

B 23 Robot Operating System

The Robot Operating System (ROS) is a flexible framework for writing robot
software. It is a collection of tools, libraries, and conventions that aim to
simplify the task of creating complex and robust robot behavior across a wide
variety of robotic platforms.[4]

The TRADR robots are running under the ROS system. This framework
provides elegant way to operate and combine different components of robot.
The whole system is build from standardized nodes which makes it very

4

2.4. Flexible Collision Library

modular. Nodes can communicate via topics between each other in M to N
relation.

All this features provides distributed system where nodes can be imple-
mented in different languages and can run on different machines. Only
communication protocol have to be respected. Also it leads us to create Small
parts of code that can be integrated together only with functionality we need.

Every part of ROS have to be in catkin package [5]. Every package requires
CMakeFile.txt and package.xml file. In these files are building information
including dependencies requirements. This is very useful for example when
rosdep command downloads all dependencies for specific package.

B 23.1 ROS core

Ros core is set of nodes and programs that are essential for every ROS appli-
cation. ROScore must be running in order for ROS nodes to communicate. [5]

B 2.3.2 Nodes

Node is process that make computation. Nodes are combined in to a graph
and communicate with one another.

The system that controls our TRADR robot is compose of many nodes
where each node have its own purpose (such as: path_planer,
laser_proximity_checker, virtual_bumper). This structure have advan-
tages such as fault tolerance, code simplify and independence on program-
ing language. For example virtual_bumper node is written in C++ and
terrain_shape_estimation is implemented in python. Every running node
has its unique name which identifies it to rest of the system.

B 2.3.3 Topics

Topics are named buses with anonymous subscriber and publisher which are
used to transfer messages between nodes [5]. This allows nodes to subscribe
and publish information. Topics can be subscribed by multiple nodes and
nodes can subscribe multiple topics which makes M to N relation.

B 2.3.4 Ros spin

Ros spin is endless loop that let nodes to stay alive. When callback method
finishes its job tho whole program would end. In most cases this is not what
we want to. When ROS spin is called node just waits until new calling of
callback method [5].

B 2.4 Flexible Collision Library

Flexible Collision Library (FCL) [1] performs 3 types of proximity queries:
collision detection, distance computation and tolerance verification. In this

2. Essential terms

project are collision checks queries preformed by this library because of its
speed and easy integration with ROS.

Chapter 3

Virtual bumper

B 3.1 Collision map

Raw data from RealSense have to be converted into a collision map. Collision
map is built by inserting points from point cloud in to an octree structure.
In this step resolution of collision map is defined. Default value is set to 5
centimeters which means that the length of the smallest voxels at lowest octree
level is 5 centimeters cube. This value has been chosen because the smallest
obstacles which the robot normally encounters and needs to recognize, such
as table leg, are on average this size. The collision map is represented as a
set of occupied 5x5x5 centimeters voxels. On the figure below is example of
collision map.

Figure 3.1: Collision map of stairs

B 32 Geometry

Depending on two flipper modes that are used most often. The standard
observation mode when flippers are up which maximizes viewfield for the

7

3. Virtual bumper

sensors is used for traversing a flat terrain. In the approaching mode, the front
flippers are tilted up in order to allow climbing up obstacles. In both cases,
the robot pushes a virtual box which is 85 centimeters long, 60 centimeters
wide and 50 centimeters high. That is the same size as the robot itself.

In observation flippers configuration, the box is in front of the robot and
is lifted up as shown in figure [3.2] This lift is used because the robot can
traverse small object even without the use of approaching state of flippers.

Figure 3.2: Bumper when flippers are up

In figure [3.3, the second state, which requires the box to be tilted up, is
visualized. The angle between the ground and the box is 0.720 radians which
is slightly less than flippers angle which is 0.786 radians. The angling of
the box ensures that the robot with approaching flippers state can drive,
for example, up on a stair without the bumper stopping it. Nevertheless, it
still enables detection of obstacles which are too high to traverse. Proper
detection of obstacle which are too high is the reason why angle of the box is
smaller than the flippers angle, flippers have to get on the obstacle to traverse
it therefor smaller angle of the bumper box cover the obstacles that would
not fit under the flippers.

Figure 3.3: Bumper when flippers are in approaching state

3.3. Collision checking

B 3.3 Collision checking

The developed algorithm detects an overlap of a cube from the collision map
with the virtual box, which represents the bumper. Each cube is individually
checked and the number of cubes colliding with the bumper is summed into an
output. If the output number exceeds the threshold, virtual bumper evaluates
the situation as collision and stops the robot.

Setting up right threshold is essential for the Proper functioning of the
bumper. In default setup where resolution of collision map is 5 centimeters,
threshold is set on 25. This number have been calculated from tests which
are described in chapter 6. Threshold can be set through parameter so its
easy to adapt algorithm to specific environment. In flat indoor areas where
are main obstacles walls can be threshold higher on the other hand in areas
where is expected for example collisions with table foots chairs etc. threshold
can be lowered.

Fach point cloud data contains information about space in 50 centimeters
distance and further. Hence, it is impossible to analyze the space in less than
50 centimetres distance from the robot without moving the sensor on the
back of the robot, where can be difficult make vista forward because of other
components of the robot. Therefor all collision check computations must be
done before object gets in to the blind zone.

B 34 Speed of the algorithm

The RealSense camera can capture point clouds on 60 Hz frequency[12], which
is immense amount of data. Based on robots maximum speed 0.3 meters per
second we decided to set RealSense frame rate to 6 Hz, which gives us enough
time to react without consuming too much computational resources.

Under normal conditions, it is necessary to analyze hundreds of thousands
points from point clouds. A typical 3D point cloud is converted into a collision
map with 800-3000 occupied voxels, which means that algorithm have to
consequently undertake 12000 collision checks every second, nevertheless,
significantly more could be required in environments with higher complexity.

The algorithm processing time can be decreased by lowering collision map
resolution or by selecting some point clouds. However, these two methods
lead to decreased reliability of the bumper. Ideally, both approaches could
be combined to acquire the best optimization.

Still the method rate limiting step is conversion between the point cloud to
octree structure, which takes 1000 times more time than collision checking.

10

Chapter 4

Implementation

Virtual bumper is standard ROS node with dependencies on those packages:

geometry msgs
B sensor__msgs

m tf

m tf2

® pcl_ros

B8 pcl_conversions

FCL library is used to perform collision check.

. 4.1 Parameters

Virtual bumper node have these parameters with predefined default values:

node.param("octMapResolution", octMapResolution, 0.05);
node.param("robotSizeX", robotSizeX, 0.85);
node.param("robotSizeY", robotSizeY, 0.6);
node.param("robotSizeZ", robotSizeZ, 0.5);
node.param("threshold", threshold, 20);

All length variables are in meters.

The length of an edge of each cube in collision map is defined in
octMapResolution variable. Robot size can be changed by robotSizeX,
robotSizeY and robotSizeZ. Changing of size parameter is useful when
the robot is furnished with equipment that enlarges its range. When the
threshold parameter is exceeded the robot stops. How to run program with
parameters is wrote in next chapter in section Runningl5.2.2.

11

4. Implementation

. 4.2 Architecture

In constructor of virtual bumper publishers and subscribers are set. Important
computations are made in methods:

® pointCloudCallback

® collisonDetect

® generateBoxesFromOcTree
® collisionHandler

Other methods ensures visualization and updating of global variables.

B 4.3 callback method for pointcloud

The method pointCloudCallBack is called every time when the new point
cloud is captured. First, point cloud is transformed from
camera_depth_optical_frame to base_link. By this transformation is se-
cured that geometry of the bumper will not change when position of the
RealSense is changed.

Next the condition where collisonDetect method is called is evaluated.
If collision is detected collisionHandler is called otherwise restriction for
maximal speed is removed.

. 4.4 Collision detect

Main computations are made in collisonDetect method. The return value
is logical operator which determinate if collision have been found or not.

B 4.4.1 Iteration through point cloud

Iteration through point cloud is done by pcl [I3] library. Points are pushed to
the octomap structure one by one as the cycle loop through them.

pcl: :PointXYZ p;
for (j = 0; j < local_pcl.size(); j++) {
p = local_pcl.at(j);
octomap: :point3d point(p.x, p.y, p-2);
octPointCloud.push_back(point) ;

}

From octomap is than made OcTree by adding origin of the point cloud
which must be corrected by the transformation, which been made in
pointCloudCallBack.

12

4.5. Collision handler

B 4.4.2 Collision object

For collision check collision objects and FCL request must be created. The
virtual bumper box is created from information about robots size. Translation
and rotation depends on flippers position as is described in chapter|3.2l Sample
code is shown below:

if (!(frontLeftFlipper > -2)) {
transformBumper.setTranslation(
Vec3f (stampedTransform.getOrigin() .x() + 0.65,
0, stampedTransform.getOrigin().z() - 0.15));
rotation = Quaternion3f(0, 0, 0, 1);
} else {
transformBumper.setTranslation(
Vec3f (stampedTransform.getOrigin() .x() + 0.55,
0, stampedTransform.getOrigin().z() + 0.1));
rotation = Quaternion3f(0, -0.33, 0, 1);
}
Matrix3f rotationMatrix;
rotation.toRotation(rotationMatrix) ;
transformBumper.setRotation(rotationMatrix) ;
fcl::CollisionObject
collisionObjectBumper (bumperBox, transformBumper) ;

Again values are corrected by the transformation.

From OcTree is created collision map in generateBoxesFromOcTree method.
In the loop is individually checked each box from collision map with bumper
box. Result number is than checked with threshold. If threshold is exceed
true is returned otherwise false is returned.

B Optimization

Under normal circumstances condition will return true immediately after
number of collisions exceeds the threshold. This stops creation of markers and
number of collision stay on same value like threshold. For testing purposes
and right visualization these lines have to be commented:

if (inCollision >= threshold){
return true;

B 4.5 Collision handler

If collision is detected, collision handler is called. Everything what have to
be done in danger situation should be placed here. Now collision handler sets
maximum speed limit to 0.

13

4. Implementation

B 46 Flipper state

Virtual bumper also subscribes flippers_state topic. Flippers direction in
radians are stored in global variables. Translation and rotation of virtual
bumper box depends on this variable. Same position of left and right flipper
is expected.

if (! (frontLeftFlipper > -2)) { ...

B 4.7 Visualization

Visualization can be turn off and on by defining markersVisible statement.
All parts of code responsible for visualization wont be built if markersVisible
is not defined.

Markers representing collision map is visualized in same loop as collision
check. If optimization condition is active visualization of collision map will
not be complete, because loop is broke when threshold is reached.

14

Chapter 5

Users guide

. 5.1 Installation

Virtual bumper as standard ROS package is build by catkin_make command
in root of working space or by newer version catkin build. Single node can
be build by catkin_make virtual_bumper.

The virtual bumper node is part of the TRADR project where is placed in
tradr/tradr-loc-map-nav set of packages. The repository is managed by
CIIRC [11] gitlab.

B 52 Setting up on robot

RealSense camera is equipped on the robot by 3D printed holder facing
forward as show in figure . USB 3.0 standard is necessary because of large
data flow.

Figure 5.1: RealSense mount

Il 5.2.1 Calibration

Camera and its model have to be synchronized by calibration in robot.yaml
file. Programs rtq_reconfigure and rviz are used to achieve that. The
robot is placed in front of the vertical object like wall or door, after that pre-
view of point cloud in rviz have to be turn on. Furthermore has_realsense

15

5. Users guide

check box must be checked in rtq_reconfigure. Next the point cloud is
tilted to position where vertical object and the floor holds the right angle
by changing value realsense_tilt in rtq_reconfigure. RealSense camera
is normally deflected by 3 centimeters from middle of the robot because of
holder structure. This shift is set in realsense_shift_y field. Example of
calibration is shown in figure [5.2l

70,0023 -0.0017 0.1297"/>=<[joint></1obot>.

. 100 (019
dynamic_robot_mo«

+ aps._from_odom_ur
»viz

100 [014

R — 100 05
-100 100 01765

100 100 [02

T —— 100 018

100 e 100 [603

T — 100 (017]
R — 100 [025

100 100 [05

Figure 5.2: RealSense calibration

Accordingly information is written to yaml file which is opened by
rosed nifti_launchers robot.yaml command. Pattern of file is demon-
strated in figure [5.3l

Figure 5.3: Pattern of robot.yaml file

16

5.2. Setting up on robot

B 5.2.2 Running

After calibration, node can be ran by writing:
rosrun virtual_bumper virtual_bumper_node in robots command line
Example of starting the node with parameters is below.

rosrun virtual_bumper virtual_bumper_node _threshold:=20
_octMapResolution:=0.05 _robotSizeX:=0.85
_robotSizeY:=0.6 _robotSizeZ:=0.5

17

18

Chapter 0

Experiments

We designed 8 scenes where we made tests:

B Stairs

® Scene where is pallet on floor

Too high obstacle

Tilted plane

Wall

Small white pillar

Small black pillar

Big pillar

On this scenes 21 tests were ran. Model situations were recorded in to
bag files and all sections were labeled as danger or safe. When the obstacle
appears in front of the robot in distance shorter than robots length situation
were labeled as danger when robots flippers are in observation position. With
approaching state of flippers is danger distance considered as half of robots
length. Number of detected collisions between collision map and bumper box
in time were captured. From recorded data we set the threshold parameter
to 25. However different environments requires different settings. Therefore
this value is rather orientation and can be easily corrected if it is needed.

All model situations ends without collision, thus successful detection of
danger state is when number of collisions exceeds threshold in danger part
of the experiment. If number of collisions exceeds threshold during the safe
part of an experiment false positive observation have been made.

Further in this chapter all danger data in graphs will be colored by red
and safe data will be colored by green. The threshold value is displayed by
the blue horizontal line.

19

6. Experiments

. 6.1 Stairs

On the scene with stairs we ran 4 tests. Picture of the scene captured by
robots camera is shown on figure below. In first test robot drives near stairs
with observation state of flippers. On the graphs can be seen that part in
front of the stairs is almost with no collisions and after robot reaches the
critical distance collisions are rising very quickly.

180 ° 18
160 ° 16
140 -] o0
120 12F

100 - °

Collisions
o
Frequency

80 o

60

40

20 0.0

0 1 2 3 4 5 6 7 8 -50 0 50 100 150 200
Time [s] Collisions

Figure 6.1: Drive to the stairs graph

20

6.1. Stairs

Next two experiments expects no danger. The robot drives on stairs with
proper position of flippers and than drives down on horizontal floor. In
both experiments are values between 0 and 3, therefor safe situation were
successfully detected. On collision map robot is facing the floor and no
collision is detected.

25 45

20

Collisions
e
Frequency

o

0 1 2 3 4 5 6 7 8 -1.5 -1 0.5 0 0.5 1 1.5
Time [s] Collisions

Figure 6.2: The robot approaching to stairs and drive on them

25 250
207 200 |-
15 > 150
£ g
° S
= T
3 3
10} - 100
5 50
o o o o0 o
0O GDEND GISIOED 00 00 o O o O
0 . 0 . . . "
0 5 10 15 20 25 30 35 40 45 1.5 A1 0.5 0 0.5 1 15 2 25
Time [s] Collisions
A

AT ve e

Figure 6.3: The robot drive down the stairs

21

6. Experiments

The course of the last test shows how robot in front of the stairs change
flippers state from observation to approaching. Thus he change danger state
to safe and drive up the stairs. On figure below is shown collision map before

and after flippers chage.

120 o
O &

100 Q’%

o

801 g
o

60

Collisions

40

S

»
3

Frequency
s o ® B N & B
& &8 3 8 8 & &

N
S

-1

0 20 40 60 80 100 120

L2
S

Collisions

Figure 6.4: Change of the flippers state and drive on the stairs

22

6.2. Pallet

B 6.2 Palet

In pallet location were made 2 tests in which robot stops in front of the pallet
and drive on the pallet. First test with flippers up comprise danger situation
when the robot gets to close to pallet. The second one contains no danger
due to approaching flippers state.

140 ° 20

o
L Lo, °
120 op b Py Lo
o ©0© OO
100 © %%

Collisions

80

60

]
]

o

N

Frequency
=

40 -

20

O N & O ®

0
S

0 20 40 60 80 100 120 140
Collisions

25 120

201

Collisions
Frequency
IS =
S 3

N
S

o
o
] 00 O @ @ o0 O 0O

0 5 10 15 20 25 2 -1 0 1 2 3 4
Time [s] Collisions

Figure 6.6: Drive on the pallet

23

6. Experiments

B 63 High obstacle

Obstacle is defined too high if the robot can not traverse over it. Two pallets
were placed one on each other as our high obstacle. The robot drives towards
the pallets with the observation state of flippers and the approaching. In
both situations high collision number is desirable. Nevertheless collisions
with too high obstacle when flippers are in approaching settings is difficult to
recognize because it has same shape like stairs, where the opposite detection
is wanted. Thus the collision numbers in first test are significantly higher
than in the second one.

200

180 [

30

N
&

160

140

120

Collisions

100

80

60

40

%0
00 oo O 00
O Ty 0 000000 0070000007 0%

Frequency
N N
E S

o

2

20

30

25

50 100
Collisions

1 2 3 4 5 6 7 8 -50 0
Time [s]

Figure 6.7: Too high obstacle, flippers observation

20

Collisions

0000 -} 000 4t
00

w

Frequency
N
o

- o Nk

10 15
Collisions

1 2 3 4 5 6 -5 0 5
Time [s]

20 25

Figure 6.8: Too high obstacle, flippers approaching

24

6.4. Tilted plane

B 6.4 Tilted plane

Drive on tilted plane is possible with both flippers configuration, observation
and approaching. However because of the bumpers design with observation
flippers state is tilted plane recognized as a danger obstacle as shown in
graph/6.9. Solution of this problem is to change flippers state to approaching,
which will eliminate detection of collision and it is also safer because the
robot is Less prone to overturning. Data from drive on tilted plane with

approaching flippers are show in figure|6.10.

Collisions

Time [s]

Collisions

b

Figure 6.9: Tilted plane, flippers observation

140 ¢ 160 ——
° %
ol @ 140
°
120
100 (5 o
L 100
2 80 &
é P o 5
Z g o
8 0t 2
° @ 60
°
40 ° o
2 o
v
20f
’) L
0 5 10 15 20 25 30 35 20 0 20 40 60 8 100 120 140

25

20

Frequency

Time [s]

12 -1.5 -1 0.5 0 0.5
Collisions

Figure 6.10: Tilted plane, flippers approaching

25

6. Experiments

B 65 wal

Wall is the same problem as the too high obstacle. Only in this case should
be results more significant, but because overexposure of RealSense, point
cloud did not captured the whole obstacle. Stereoscopic camera was not able
to properly measure data on the monolithic white wall. Still enough collisions
for evaluate danger situation were recognized.

@

S

o
@

~

N N
S o
o o

IS

Collisions
]
Frequency

2

©

0 © L mmuin

0 0.5 1 1.5 2 25 3 -5 0 5 10 15 20 25 30 35
Time [s] Collisions

Figure 6.11: Robot approaching to the wall

26

6.5. Wall

In second test the robot moved towards the wall under an angle. In this
situation RealSense captures the wall correctly, as shows figure below. This
also corresponds with data in graphs where the collision numbers are moving
around one hundred per pointcloud.

120 18

o
) o o 16
100 F ° o °o°°°o°ooo o

80

60

Collisions
Frequency

@

0 1 2 3 4 5 6 7 8 -20 0 20 40 60 80 100 120
Collisions

Figure 6.12: The wall under angle

27

6. Experiments

. 6.6 Pillars

Our 3 testing pillars has diameter from 5 to 20 centimeters and different
colours.

First white pillar with diameter 7 centimeters and second black with
diameter 5 centimeters were tested in two ways. Approaching to the pillar,
where center of the robot and the pillar were in one line was content of the
first test. In second experiment was in one line the truck of the robot and
the pillar.

Results below show, that white pillar in first test was not detected. Re-
alSense camera was not able to capture whole pillar due to overexposure.

Black pillar was recognized, but the collision numbers were very close to
threshold. In effort of better recognition of the thin pillars, resolution of
collision map has to be increased or threshold decreased.

Large black pillar with diameter of 20 centimeters were tested on driving
towards with the observation flippers state and the approaching. In both
tests was successfully recognized as danger obstacle. however in second test
was collision numbers again very close to threshold.

28

25
20
o
» 15 =]
2
2
2 °
5}
O 10
o0
o0 o
5 © o o o
o0 o o © o0
o
o
0 o . ,
0 0.5 1 1.5 2 25 3 3.5 4
Time [s]

6.6. Pillars

N o

©

Frequency

Collisions

60

50

Collisions
w IS
8 S

N
S

o

[
o
o
o o °
© °
o -]
o o [+]
o
0 04
00500 | L L o L L L)
0.5 1 1.5 2 25 3 3.5 4 4.5
Time [s]

Frequency
N

©

0
-10 0 10 20 30 40 50
Collisions

Figure 6.14: White pillar, approaching with the truck of the robot

29

6. Experiments

301 3 T T T T T
o o
25 251
o
o
20 2r
o
2 3
s ° o o &
L2151 2150
3 £
10 1
o
5 051
-]
o
0 - 0 .
0 0.5 1 15 2 25 -5 0 5 10 15 20 25 30
Time [s] Collisions

3

Figure 6.15: Black pillar, approaching with middle of the robot

30 4 T T T T T
o ° 35F
25
o
3l
o
20 o
- 251
@
§
% 15 % 2
[$} o &
151
10
1k
5
° 05
0 " , 0
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 -5 0 5 10 15 20 25 30
Time [s] Collisions

Figure 6.16: Black pillar, approaching with the truck of the robot

30

Collisions

Collisions

~
S

@
3

o
3

IS
S

@
3

N
S

o

45

40

35

6.6. Pillars

Frequency
IS
3

L L , 0
14 16 18 20 22 24 -10 0 10 20 30 40 50

Time [s] Collisions

Figure 6.17: Large black pillar, flippers observation

o
o0
o
o
o

>

)

e

5]

S

° g

° o w

o
o o
o (]
° o
o
o . n L L .)
0.5 1 1.5 2 25 3 3.5 -5 0 5 10 15 20 25 30 35
Time [s] Collisions

Figure 6.18: Large black pillar, flippers approaching

31

6. Experiments

N 67 Testing drive

After learning the algorithm and setting the threshold on 25, testing drive with
running node on the robot were made. Pillar test represented by foot of the
table, stair tests and the wall tests were made. All situations were successfully
recognized. In testing drive bumper were set to slow down the robot instead
of stopping him, because function which allows manually overtake speed
restriction is not implemented yet. Thus stopping the robot would leads to
dead lock.

All bag files and videos can be downloaded here http://ptak.felk.cvut}
|cz/tradr/visuals/bagfile_crawler/index.html|

B 6.7.1 Pillar test

In the figure below is shown process of slowing down in front of the table foot
from the test drive. On first picture robot starts approaching towards table.
Middle picture shows robot in full speed. On the left picture robot detects
obstacle and slowed down.

Figure 6.19: Pillar test

32

http://ptak.felk.cvut.cz/tradr/visuals/bagfile_crawler/index.html
http://ptak.felk.cvut.cz/tradr/visuals/bagfile_crawler/index.html

6.7. Testing drive

B 6.7.2 Stairs tests

On following figures are demonstrated how robot drives on stairs and down
the stairs. In both cases no collision was detected and robot easily drive
through.

Figure 6.21: Test drive down the stairs

33

34

Chapter 7

Conclusion

We described how to design virtual bumper for the TRADR robot from
depth data. ROS package in C++ which can stop the robot in front of the
danger obstacles have been developed. We demonstrated functionality of
this algorithm on several examples and data for further experiments were
recorded during development. Described algorithm can be smoothly placed
in any ROS project.

Simple calibration method has been described. However it is not automa-
tized.

B 7.1 Limits of the method

Because RealSense sensor is facing forwards we can not detect holes. The
geometric design of the bumper assumes that approaching flippers arrange-
ment is used for climbing and observation for moving on flat surfaces. This
assumption causes no problem on most of the scenes. However exceptions
like driving on tilted plane with observation state of flippers described in
chapter|6.4] or moving in place with low ceiling like tables with approaching
state of flippers causes false alarms. In the case with low ceiling the volume
of the bumper box is elevated and therefore colides with the ceiling like is
show on figure|7.1| And all detection depends on point clouds which quality
does not have to be always good.

Figure 7.1: Bumper under low ceiling

35

36

Bibliography

[1] Flexible collision library https://github.com/
[flexible-collision-library/fcl|visited: 14-5-2017

[2] Karel Zimmermann, Petr Zuzanek, Michal Reinstein, and Vaclav Hlavac
Adaptive Traversability of Unknown Complex Terrain with Obstacles for
Mobile Robots published Robotics and Automation (ICRA), 2014 IEEE
International Conference on 31 May-7 June 2014

[3] Jia Pan, Ioan A. Sucan, Sachin Chitta, Dinesh Manocha Real-time col-
lision detection and distance computation on point cloud sensor data
Published in: Robotics and Automation (ICRA), 2013 IEEE International
Conference on 6-10 May 2013

[4] About ROS http://www.ros.org/about-ros/| visited: 4-5-2017

[5] ROS wiki http://wiki.ros.org/| visited: 4-5-2017

[6] Long-Term Human-Robot Teaming for Disaster Response
tradr-project.eu/| visited: 11-5-2017

[7] Bullet http://bulletphysics.org/|visited 14-5-2017

[8] Open dynamics engine http://www.ode.org/| visited: 14-5-2017

[9] A Proximity Query Package http://gamma.cs.unc.edu/SSV/| visited:
14-5-2017

[10] Thomas C. Hudson Ming C. Liny Jonathan Cohen Stefan Gottschalk
Dinesh Manocha V-COLLIDE: Accelerated Collision Detection for VRML
published in: Department of Computer Science University of North
Carolina

[11] The Czech Institute of Informatics, Robotics and Cybernetics
//www.ciirc.cvut.cz/| visited 19-5-2017

[12] Introducing the Intel® RealSense™ R200 Camera https://software!
lintel.com/en-us/articles/realsense-r200-cameral visited: 21-5-

2017

37

https://github.com/flexible-collision-library/fcl
https://github.com/flexible-collision-library/fcl
http://www.ros.org/about-ros/
http://wiki.ros.org/
http://www.tradr-project.eu/
http://www.tradr-project.eu/
http://bulletphysics.org/
http://www.ode.org/
http://gamma.cs.unc.edu/SSV/
https://www.ciirc.cvut.cz/
https://www.ciirc.cvut.cz/
https://software.intel.com/en-us/articles/realsense-r200-camera
https://software.intel.com/en-us/articles/realsense-r200-camera

Bibliography

[13] Point cloud libraryhttp://wiki.ros.org/pcl| visited: 21-5-2017

[14] J. Borenstein, Y. KorenObstacle avoidance with ultrasonic sensors IEEE
Journal on Robotics and Automation (Volume: 4, Issue: 2, Apr 1988)

38

http://wiki.ros.org/pcl

	Introduction
	State of the art
	Motivation
	Problem specification

	Essential terms
	Point cloud
	Obstacle
	Robot Operating System
	ROS core
	Nodes
	Topics
	Ros spin

	Flexible Collision Library

	Virtual bumper
	Collision map
	Geometry
	Collision checking
	Speed of the algorithm

	Implementation
	Parameters
	Architecture
	Callback method for pointcloud
	Collision detect
	Iteration through point cloud
	Collision object

	Collision handler
	Flipper state
	Visualization

	Users guide
	Installation
	Setting up on robot
	Calibration
	Running

	Experiments
	Stairs
	Pallet
	High obstacle
	Tilted plane
	Wall
	Pillars
	Testing drive
	Pillar test
	Stairs tests

	Conclusion
	Limits of the method

	Bibliography

