

ii

Czech Technical University in Prague
Faculty of Electrical Engineering
Department of Computer Science

Master’s Thesis

Parameter tuning for numerical optimization algorithms

Bc. Michael Rudolf

Supervisor: Ing. Petr Pošík, Ph.D.

Study Programme: Open Informatics

Field of Study: Artificial Intelligence

May 26, 2017

iv

v

Aknowledgements
Access to computing and storage facilities owned by parties and projects contributing to
the National Grid Infrastructure MetaCentrum provided under the programme "Projects of
Large Research, Development, and Innovations Infrastructures" (CESNET LM2015042), is
greatly appreciated. Also, access to the CERIT-SC computing and storage facilities provided
by the CERIT-SC Center, provided under the programme "Projects of Large Research,
Development, and Innovations Infrastructures" (CERIT Scientific Cloud LM2015085), is
greatly appreciated. I would like to thank my family and friends for their support and my
supervisor Ing. Petr Pošík, Ph.D., for his help, patience and much advice he provided me
with during the work on this thesis.

vi

vii

Declaration
I hereby declare that I have completed this thesis independently and that I have listed all
the literature and publications used.
I have no objection to usage of this work in compliance with the act §60 Zákon č. 121/2000Sb.
(copyright law), and with the rights connected with the copyright act including the changes
in the act.

V Praze dne 15. 9. 2016 .

viii

Abstract

As there is an increasing trend in generation of new optimization problems about which often
imperfect or incomplete information is known, researchers came up with many optimizing
algorithms that can tackle large variety of specific problem scenarios. Because No Free
Lunch Theorem states there is no algorithm that could outperform all other algorithms
on all problems, the optimizing algorithms are parametrized to somewhat adapt to different
scenarios and perform reasonably well on wider range of problems. Search for ideal algorithm
setting can be viewed as another optimization problem called meta-optimization.

This thesis compares several meta-optimization techniques on public benchmark and
examines the possibilities of single algorithm setting that would generalize each of the tuned
optimizers to perform well on whole class of problems, rather than solving instances of just
one problem. Optimization results of several variants of tuned optimizers are presented.
They exhibit a range from none to substantial performance increase.

Abstrakt

Vzhledem k narůstajícímu trendu ve vytváření a objevování nových optimalizačních pro-
blémů, o kterých často nemáme dokonalou či úplnou znalost, přišli výzkumníci s mnoha
optimalizačními algoritmy, které mohou čelit široké škále těchto problémů. Protože No Free
Lunch Theorem říká, že neexistuje algoritmus, který by předčil všechny ostatní pro všechny
problémy, bývají algoritmy parametrizované tak, aby se nějakým způsobem přizpůsobily
různým scénářům a měly rozumnou výkonnost pro větší škálu problémů. Na hledání ideál-
ního nastavení algoritmu můžeme nahlížet jako na další optimalizační problém kterému se
říká metaoptimalizace.

Tato práce porovnává několik metaoptimalizačních technik na veřejně dostupném výkon-
nostním testu a zkoumá možnosti jediného nastavení algoritmů, které by zobecňovalo každý
z laděných optimalizačních nástrojů tak, aby měl dobrou výkonnost na celých třídách pro-
blémů, spíše než na instancích pouze jednoho problému. Jsou zde prezentovány výsledky
optimalizace několika variant laděných optimalizátorů. Vykazují rozpětí od žádného k vý-
znamnému zvýšení výkonnosti.

ix

x

Contents

Introduction 1

1 Parameter tuning 3
1.1 Problem Outline . 3
1.2 Motivation . 4
1.3 Goals and Hypotheses . 5

2 State of art in automatic parameter tuning 7
2.1 Meta-evolution . 7
2.2 Sequential Parameter Optimization (SPO) . 7
2.3 Estimation of Distribution (EDA) . 8
2.4 Racing . 8
2.5 Sharpening . 8
2.6 Local Search . 8
2.7 Adaptive Capping . 9

3 Examined tuning methods 11
3.1 Overview . 11
3.2 Algorithms . 12

3.2.1 ParamILS . 12
3.2.2 SMAC . 13
3.2.3 Irace . 13
3.2.4 SPOT . 14
3.2.5 Spearmint . 14

3.3 Performance metrics . 14

4 COCO benchmarking Framework 15
4.1 Overview . 15
4.2 Purpose . 15
4.3 Testing functions and their benefits . 16
4.4 Benchmarking results and their meaning . 17

5 Conducted Experiments 21
5.1 Experiment analysis . 21
5.2 Realization . 23

5.2.1 Used resources . 23

xi

xii CONTENTS

5.2.2 Optimization experiment structure . 23
5.2.3 Optimization experiment execution . 23
5.2.4 Parameter tuning structure . 25
5.2.5 Parameter tuning execution . 25

6 Results 29
6.1 Optimization experiment results . 29

6.1.1 Experiments with negative results . 29
6.1.2 Expected run length comparison . 31
6.1.3 Algorithm performance comparison . 31

6.2 Parameter tuning experiment results . 34
6.2.1 GA unimodal tests . 34
6.2.2 GA multimodal tests . 36
6.2.3 DE unimodal tests . 37
6.2.4 DE multimodal tests . 39

7 Discussion 41
7.1 Optimization benchmark experiments . 41
7.2 Parameter tuning experiments . 42

7.2.1 GA testing . 42
7.2.2 DE testing . 42

7.3 Improvements . 43

8 Conclusion 45

Bibliography 47

A Technical details about examined frameworks 51
A.1 Implementation Language . 51
A.2 Algorithm usage . 52
A.3 Parameter handling . 53

B List of used abbreviations 57

C CD Content 59

List of Figures

1.1 Parameter tuning concept . 3

4.1 Scatter plot comparing 2 algorithms run lengths 17
4.2 Run length distribution of two algorithms . 18
4.3 Expected/observed run length loss ratio . 18
4.4 Run length distribution of many algorithms 19

5.1 Area under curve performance metric . 28

6.1 Expected runtime per dimension comparison 30
6.2 Parameter tuner optimizing abilities comparison in 5D 32
6.3 Parameter tuner optimizing abilities comparison in 20D 33
6.4 GA unimodal training performance . 34
6.5 GA unimodal testing performance . 35
6.6 GA unimodal different class performance . 35
6.7 GA multimodal training performance . 36
6.8 GA multimodal testing performance . 36
6.9 GA multimodal different class performance 37
6.10 DE unimodal training performance . 37
6.11 DE unimodal testing performance . 38
6.12 DE unimodal different class performance . 38
6.13 DE multimodal training performance . 39
6.14 DE multimodal testing performance . 39
6.15 DE multimodal different class performance . 40

xiii

xiv LIST OF FIGURES

Introduction

Optimization in strict mathematical view is finding extrema of some function but can be
also viewed as a search with goal of finding the best (optimal) solution to some problem.
Many real life optimization problems tend to have large search spaces, and it turns out, for
increasing number of optimized variables there is exponential increase in problem complexity.
This is called the curse of dimensionality [21] and it is being dealt with by algorithms that
expect arbitrary number of input parameters for each optimization problem.

Many optimizers can be adjusted to increase their performance on different problems with
different dimensionality by choosing the right input parameters. These parameters change
the behavior of the optimizer and can have positive effect on the overall solution quality
if chosen properly. Choosing algorithm parameters by hand can be inefficient and difficult
as we often do not know the full extend of parameter relations. Looking for an efficient
parameter initialization of the optimizing algorithm can also be viewed as an optimizing
problem, often called meta-optimization.

Meta-optimization which is also known as super-optimization, parameter tuning, auto-
mated parameter calibration or even hyper-heuristics is therefore a research field of searching
the right behavioral parameters for some underlying optimizer. One can easily deduce that
meta-optimization is computationally expensive, as it requires at least several computations
of the underlying optimization problem in order to determine performance of each param-
eter instantiation. Therefore, it is beneficial to have as few parameters as possible and a
good performance measure to distinguish only the promising sets of parameters. Also, dif-
ferent approaches to meta-optimization work with different success depending on whether
the tuned parameters are real-valued or discrete (with finite number of choices).

Meta-optimization is no new concept as it was already used in the late 1970s by Mercer
and Sampson [38] for optimizing evolutionary algorithm. The used method is known as
Meta-evolutionary algorithm, basically any evolutionary algorithm can be used as meta-
evolutionary as long as it can use numeric vectors representing parameter instances as its
individuals.

Besides meta-evolution there are several main courses which to take when implementing
parameter tuning. There are Estimation of Distribution (EDA) based algorithms such as
REVAC [40, 39], Sequential Parameter Optimization methods (SPO) which usually construct
models of the parameter space, and try to search for good instantiations, sampling the
underlying models [33, 19, 17]. There are also various techniques that can be added to already
existing algorithms such as racing [37, 36] that aims to decrease the number of optimization
evaluations by comparing parameter efficiency on as few instances as possible, or sharpening
[20, 44] that ensures the promising configurations are evaluated more thoroughly than those
that perform poorly.

1

2 LIST OF FIGURES

Interesting overview of parameter tuning was further provided in the work of Smit and
Eiben [44], Hoos and Holger [29] and Dobslaw [25].

This thesis is structured in the following manner: The Chapter 1 describes the topic of
parameter tuning in general. It states the goals and hypotheses of this thesis and explains
the motivation driving this area of research. Chapter 2 presents a brief overview of related
work in the area as well as the current state-of-art methods. Chapter 3 provides detailed
examination of used methods. Their usage and implementation is explained and commented.
Chapter 4 describes the used benchmarking framework [3]. Its goals, examples of its results
and their interpretation. Chapter 5 is focused entirely on conducted experiments. The re-
quirements for the optimization scenarios are outlined as well as the details of realization
based on these requirements. Chapter 6 presents the results of parameter tuning on bench-
mark [3] functions as well as the results of 2 optimizing algorithms with tuned parameters
on functions from 2 classes of problems. Chapter 7 discusses the achieved results relative
to the assigned hypotheses and gives an outlook on possible improvements for the future.
Chapter 8 concludes the work and its relevance.

Chapter 1

Parameter tuning

1.1 Problem Outline

Parameter tuning is very similar to classical black-box function optimization. The precise
gradient of the optimization problem is unknown and the fitness function only gives some
performance measure of a candidate solution. We may know some constraints on each
dimension parameter, but we do not know all the dependencies the particular dimensions
pose on each other and the resulting value space. The basic view of the problem has the
following structure [41]:

Meta-optimizer

Optimizer

Actual Problem(s)

Figure 1.1: Parameter tuning concept. Overlaying black-box optimizer is used to set up
input parameters for another optimization method.

Meta-optimizer is searching for the optimal (or at least somewhat well performing) set
of behavioral parameters for the chosen optimizing method. The parameter tuning method
has no specific knowledge about the underlying problem. The only important information
are domains of the desired parameters and stopping criterion.

The meta-optimization is computationally demanding as it has to run the underlying
optimizer for each candidate configuration. Due to the high problem complexity and high
computation times, meta-optimizers are often limited to a certain number of the underlying
algorithm runs, time limit or maximum number of candidate configurations.

3

4 CHAPTER 1. PARAMETER TUNING

1.2 Motivation

Despite the fact that there are several (if not many) ways to let automatically calibrate
almost any optimizing algorithm because meta-optimizers can usually deal with parameters
of both continuous and discrete domains, vast majority of researchers still rely on expertly
chosen input parameters for their methods. The importance of using one or a few unified
meta-optimizing frameworks can be explained in 3 main reasons [34]:

∙ Algorithm comparison. When evaluating several optimizing methods the important
question is whether one algorithm or heuristic outperforms the other because it is
fundamentally superior or because the authors were more successful in optimizing
the input parameters. The automatic parameter tuning would eliminate this kind of
uncertainty as well as provide common ground for algorithm evaluation thus generating
more meaningful comparative studies.

∙ Practical usage of optimizers. The overall performance or ability to find feasible
solution on difficult and computationally hard problems greatly depends on using suit-
able parameter configurations. End users of optimizing frameworks often have little
or no knowledge about the impact of an algorithm’s parameter settings on its perfor-
mance thus using the default settings. Even if the used method has been carefully
optimized on a standard benchmark set, default configuration may not perform well
on the real-life problem instances. Automatic parameter tuning methods can be used
to improve performance without any expert knowledge or experience requirements in
a principled and convenient way.

∙ Algorithm development. When using automatic parameter configuration on some
optimizing method, the researchers can focus more on the general idea and the fun-
damental principles that should lead the algorithm progress towards optimal solutions
rather than spending large fraction of the development time searching for the best
settings. Apart from parameter configuration time savings, the automated tuning can
potentially achieve better results than manual, ad-hoc methods.

1.3. GOALS AND HYPOTHESES 5

1.3 Goals and Hypotheses

This thesis aims to compare the optimizing skills of several current parameter tuning algo-
rithms and choose some to check the overall performance enhancing capabilities for tradi-
tional optimizing algorithms. The work does not aim to find the best meta-optimizer of them
all but rather to show that automatic parameter tuning is relatively easy to incorporate and
it has advantages that could provide more meaningful comparative studies in the future.

Another question that this work tries to challenge is whether the optimization algorithms
can be trained to perform well on a whole class of optimization instances with just one or
only a few parameter configurations. Essentially whether it is possible to generalize said
optimizer with new default settings, specific for the problem class, thus saving on parameter
tuning over each scenario in that class.

In order to accomplish the above objectives it is necessary to provide the overview of
currently used methods. From these methods it is desirable to choose some representatives,
understand their implementation and usage and find a way to compare them in common
fashion.

The desired outcome is a meaningful representation of computed data that would clearly
support or disprove the goals and hypotheses in mind, preferably in a form of graphs and
data tables. Based on the data, decisions and answers upon the individual questions are
presented.

6 CHAPTER 1. PARAMETER TUNING

Chapter 2

State of art in automatic parameter
tuning

This chapter should serve as a brief summary listing the main courses of parameter tuning.
Current methods as well as methods used in the past are presented to lay down some basics
of the researched field.

2.1 Meta-evolution

Used almost 40 years ago for the first time by Mercer and Sampson [38], meta-evolutionary
algorithm is just another evolutionary algorithm on top of the baseline evolutionary algo-
rithm. The only condition the overlaying algorithm must satisfy is that the population
individuals are vectors of parameter values later used for the main optimization. Each pop-
ulation based algorithm can be used as meta-optimizer, as long as it has the right individual
representation. The recent meta-evolutionary algorithms use Covariance Matrix Adaptation
Evolution Strategy (CMA-ES) [26] as it has good reputation as a numeric optimizer.

2.2 Sequential Parameter Optimization (SPO)

SPO as introduced by Bartz-Beielstein et al. [18] shows some similarities with the meta-
evolutionary algorithm as it is also population-based. In each iteration of the algorithm a
population of configurations is evaluated and based on the evaluation a (regression) model
representing the parameter utility dependency is created. The current model is then used to
test and filter new configurations, from which only the promising are added to the population.
There is a wide range of SPO methods which differ mainly in the used models, from the
traditional regression models used in the past to the stochastic models such as Gaussian
processes used today [19, 33].

7

8 CHAPTER 2. STATE OF ART IN AUTOMATIC PARAMETER TUNING

2.3 Estimation of Distribution (EDA)

Parameter Relevance Estimation and Value Calibration (REVAC) introduced by Nannen
and Eiben [39, 40] is based on the same general idea as the EDA algorithms [42] because it
estimates the distribution of promising values over each parameter. The result of this method
is a set of distributions, representing the utility landscape. The candidate configurations are
then chosen according to each parameter distribution. Such simple model does not count
with the mutual parameter affection, but gives at least some insight to the relevance and
sensitivity of the respective parameters.

2.4 Racing

The main idea of racing is to focus only on the well preforming configurations and discarding
those that do not perform well enough. This is possible through variable number of algorithm
runs. The number of tests for each configuration greatly depends on the performance of the
underlying algorithm. The more promising configuration is found, the more tests it has
been run against. Usually new configuration is run against small subset of the testing (or
training) instances and it gets chosen for the subsequent runs if it is not substantially worse
than the best yet found solution. The discarding of the nonperforming configurations saves
substantial part of the computational resources and enables the algorithm to further explore
the search space.

In order to effectively compare the candidate configuration statistical tests such as Fried-
man’s test or pairwise t-test [36] are commonly used.

2.5 Sharpening

Sharpening [44] means that the promising parameter configurations are tested more thor-
oughly than the ones that are not as perspective. It basically starts with small number of
tests, and when certain threshold is met, the number of tests doubles. It can be viewed as
an opposing force to the racing process as it tries to incorporate more tests for the promising
configurations where racing tries to do as few tests as possible.

When combined with racing the resulting algorithm starts with only few tests for each
individual in population and the best performing configurations are further sharpened to be
comparable by means of racing.

2.6 Local Search

Local search methods simply sample the search space of all parameter settings and explore the
local neighborhoods (configurations differing in one parameter value) of promising solutions
with decreasing sampling range to ensure convergence to local optimum. Methods of this
family differ mostly in computing the sampling range decreasing factor which is affected by
the current number of non-improving solutions and the problem dimensionality (in this case
number of optimized parameters).

2.7. ADAPTIVE CAPPING 9

2.7 Adaptive Capping

Adaptive capping [34] is another method used to cut off the unpromising configurations
and thus providing more time to focus on other regions of the search space which leads to
searching through more configurations and possible quality improvement in comparison to
the basic variant of the search. It is primarily designed for iterative search methods and the
authors consider two of its variants [34].

For the first approach, called trajectory preserving, each new configuration setting has
its computing budget set by the previous candidate (best found) solution. So if after same
number of evaluations the candidate configuration is not equally good or better than the
previous one (in terms of dominance), the search continues with another parameter setting.
Each iteration thus starts slowly by initial or perturbed solution configuration and then,
as the algorithm progresses, it gets tougher and tougher to top the better solutions. This
approach preserves the trajectory of the search as it visits same configurations as would the
basic variant only with significant speedup.

The second approach the author call aggressive adaptive capping because the compu-
tational limit depends on overall best found solution performance times weight 𝛼 which is
being adaptively adjusted throughout the algorithm run.

10 CHAPTER 2. STATE OF ART IN AUTOMATIC PARAMETER TUNING

Chapter 3

Examined tuning methods

This chapter captures the main features and specifics of the examined parameter-tuning
algorithms.

3.1 Overview

ParamILS

ParamILS [34] is a method for parameter tuning and algorithm configuration. It has been
used in dozens of academic applications to improve state-of-the-art solvers for more then ten
hard computational problems (see its 250+ Google scholar citations). ParamILS has yielded
substantial speedups of state-of-the-art solvers for hard combinatorial problems, such as
propositional satisfiability (SAT) [30], mixed integer programming (MIP) [31], AI planning
[46], answer set programming (ASP) [35], and timetabling [23]. By doing so, ParamILS has
helped several systems win solver competitions. ParamILS belongs to the family of local
search algorithms hence the name ILS (Iterated Local Search) and it uses adaptive capping
as mentioned in section 2.7. It can optimize all kinds of parameter settings as long as their
domain is enumerated.

SPOT

Sequential Parameter Optimization Toolbox (SPOT) [17] is a R [16] package that serves
as a toolbox for tuning and understanding simulation and optimization algorithms. SPOT
includes methods for tuning based on classical regression and analysis of variance techniques:

∙ tree-based models such as CART and random forest

∙ Gaussian process models (Kriging)

∙ and combinations of different meta-modeling approaches

As the name suggests SPOT is also a representative of the SPO group with many models
that could sufficiently fill a whole case study on parameter tuning, this thesis uses SPOT’s
(at the time) default random forest model.

11

12 CHAPTER 3. EXAMINED TUNING METHODS

SMAC

SMAC means Sequential Model-based Algorithm Configuration [33]. It comes from the same
university and authors participating in ParamILS project, that’s why it is very similar in
usage and interface. SMAC is a member of SPO method group and it can also optimize all
kinds of problems without the need of sampling the real value parameters.

Spearmint

Spearmint [14] is a software package to perform Bayesian optimization. It is based on work
of Snoek et al. [45]. It iteratively adjusts a number of parameters modeled as a sample from
a Gaussian process (GP) to minimize some objective in as few runs as possible. From this
point of view it fulfills the definition of SPO method.

IRACE

Iterated Racing for Automatic Algorithm Configuration (IRACE) [36] is an extension of
F-race method for automatic configuration of optimizing algorithms introduced by Birattari
et al. [22] and implemented in R [16]. It is no surprise that IRACE represents the group of
racing methods as well as sharpening because their combination has even better effect on
the result.

3.2 Algorithms

3.2.1 ParamILS

ParamILS is implemented as traditional local search (Iterative Local Search - ILS) with
several variants and heuristics. Basic algorithm variant executes following loop of orders:

1. Initialization / Perturbation - finds new search starting point

2. Local search - (in one-exchange neighborhood)

3. Acceptance criteria

In the first phase the algorithm initializes a new search either from the beginning or by means
of deviation from current best result (the perturbation step is well-defined with determined
number of steps), and then proceeds with the search.

Then it searches the parameter space in one-step neighborhood meaning it iterates all
possible configurations differing in one parameter from the current candidate solution. If it
finds configuration that is better it stops the search and checks whether the new candidate
solution comply with the acceptance criteria and optionally accepts it to the next iteration.

The algorithm then runs in described manner until termination criterion (e.g. timeout,
number of iterations, finding optimum etc.) is met.

Focused variant is different only in comparing the candidate configurations, as it incor-
porates adaptive capping mentioned in section 2.7.

3.2. ALGORITHMS 13

3.2.2 SMAC

As its name suggests, SMAC uses a model to capture the solution space, the basic loop of
the algorithm looks like this:

1. Fitting model

2. Selecting configurations

3. Intensify - configuration evaluation on problem instances and result saving

SMAC uses Random Forest as a prediction model, which is sampled for new configurations.
Algorithm then proceeds similarly as ParamILS by means of introducing method the authors
call Random Online Aggressive Racing (ROAR), which is very similar to the FocusedILS of
the previous algorithm. The cornerstone of this method lies in that every configuration is
always computed on several randomly chosen instances. The configuration is then compared
with the the others based on mutually computed instances. Every configuration is computed
on random instances until it is dominated by other configuration (based on statistic made
from the mutually computed instance results), which stops all its further computations.
Every configuration follows subsequent computations as long as it keeps up with others,
which is why the author call it racing procedure.

3.2.3 Irace

Irace assumes for every parameter a probability distribution function and the final configura-
tion is sampled from composed distribution over all parameters. Basic loop of the algorithm
is very easy to grasp:

1. Configuration sampling (according to initialized / learned distributions)

2. Choosing the best configurations by means of racing

3. Distribution functions update

Every parameter has independent probability distribution function over its value spans,
discrete for categorical parameters (restricted number of values), and normal distribution
for real-valued parameters.

Distribution update step updates mean and variation for numeric parameters as well as
probabilities of all values for discrete parameters in a way that the yet best found configu-
rations have higher probability to be sampled than the others.

The racing itself works that in every step new configurations are initialized, statistic
of their performance is then measured on some randomly chosen sample of instances and
according to this statistic it is decided whether given configuration is perspective or not.
More precisely whether it competes with others and if not it is no longer evaluated.

To compare the configurations, some type of statistical test is used, usually Friedman
test or T-test. Algorithm then runs until it runs out of time, computational budget or there
is no quality gain in several iterations.

14 CHAPTER 3. EXAMINED TUNING METHODS

3.2.4 SPOT

SPOT uses populations of parameter configurations to build and improve meta models used
to predict new configuration populations, all in iterative manner. Number of computed
evaluations is used to improve confidence over predicted estimated utility. Main loop is:

1. Build meta model(s) 𝑓 based on current population 𝑋

2. Sample model and generate configuration set 𝑋 ′

3. Calculate predicted utilities 𝑓(𝑥
′
) for each 𝑥

′ ∈ 𝑋
′

4. Take set 𝑋 ′′ of 𝑑 best configurations from 𝑋
′ where (𝑑 ≪ 𝑙)

5. Run A with best individual from 𝑋 and update estimated utility (improve confidence)

6. Let 𝑘 = 𝑘 + 1

7. Run A with each 𝑥 ∈ 𝑋
′′
𝑘 times to determine estimated utility

8. Extend population 𝑋 = 𝑋 ∪𝑋
′′

It runs the tuned algorithm 𝐴 with the candidate configurations to determine the estimated
utility of the model. The value of 𝑘 is usually initially set to 10 and it keeps track of how
many iterations were computed for easy and consistent (confident) comparability.

The algorithm finishes after termination condition is met, which can be user specified.

3.2.5 Spearmint

The algorithm basically builds some probabilistic model using Gaussian processes as source
of prior and Acquisition function that constructs utility function from the model posterior.
It then tries to optimize the values of expected improvement or rather speed of expected
improvement as the algorithm tries to do as few iterations as possible.

3.3 Performance metrics

The performance metrics form a vital part of the parameter tuning process. User of some
parameter tuner should analyze the requirements and expected outcome in order to choose
metric that best suits the problem.

User can choose according which quality metric to optimize for each algorithm run (run-
time, run length, absolute quality, approximate quality (ratio of the best found solution and
optimum), speedup, specific function) and overall performance over whole set of instances
(average mean, geometric mean, median, chosen percentile, geometric median).

Luckily for the user, all of the above mentioned metrics can be chosen in ParamILS set-
tings. SMAC provides only the choice between QUALITY or RUNTIME, more sophisticated
measures must user provide explicitly. IRACE, SPOT and Spearmint only work with single
objective value (usually as a real number), so the user must adjust the underlying algorithm
according to the desired measurement.

Chapter 4

COCO benchmarking Framework

Comparing Continuous Optimizers (COCO) [3] is a platform for systematic and sound
comparisons of global optimizers on real-valued functions. It provides benchmark function
testbeds as well as tools for processing and visualizing data generated by one or several opti-
mizers. The COCO platform has been used for the Black-Box-Optimization-Benchmarking
(BBOB) workshops that took place during the GECCO conference in 2009 [5], 2010 [6],
2012 [7], 2013 [8], and in 2015-2017 [9, 10, 11]. It was also used at the IEEE Congress on
Evolutionary Computation [1] (CEC’2015) in Sendai, Japan.

4.1 Overview

COCO is a tool for benchmarking algorithms for black-box optimization. Overall about 100
different algorithms and articles have been benchmarked and written respectively. COCO
provides:

∙ experimental framework used for algorithm testing and benchmarking

∙ post-processing tools generating publication quality figures and tables from gathered
data

∙ LaTeX article templates to present the figures and tables in a single document

The practitioner in continuous optimization who wants to benchmark one or many al-
gorithms has to download COCO, plug the algorithm(s) into the provided experimental
template and use the post-processing tools for generating figures and tables that can be used
in provided LaTeX templates.

4.2 Purpose

Quantifying and comparing performance of numerical optimization algorithms is one im-
portant aspect of research in search and optimization. However, this task turns out to be
tedious and difficult to realize even in the single-objective case — at least if one is willing to
accomplish it in a scientifically decent and rigorous way.

15

16 CHAPTER 4. COCO BENCHMARKING FRAMEWORK

COCO provides tools for most of this tedious task:

∙ choice and implementation of benchmark with single-objective function testbed

∙ design of an experimental set-up

∙ generation of data output for post-processing

∙ presentation of the results in graphs, tables or even whole articles

4.3 Testing functions and their benefits

COCO has been used in several workshops during the GECCO conference since 2009 (Black-
Box Optimization Benchmarking (BBOB) 2009) [5]. For these workshops, a testbeds of 24
noiseless functions and 30 noisy functions are provided.

All functions can be instantiated in different "versions" (with different location of the
global optimum and different optimal function value). Each "version" of each function is
differently rotated and scaled.

The functions come in different variants for several dimensions. The current function
testbed has dimensions 𝐷 = {2, 3, 5, 10, 20, 40}. All functions of BBOB are defined every-
where in R𝐷 and have their global optimum in [−5, 5]𝐷. Most BBOB functions have their
global optimum in the range [−4, 4]𝐷 which can be a reasonable setting for initial solutions.
User can choose the testbed under consideration, i.e. different algorithms and/or parameter
settings can be used for the noise-free and the noisy testbed. The final target precision
has been set ∆𝑓 = 10−8 in order to implement effective termination and restart mecha-
nisms (which should also prevent early termination). User can also set the overall number
of evaluations, in order to reduce the overall CPU requirements.

In order to provide thorough testing of the benchmarked algorithm the testbed functions
[27] are chosen with variety of different properties. Some properties are ensured by the
rotation and scale variance in each of the functions 15 instances. The function testbed is
composed to differ in several key features and their combinations:

∙ modality : Functions can be unimodal (with one prominent mode of their probability
density function) or multi-modal which tend to have many local optima thus testing
the ability to avoid premature convergence

∙ separability : Some functions are separable so the optimum can be searched by solving
several disjoint problems with lower dimensionality, testing whether the optimizer can
exploit such behavior

∙ conditioning : Testing functions are also equally divided into well-conditioned(small
change of input parameters have small effect on the function value) and ill-conditioned
(even small change of input parameters greatly affects the result). The typical well-
established technique to generate non-separable functions from separable ones is the
application of a rotation matrix R as it is commonly used in this benchmark.

4.4. BENCHMARKING RESULTS AND THEIR MEANING 17

∙ regularity : In order to create irregularities in functions created from simple formulas
some non-linear transformations are applied. The testbed also contains some highly
irregular functions. This is done to test more real-life examples and to disrupt strictly
gradient methods.

∙ symmetry : Better part of the testbed is also asymmetric either by nature or by
introducing asymmetric transformation to otherwise symmetric functions because it
has been argued that symmetric benchmark functions could be in favor of Stochastic
search procedures as these operators often rely on Gaussian distributions to generate
new solutions.

∙ structure : Several function examples have intricate structure that can be somehow
exploited but it rather makes the search for optimum more difficult. Functions with
high degree of ruggedness, repetitive landscape (multi-modality or plateaus) weak or no
global structure or some degree of non-differentiability. The testbed even has artificially
generated functions with many optima with random height and position, with uneven
conditioning in different regions of the function space.

4.4 Benchmarking results and their meaning

COCO framework post-processing feature generates several kinds of graphs [4]. Figure 4.1
shows a scatter plot of run lengths (𝑙𝑜𝑔10 scale) comparing two algorithms in different di-
mensions on a single function.

Figure 4.2 shows the run length distribution of two algorithms for different target diffi-
culties {10, 10−1, 10−4, 10−8} on a set of 24 noiseless functions. The expected run length (in
COCO it is called Expected Run Time (ERT)) distribution is a measure defined by Hansen
et al. in [28] and it basically shows the proportion of problems solved within target precision
given the evaluation count. Figure 4.4 shows ERT distribution for more algorithms [28].

Figure 4.3 shows box-whisker plots of the loss ratios of the expected run length compared
to best (shortest) observed ERT in BBOB-2009.

Figure 4.1: Scatter plot comparing two algorithms run lengths (𝑙𝑜𝑔10 scale) on a single
function in different dimensions

18 CHAPTER 4. COCO BENCHMARKING FRAMEWORK

Figure 4.2: Run length distribution of two algorithms for different target difficulties
{10, 10−1, 10−4, 10−8}

Figure 4.3: Box-whiskers plots of the loss ratios of the expected run length compared to best
(shortest) observed expected run length in BBOB-2009

4.4. BENCHMARKING RESULTS AND THEIR MEANING 19

Figure 4.4: Empirical runtime distributions (runtime in number of function evaluations
divided by dimension) on all functions with target precision in 100, . . . , 1e-8 in dimension
10. The cross indicates the maximum number of function evaluations. A decline in steepness
right after the cross (e.g. for IPOP-SEP-CMA-ES) indicates that the maximum number of
function evaluations should have been chosen larger. A steep increase right after the cross
(e.g. for simple GA) indicates that a restart should have been invoked earlier.

20 CHAPTER 4. COCO BENCHMARKING FRAMEWORK

Chapter 5

Conducted Experiments

This chapter is dedicated to the performed measurements and their relation to the specified
goals. It analyzes the capabilities of chosen tuning frameworks and methods and their
interoperability with the chosen benchmark. It also presents the reasoning behind individual
algorithm usages and settings.

5.1 Experiment analysis

This section briefly presents the factors and circumstances that had to be taken into account
before the experiments themselves were conducted.

Implementation requirements

Several frameworks were implemented in different computer languages. In order to compare
and test them in a one environment, it was necessary to connect them through the language
implementations of COCO framework. COCO provides several language interfaces, specifi-
cally MatLab, R, C, Java and Python. More on algorithm implementation languages is in
appendix A.1.

COCO experiment requirements

There are two main requirements that need to be fulfilled in order to successfully run and
compare the optimization methods inside the COCO framework.

1. The COCO framework serves as a benchmark for continuous optimization so it is
important that the optimizer can work with real valued parameters.

2. In order to execute the chosen methods on benchmark instances, the interoperability
between each method and the framework must be achieved. This ideally means to wrap
the tuner function to comply with the COCO benchmarking interface. If that would
be time-consuming or not easily done, it is possible to generate the benchmark results
by directly calling the benchmark functions from the specific optimizer and then group
the results to match the structure needed for post-processing and figure generation.

21

22 CHAPTER 5. CONDUCTED EXPERIMENTS

Benchmark testbed

As we know from section 4.3 COCO provides 24 noiseless functions and 30 noisy functions
to test the strengths and weaknesses of each optimizer. For the purposes of this thesis only
the noiseless testbed was used as it provided enough data and consumed enough resources to
prevent another computations to be finished in time. To test the parameter tuning abilities
and the optimizers generalization for different problem classes, the testbed was divided in
two groups. The first class of the noiseless testbed is composed from unimodal functions and
the second class forms all the multi-modal functions in the testbed.

Optimizing capabilities

To test the optimizing capabilities of the investigated frameworks and methods the tuners
were connected to the benchmark framework and used as regular optimizers.

Parameter tuning capabilities

To test the meta-optimizing abilities of presented tuners on the COCO benchmark functions
it was needed to run the parameter tuner with some standard optimizer on the COCO bench-
mark instances. Two widely known and well established algorithms were used as the tuned
optimizers, Differential Evolution (DE) and Genetic Algorithm (GA). Both population-based
and pretty efficient on their own they proved themselves as ideal candidates because of de-
cent number of parameters to optimize and publicly available implementations used in the
research community [15, 43].

Suitability

Each parameter tuner had to be confronted with the benchmarking requirements to be tested
or not. Although the ParamILS algorithm meets the requirement of handling real values as
parameters, all the parameters have to be sampled and enumerated as possible parameter
values. That is rather infeasible setting because it solves different problem than the one
presented in the benchmark testbed thus making the results more or less incomparable.
That is the reason the ParamILS was not tested against the benchmark.

5.2. REALIZATION 23

5.2 Realization

This section focuses on the details of experiment execution. Its structure, resources, unusual
procedures that were employed, various settings used and the way they were used.

5.2.1 Used resources

Most of the experiments were conducted on several laptops and computers of similar speci-
fication.

∙ CPU - Intel Core i7 2.50 GHz

∙ RAM - 8.00 GB

∙ OS - Windows 10 64-bit

Some experiments were conducted using joined resources of National Grid Infrastructure
MetaCentrum [13] and CERIT Scientific Cloud (CERIT-SC) [2] on which similar compu-
tation resources were allocated for each computation (with the exception of the operating
system as the cloud infrastructure was accessible through linux based front-end machines).

5.2.2 Optimization experiment structure

For each of the parameter tuning methods the following steps were executed to test them as
optimizers.

1. Connect the method to benchmark.
This usually meant to write a wrapper function that accepts COCO input parame-
ters such as the optimized function, number of evaluations or dimension bounds and
performs the optimization based on the called function values.

2. Benchmark the method.
This usually meant to let the COCO framework benchmark the wrapper function on
the entire testbed and gather the computed data.

3. Post-processing.
To gather some data from the benchmark is not enough because the post-processing
tool is rather sensitive to the data structure and location. After several trial-and-error
method executions the benchmarked data were ready to be processed and shown.

5.2.3 Optimization experiment execution

The instantiation and execution of the examined methods were following:

∙ Number of evaluations. All the instances of all the benchmark functions had the
maximum number of evaluations set to 100𝐷, where 𝐷 is the dimension of the prob-
lem. Such limit was chosen from the practical point of view as it was computationally
demanding especially for higher dimension versions of the tested functions. It corre-
sponds to 120000 evaluations for each of the 24 noiseless functions making it 2880000
evaluations per tuning method.

24 CHAPTER 5. CONDUCTED EXPERIMENTS

∙ Number of functions. As the whole noiseless test bed was used to benchmark the
optimizing abilities, all 24 functions were used.

∙ Number of instances. Each benchmark function has 15 different instances to check
out the target function, all of them were used to test the tuners.

SMAC

The SMAC method was rather tricky to use as it was available only as compiled executable
that requires wrapper script to run the desired optimizer (in this case the benchmark func-
tion). Also parameters of the underlying algorithm must be specified in separate file carried
as command line parameter. To run the SMAC method a Java program that executed SMAC
with benchmark function wrapping script as parameter was created plus another program
that parsed SMAC output to generate consistent COCO data. The SMAC executing pro-
gram also provided the parameter definition for each of the examined function instances.

SPOT

SPOT toolbox contains function spotOptim that more or less fulfills the standard interface for
optimization function in R. As the COCO interface in R requires the wrapper function in the
said form, the only thing the spotOptim function needed was prediction model specification.
The (at the time of computation) default model was random forest.

Although the experiment was easy to setup it was rather lengthy in terms of computation
times. It was necessary to divide it into several separate computations. The easiest way was
to divide the computation into 6 parts for each dimension in {2, 3, 5, 10, 20, 40}. The parallel
computation was conducted using the Metacentrum grid [13].

IRACE

The IRACE R package unfortunately does not have the standard R optim interface so the
parameters had to be specified once again, with the benefit of providing them either in
the form of parameter file that IRACE package can parse or as named parameter list in R.
Besides the parameter definition the IRACE main function needs the problem to be specified
in a named list called tunerConfig (in later versions this is called scenario) in which the
maximum number of evaluations as well as the optimized function is specified.

Spearmint

The Spearmint software package was quite difficult to benchmark. The problem lies within
the optimized problem definition. The spearmint method requires each problem instance to
be in its own directory, specified by config.json file within that directory. Within the same
folder a script that serves as the tuned optimizer (benchmark function in this case) must
be placed as well. For 6 dimensions, 24 functions and 15 instances of every function that
gives us 2160 folders and twice as many files that must be generated specifically to fit each
benchmark definition. The spearmint experiments were also conducted in Metacentrum grid
to save the running time, as every evaluation took quite some time with the accompanying
database synchronization and the model fitting.

5.2. REALIZATION 25

5.2.4 Parameter tuning structure

The parameter tuning procedure, that was designed and executed for this thesis has the
following steps:

1. Connecting the optimizer with parameter tuner.
It is required that the parameter tuner can call the underlying optimizer with specific
parameters and acquire the optimized result value.

2. Connecting the optimizer with benchmark functions.
It is required that the optimizer can call the benchmark function and optimize its
value.

3. Testbed initialization.
In the first phase a part of the benchmark testbed that belongs to the specific problem
class is chosen and divided in two separate sets of training and testing functions.

4. Training the optimizer.
The training phase is focused on searching the best performing set of input parameters
for the optimizer. The parameter tuner thus tries different parameter configurations
and returns one or a few configurations with the best performance statistic over the
training functions.

5. Testing the optimizer.
The testing phase takes the tuned optimizer and evaluates its performance against
itself with the default setting. The comparison tests of trained and default optimizer
variants are run over the set of training functions, testing functions within the same
problem class and another set of previously unseen functions outside the investigated
function class.

5.2.5 Parameter tuning execution

The following paragraphs describe the experimental setup used for parameter tuning.

Choice parameter tuning framework

Due to rather demanding implementation requirements on the communication layers between
both the optimizers and the testing framework as well as the layers between each optimizer
and all the parameter tuning methods only one parameter tuning procedure was tested.

The tested package was chosen to be IRACE mostly because the there was the least
amount of problems regarding its interoperability with the testing framework as well as the
fact that there already are public R packages of the tested global optimizers which made
their inclusion easier.

26 CHAPTER 5. CONDUCTED EXPERIMENTS

Parameter tuning experiment setup

Each of the examined optimizers was trained on unimodal and multimodal functions respec-
tively. Both the unimodal-trained and multimodal-trained version of each optimizer was
tested against the algorithm’s default setting. Tests were computed on 3 sets of functions.

∙ Training set was represented by the optimizer’s training set. This was done to com-
pare the performance enhancing abilities of the tuner against the algorithm default
setting.

∙ Testing set functions belong to same class as the training ones but the algorithm was
not trained on them. This was done to explore the generalization capabilities of the
parameter tuner.

∙ Other set consisted of different class functions. This was done to check whether the
trained algorithm variant preforms worse than the default one on different problem
class.

Instantiation of parameter tuner

For each of the 2 optimizing problem classes randomly chosen half of the functions was
marked as training and the other half as testing. For each function, two instances in each
dimension were randomly chosen to represent the function mostly due to the computational
demands. Because there were 2 instances per function in each of the 6 dimensions and half
of the 12 functions within the same unimodal/multi-modal class were marked as training,
each training and testing procedure was conducted on 72 instances.

The parameter tuner was chosen to have maximum number of optimizer calls 100 times
the number of instances which means that it will generate at least 100 parameter configura-
tions that are equivalent in the means of racing over the whole set of training instances. As
the minimum number of instances to optimize in order to decide whether one configuration
is outperformed and its optimization is stopped was left to be 5 (default), one can safely
assume that there will be more than 100 tested configurations.

To have a better understanding of how many evaluations are made in the training part of
the parameter tuning it is good to know that each optimizer call runs 1000𝐷 evaluations of
the specified function instance of dimension 𝐷, where 𝐷 ∈ {2, 3, 5, 10, 20, 40}. We know that
there are 72 instances from which 12 dwell in each dimension because there are 6 functions
with 2 instances per dimension. That means there can be up to 960 thousand evaluations
per one configuration. Knowing that there can be 100 fully successful configurations we can
safely guess that the training part of parameter tuning can make 96 million evaluations in
search for the optimal parameter setting.

5.2. REALIZATION 27

Parameters of the optimizers

The algorithms were optimized in these parameters:

∙ GA

– populationSize, integer, ∈ [5, 200], default is 50
Number of candidate solutions in every generation (iteration)

– crossoverProbability, real, ∈ ⟨0.5; 1⟩, default is 0.8
The probability of crossover between pairs of chromosomes.

– mutationProbability, real, ∈ ⟨0; 0.5⟩, default is 0.1
The probability of mutation in a parent chromosome. Usually mutation occurs
with a small probability.

∙ DE

– populationSize, integer, ∈ [5, 200], default is 50
Number of candidate solutions in every generation (iteration)

– crossoverProbability, real, ∈ ⟨0; 1⟩, default is 0.5
The probability of crossover between candidate triplet and the parental chromo-
some.

– weightFactor, real, ∈ ⟨0; 2⟩, default is 0.8
Step size used in Differential Evolution strategy.

– crossoverSpeed, real, ∈ ⟨0; 1⟩, default is 0
It controls the speed of the crossover adaptation. Higher values of crossoverSpeed
give more weight to the current successful mutations.

– strategy, integer, ∈ [1, 7], default is 2
It defines the Differential Evolution strategy used for crossover

Enhanced Performance measure

Two different parameter configurations may yield similar results using the same computa-
tional budget. Especially when the optimizer found optimum in both cases it is difficult to
determine whether one configuration performed better based only on the function objective
value.

In figure 5.1 we can see 2 sets of data points representing 2 differently configured optimizer
runs. Both of them achieved the same objective value, but we can see that one of them
did converge faster, generating better results in the process of optimization. That is why
the quality measure of one configuration was changed to the area under the optimizers
convergence curve. It reflects the whole optimization process and serves for better distinction
between well and poorly-performing parameter settings.

28 CHAPTER 5. CONDUCTED EXPERIMENTS

0 5 10 15 20 25

0
1
0

2
0

3
0

4
0

5
0

number of FEvals

fu
n
c
ti
o
n
 v

a
lu

e

Figure 5.1: Area under curve performance metric. Although both optimizer configurations
achieved the same minimal function value, we can see that the one represented by the blue
data points made the optimizer to converge faster thus having better performance.

Chapter 6

Results

This chapter contains all the relevant computed data. The first part shows the results of
benchmarking the parameter tuners as standalone optimizers. The second part is aimed at
tuning parameters of GA and DE optimizers using the IRACE tuning method.

6.1 Optimization experiment results

Here are the optimization benchmark results of the presented tuning methods. Some datasets
were not obtained due to the difficult or unfinished evaluation or implementation. One
dataset was added for the SMAC algorithm available at [3] and presented by Hutter et al.
[32].

6.1.1 Experiments with negative results

Apart from disqualifying the ParamILS algorithm from the benchmark testing, some exper-
iments were not evaluated entirely and ended up unfinished.

SPOT
Computations of SPOT benchmarking were evaluated up until the 20-dimensional
version of the function testbed. The 40-dimensional case was tried several times and
was always ultimately killed as its computation exceeded the assigned 4 weeks of cpu-
time.

Spearmint
Spearmint optimization was rather slow to compute all the instances sequentially thus
it was necessary to run them in parallel. The original idea was to assign all of the 2160
subproblems to the cloud computing queue [2], but as it turned out transferring the
necessary packages to each of the computing nodes generated rather large traffic on
planning server side so the assigned jobs were automatically killed.
The second attempt in benchmarking the spearmint tuner would use one computing
node as master to get the benchmarks from the planning server, distribute them on
many slaves which would evaluate the benchmark instances and then gather data from
the slaves and return them all at once. Again as some of the benchmarking nodes
failed to deliver their computations within the assigned time frame, the master node
did also fail to deliver the computed data.

29

30 CHAPTER 6. RESULTS

2 3 5 10 20 40

0

1

2

3

target RL/dim: 10

1 Sphere

irace-1.07-optimization
SMAC_benchmark
SPOT-Random-Forest
SMAC-BBOB_hutter

2 3 5 10 20 40
0

1

2

3

4

target RL/dim: 10

2 Ellipsoid separable

2 3 5 10 20 40
0

1

2

3

4

target RL/dim: 10

3 Rastrigin separable

2 3 5 10 20 40

0

1

2

3

target RL/dim: 10

4 Skew Rastrigin-Bueche separ

2 3 5 10 20 40

0

1

2

3

target RL/dim: 10

5 Linear slope

2 3 5 10 20 40
0

1

2

3

4

target RL/dim: 10

6 Attractive sector

2 3 5 10 20 40
0

1

2

3

4

target RL/dim: 10

7 Step-ellipsoid

2 3 5 10 20 40
0

1

2

3

4

target RL/dim: 10

8 Rosenbrock original

2 3 5 10 20 40
0

1

2

3

4

target RL/dim: 10

9 Rosenbrock rotated

2 3 5 10 20 40
0

1

2

3

4

target RL/dim: 10

10 Ellipsoid

2 3 5 10 20 40
0

1

2

3

4

target RL/dim: 10

11 Discus

2 3 5 10 20 40
0

1

2

3

4

target RL/dim: 10

12 Bent cigar

2 3 5 10 20 40
0

1

2

3

4

target RL/dim: 10

13 Sharp ridge

2 3 5 10 20 40
0

1

2

3

4

target RL/dim: 10

14 Sum of different powers

2 3 5 10 20 40
0

1

2

3

4

target RL/dim: 10

15 Rastrigin

2 3 5 10 20 40
0

1

2

3

4

target RL/dim: 10

16 Weierstrass

2 3 5 10 20 40

0

1

2

3

target RL/dim: 10

17 Schaffer F7, condition 10

2 3 5 10 20 40

0

1

2

3

target RL/dim: 10

18 Schaffer F7, condition 1000

2 3 5 10 20 40
0

1

2

3

4

5

target RL/dim: 10

19 Griewank-Rosenbrock F8F2

2 3 5 10 20 40
0

1

2

3

4

target RL/dim: 10

20 Schwefel x*sin(x)

2 3 5 10 20 40

0

1

2

3

target RL/dim: 10

21 Gallagher 101 peaks

2 3 5 10 20 40
0

1

2

3

4

target RL/dim: 10

22 Gallagher 21 peaks

2 3 5 10 20 40
0

1

2

3

4

target RL/dim: 10

23 Katsuuras

2 3 5 10 20 40
0

1

2

3

4

target RL/dim: 10

24 Lunacek bi-Rastrigin

irace-1.07-optimization
SMAC_benchmark
SPOT-Random-Forest
SMAC-BBOB_hutter

F igure 6.1: Expected running time (ERT in number of f -evaluations as log10 value) divided by dimension
versus dimension. T he target function value is chosen such that the bestGECCO2009 artif cial algorithm
just failed to achieve an ERT of 10×DIM. Dif erent symbols correspond to dif erent algorithms given in the
legend of f 1 and f 24. L ight symbols give the maximum number of function evaluations from the longest trial
divided by dimension. B lack stars indicate a statistically better result compared to all other algorithms with
p <0.01 and Bonferroni correction number of dimensions (six). Legend: ○:irace-1.07-optimization,
▽:SM A C_benchmark, ⋆:SPOT-Random-Forest, ◻:SMAC-BBOB_hutter_noiseless.

6.1. OPTIMIZATION EXPERIMENT RESULTS 31

6.1.2 Expected run length comparison

The figure 6.1 shows the expected run length (ERT) for each tuner for each function over
each dimension. It basically states how many evaluations (dimension lengths) are needed to
achieve the objective value with the desired precision, all on logarithmic scale. Values that
appear to be missing are above the bounds of the presented figures. Light-colored points
show the number of evaluations performed (100𝐷 for all experiments). We can see that the
SMAC dataset by Hutter et al. [32] usually shows the best results.

6.1.3 Algorithm performance comparison

In figures 6.2 and 6.3 the empirical cumulative distribution of ERT is used as a measure for
algorithm comparison. It basically shows the proportion of problems solved within target
precision given the evaluation count. We can see that the SMAC dataset by Hutter et al.
[32] shows the best performance.

32 CHAPTER 6. RESULTS

separable fcts moderate fcts

0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
o
p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir
s

irace-1.07-optimization

SPOT-Final

SMAC_benchmark_data

SMAC-BBOB_hutter

best 2009f1-5,5-D
best 2009

SMAC-hutt

SMAC_ben

SPOT-RF

irace-1.07

0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
o
p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir
s

SMAC_benchmark_data

irace-1.07-optimization

SPOT-Final

SMAC-BBOB_hutter

best 2009f6-9,5-D
best 2009

SMAC-hutt

SPOT-RF

irace-1.07

SMAC_ben

ill-conditioned fcts multi-modal fcts

0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
o
p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir
s

SMAC_benchmark_data

irace-1.07-optimization

SPOT-Final

SMAC-BBOB_hutter

best 2009f10-14,5-D
best 2009

SMAC-hutt

SPOT-RF

irace-1.07

SMAC_ben

0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
o
p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir
s

SMAC_benchmark_data

irace-1.07-optimization

SPOT-Final

SMAC-BBOB_hutter

best 2009f15-19,5-D
best 2009

SMAC-hutt

SPOT-RF

irace-1.07

SMAC_ben

weakly structured multi-modal fcts all functions

0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
o
p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir
s

irace-1.07-optimization

SMAC_benchmark_data

SPOT-Final

SMAC-BBOB_hutter

best 2009f20-24,5-D
best 2009

SMAC-hutt

SPOT-RF

SMAC_ben

irace-1.07

0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
o
p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir
s

SMAC_benchmark_data

irace-1.07-optimization

SPOT-Final

SMAC-BBOB_hutter

best 2009f1-24,5-D
best 2009

SMAC-hutt

SPOT-RF

irace-1.07

SMAC_ben

F igure 6.2:Bootstrapped empirical cumulative distribution of the number of objective function evaluations
divided by dimension (FEvals/DIM) for all functions and subgroups in 5-D. T he targets are chosen from
10[−8..2] such that the bestGECCO2009 artif cial algorithm just not reached them within a given budget of k
× DIM , with k ∈{0.5,1.2,3,10,50}. T he “best 2009” line corresponds to the best ERT observed during BBOB
2009 for each selected target.

6.1. OPTIMIZATION EXPERIMENT RESULTS 33

separable fcts moderate fcts

0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
o
p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir
s

SPOT-Final

irace-1.07-optimization

SMAC_benchmark_data

SMAC-BBOB_hutter

best 2009f1-5,20-D
best 2009

SMAC-hutt

SMAC_ben

irace-1.07

SPOT-RF

0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
o
p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir
s

SPOT-Final

irace-1.07-optimization

SMAC_benchmark_data

SMAC-BBOB_hutter

best 2009f6-9,20-D
best 2009

SMAC-hutt

SMAC_ben

irace-1.07

SPOT-RF

ill-conditioned fcts multi-modal fcts

0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
o
p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir
s

SMAC_benchmark_data

SPOT-Final

irace-1.07-optimization

SMAC-BBOB_hutter

best 2009f10-14,20-D
best 2009

SMAC-hutt

irace-1.07

SPOT-RF

SMAC_ben

0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
o
p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir
s

SPOT-Final

SMAC_benchmark_data

irace-1.07-optimization

SMAC-BBOB_hutter

best 2009f15-19,20-D
best 2009

SMAC-hutt

irace-1.07

SMAC_ben

SPOT-RF

weakly structured multi-modal fcts all functions

0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
o
p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir
s

SPOT-Final

irace-1.07-optimization

SMAC_benchmark_data

SMAC-BBOB_hutter

best 2009f20-24,20-D
best 2009

SMAC-hutt

SMAC_ben

irace-1.07

SPOT-RF

0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
o
p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir
s

SPOT-Final

irace-1.07-optimization

SMAC_benchmark_data

SMAC-BBOB_hutter

best 2009f1-24,20-D
best 2009

SMAC-hutt

SMAC_ben

irace-1.07

SPOT-RF

F igure 6.3:Bootstrapped empirical cumulative distribution of the number of objective function evaluations
divided by dimension (FEvals/DIM) for all functions and subgroups in 20-D. T he targets are chosen from
10[−8..2] such that the bestGECCO2009 artif cial algorithm just not reached them within a given budget of k
× DIM , with k ∈{0.5,1.2,3,10,50}. T he “best 2009” line corresponds to the best ERT observed during BBOB
2009 for each selected target.

34 CHAPTER 6. RESULTS

6.2 Parameter tuning experiment results

Here are the results of parameter tuning of GA and DE algorithms on unimodal and multi-
modal function classes with training, testing, and other testbeds (see 5.2.5).

The presented results are generated by the post-processing tools of COCO showing lower
and higher dimensional performance in 5 and 20 dimensions respectively. The crosses in each
dataset represent the maximum number of evaluations for the given algorithm run.

6.2.1 GA unimodal tests

Figures 6.4, 6.5 and 6.6 show the cumulative distribution of ERT for GA. They compare
the best configurations IRACE has trained on the set of unimodal function testbed with
the default configuration. Figure 6.4 shows tests that were evaluated on the same training
testbed. Figure 6.5 shows tests that were evaluated on unseen unimodal functions. Figure
6.6 shows tests that were evaluated on multimodal function testbed.
On the multimodal testbed the default algorithm configuration is best as expected. On the
training and testing set of unimodal functions all the configurations performance is similar
although the default one seems slightly better.

5-D 20-D

0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir

s

cocoEvalGA1021

cocoEvalGA999

cocoEvalGA1004

GA-unimodal-train-default

best 2009f1, 5, 6, 10, 13, 14,5-D
best 2009

defaultGA

GA-unim

GA-unim

GA-unim
0 1 2 3

log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir

s

cocoEvalGA9

cocoEvalGA1

cocoEvalGA1

GA-unimodal

best 2009f1, 5, 6, 10, 13, 14,20-D
best 2009

defaultGA

GA-unim

GA-unim

GA-unim

F igure 6.4:Bootstrapped empirical cumulative distribution of the number of objective function evaluations
divided by dimension (FEvals/DIM) for all functions and subgroups in 5 and 20-D. T he targets are chosen
from 10[−8..2] such that the bestGECCO2009 artif cial algorithm just not reached them within a given budget
of k × DIM , with k ∈{0.5,1.2,3,10,50}. T he “best 2009” line corresponds to the best ERT observed during
BBOB 2009 for each selected target.

6.2. PARAMETER TUNING EXPERIMENT RESULTS 35

5-D 20-D

0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir

s

cocoEvalGA999

cocoEvalGA1021

cocoEvalGA1004

GA-unimodal-test-default

best 2009f2, 7-9, 11, 12,5-D
best 2009

defaultGA

GA-unim

GA-unim

GA-unim
0 1 2 3

log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir

s

cocoEvalGA

cocoEvalGA

cocoEvalGA

GA-unimoda

best 2009f2, 7-9, 11, 12,20-D
best 2009

defaultGA

GA-unim

GA-unim

GA-unim

F igure 6.5:Bootstrapped empirical cumulative distribution of the number of objective function evaluations
divided by dimension (FEvals/DIM) for all functions and subgroups in 5 and 20-D. T he targets are chosen
from 10[−8..2] such that the bestGECCO2009 artif cial algorithm just not reached them within a given budget
of k × DIM , with k ∈{0.5,1.2,3,10,50}. T he “best 2009” line corresponds to the best ERT observed during
BBOB 2009 for each selected target.

5-D 20-D

0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir

s

cocoEvalGA1004

cocoEvalGA1021

cocoEvalGA999

GA-unimodal-other-default

best 2009f3, 15, 16, 20, 21, 23,5-D
best 2009

defaultGA

GA-unim

GA-unim

GA-unim
0 1 2 3

log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir

s

cocoEvalGA

cocoEvalGA

cocoEvalGA

GA-unimoda

best 2009f3, 15, 16, 20, 21, 23,20-D
best 2009

defaultGA

GA-unim

GA-unim

GA-unim

F igure 6.6:Bootstrapped empirical cumulative distribution of the number of objective function evaluations
divided by dimension (FEvals/DIM) for all functions and subgroups in 5 and 20-D. T he targets are chosen
from 10[−8..2] such that the bestGECCO2009 artif cial algorithm just not reached them within a given budget
of k × DIM , with k ∈{0.5,1.2,3,10,50}. T he “best 2009” line corresponds to the best ERT observed during
BBOB 2009 for each selected target.

36 CHAPTER 6. RESULTS

6.2.2 GA multimodal tests

Figures 6.7, 6.8 and 6.9 show the cumulative distribution of ERT for GA. They compare
the best configurations IRACE has trained on the set of multimodal function testbed with
the default configuration. Figure 6.7 shows tests that were evaluated on the same training
testbed. Figure 6.8 shows tests that were evaluated on previously unseen multimodal func-
tions. Figure 6.9 shows tests that were evaluated on unimodal function testbed.
Although all the performances are rather similar in the 5-dimensional scenario, the default
configuration is better in all 20-dimensional cases.

5-D 20-D

0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir

s

cocoEvalGA1067

cocoEvalGA1052

cocoEvalGA1068

GA-multimodal-train-default

best 2009f3, 4, 15, 16, 18, 20,5-D
best 2009

defaultGA

GA-mult

GA-mult

GA-mult
0 1 2 3

log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir

s

cocoEvalGA

cocoEvalGA

cocoEvalGA

GA-multimo

best 2009f3, 4, 15, 16, 18, 20,20-D
best 2009

defaultGA

GA-mult

GA-mult

GA-mult

F igure6.7: Bootstrapped empirical cumulative distribution of the number of objective function evaluations
divided by dimension (FEvals/DIM) for all functions and subgroups in 5 and 20-D. T he targets are chosen
from 10[−8..2] such that the bestGECCO2009 artif cial algorithm just not reached them within a given budget
of k × DIM , with k ∈{0.5,1.2,3,10,50}. T he “best 2009” line corresponds to the best ERT observed during
BBOB 2009 for each selected target.

5-D 20-D

0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir

s

GA-multimodal-test-default

cocoEvalGA1052

cocoEvalGA1067

cocoEvalGA1068

best 2009f17, 19, 21-24,5-D
best 2009

GA-mult

GA-mult

GA-mult

defaultGA

0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir

s

cocoEvalGA1

cocoEvalGA1

cocoEvalGA1

GA-multimod

best 2009f17, 19, 21-24,20-D
best 2009

defaultGA

GA-mult

GA-mult

GA-mult

F igure6.8:Bootstrapped empirical cumulative distribution of the number of objective function evaluations
divided by dimension (FEvals/DIM) for all functions and subgroups in 5 and 20-D. T he targets are chosen
from 10[−8..2] such that the bestGECCO2009 artif cial algorithm just not reached them within a given budget
of k × DIM , with k ∈{0.5,1.2,3,10,50}. T he “best 2009” line corresponds to the best ERT observed during
BBOB 2009 for each selected target.

6.2. PARAMETER TUNING EXPERIMENT RESULTS 37

5-D 20-D

0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0
P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir

s

cocoEvalGA1068

cocoEvalGA1067

cocoEvalGA1052

GA-multimodal-other-default

best 2009f5, 7-9, 12, 13,5-D
best 2009

defaultGA

GA-mult

GA-mult

GA-mult
0 1 2 3

log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir

s

cocoEvalGA

cocoEvalGA

cocoEvalGA

GA-multimo

best 2009f5, 7-9, 12, 13,20-D
best 2009

defaultGA

GA-mult

GA-mult

GA-mult

F igure6.9: Bootstrapped empirical cumulative distribution of the number of objective function evaluations
divided by dimension (FEvals/DIM) for all functions and subgroups in 5 and 20-D. T he targets are chosen
from 10[−8..2] such that the bestGECCO2009 artif cial algorithm just not reached them within a given budget
of k × DIM , with k ∈{0.5,1.2,3,10,50}. T he “best 2009” line corresponds to the best ERT observed during
BBOB 2009 for each selected target.

6.2.3 DE unimodal tests

Figures 6.10, 6.11 and 6.12 show the cumulative distribution of ERT for DE. They compare
the best configurations IRACE has trained on the set of unimodal function testbed with
the default configuration. Figure 6.10 shows tests that were evaluated on the same training
testbed. Figure 6.11 shows tests that were evaluated on unseen unimodal functions. Figure
6.12 shows tests that were evaluated on multimodal function testbed.
The trained configurations showed better performance on the training and testing testbed.
On the unimodal testbed all the configurations showed similar performance.

5-D 20-D

0 1 2 3 4 5 6 7 8
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir

s

DEoptim-unimodal-train-default

cocoEvalDEoptim944

cocoEvalDEoptim921

cocoEvalDEoptim853

cocoEvalDEoptim942

best 2009f2, 6-8, 10, 14,5-D
best 2009

DE-uni

DE-uni

DE-uni

DE-uni

defaultDE

0 1 2 3 4 5 6 7 8
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir

s

DEoptim-unim

cocoEvalDEo

cocoEvalDEo

cocoEvalDEo

cocoEvalDEo

best 2009f2, 6-8, 10, 14,20-D
best 2009

DE-uni

DE-uni

DE-uni

DE-uni

defaultDE

Figure6.10:Bootstrapped empirical cumulative distribution of the number of objective function evaluations
divided by dimension (FEvals/DIM) for 50 targets in 10[−8..2] for all functions and subgroups in 5 and 20-D.
T he “best 2009” line corresponds to the best ERT observed during BBOB 2009 for each single target.

38 CHAPTER 6. RESULTS

5-D 20-D

0 1 2 3 4 5 6 7 8
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir

s

DEoptim-unimodal-test-default

cocoEvalDEoptim942

cocoEvalDEoptim921

cocoEvalDEoptim853

cocoEvalDEoptim944

best 2009f1, 5, 9, 11-13,5-D
best 2009

DE-uni

DE-uni

DE-uni

DE-uni

defaultDE

0 1 2 3 4 5 6 7 8
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir

s

DEoptim-unim

cocoEvalDEo

cocoEvalDEo

cocoEvalDEo

cocoEvalDEo

best 2009f1, 5, 9, 11-13,20-D
best 2009

DE-uni

DE-uni

DE-uni

DE-uni

defaultDE

Figure6.11:Bootstrapped empirical cumulative distribution of the number of objective function evaluations
divided by dimension (FEvals/DIM) for 50 targets in 10[−8..2] for all functions and subgroups in 5 and 20-D.
T he “best 2009” line corresponds to the best ERT observed during BBOB 2009 for each single target.

5-D 20-D

0 1 2 3 4 5 6 7 8
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir

s

cocoEvalDEoptim942

cocoEvalDEoptim921

cocoEvalDEoptim853

DEoptim-unimodal-other-default

cocoEvalDEoptim944

best 2009f3, 4, 19, 22-24,5-D
best 2009

DE-uni

defaultDE

DE-uni

DE-uni

DE-uni
0 1 2 3 4 5 6 7 8

log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir

s

DEoptim-unim

cocoEvalDEo

cocoEvalDEo

cocoEvalDEo

cocoEvalDEo

best 2009f3, 4, 19, 22-24,20-D
best 2009

DE-uni

DE-uni

DE-uni

DE-uni

defaultDE

Figure6.12:Bootstrapped empirical cumulative distribution of the number of objective function evaluations
divided by dimension (FEvals/DIM) for 50 targets in 10[−8..2] for all functions and subgroups in 5 and 20-D.
T he “best 2009” line corresponds to the best ERT observed during BBOB 2009 for each single target.

6.2. PARAMETER TUNING EXPERIMENT RESULTS 39

6.2.4 DE multimodal tests

Figures 6.13, 6.14 and 6.15 show the cumulative distribution of ERT for DE algorithm.
They compare the best configurations IRACE has trained on the set of multimodal function
testbed with the default configuration. Figure 6.13 shows tests that were evaluated on the
same training testbed. Figure 6.14 shows tests that were evaluated on previously unseen
multimodal functions. Figure 6.15 shows tests that were evaluated on unimodal function
testbed.
The trained configurations performed better on all instances, showing only minimal differ-
ences in the 20-dimensional cases.

5-D 20-D

0 1 2 3 4 5 6 7 8
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir

s

DEoptim-multimodal-train-default

cocoEvalDEoptim868

cocoEvalDEoptim837

cocoEvalDEoptim876

cocoEvalDEoptim722

best 2009f4, 15, 17, 20, 22, 23,5-D
best 2009

DE-multi

DE-multi

DE-multi

DE-multi

defaultDE

0 1 2 3 4 5 6 7 8
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir

s

cocoEvalDE

DEoptim-m

cocoEvalDE

cocoEvalDE

cocoEvalDE

best 2009f4, 15, 17, 20, 22, 23,20-D
best 2009

DE-multi

DE-multi

DE-multi

defaultDE

DE-multi

Figure 6.13:Bootstrapped empirical cumulative distribution of the number of objective function evaluations
divided by dimension (FEvals/DIM) for 50 targets in 10[−8..2] for all functions and subgroups in 5 and 20-D.
T he “best 2009” line corresponds to the best ERT observed during BBOB 2009 for each single target.

5-D 20-D

0 1 2 3 4 5 6 7 8
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir
s

DEoptim-multimodal-test-default

cocoEvalDEoptim868

cocoEvalDEoptim876

cocoEvalDEoptim837

cocoEvalDEoptim722

best 2009f3, 16, 18, 19, 21, 24,5-D
best 2009

DE-multi

DE-multi

DE-multi

DE-multi

defaultDE

0 1 2 3 4 5 6 7 8
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir
s

DEoptim-m

cocoEvalDE

cocoEvalDE

cocoEvalDE

cocoEvalDE

best 2009f3, 16, 18, 19, 21, 24,20-D
best 2009

DE-multi

DE-multi

DE-multi

DE-multi

defaultDE

Figure 6.14:Bootstrapped empirical cumulative distribution of the number of objective function evaluations
divided by dimension (FEvals/DIM) for 50 targets in 10[−8..2] for all functions and subgroups in 5 and 20-D.
T he “best 2009” line corresponds to the best ERT observed during BBOB 2009 for each single target.

40 CHAPTER 6. RESULTS

5-D 20-D

0 1 2 3 4 5 6 7 8
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir

s

DEoptim-multimodal-other-default

cocoEvalDEoptim722

cocoEvalDEoptim837

cocoEvalDEoptim868

cocoEvalDEoptim876

best 2009f1, 6, 7, 11, 12, 14,5-D
best 2009

DE-multi

DE-multi

DE-multi

DE-multi

defaultDE

0 1 2 3 4 5 6 7 8
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
+

ta
rg

e
t

p
a
ir

s

cocoEvalDEo

DEoptim-mu

cocoEvalDEo

cocoEvalDEo

cocoEvalDEo

best 2009f1, 6, 7, 11, 12, 14,20-D
best 2009

DE-multi

DE-multi

DE-multi

defaultDE

DE-multi

Figure 6.15:Bootstrapped empirical cumulative distribution of the number of objective function evaluations
divided by dimension (FEvals/DIM) for 50 targets in 10[−8..2] for all functions and subgroups in 5 and 20-D.
T he “best 2009” line corresponds to the best ERT observed during BBOB 2009 for each single target.

Chapter 7

Discussion

7.1 Optimization benchmark experiments

ERT

As for the ERT comparison the prominent success of the SMAC dataset by Hutter et al. [32]
was probably ensured by better algorithm settings (number of restarts, number of principal
components for the model etc.). The default SMAC version computed for this thesis usually
copied the trend of needed evaluations, but one order of magnitude higher than the version
in [32] which could easily mean e.g. 10 times more restarts or another parameter difference.

Most of the tuning procedures showed that it would suffice them to evaluate the objective
function 1000𝐷 times before reaching the desired precision supposing dimension 𝐷 ≤ 10.

ERT cumulative distribution

Apart from the provided SMAC dataset dominance we can see rather well-performing SPOT
procedure in the lower dimensional problems, but rather poor results in the 20-dimensional
cases.

The slight decline in steepness after the evaluation cap (crosses in the figures) for the
unimodal (separable, moderate, even the ill-conditioned) functions would suggest that more
function evaluations were needed for better performance, especially in the high dimensional
cases.

On the other hand the steep increase of the distribution function after reaching the
maximum evaluations point for multimodal functions would suggest that more or earlier
restarts would increase the overall performance.

Benchmark outcome

Three of the examined parameter tuners were benchmarked on the continuous noiseless
function testbed and compared with one already existing benchmark. Although the tuners
default configurations did not show any substantial optimizing capabilities and proving them
to be rather basic level optimizers, comparison of several different methods was made that
can improve the view on each of the investigated tuners.

41

42 CHAPTER 7. DISCUSSION

7.2 Parameter tuning experiments

7.2.1 GA testing

GA unimodal test

The trained optimizer variants showed similar performance as the default variant on both
training and testing testbeds. This is probably due to low number of optimized parameters.

Tests on the different class functions were in favor of the default configuration as expected.
The unimodal-trained versions of the optimizer exhibited surprisingly good performance as
well. This is probably also caused by the lower number of tuned parameters.

GA multimodal test

The multimodal-trained versions of GA demonstrated very similar performance as the default
on all training, testing, and unimodal set of functions. This shows that GA trained on
multimodal functions has decent performance for the unimodal testbed as well. The default
variant was usually better in the 20D cases, as it is probably chosen to generalize well.

GA test outcome

GA parameter tuning did not show any gain against the default variant. It was probably
optimized in too few parameters in too narrow domains.

7.2.2 DE testing

DE unimodal test

All unimodal-trained variants of the DE algorithm outperformed the default variant on
training and testing set of functions. This shows that the parameters were well optimized
to improve the algorithm performance. Even on the multimodal set the best trained variant
outperformed the default one.

All the tests exhibit steepness decline after the point of maximum evaluations, which
means that the performance would most likely further increase with increased number func-
tion evaluations as explained by Hansen et al. [28].

The higher-dimensional cases seem to be rather poorly performing for both default and
optimized variants, meaning that DE is likely not good in generalizing over multiple dimen-
sions.

DE multimodal test

Multimodal-trained variants of the DE algorithm outperformed the default variant on all
training, testing and unimodal set of functions. This once again shows that the parameters
were well optimized to improve the algorithm performance as well as the generalization of
the multimodal-trained DE over the set of unimodal functions.

The tests exhibit steepness decline after the maximum evaluations point once again rec-
ommending higher number of function evaluations for better results [28]. Higher dimensional
cases were once again optimized rather poorly.

7.3. IMPROVEMENTS 43

DE test outcome

Parameter tuning improved the DE optimizer in all testing cases showing good optimizing
enhancing abilities. Further research shows that higher number of evaluations would improve
the performance even more. As the parameters outperformed default configurations on
previously unseen cases, it would suggest that the DE parameters can be trained on specific
set of functions.

7.3 Improvements

Possible improvements originating from this thesis would most likely include enhancements
in:

∙ SPOT

1. SPOT with random forest model 40D evaluation.

2. Benchmark of SPOT’s different model versions.

∙ Spearmint
Successful benchmark of the Spearmint method, by further improving the current
experiment design or by the use of the recent parameter configuration libraries that
include spearmint interface such as Hyper-Parameter Optimization Library (HPOLib)
[24, 12].

∙ Mixed Continuous/Discrete benchmark functions
Benchmarking all the methods on mixed continuous-discrete benchmark functions. The
only mixed functions the IRACE method optimized in this thesis were the GA and DE
parameter spaces.

∙ Parameter tuning extension
Tune the parameters of GA and DE by all the investigated parameter tuners.

∙ Benchmarking extension - noise
Benchmark the tuners on the noisy function testbed.

44 CHAPTER 7. DISCUSSION

Chapter 8

Conclusion

Brief overview of the current state of the art methods and methodologies in parameter tuning
was given as a base to choose several comparable parameter tuning method representatives.

Three of the investigated parameter tuners were benchmarked and compared in continu-
ous optimizers benchmarking framework [3] showing their strengths and weaknesses against
other methods and frameworks that are already evaluated under same benchmark.

Two traditional optimizers (GA and DE) were chosen for parameter tuning by using
the IRACE [36] procedure. Each of them was trained and tested on 2 different classes of
functions. The GA did not exhibit any performance improvement after its parameter tuning.
This was probably due to the lack of the optimized parameters and their restricted domain
as well as the possibly well-tuned default parameter setting.

On the contrary the DE algorithm showed quite an improvement against its default
settings showing the importance of parameter tuning as well as its (however limited) problem
generalizing capabilities.

The results were presented in the form of graphs, generated by the COCO framework
[3] that are consistently used within its research community providing clear view over the
compared algorithm qualities and drawbacks.

For the results to be even sounder several improvement ideas were presented concerning
the benchmark testing and parameter tuning completion and extension.

45

46 CHAPTER 8. CONCLUSION

Bibliography

[1] 2015 IEEE Congress on Evolutionary Computation.
http://sites.ieee.org/cec2015/, state from 14. 5.,2017.

[2] Cerit scientific cloud. https://www.cerit-sc.cz.

[3] COmparing Continuous Optimisers: COCO.
http://coco.gforge.inria.fr/, state from 14. 5.,2017.

[4] COmparing Continuous Optimisers: Introduction.
http://coco.lri.fr/COCOdoc/introduction.html, state from 14. 5.,2017.

[5] Genetic and Evolutionary Computation Conference: GECCO.
http://www.sigevo.org/gecco-2009, state from 14. 5.,2017.

[6] Genetic and Evolutionary Computation Conference: GECCO.
http://www.sigevo.org/gecco-2010, state from 14. 5.,2017.

[7] Genetic and Evolutionary Computation Conference: GECCO.
http://www.sigevo.org/gecco-2012, state from 14. 5.,2017.

[8] Genetic and Evolutionary Computation Conference: GECCO.
http://www.sigevo.org/gecco-2013, state from 14. 5.,2017.

[9] Genetic and Evolutionary Computation Conference: GECCO.
http://www.sigevo.org/gecco-2015, state from 14. 5.,2017.

[10] Genetic and Evolutionary Computation Conference: GECCO.
http://gecco-2016.sigevo.org/index.html/HomePage, state from 14. 5.,2017.

[11] Genetic and Evolutionary Computation Conference: GECCO.
http://www.sigevo.org/gecco-2017, state from 14. 5.,2017.

[12] Hyperparameter Optimization Library.
http://www.automl.org/hpolib.html, state from 14. 5.,2017.

[13] National grid infrastructure metacentrum. https://www.metacentrum.cz/.

[14] R. P. Adams, M. Gelbart, J. Snoek, K. Swersky, and H. Larochelle. Spearmint bayesian
optimization code base, 2013. https://github.com/HIPS/Spearmint.

47

48 BIBLIOGRAPHY

[15] D. Ardia, K. Mullen, B. Peterson, J. Ulrich, and K. Boudt. Deoptim: Global optimiza-
tion by differential evolution, 2016. https://CRAN.R-project.org/package=DEoptim.

[16] J. C. at al. The r project for statistical computing, 1997. https://www.r-project.org/.

[17] T. Bartz-Beielstein. SPOT: an R package for automatic and interactive tuning of opti-
mization algorithms by sequential parameter optimization. CoRR, abs/1006.4645, 2010.

[18] T. Bartz-Beielstein, C. W. G. Lasarczyk, and M. Preuss. Sequential parameter op-
timization. In 2005 IEEE Congress on Evolutionary Computation, volume 1, pages
773–780 Vol.1, Sept 2005.

[19] T. Bartz-Beielstein and S. Markon. Tuning Search Algorithms for Real-world Applica-
tions: A Regression Tree Based Approach. 2004.

[20] T. Bartz-Beielstein, K. Parsopoulos, and M. Vrahatis. Analysis of Particle Swarm
Optimization Using Computational Statistics. In Chalkis, editor, Proceedings of the
International Conference of Numerical Analysis and Applied Mathematics (ICNAAM
2004), pages 34–37, 2004.

[21] R. Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ, USA,
1 edition, 1957.

[22] M. Birattari, Z. Yuan, P. Balaprakash, and T. Stützle. F-Race and Iterated F-Race: An
Overview, pages 311–336. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[23] M. Chiarandini, C. Fawcett, and H. Hoos. A modular multiphase heuristic solver for
post enrollment course timetabling. In Proc. PATAT, 2008.

[24] K. Eggensperger, M. Feurer, F. Hutter, J. Bergstra, J. Snoek, H. Hoos, and K. Leyton-
Brown. Towards an empirical foundation for assessing bayesian optimization of hy-
perparameters. In NIPS workshop on Bayesian Optimization in Theory and Practice,
2013.

[25] F.Dobslaw. Recent development in automatic parameter tuning for metaheuristics. In
WDS 2010 - Proceedings of Contributed Papers, page 54–63, 2010.

[26] N. Hansen. The CMA Evolution Strategy: A Comparing Review, pages 75–102. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2006.

[27] N. Hansen, A. Auger, S. Finck, and R. Ros. Real-Parameter Black-Box Optimization
Benchmarking 2010: Experimental Setup. Technical report, Centre de recherche INRIA
Saclay – Île-de-France Parc Orsay Université, 2010.

[28] N. Hansen, A. Auger, R. Ros, S. Finck, and P. Pošík. Comparing results of 31 algorithms
from the black-box optimization benchmarking bbob-2009. In Proceedings of the 12th
Annual Conference Companion on Genetic and Evolutionary Computation, GECCO
’10, pages 1689–1696, New York, NY, USA, 2010. ACM.

[29] H. H. Hoos. Automated Algorithm Configuration and Parameter Tuning, pages 37–71.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

BIBLIOGRAPHY 49

[30] F. Hutter, D. Babic, H. H. Hoos, and A. J. Hu. Boosting verification by automatic
tuning of decision procedures. In Formal Methods in Computer Aided Design, 2007.
FMCAD ’07, pages 27 –34, nov. 2007.

[31] F. Hutter, H. Hoos, and K. Leyton-Brown. Automated configuration of mixed integer
programming solvers. In A. Lodi, M. Milano, and P. Toth, editors, Integration of AI and
OR Techniques in Constraint Programming for Combinatorial Optimization Problems,
volume 6140 of Lecture Notes in Computer Science, pages 186–202. Springer Berlin
Heidelberg, 2010.

[32] F. Hutter, H. Hoos, and K. Leyton-Brown. An evaluation of sequential model-based
optimization for expensive blackbox functions. In Proceedings of the 15th Annual Con-
ference Companion on Genetic and Evolutionary Computation, GECCO ’13 Companion,
pages 1209–1216, New York, NY, USA, 2013. ACM.

[33] F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential model-based optimization for
general algorithm configuration. In Proc. of LION-5, page 507–523, 2011.

[34] F. Hutter, H. H. Hoos, K. Leyton-Brown, and T. Stützle. ParamILS: an automatic
algorithm configuration framework. Journal of Artificial Intelligence Research, 36:267–
306, October 2009.

[35] Y. Lierler and P. Schüller. Parsing combinatory categorial grammar via planning in
answer set programming. In E. Erdem, J. Lee, Y. Lierler, and D. Pearce, editors,
Correct Reasoning, volume 7265 of Lecture Notes in Computer Science, pages 436–453.
Springer Berlin Heidelberg, 2012.

[36] M. López-Ibáñez, J. Dubois-Lacoste, T. Stützle, and M. Birattari. The irace package, it-
erated race for automatic algorithm configuration. Technical Report TR/IRIDIA/2011-
004, IRIDIA, Université Libre de Bruxelles, Belgium, 2011.

[37] O. Maron and A. W. Moore. The racing algorithm: Model selection for lazy learners.
Artif. Intell. Rev., 11(1-5):193–225, Feb. 1997.

[38] R. MERCER and J. SAMPSON. Adaptive search using a reproductive meta‚Äźplan.
Kybernetes, 7(3):215–228, 1978.

[39] V. Nannen and A. Eiben. A method for parameter calibration and relevance estimation
in evolutionary algorithms. In Proceedings of the 8th Annual Conference on Genetic
and Evolutionary Computation, GECCO ’06, pages 183–190, New York, NY, USA,
2006. ACM.

[40] V. Nannen and A. E. Eiben. Relevance estimation and value calibration of evolutionary
algorithm parameters. In Proceedings of the 20th International Joint Conference on
Artifical Intelligence, IJCAI’07, pages 975–980, San Francisco, CA, USA, 2007. Morgan
Kaufmann Publishers Inc.

[41] M. E. H. Pedersen. Tuning & Simplifying Heuristical Optimization. PhD thesis, Uni-
versity of Southampton, Shool of Engineering Science, 2010.

50 BIBLIOGRAPHY

[42] J. M. Peña, J. A. Lozano, and P. Larrañaga. Estimation of Distribution Algorithms.
A New Tool for Evolutionary Computation, chapter Benefits of data clustering in mul-
timodal function optimization via EDAs, pages 99–124. Kluwer Academic Publishers,
Boston/Dordrecht/London, 2002.

[43] L. Scrucca. Ga: Genetic algorithms, 2016. https://cran.r-project.org/package=GA.

[44] S. K. Smit and A. E. Eiben. Comparing parameter tuning methods for evolutionary
algorithms. In 2009 IEEE Congress on Evolutionary Computation, pages 399–406, May
2009.

[45] J. Snoek, H. Larochelle, and R. P. Adams. Practical bayesian optimization of machine
learning algorithms. In Advances in Neural Information Processing Systems 25, 12/2012
2012.

[46] M. Vallati, C. Fawcett, A. Gerevini, H. Hoos, and A. Saetti. Generating fast domain-
specific planners by automatically configuring a generic parameterised planner. 2011.

Appendix A

Technical details about examined
frameworks

A.1 Implementation Language

ParamILS

Algorithm is implemented v language Ruby, which is script language similar to Perl, but it is
object-oriented and cleaner. Not every person working with ParamILS needs to understand
Ruby as the package also contains windows executable generated by RubyScript2Exe.

Spearmint

Spearmint is implemented in the Python language (version 2.7), using some plugins for
numeric computation and stores the information in MongoDB database, which is NoSQL
database with document-oriented data model.

IRACE

Irace package is implemented in R, which is environment meant for statistical data analysis
and their graphical depiction, used mostly for academical purposes.

SPOT

SPOT is also implemented as R package, making it once again usable from every system
with R shell or IDE.

SMAC

SMAC Framework is implemented in JAVA, compiled to be executable in Linux or some
Linux-like variable environment for windows such as cygwin or bash for windows 10. The
optimizing wrapper can be implemented in users language of choice, but it must be executable
from the command line of the system and comply with the SMAC API (e.g. python, shell,
java and others).

51

52 APPENDIX A. TECHNICAL DETAILS ABOUT EXAMINED FRAMEWORKS

A.2 Algorithm usage

Spearmint

The spearmint usage is quite simple.

1. Start up a MongoDB daemon instance:

mongod --logpath <path_to_logfile> --dbpath <path_to_dbfolder>

2. Run spearmint main file:

python main.py <path_to_experiment_directory>

The results for each iteration are then printed to files the out directory, created in the
experiment_directory as the algorithm starts.

SPOT

For all the computations with SPOT, function 𝑠𝑝𝑜𝑡𝑂𝑝𝑡𝑖𝑚 was sufficient. It has optim-like
interface common for many optimization functions in R. It has following signature:

spotOptim(par, fun, lower, upper, method, control)

where 𝑓𝑢𝑛 is function to be optimized, 𝑙𝑜𝑤𝑒𝑟 resp. 𝑢𝑝𝑝𝑒𝑟 are vectors of bounds on the
parameter vector in variable 𝑝𝑎𝑟 and 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 is a list of additional parameters for the op-
timizing algorithm such as maximum number of evaluations. SPOT is by design meant to
tune noisy function solvers, to avoid that one can add following 3 lines to the 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 list of
the 𝑠𝑝𝑜𝑡𝑂𝑝𝑡𝑖𝑚 function:

spot.ocba=FALSE #parameters for
seq.design.maxRepeats=1 #non-noisy
init.design.repeats=1 #functions

SPOT uses large variety of meta models to perform the parameter tuning such as random
forests, multivariate regression spline, neural networks, treed Gaussian processes, prediction
trees and others. One could easily explore only the possibilities of SPOT framework on
COCO framework functions, but for the purposes of this work the default random forest
option was selected.

IRACE

Irace framework has many different functions a usages, but for our purposes it sufficed only
function 𝑖𝑟𝑎𝑐𝑒, wrapped to the standard signature of optimizing function for R language:

optimize(params, optimized_function, lower_bounds, upper_bounds, max_eval)

A.3. PARAMETER HANDLING 53

ParamILS

User can run the ParamILS in the following way:

ParamILS -parameter0 value0 -scenariofile filename -parameterN valueN

Above usage is combined as it has standalone parameters as well as the scenario file name
with the rest of algorithm configuration. Among the parameters there must be also the name
of the executable optimizing wrapper which takes following input:

filename <instance> <instance_info> <cutoff_time>
<cutoff_length> <seed> <params>

And prints out the following output:

Result for ParamILS: <solved>, <runtime>, <runlength>, <best_sol>, <seed>

Where the <solved> is either „SAT“, „UNSAT“ or „TIMEOUT“. The other parameters are
numeric and self-explanatory.

SMAC

The usage is again same as in the previous case, with small differences in the names of the
parameters. The program wrapper has again the same interface as in case of ParamILS,
only instead of the last parameter with the name of file with parameters of the optimizing
algorithm it also accepts couples

-parameter_name value

A.3 Parameter handling

SPOT

SPOT has many parameters to cover wide range of problems to represent and optimize. The
parameters are traditionally specified in several files with different extensions. Files with
extension .𝑟𝑜𝑖 specify the region of interest for the tuned algorithm. There the user can
specify algorithm parameters in the form:

<NAME> <low> <high> <TYPE>

The 𝑙𝑜𝑤 and ℎ𝑖𝑔ℎ parameters define the bounds for the parameter. The 𝑡𝑦𝑝𝑒 parameter can
be one of {𝐼𝑁𝑇, 𝐹𝐿𝑂𝐴𝑇, 𝐹𝐴𝐶𝑇𝑂𝑅}, where 𝐹𝐴𝐶𝑇𝑂𝑅 stands for categorical parameters,
which are given in the form of an integer number which the algorithm (or its executing
wrapper) must interpret itself, hence the obligatory 𝑙𝑜𝑤 and ℎ𝑖𝑔ℎ restrictions. Files with
extension .𝑎𝑝𝑑 specify the algorithm design, resp the parameters of tuning algorithm e.g.
problem dimension, objective function, initial seed etc. Files with extension .𝑐𝑜𝑛𝑓 specify
SPOT specific parameters, such as prediction model or initial design size (𝑘).

54 APPENDIX A. TECHNICAL DETAILS ABOUT EXAMINED FRAMEWORKS

Spearmint

Parameters

Spearmint has parameters stored inside 𝑐𝑜𝑛𝑓𝑖𝑔.𝑗𝑠𝑜𝑛 file which defines parameters for the
tuning as well as the search/solving/optimizing algorithm. typical example of such file is
following:

{
"language": "PYTHON",
"experiment-name": "Name",
"main-file": "algorithm_executable.py",
"max-finished-jobs": 200,
"likelihood": "NOISELESS",
"variables": {

"var_name1": {
"type": "ENUM",
"options": [

first, second
],
"size": 1

},
"var_name2": {

"max": 5,
"min": -5,
"type": "FLOAT",
"size": 2

}
}

}

This configuration file would define one experiment with algorithm that uses 1 categorical
parameter, 2 floating point parameters, is written in python, optimizes noiseless function
and is permitted to run 200 times. Variable type can be also 𝐼𝑁𝑇 for integer parameters.

IRACE

Similarly as in previous examples, the parameters are specified as ordinal (o), categorical
(c), integer (i) and real (r). The main function is called with following signature:

irace(tunerConfig = list(tuner_parameters),
parameters = tuned_parameters)

And the result is a map of parameter names as keys and their values. Parameter tunerConfig
is list parameters, which usually look similarly to this:

tunerConfig = list(hookRun = hook.run, #irace inner function
instances = number_of_instances,
maxExperiments = number_of_evaluations,
logFile = log_filename)

A.3. PARAMETER HANDLING 55

SMAC

Basic parameters of SMAC framework are in fact same as in the case of ParamILS, with little
less number of performance metrics and unspecified order of the parameters and their types.
Remarkable change against ParamILS is the possibility to specify the numeric parameters as
an interval or union of intervals, which enables optimization of parameters with continuous
domain. The parameter definition is following:

<name> <type> {list_of_values} [initial_value]

The only different thing is the optional argument for initial/default value. The numeric
parameters can be also defined in this way:

<name> <integer/real> [minimum, maximum] [initial_value]

So it suffices to determine closed interval on which all the possible values are defined.

ParamILS

ParamILS gets various parameters which can be passed from command line or preferably
specified in one configuration file which name can be then passed as the only argument.
ParmaILS can also take combination of CLI and configuration file. Apart from the configu-
ration file parameter, user can specify parameters such as the problem specific folder, path
to the optimizing executable, performance metric to consider, timeouts, algorithm variant
(basic/ focused), number of iterations, number of evaluations, logging file path, instance files
or reference solution files. Apart from ParamILS parameters there are also parameters for
the optimizing algorithm wrapper, which must comply with ParamILS specific API. These
parameters include optimizing algorithm name, random number generator seed, optimiza-
tion timeouts and optimizing algorithm parameter configuration file. This file has 3 parts,
first the basic parameters are specified (enough for most of the cases), user then can specify
conditional dependencies and lastly the forbidden combinations of parameter values. Basic
parameters can be numeric, ordinal (strings), and categorical (e.g. used heuristics, can be
specified as ordinal). Every parameter has following representation:

<name> <type> {list_of_values}

This type of representation is very unfortunate because it does not support continuous op-
timization as all the possible floating point numeric parameters must be specified. This
is a major issue for aforementioned COCO framework, because all the parameters of the
optimized functions are floating point numbers in the span of [−5, 5] which makes it very
difficult to accomplish the desired accuracy of 10−8.

56 APPENDIX A. TECHNICAL DETAILS ABOUT EXAMINED FRAMEWORKS

Appendix B

List of used abbreviations

5D Five-Dimensional

20D Twenty-Dimensional

BBOB Black-Box Optimization Benchmarking

CART Classification And Regression Tree

COCO Comparing Continuous Optimizers

CPU Central Processing Unit

DE Differential Evolution

EDA Estimation of Distribution Algorithm

ERT Expected Run Time

GECCO Genetic and Evolutionary Computation Conference

GA Genetic Algorithm

HPOLib Hyper-Parameter Optimization Library

IRACE Iterated Racing for Automatic Algorithm Configuration extension

OS Operating system

RAM Random access memory

SMAC Sequential Model-based Algorithm Configuration

SPO Sequential Parameter Optimization

SPOT Sequential Parameter Optimization Toolbox

57

58 APPENDIX B. LIST OF USED ABBREVIATIONS

Appendix C

CD Content

∙ COCO: directory with COCO framework project and optimization experiment com-
parison

∙ COCO/4comparison: directory with 4 algorithm datasets comparison graphs and
templates

∙ SPOTEvaluation: directory with SPOT benchmark and SPOT running scripts

∙ IraceEvaluation: directory with IRACE benchmark and IRACE running script

∙ Parameter Tuning: directory with DE and GA parameter tuning tests, also with
data generating and processing script

∙ SMAC: directory with SMAC benchmark dataset, SMAC dataset by Hutter at al.
[32] and SMAC code-base

∙ Spearmint: directory with examined spearmint project

∙ thesis: directory with the thesis together with its latex source codes

59

	Introduction
	Parameter tuning
	Problem Outline
	Motivation
	Goals and Hypotheses

	State of art in automatic parameter tuning
	Meta-evolution
	Sequential Parameter Optimization (SPO)
	Estimation of Distribution (EDA)
	Racing
	Sharpening
	Local Search
	Adaptive Capping

	Examined tuning methods
	Overview
	Algorithms
	ParamILS
	SMAC
	Irace
	SPOT
	Spearmint

	Performance metrics

	COCO benchmarking Framework
	Overview
	Purpose
	Testing functions and their benefits
	Benchmarking results and their meaning

	Conducted Experiments
	Experiment analysis
	Realization
	Used resources
	Optimization experiment structure
	Optimization experiment execution
	Parameter tuning structure
	Parameter tuning execution

	Results
	Optimization experiment results
	Experiments with negative results
	Expected run length comparison
	Algorithm performance comparison

	Parameter tuning experiment results
	GA unimodal tests
	GA multimodal tests
	DE unimodal tests
	DE multimodal tests

	Discussion
	Optimization benchmark experiments
	Parameter tuning experiments
	GA testing
	DE testing

	Improvements

	Conclusion
	Bibliography
	Technical details about examined frameworks
	Implementation Language
	Algorithm usage
	Parameter handling

	List of used abbreviations
	CD Content

