
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Science

Comparison of path planning methods for a
multi-robot team

Bc. Jakub Hvězda

Supervisor: RNDr. Miroslav Kulich, Ph.D.
May 2017

ii

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Computer Science

DIPLOMA THESIS AGREEMENT

Student: Hvězda Jakub

Study programme: Open Informatics
Specialisation: Artificial Intelligence

Title of Diploma Thesis: Comparison of path planning methods for a multi-robot team

Guidelines:

1. Get acquainted with current approaches to collision-free path planning for a team of cooperating
robots.
2. Choose most promising methods and implement them. The selection should be made mainly with
respect to computational complexity of methods or/and quality of generated solutions.
3. Design and create a set of testing scenarios.
5. Experimentally evaluate and compare the implemented algorithms. Describe and discuss obtained
results.
6. Discuss applicability of the particular algorithms to real-world problems.

Bibliography/Sources:

[1] W. Wang and W. B. Goh. A stochastic algorithm for makespan minimized multi-agent path planning in discrete
space. Appl. Soft Comput. 30, C, May 2015, 287-304.
[2] Peasgood, M.; Clark, C.M.; McPhee, J. A Complete and Scalable Strategy for Coordinating Multiple Robots
Within Roadmaps, in Robotics, IEEE Transactions on , vol.24, no.2, pp.283-292, April 2008
[3] A. W. ter Mors, "Conflict-free route planning in dynamic environments," 2011 IEEE/RSJ International
Conference on Intelligent Robots and Systems, San Francisco, CA, 2011, pp. 2166-2171.
[4] Guni Sharon, Roni Stern, Meir Goldenberg, Ariel Felner, The increasing cost tree search for optimal multi-
agent pathfinding, Artificial Intelligence, Volume 195, February 2013, Pages 470-495, ISSN 0004-3702,
[5] G. Wagner, Minsu Kang and H. Choset, "Probabilistic path planning for multiple robots with subdimensional
expansion," 2012 IEEE International Conference on Robotics and Automation, Saint Paul, MN, 2012, pp. 2886-
2892.
[6] K. Solovey, O. Salzman, O. and D. Halperin, Finding a needle in an exponential haystack: Discrete RRT for
exploration of implicit roadmaps in multi-robot motion planning. In Algorithmic Foundations of Robotics XI (pp.
591-607). Springer International Publishing.

Diploma Thesis Supervisor: RNDr. Miroslav Kulich, Ph.D.

Valid until the end of the summer semester of academic year 2017/2018

L.S.

prof. Dr. Michal Pěchouček, MSc. prof. Ing. Pavel Ripka,CSc.

 Head of Department Dean

Prague, February 23, 2017

iv

Acknowledgements
I would like to thank my supervisor RNDr.
Miroslav Kulich, Ph.D. for his guidance
and valuable advice.

My thanks also goes to my family for
all their support.

Declaration
I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

Prague, date

...
signature

v

Abstract
This master thesis discusses the topic of
multi-agent pathplanning. For this rea-
son several algorithms were picked and
described in the first part of this thesis.
All algorithms were implemented in C++
and from experience from working with
these algorithms several modifications and
improvements were proposed and imple-
mented. The second part of the thesis
elaborates on the results of experiments
performed on the basic versions of the al-
gorithms as well as the improvements and
discusses their effect. This part discusses
the potential applications the algorithms
as well. All algorithms were tested on the
map of robotic warehouse as well as grid
maps from pc games.

Keywords: multi-robot pathfinding,
multi-agent, algorithm comparison

Supervisor: RNDr. Miroslav Kulich,
Ph.D.
Czech Institute of Informatics, Robotics,
and Cybernetics, Zikova street
1903/4,166 36 Prague 6

Abstrakt
Tato diplomová práce se zabývá tématem
multi-agentního plánování. Za tímto úče-
lem bylo vybráno několik algoritmů které
byly popsány v první části této práce.
Všechny algoritmy byly poté implemen-
továny v C++ a ze zkušeností získaných
prací na těchto algoritmech byly navrženy
a implementovány změny a vylepšení je-
jichž účelem bylo vylepšit vlastnosti al-
goritmů. Druhá část práce se zabývá vý-
sledky získanými z experimentů na imple-
mentovaných algoritmech stejně tak jako
jejich vylepšeních. Tato část práce také
probírá potenciální využití těchto algo-
ritmů v reálném světě. Všechny algoritmy
byly testovány na mapách robotického
skladiště spolu s čtvercovými mapami z
počítačových her.

Klíčová slova: hledání cest pro tým
robotů, multi-agentní, porovnání
algoritmů

Překlad názvu: Porovnání metod
plánovaní cest pro tým robotů

vi

Contents
1 Introduction 1
2 Pathfinding problem 3
2.1 Problem definition and terminology 4
2.1.1 Problem inputs and outputs . . 4
2.1.2 Actions . 4
2.1.3 Constraints 5
2.1.4 Composite roadmaps 5
2.1.5 Chosen algorithms 5

3 Conflict-Free Route Planning in
Dynamic Environments 7
3.1 Model . 7
3.1.1 Route plan 8
3.1.2 Resource load 8
3.1.3 Free time windows 8
3.1.4 Free time window graph 9

3.2 Planning algorithm 9
4 Increasing Cost Tree Search 13
4.1 High-level search 13
4.2 Low-level search 14
4.2.1 Multi-value decision diagrams 14
4.2.2 k-agent MDD space searching
algorithm . 15

5 A Complete and Scalable
Strategy for Coordinating Multiple
Robots Within Roadmaps 19
5.1 Map representation and spanning
tree selection 19

5.2 Planning algorithm description . 20
5.2.1 Phase 1: Reaching leaf nodes 22
5.2.2 Phase 2: Sorting agents by
depth of goals 23

5.2.3 Phase 3: Filling remaining
goals . 25

5.2.4 Optimizing created plan 25
5.2.5 Loop removal 26
5.2.6 Phase 4: Building a concurrent
plan . 26

5.3 Implementation 27
5.3.1 Data structure 28
5.3.2 Implementation of loop
removal . 29

5.3.3 Implementation of concurrent
plan building 30

6 Multi-robot Discrete
Rapidly-Exploring Random Tree 33
6.1 Rapidly-exploring random tree . 33
6.2 Discrete RRT 34
6.2.1 Oracle technique for querying
the implicit graph 35

6.2.2 dRRT description 35
6.2.3 Local connector 36

6.3 Multi-Robot discrete
Dapidly-exploring Random Tree . . 36
6.3.1 MRdRRT description 36
6.3.2 Oracle OD for multi-agent
scenario . 37

6.3.3 Local connector for multi-agent
scenario . 37

6.4 Implementation 38
6.4.1 Basic implementation 39
6.4.2 Local connector 40
6.4.3 Two-tree version
implementation 41

6.5 Steps towards optimality - RRT* 42
6.5.1 RRT* modifications towards
discrete multi-agent scenario 43

7 Experiments 45
7.1 Methodology 45
7.2 Results of the mors algorithm . . 46
7.3 Results of the icts algorithm . . . 49
7.4 Results of the peasgood algorithm 51
7.5 Results of the MRdRRT
algorithm . 56

7.6 Comparison 59
8 Conclusion 69
Bibliography 71
9 Enclosed CD contents 73

vii

Chapter 1
Introduction

In today’s age several fields of the industry that deal with coordination of
multiple entities such as airports are faced with situations where traffic is
higher than the actual capacity. This leads to reliance on path optimizations
to increase their throughput. Another example might be a robotic warehouse
with several robots trying to retrieve the desired object from the warehouse in
as short time as possible. For these reasons the field of multi-agent pathfinding
is extensively studied field with many different approaches to the topic.

This thesis focuses on the comparisson of several pathfinding algorithms for
multi robot coordination, implementing them and performing modifications
to them to improve their overall performance. The thesis is structured into
several chapters.

Chapter 2 introduces the addressed pathfinding problem and discusses
several approaches to this problem. It also introduces necessary terminology
that is used in the following chapters. The end of this chapter is dedicated to
discussion about the algorithms that were chosen to be implemented.

Chapter 3 then introduces decoupled algorithm introduced by A. W. ter
Mors in [12][11] that uses a variation of A* algorithm to perform search
through a free time-window graph to find a solution for one agent at a time
using the other agents as obstacles moving in time.

Chapter 4 is dedicated to the coupled optimal algorithm introduced by G.
Sharon et al. in [9]. The main idea of this algorithm is to split the pathfinding
process into two main searches. The high-level one searches the space of
combinations of costs of each individual agents while the low-level search
takes the high-level costs as constraints on the lengths of paths for each
individual agent and tries to find solution that satisfies these constraints.

In Chapter 5 the decoupled algorithm introduced by M. Peasgood et al.
[6] is presented whose main idea is to plan agents on a spanning tree of a
given graph and to divide the pathfinding into a number of phases. Several
improvements are proposed to this algorithm in this section such as different
methods of concurrent plan construction, implementation of loop removal
from plans and different choices of leaf node in the first phase of the algorithm.

Chapter 6 introduces the coupled sampling algorithm that is a modification
of a well known RRT algorithm [4] that works on explicitly given graphs.
This thesis also proposes a number of modifications to this algorithm as

1

1. Introduction
well as a novel approach that is inspired by the RRT* algorithm[2]. Among
the modifications are different sampling methods for the random sample
generation used in expansion phase of this algorithm, implementing version
of this algorithm that grows two trees instead of one whose goal is to reduce
the number of iterations required to find a solution or improving the local
connector by implementing a modification that reduces the time cost of
generated path. Because this algorithm is concerned about finding any
solution as fast as possible the quality of found solution is often far from
optimum. The goal of the novel approach proposed in this thesis makes
changes to the algorithm to produce plans that are much closer to optimum.

Chapter 7 contains experiments with the implemented algorithms. Algo-
rithms are evaluated on publicly available maps as well as a supplied robotic
warehouse map.

Chapter 8 contains the summary of this thesis along with the possible
future work.

2

Chapter 2
Pathfinding problem

The pathfinding problem is a problem of finding a path between two vertices
on a graph. It is an extensively researched topic in the field of AI. Its use varies
from traffic routing, GPS navigation, robot routing to solving combinatorial
problems or even pathfinding in computer games. The problem can be
divided into single-agent and multi-agent pathfinding problems. Optimal
solutions to both of these problems are usually found using algorithms that are
derived from A* algorithm [8]. These algorithms usually use a cost function
f(n) = g(n) + h(n) where g(n) is a value of the shortest path found so far
from the start node sa to the node n and h(n) is the heuristic estimate of a
value of a path from the node n to the terminal node ta. If this optimization
function never overestimates the shortest path from the start node sa to
the terminal node ta then the heuristic function h(n) is called admissible
and algorithms that use such function are guaranteed to find an optimal
solution. Single-agent pathfinding problems consist of problems where one
agent is given a start position sa and an end position ta and his goal is to
find the path between the two. The multi-agent pathfinding problem which
is generalization of the single-agent pathfinding problem for a > 1 agents.
Each of these agents is assigned a start location sa and a terminal location ta.
The task is to find paths for all agents from their start locations to terminal
locations with the goal to avoid all collisions with obstacles and other agents.
The goal of many algorithms can be concerned about finding any solution in
the shortest time possible, while other algorithms concern themselved with
minimizing the cumulative cost function. An example of such cumulative
cost function can be a sum of distances traveled by each agent, minimizing
waiting time of agents or minimizing the realization time of a plan. Solving
multi-agent pathfinding problem in general form is an NP-complete task. The
multi-agent pathfinding algorithms can be divided into two main groups:. The centralized approach assumes that there exists a central unit that

gathers information from all agents and whose task is to find paths for
all agents. It enables an effective way of cooperation between the agents
and usually leads to better solutions but its main disadvantage is the
reliability on the central unit.. The decentralized approach assumes that every agent is equiped with a

3

2. Pathfinding problem..................................
processing unit and has its own responsibilities.

This thesis is concerned about centralized approaches and as such the de-
centralized approaches are out of scope. The algorithms using the centralized
approach can be divided into coupled and decoupled subgroups.

Coupled algorithms define the multi-agent pathfinding problem as a global,
single-agent pathfinding problem which means that n agents are considered
to be a single unit with n×k degrees of freedom, where k is number of degrees
of freedom of each individual agent. These algorithms are typically used for
a small number of agents and use A*-based algorithms to find solutions.

Decoupled algorithms on the other hand find paths for each agent individ-
ualy and combine them to form the final plan. These algorithms differ in the
way they handle colliding paths and are used typically for a larger number
of agents in a system. Their main disadvantage is that they are usually not
complete and the produced plans are not optimal.

The following sections define the multi-agent pathfinding problem and
related terminology used in the next chapters. The last sections introduce
the chosen algorithms that are implemented and described in Chapters 3, 4,
5 and 6.

2.1 Problem definition and terminology

Multi-agent pathfinding is a problem that is concerned about finding paths
for multiple agents from their given start locations to their target locations
without colliding with each other or obstacles in the environment while also
optimizing a global cost function.

2.1.1 Problem inputs and outputs

Inputs into multi-agent pathfinding problem are:. A graph G(V,E) where |V | = N . The vertices V of the graph are all the
possible locations for agents and the edges E are all possible transitions
between the locations.. k agents each labeled a1, a2, ..., ak. Each of these agents has a start
location si ∈ V and a target location ti ∈ V .

For the problem simplification the time is discretized into time points.
The output of this problem is a plan, that specifies location of every agent

for all time points where at the beginning all agents are at their initial
locations and at the end all agents are located in their goal locations.

2.1.2 Actions

Every agent can perform two types of action at each time point: It can move
into one of neighbouring nodes or it can wait at its current location. Every

4

........................... 2.1. Problem definition and terminology

algorithm can make different assumptions regarding the cost of these actions
but this thesis assumes that staying idle has zero cost of distance traveled, but
costs time. Another assumption is that once an agent reaches his terminal
node it waits for other agents to finish.

2.1.3 Constraints

The main constraints on agent movement assumed in the thesis are:. No two agents a1 and a1 can occupy one node v ∈ V at the same time.. Assume two agents a1,a2 located in two neighbouring nodes v1, v2 ∈ V
respectively, they can not travel across the same edge (v1, v2) at the
same time in opposite directions. In other words two neighboring agents
cannot swap positions. However, this thesis assumes that it is possible
for agents to follow one another. For example if agent a1 moves from
v2 ∈ V to v3 ∈ V then agent a2 can at the same time move from v1 ∈ V
to v2 ∈ V .

2.1.4 Composite roadmaps

The algorithm presented in Chapter 6 uses composite roadmap to find a plan
for all agents.

The composite roadmap G = (V, E) is a graph that is defined as follows.
The vertices V are all combinations of placements of m agents on original
graph G that are without any collision. These vertices can also be viewed as
m agent configurations C = (v1, v2, ..., vm), where an agent ai is located in
a vertex vi and all agents are pairwise collision free. The edges of G can be
created using either Cartesian product or Tensor product. For the purposes of
this thesis the Tensor product is used and thus for two m agent configurations
C = (v1, v2, ..., vm), C ′ = (v′1, v′2, ..., v′m) the edge (C,C ′) exists if (vi, v

′
i) ∈ Ei

for every i and no two agents collide with each other during the traversal of
their respective edges.

What this definition says is that the edge between two agent configurations
C,C ′ in the composite roadmap exists if for every pair of locations vi,v′i exists
an edge (vi, v

′
i) ∈ E in the original graph G and that during the simultaneus

transition of agents from C to C ′ no collision occurs.

2.1.5 Chosen algorithms

Total of four algorithms were chosen to be implemented in this thesis.
The first algorithm is the representative of decoupled algorithms that uses

derived A* algorithm to find the paths for each agent individually. The main
idea of this algorithm is that the planning is carried out on free time window
graph that is constructed from the original graph for each agent individually.
Agents are planned one after another and after each agent finds its path the
free time window graph is updated to remove the time intervals that were

5

2. Pathfinding problem..................................
used by the agent from the free time window graph. This algorithm is not
complete but on open maps produces resutts close to optimum.

The second algorithm is an optimal, complete coupled algorithm whose
idea is to split the pathfinding into two search problems. The first search
called high-level search explores the space of combinations of costs for each
agent in breadth first manner by gradually increasing cost restrictions of every
agent. This search creates constraints on path costs for individual agents and
the second search called low-level search then uses these constraints to try to
find a solution that does not violate these constraints. If such solution exists
it is returned and the algorithm terminates.

The third algorithm uses a decoupled approach and its main idea is to
find paths for each agent on spanning tree of a graph G. This algorithm is
complete if the number of agents that need to be coordinated is lower than
the number of leafs in the spanning tree. The main idea is that if all agents
are located in leaf nodes of this spanning tree and at least one leaf node is
free then all internal nodes of the tree can be traversed without collision and
any two agents can switch their locations. The search itself is divided into
three main phases. In the first phase all agents are moved into leaf nodes, in
the second phase the agents are moved into positions from which they can
move to their respective goals without causing collisions and the last third
phase moves agents to their goals.

While all previously mentioned algorithms are deterministic the last algo-
rithm is a representative of coupled sampling algorithms and is a modification
of a well known Rapidly-exploring random tree algorithm. This sampling
based algorithms is probabilistically complete and as such the probability to
find solution approaches one as time is spent. However, the algorithm can
not determine if solution exists. The search is done by exploring a composite
roadmap using the oracle technique while also trying to connect the current
state with the goal state.

6

Chapter 3
Conflict-Free Route Planning in Dynamic
Environments

The first presented algorithm was first introduced by Adriaan W. ter Mors
in [12][11]. This decoupled approach to multi-agent planning adapts A*
algorithm through a graph of free time intervals or windows to find the
shortest path for each agent in terms of time required. This chapter includes
two major sections, the first of which introduces the model of multi-agent
planning that is assumed by this algorithm, while the second section presents
the route planning algorithm.

3.1 Model

The input of the algorithm is a set A of agents each of which has to find the
fastest path from his initial position to his goal position. The next input
is a roadmap which is modeled as a resource graph GR = (R,ER) where
resources R can be the paths in a robot warehouse, lanes on airports or roads,
intersections etc. The path the agent can follow is restricted to edges ER

which limit the transition of robots such that agent can get from resource r1
to resource r2 only if r2 is the neighbour of r1 in graph G meaning that edge
(r1, r2) ∈ ER. Each resource has also two main attributes associated with it.
These are capacity c(r) which corresponds to the maximum number of agents
that can occupy a resource at the same time and duration d(r) > 0 that
represents the minimal time it takes the agent to traverse a given resource.
Plans for every agent then contain not only sequence of resources on its path
but also time intervals during which the agent visits them.

For general purpose planning the algorithm assumes that the resource graph
is constructed such that resources are of two types: intersection resources with
capacity 1 and lane resources with capacity 1 or greater. Another assumption
is also that if multiple agents are present on the same resource then they are
all traveling in the same direction and their order does not change, meaning
they cannot overtake each other. The idea is that the lanes are not wide
enough for two agents to drive in parallel but long enough so that agents can
drive behind each other.

The capacity is a simplifying assumption introduced because it eliminates

7

3. Conflict-Free Route Planning in Dynamic Environments
the need to calculate collisions during the planning phase and only capacity
of resource and free time windows overlap are thus taken into consideration.

Several terms such as route plan, resource load, free time window and free
time window graph must be defined for further description.

3.1.1 Route plan

Given a start resource r and a goal resource r′ the route plan is a sequence
π = (〈r1, T1〉, ..., 〈rn, Tn〉) of n plan steps where Ti = [ti, t′i), such that r1 = r,
rn = r′, t1 ≥ t and ∀j ∈ {1, ..., n} :..1. interval Tj meets interval Tj+1(j < n). This constraint means that exit

time from jth resource must be equal to the entry time to the j + 1th
resource...2. | rj |≥ d(rj) meaning that the agents occupation time of a resource is at
least sufficient to travel across the resource in the minimum travel time...3. (rj , rj+1) ∈ ER means that if two resources follow each other in the plan,
then there must be an edge between them in the resource graph.

3.1.2 Resource load

Given a set of agents plans P and a set of all time points T , the resource
load is a function λ : R× T → N which returns a number of agents that are
located at resource r in a given time t ∈ T :

λ(r, t) = |{(r, T) ∈ π | π ∈ P ∧ t ∈ T }|

What this means is that an agent can use a resource only in such time
intervals where the resource is occupied by less agents than its capacity. By
entering the resource only in these time windows it is ensured that no conflicts
with other agents occur in agents plan.

3.1.3 Free time windows

Given a resource load function λ, a free time window on resource r is a
maximum interval w = [t1, t2) such that:..1. ∀t ∈ w : λ(r, t) < c(r)..2. (t2 − t1) ≥ d(r)

What these conditions mean is that for an interval to be a free time window
the capacity in each time point of the interval must be always sufficient and
also long enough so that the agent can travel across the resource. Because
every agent that wants to traverse a free time window on a resource must
enter the window, travel across and then leave it, it cannot enter at the end of
a free time window or leave at the start of one because of non zero traversal

8

.................................. 3.2. Planning algorithm

time. For this reason every free time window w has entry window wentry and
exit window wexit associated with it. These are limited by a time window w
by the minimum traversal time through the resource:. wentry = [t1, t2 − d(r)). wexit = [t1 + d(r), t2)

If agent desires to travel from one resource r1 to the neighbouring resource
r2 it needs to find free time windows w,w′ on both of these resources. Due
to constraints on route plan discussed in Section 3.1.1 for w′ to be reachable
from w the entry window w′entry must overlap with exit window wexit.

3.1.4 Free time window graph

Free time window graph GW = (W,EW) is a directed graph where vertices
w ∈ W are a set of free time windows and edges EW specify reachability
between free time windows of W . This means that given two free time
windows w,w′ on resources r,r′ respectively it holds that (w,w′) ∈ EW only
if:. (r, r′) ∈ ER. wexit ∩ w′entry 6= ∅

Each agent uses its own free time window graph for planning his route as
every free time window graph contains only information about n− 1 previous
agents. It does not contain information about movements of such agents.
For this reason some assumptions need to be made about the graph of start
and end resources for each agent because otherwise it would be possible that
some agent i could make it impossible for agent i+ 1 to find his plan. These
assumptions are for example that no two agents can have the same destination,
the destination resources have sufficient capacity to hold all agents that have
them as their goal or that once each agent reaches his destination he vanishes
from the infrastructure.

Our implementation has two versions with different assumptions. The first
implementation assumes that once an agent reaches his goal it departs from
the infrastructure. This is inspired by the use on airports where once aircraft
reaches the start of runway it initiates take off and can be ignored by the rest
of the agents(assuming the runway is not a part of the graph G). The second
implementation assumes that no two agents can share the same goal and do
not depart the infrastructure once they reach it.

3.2 Planning algorithm

The classical shortest path planning expects that if a node v lies on the
shortest path from s to t, then the shortest path to v can be expanded to

9

3. Conflict-Free Route Planning in Dynamic Environments

A
0 1 3 4

2

B

Figure 3.1: Example problem where classical planning approach can not find
solution. Agent A has node 4 and agent B has his goal in node 0. Agents are
planned in B,A order.

shortest path to t. However, this approach may run into difficulties in certain
scenarios. Figure 3.1 shows one such scenario. The agent A has his goal node
in node 4 and the agent B has his goal in node 0. Consider that agent B
is already planned. In this case agent A cannot be planned because partial
path to node 1 cannot be further expanded towards goal because it would
cause collision with agent B. What is required of agent A is to move to node
2, wait for agent B to pass and then move towards goal node 4. However, this
is not possible in classical shortest planning, but is possible for the algorithm
described in this section.

The main idea of the algorithm is that it considers only partial plans leading
to the free time window on a resource as opposed to a classical planning
approach that considers partial plans to whole nodes. If the partial plan
arrives to resource r at time t which lies in the free time window w then every
other partial plan that arrives to the same time window on the resource r
in time t′ > t can be simulated by waiting in resource r from t to t′. This
approach allows agent A in the example on Figure 3.1 to move to node 2,
wait for agent B to pass to his goal and then move directly to goal node 4.

Algorithm 1 Path planning algorithm
1: if ∃w [w ∈W | t ∈ wentry ∧ r1 = resource(w)] then
2: mark(w,open)
3: entryTime(w) ← t
4: while open 6= ∅ do
5: w ← argmin

w′∈open
f(w′)

6: mark(w, closed)
7: r ← resource(w)
8: if r = r2 then return followBackPoints(w)
9: texit ← g(w) = entryT ime(w) + d(resource(w))

10: for w′ ∈ {ρ(r, texit) \ closed} do
11: tentry ← max(texit, start(w′))
12: if tentry < entryT ime(w′) then
13: backpointer(w′)← w
14: entryT ime(w′)← tentry

15: mark(w′, open)
return null

10

.................................. 3.2. Planning algorithm

The main algorithm performs a search through the free time window graph
in a similar way to A*. The algorithm keeps track of open partial plans with
their values f = g + h where g is the actual time cost of the partial plan and
h is heuristic estimate of a cost of a plan to goal resource from the end of the
partial plan. Our implementation assumes that each edge is traversed in one
unit of time which enables the heuristic estimate to be the Euclidean distance
to the goal node. The search process can be seen in Algorithm. 1. The first
step is to check whether there exists a time window w on a resource r such
that t ∈ wentry (line 1). In case no such window exists then no plan exists
and thus null is returned. If such window exists it is marked as open and a
time t is marked as an entry time into the window w (lines 2-3). On line 5
a partial plan with the minimum cost f(w) = g(w) + h(w) is selected and
marked as closed (line 6). If a resource r that is associated with the window
w is the goal resource r2 then the shortest path to r2 has been found and it is
returned through following back pointers. If the heuristic used to estimate h
is consistent then no other partial plan on the open list have higher cost and
expansion of these partial plans would never create a plan with lower cost. If
a resource r is not the goal resource then an exit time texit from the window
w is found as entryT ime(w) + d(r). Once the exit time texit is found then
the algorithm iterates over all reachable time windows w′ ∈ ρ(r, texit) where
ρ(r, texit) is a set of all reachable time windows from w and earliest exit time
texit. For each of these windows an entry time tentry is found as a maximum
of texit and a start of window start(w′). If the entry time tentry is smaller
than the entry time to w′ then w′ is marked as open and added to the open
list as well as update the entry time into w′ to tentry and back pointer to w.
In case where no plan to the goal r2 exists the algorithm returns null.

At the start of the algorithm all resources start with one available free
time window [0,∞). After finding a plan for each agent the free time window
graph is updated by removing the time intervals used in the plan of previous
agent.

11

12

Chapter 4
Increasing Cost Tree Search

This chapter describes a coupled optimal multi-agent planning algorithm first
introduced by Guni Sharon, Roni Stern, Meir Goldenberg and Ariel Felner in
[9]. It is based on a different approach as opposed to A*-based algorithms
that rely heavily on the used heuristic that is guiding the search. Increasing
cost tree search (ICTS) relies on the fact that the complete solution is made
of paths for each individual agent. Based on this, ICTS splits the multi agent
pathfinding search into two parts:..1. High-level search which searches through the space of combinations of

costs for each individual agent. This search provides the constraints for
the low-level search...2. Low-level searches for a valid solution given the constraints on costs of
individual agents provided by the high-level search. This phase can also
we viewed as a goal check for the high-level search.

4.1 High-level search

The high-level search performs a search on a tree structure called Increasing
Cost Tree. For k agents the nodes in this tree are k-element vectors of cost
values for each agent. Each such node represents all possible solutions with a
given path lengths for every agent. Sum of elements of this vector represents
cost of every possible plan with given lengths of paths for each agent and is
always the same for every node in the same level of the tree. A node with
optimal path costs for each individual agent without taking other agents into
consideration is chosen to be root of the tree. For k agents the successors are
generated by increasing the cost of every agent by 1 always generating one
new successor. This procedure always generates k new nodes. For example, a
node with costs [C1, C2, ..., Ck] generates these successors: [C1 + 1, C2, ..., Ck],
[C1, C2 + 1, ..., Ck],..., [C1, C2, ..., Ck + 1]. For the example problem seen in
Fig. 4.1 the high-level search goes through a tree depicted in Figure 4.2. The
root of the tree has costs (2, 2) because the optimal paths for agents A,B are
1,4 and 1,5 respectively both of which have cost 2. Node (2, 2) is thus chosen
to the the root node. Because the low level search fails for this case as the

13

4. Increasing Cost Tree Search

A
0

1

32

B

4

5

Figure 4.1: Example problem. Agent A has node 4 as his goal and agent B has
node 5 as his goal.

2,2

3,2 2,3

4,2 3,3 2,4

goal

cost = 4

cost = 5

cost = 6
Figure 4.2: Tree searched in the high level search.

only paths with length 2 to the goal would result in a collision the search
continues and successors (3, 2) and (2, 3) are created. The successor (3, 2)
is visited first because the search is performed in the breadth-first manner.
The low-level search succeeds for this node, because agent A can wait in the
node 0 until agent B gets to his goal and then move towards the goal in node
4. Other nodes in the high-level search are then ignored as the solution has
been found.

4.2 Low-level search

The input into low level search are the constraints on path lengths for each
agent. The first step of low level search is for each agent to find all paths with
a given length. The number of such paths is exponential and so the original
algorithm in [9] stores these paths in a special structure called Multi-value
decision diagrams (MDDs).

4.2.1 Multi-value decision diagrams

All paths of the given length l are stored in MDD in the original algorithm.
This structure generalizes Binary Decision Diagrams by allowing more than
two choices for every decision node. MDDc

i is an MDD for agent i which
stores all paths with the cost c. It has one source node s and one node
terminal node t. All nodes in the MDD have a depth d below the source node
s. Every node at set depth d corresponds to a possible location of ai at the
d− th step on a set path. For the example problem in Fig. 4.1 the MDDs of
agents A,B can be seen in Figure 4.3

14

................................... 4.2. Low-level search

MDDA
3

0

1 0 2

14 3

4
(a):

MDDB
2

2

1

5

(b):

Figure 4.3: MDDs for agents A,B respectively for the problem in Fig. 4.1.

MDDB
2

2

1

5

(a):

MDDB
2'

2

1

5

5

(b):

Figure 4.4: Dummy node added to the MDD.

4.2.2 k-agent MDD space searching algorithm

To find the final plan this algorithm iterates over the MDDs to find a set of
non-conflicting paths. If no such set is found, then it is returned to the high-
level search that the current node is invalid. Without the loss of generality
this section describes the case for two agents. Considering two agents A,B
located in their start positions, the global 2-agent search space is defined
as the state space created by moving these two agents simultaneously to
all possible directions. Given MDDs for agents A,B that correspond to the
high-level node c,d. No loss of generality is achieved if c = d is considered.
Because if c > d the difference of length can be achieved by adding dummy
nodes to the “shorter” MDDs terminal node to match their lengths. This
operation can be seen in Figure 4.4

The cross product of MDDA and MDDB is used to generate a subspace
of the global 2-agent search space. This subspace is called 2-agent-MDD
search space and is only a subset of global 2-agent search space because it is
constrained only to moves contained in the single agent MDDs. Using this
the 2-agent-MDD can be defined as MDDAB for agents A and B. Every
node in MDDAB corresponds to a valid non-conflicting pair of locations for
the two agents. An example of 2-agent-MDD created by cross product of

15

4. Increasing Cost Tree Search
MDDA

3

0

1 0 2

14 3

4

MDDB
2'

2

1

5

5

X =
MDDAB

3,2

0,2

1,1 0,1 2,1

4,5 1,5 3,5

4,5

conflict

Figure 4.5: Example of cross product for MDD3
A and MDD2′

B

MDDA and MDDB from Figure 4.3 can be seen in Figure 4.5.
As seen in this picture the nodes that contain conflict of the two agents

are omitted along with all their successors.
The algorithm itself can be seen in Algorithm 2. The first step is to create

an initial node for the high-level search by finding shortest paths to the goal
for each agent and using their length(line 1). To guarantee optimality the
tree is then searched in breadth-first manner and every node is checked if its
the end node by performing low level search on it and using the lengths of
paths for each agent as constraints. In case the low level search succeeds the
solution found is returned. The low level search can be seen in Algorithm 3.
The first step of the low level search is to create MDD for each individual
agent. After that the n-agent-MDD is searched for a path to the terminal
node. If such path exists then the low level search succeeded and the solution
is obtained by backtracking the path from the terminal node. If no path
exists then it means that no solution exists and an empty set is returned.

The n-agent-MDD can be extremely large but it does not need to be wholly
created and stored in memory in order to be searched. What can be done is to
systematically search the n-agent-MDD using kind of search as no particular
type of search is required to guarantee optimality. In our implementation the
depth first search was used.

Algorithm 2 The ICT search algorithm
1: T ← getInitialCosts
2: for each ICT node searched in breadth-first manner do
3: Solution = lowLevelSearch(node)
4: if Solution was found then return Solution

16

................................... 4.2. Low-level search

Algorithm 3 Low-level search algorithm
MDDs ← create MDD for every agent
for node searched in cross product of MDDs do

if node contains conflict then
skip node

if node is terminal then return backtrack(node)
if no solution exists then return ∅

17

18

Chapter 5
A Complete and Scalable Strategy for
Coordinating Multiple Robots Within
Roadmaps

Mike Peasgood, Christopher Michael Clark, John McPhee first introduced this
centralized decoupled algorithm in [6]. The main principle of this algorithm
is to find nodes for agents to move to while maintaining such a state of the
graph that does not block other agents. The paths between these points are
then found using standard one-agent planning algorithms such as A* while
looking at other agents as obstacles. The main advantage of this algorithm
is its scalability and also the ability to check whether it can find solution
for given number of agents. The main disadvantage is the dependance on
spanning tree and its generation because it either has to be generated before
every start of the algorthm to fit given problem i.e use goal and start nodes
as leafs or compute the spanning tree once, use it for every given problem
but with worse quality solutions.

5.1 Map representation and spanning tree
selection

The original algorithm assumes that the given graph G is undirected. While
it is possible to modify the algorithm to work on directed graphs, it is beyond
the scope of this thesis. Given the graph G the algorithm first finds spanning
tree T in this graph i.e. a subset of edges connecting all vertices without
creating any loops. Spanning tree with N nodes has L leaf nodes, N − L
internal nodes and one of the internal nodes is always the root node. An
example of a graph and its spanning tree can be seen in Fig. 5.1 where graph
nodes G,F,D,H,B are the interion nodes of tree rooted in G while nodes
E,A,C,I are the leaf nodes. Every node in the tree had its depth d associated
with it meaning the number of nodes that are encountered on the way through
the tree to the root. Illustration of a depth for each node from the graph on
Fig. 5.1 can be seen in Fig. 7.1b.

Any algorithm that can generate a spanning tree of a graph can be used as
the main algorithm is not dependent on the way the spanning tree is found.

19

5. A Complete and Scalable Strategy for Coordinating Multiple Robots Within Roadmaps.....
(a) : Example on input graph

G

B

D

E F H I

A

(b) : Spanning tree T of
graph on picture (a) rooted in
node G with subtree rooted in
B

G

D H

E B I

A C

F

Depth 0

Depth 1

Depth 2

Depth 3

Subtree

Figure 5.1: Example graph with corresponding spanning tree

But when choosing the algorithm to generate such a spanning tree several
things need to be kept in mind. The algorithm moves agents usually only
between leaf nodes of a spanning tree with the exception of final phases where
agents are moved to their final positions. Because of this fact the maximum
number of agents that can be planned is directly reliant on the number of
leafs in the tree. Last thing to note is that the internal nodes are kept free to
move through. Result of these limitations is that the spanning tree should
have maximal number of leafs. Our implementation uses algorithm that tries
to maximize number of leafs in the spanning tree. Further information about
this algorithm can be found in Section 5.3.

5.2 Planning algorithm description

The algorithm breaks the multi-agent pathfinding problem into a sequence of
4 phases. Because the graph is represented as a spanning tree the algorithm
can utilize following two properties of this representation if number of agents
r is smaller than number of leafs L:..1. Any agent is able to move to any internal node in the graph G if all

agents are located in leaf nodes...2. It is possible for any two agents to swap their positions if all agents are
located in leaf nodes.

The first property is obvious as there must always be a non-coliding path
from a leaf node to an interior node if all agents stay in leaf nodes. Since
this property property holds and because r < L there is always at least one
free leaf Nfree that can be used for the swap. For any two agents A1 and A2
standing on respective leaf nodes N1, N2 and a free leaf node Nfree the swap
operation can be achieved by moving A1 to Nfree, A2 to N1 and then A1 to
N2.

Both previously mentioned properties ensure that if all agents are in leaf
nodes it is possible to move agents towards their goal nodes without risk of
deadlock. The multiphase algorithm consists of the following phases:

20

............................. 5.2. Planning algorithm description

R

R

R

1

2

3

A

B C

D

F G H IE
(a):

R

R

R

1

2

3

A

B C

R3:1 D

F G H IE
(b):

R

R

R

1

2

3

G

B

R1:2
R2:2

R3:2

C

D

E F H I

A

(c):

R

R

R

1

2

3

G

A

B C

D

E F H I

R1:3

R3:3

(d):

Figure 5.2: Example of a run of the algorithm. An initial configuration can be
seen on Figure (a). (b) depicts the first phase of the algorithm where all agents
are moved to leaf nodes. Second phase is depicted on Figure (c) where agents
are moved to subtrees of their goals. (d) shows the final phase of the algorithm
that moves all agents to their respective goal nodes.

. Phase 1: Moving all agents to leaf nodes.. Phase 2: Moving agents in order of their goals tree depth to leaf nodes
from which they can move to goal position without collision.. Phase 3: Moving agents to their goal positions.. Phase 4: Building concurrent plan from generated movement sequences
for each agent.

For the purposes of following sections it is required to define several func-
tions as they are frequently used in the pseudocodes for the previously listed
phases.
currentNode (agent) : this function returns node that given agent occupies

in current step of the algorithm.
goalNode(agent) : returns goal node of given agent
freeLeafNode () : returns free leaf node within the spanning tree.
freeLeafInSubtree (node) : returns free leaf in subtree of the spanning

tree rooted in node. freeLeafNotInSubtree (node) : works in a similar
manner but returns free leaf node outside of the subtree rooted in node.
astarPath(start, end) : this function returns shortest path between start

and end node while assuming there are no obstacles in the graph

21

5. A Complete and Scalable Strategy for Coordinating Multiple Robots Within Roadmaps.....
freeAstarPath(start, end) : this function functions the same as astarPath

with the exception of considering already occupied nodes.
findObstacleAgent(path) : function searches for all agents that have their

position in the current time on any node of path. List of agents is returned
in reversed order meaning the agent that stands the closest to end node is
the first. If no agent stands on the path empty set is returned.
addPath(path, agent) : this method serves to add path sequence to the

plan for given agent. It also updates the agents position to the last node of
the path.
planAgentToNode(agent, node) : is a function that combines freeAstarPath

function to find a path between agents current location and given node and
then adds found path to agents plan using addPath function
subTreeContains(root, node) : queries spanning tree is its subtree rooted

in root contains node.
getBlockedAgent(node) : finds all agents that are currently located within

subtree rooted in node whose goal node is outside of the subtree.
sortAgentsByDepthOfGoal() : returns order of agents in the ascending

order of the depth of their goal node within the spanning tree from deepest
to shallowest.
isLeafNode(node) : returns true if node is leaf of the spanning tree.

5.2.1 Phase 1: Reaching leaf nodes

Algorithm 4 Phase 1 of the multiphase algorithm. Serves to move all agents
to leaf nodes of the spanning tree

1: order = sortAgentsByDepthOfGoal()
2: for each agent in order do
3: start = currentNode(agent)
4: if isLeafNode(start) then
5: continue
6: leaf = freeLeafNode()
7: path = astarPath(start,leaf)
8: obstacle = findObstacleAgent(path)
9: if no obstacle found then

10: addPath(path,agent)
11: else
12: start = currentNode(obstacle)
13: path = astarPlan(start,leaf)
14: addPath(path, obstacle)

Goal of the first phase is to move every agent into a leaf node of the spanning
tree. This is illustrated in Alg.4. Agents are first sorted in ascending order
of their goal nodes depth(line 1). Each agent if then checked if he is already
located in leaf node. If that is the case it skips this agent and goes to the
next one (line 5). When an agent is not located in leaf node the algorithm

22

............................. 5.2. Planning algorithm description

finds available free leaf node Li of the spanning tree (line 6). This operation
is guaranteed to succeed because r < L which implies that at least one free
leaf is available node even when all agents are located in leafs. For the choice
of leaf any heuristic can be used or left to be random. Choice of leaf is further
discussed in the implementation Section 5.3 of this chapter. In the next step
the path P from agents Ri current location is found to the selected free leaf
node using all available edges of the graph and ignoring all obstacles(line 7).
Success of this phase is independent on the choice of the pathfinding algorithm
but quality of solution is. For the purposes of describing the algorithm, A*
is assumed to be used for the path finding. When a path P is found it is
examined whether any other agent has his current position on any of its nodes
(line 8). If no agent is found on the path P then the found path segment is
added to the plan for the agent Ri (line 10). In case there are one or more
agents found on any of the nodes of the found path then agent Rj that is the
furthest along the path is selected as he has obstacle free path if he follows
rest of the path P to leaf Li.

These steps are repeated until all agents are located in the leaf nodes. It
is guaranteed that this process terminates because in each iteration there is
at least one agent moved to leaf node. If the moved agent was already on
leaf node then closer node is freed for agent Ri to plan to. The only case in
which this procedure would fail is if r ≥ L in which case failure is detected.

Initial configuration of an example problem can be seen on Figure 5.2a.
Agents R1, R2, R3 are placed in nodes A, C, F and their goal nodes are in
G, A, B respectively. Spanning tree of this given graph is in Figure 7.1b.
Because agents R1 and R2 are already located in the leafs of the spanning
tree, it is not necessary to move them. On the other hand, agent R3 is not
located in a leaf node as thus is moved to node E which is his nearest leaf
node. This operation can be seen in Figure 5.2b.

5.2.2 Phase 2: Sorting agents by depth of goals

In Phase 2 the algorithm attempts to move all agents into nodes from which
they can move to the goal without collisions. This is done by moving them
into leaf nodes that are close to their goal positions. However, a problem
occurs when they try to move to their goal positions and it is required for
them to swap positions or agents Ri goal position blocks path to agents Rj

goal position. This problem is solved by utilizing relative positions of agent
and his goal in the subtree.

Let TG be a subtree of a spanning tree rooted in goal node Gi for agent Ri.
The previously mentioned problem can occur only if any of these conditions
are met.Gi is occupied, another agent Rj is inside the subtree of TG and his goal

is outside the subtree..Gi is occupied, another agent Rj is outside the subtree of TG but his
goal is inside TG

23

5. A Complete and Scalable Strategy for Coordinating Multiple Robots Within Roadmaps.....
Algorithm 5 Phase 2 of the algorithm. Its purpose is to move agents into
such positions from which it is possible for them to move to their goal node
without any collisions

1: order = sortAgentsByDepthOfGoal()
2: for each agent in order do
3: start = currentNode(agent)
4: goal = goalNode(agent)
5: if subTreeContains(goal,start) then
6: continue
7: blockedAgent = getBlockedAgent(goal)
8: if blockedAgent exists then
9: blockedNode = currentNode(blockedAgent)

10: leaf = freeLeafNotInSubtree(goal)
11: if leaf exists then
12: planAgentToNode(blockedAgent,leaf)
13: planAgentToNode(agent, blockedNode)
14: else
15: leaf = freeLeafInSubtree(goal)
16: planAgentToNode(agent,leaf)
17: planAgentToNode(blockedAgent,goal)
18: continue
19: else
20: leaf = freeLeafInSubtree(goal)
21: planAgentToNode(agent,leaf)

.Gi is occupied, another agent Rj and hit goal Gj are both in the TG but
path from agents Rj current locations contains node Gi

Both cases 1 and 3 can be solved by moving agents into leaf nodes within
the subtrees of their goals. Case 2 can be solved by ordering the depth of
agents within the subtree based on the depth of their goal within the spanning
tree. The Algorithm. 5 solves these issues by first sorting agents by the
depth of their goal from deepest to shallowest(line 1). In the next step the
algorithm checks whether agent is already within subtree of their goal. In the
case he already is within the subtree of his goal it is not required to move him
and as such the agent is skipped (line 6). If agent Ri is not located within
subtree of his goal Gi, the algorithm first checks if there is any other agent
within subtree TGi that has his goal outside of this subtree. If such agent
does not exist then the algorithm finds free leaf node within TGi and moves
the agent to it (lines 20-21). However, in our testing it occured that it is
possible that TGi does not contain aby free leafs. Because agents are taken
by the depth of their goal from the deepest to the shallowest it is possible
to move an agent safely to his goal position instead, as all agents that have
goal nodes within subtree TGi must have already been processed and as such
there cannot exist any agent Rj outside TGi with goal Gj inside TGi . In case
there is at least one agent inside TGi in position Nj that has his goal outside

24

............................. 5.2. Planning algorithm description

TGi then the one Rj whose goal node has the highest depth is chosen and
algorithm attempts to find free leaf that is not in TGi (line 10). If such leaf
Nleaf exists, then agent Rj is moved to Nleaf and agent Ri is moved to Nj

(lines 11-13). However, if such leaf does not exist the algorithm finds a leaf
Nleaf inside the subtree TGi and moves agent Ri to it while blocked agent
Rj is then moved to his goal node Gj (lines 14-18). This however proved
inefficient in our testing as it is not guaranteed that there will not be any
other agents that will need to pass through Gj and as such caused failure of
the algorithm. For this reason it proved to be the best that blocked agent Rj

was not moved in our implementation.
Figure 5.2c depicts the process of phase 2. Agents move in order of the

depth of their goal which in this case means that agent R2 moves first as his
goal node A is in depth 3 of the spanning tree. Node A is at the given time
occupied by agent R1 and because node A is a leaf node and as such is the
only node in its own subtree, another free leaf node I outside of subtree of
A is found. Agent R1 is then moved to node I and after that agent R2 is
moved to A. In the next iteration agenr R3 is moved to leaf node C which is
in subtree of node B. After initial movement agent R1 is no longer moved as
node I is in subtree of node G.

5.2.3 Phase 3: Filling remaining goals

Algorithm 6 Phase 3 of the algorithm. All agents that are still not in their
goal nodes are moved to them.

1: order = reverse(sortAgentsByDepthOfGoal())
2: for each agent in order do
3: goal = goalNode(agent)
4: if agent not at goal node then planAgentToNode(agent,goal)

The last phase of the main algorithm moves any remaining agents that are
not in their goal positions to them. Agents are first sorted by the depth of
their goal node in the reverse order than the one used in previous phases i.e.
from the shallowest to the deepest (line 1). This order guarantees obstacle
free paths for agents moving to their goal nodes because of their configuration
created in Phase 2 where they were ordered by the depth of their goal from
deepest to shallowest.

Process of phase 3 can be see on Figure 5.2d. Agents are moved in reverse
order of their goals depth in the tree. This means that Agent R1 is first,
agent R3 second and R2 is the last one. In this phase agent R1 moves on
collision free path towards his goal node G. Agent R3 moves to his goal node
B and agent R2 doesnt move as he is already in his goal A.

5.2.4 Optimizing created plan

Because of the assumption made for the previous three phases the resulting
plan can be extremely suboptimal. The movement to leaf nodes in Phase

25

5. A Complete and Scalable Strategy for Coordinating Multiple Robots Within Roadmaps.....
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

R1 A B D G H I H G
R2 C B A
R3 F E F G D B C B

Table 5.1: Plan segments created in phases 1-3

0 1 2 3 4 5 6 7 8 9 10
R1 A B D G H G
R2 C B A
R3 F G D B

Table 5.2: Plan segments after removing unnecessary cycles

1 and positioning of agents to the subtree of their goals creates a lot of
maneuvers that can be unnecessary because the space they occupy can be
unutilized. Another issue with the generated plan is that in every moment
only one of the agents is moving.

To lessen the impact of these issues and to bring solution closer to optimum
some postprocessing optimizations can be made. First optimization that
can be done is to remove redundant cycles in agents plans. The second
optimization is then to create concurrent plan from generated plan segments
from phases 1-3.

5.2.5 Loop removal

As stated in the previous section it is possible that several loops were in-
troduced to the solution during the first 3 phases. To remove the loops it
is possible to go over the every time step of the solution and keep track of
occupancy in each node. If the same node is encountered by one agent it is
certain that there is a loop in his plan and all steps between these two visits
of the same node can be ommited from his plan. The plan for a problem
solution from Figure 5.2 can be seen in Table 5.1. As stated there can be
loops in the base solution from first three phases for example the agent R3
moves to node E from F as his first step which is unnecessary because he
moves to F again in his next plan segment. Because no other agent has
stepped on node F when agent R3 moved to E and back to F it is possible to
remove this cycle. Plan after removing all cycles can be seen in Table 5.2

5.2.6 Phase 4: Building a concurrent plan

First 3 phases generate a plan in which only one agent moves at a time. This
can be represented as a sequence of path windows for each agent and to lower
the time required to plan to complete, these windows need to be overlaped in
time as much as possible. This is done by first considering initial positions of
agents as windows that are set to time zero. After that the path sequences are
considered one by one and shifted back in time until collision with previously

26

................................... 5.3. Implementation

0 1 2 3 4 5 6
R1 A B D G H G
R2 C B A
R3 F G D B

Table 5.3: Final plan after overlaping segments in time

placed sequences occurs. In this context two agents located in the same node
at the same time or agents switching positions between two neighbouring
nodes are considered as a conflict.

Non overlaping plan can be seen in Table 5.1 and its version with removed
cycles in Table 5.2. Table 5.3 shows final plan after overlaping all segments
in time as much as possible. Both cycle removal operation and overlaping
segments in time managed to shorten the original plans length from 17 steps
to 7 steps and thus bringing it closer to optimum.

5.3 Implementation

Basic implementation followed steps described in the previous sections. Be-
cause the quality of solution is affected by the heuristic to choose leaf nodes
for agents to go to in the first phase, several methods of leaf choice were
implemented and tested such as:. A random free leaf node. The nearest leaf to agents position. A random free leaf in agents goals subtree. The nearest free leaf in subtree of agents goal. The nearest free leaf in subtree of agents position

Implementation of the second phase followed the pseudocode of Algorithm
5 but solved issues presented in the corresponding Section 5.2.2. First issue
considered the situation when there was an agent Rb that was within subtree
of agents R1 goal but his goal was outside of this subtree. The original
algorithm tries to find a free leaf outside of this subtree. If such leaf does not
exist, the algorithm then finds a free leaf in said subtree and moves agent R1
to it. Agent Rb is then moved to his goal. This proved to cause problems
as it is not guaranteed that no other agent will not use agents Rb goal for
his plan. The lines 15-17 in the original Algorithm 5 were then substituted
for pseudocode seen in Algorithm 7. As can be seen the solution was to not
move agent Rb as his depth of node must be lower than that of agent R1 and
thus meaning he is moved to subtree of his goal in one of future iterations.

The next issue with pseudocode in Algorithm 5 was that when there was
no blocked agent the algorithm tried to move agent R1 into one of free leafs
of his goal but such free leaf would sometimes not exist. The solution to this

27

5. A Complete and Scalable Strategy for Coordinating Multiple Robots Within Roadmaps.....
problem was to check if free leaf was found. If free leaf was found then no
change was necessary and the agent is moved to his allocated free leaf node.
Conversely if no free leaf exists in the subtree, agent R1 is moved to his goal
instead. This is possible because if there was any agent that would need to
go through agents R1 goal it would have gone before him as agents move
according to ordering by the depth of their goal and as such it is guaranteed
that no agent needs to go through agents R1 goal. These changes modify the
lines 20-21 of Algorithm 5 by swaping them for the lines in Algorithm 8.

Algorithm 7 Handling no free leaf outside of subtree
leaf = freeLeafInSubtree(goal)
planAgentToNode(agent,leaf)
continue

Algorithm 8 Handling no free leaf in subtree
leaf = freeLeafInSubtree(goal)
if leaf exists then

planAgentToNode(agent,leaf)
else

planAgentToNode(agent,goal)

Rest of this section discusses implementation details of necessary data
structure for the algorithm as well loop removal and concurrent plan building
phases.

5.3.1 Data structure

The algorithm utilizes spanning tree of a graph to plan agent movements. The
spanning tree implementation also requires to accommodate fast querying
for free leaf nodes and also if certain node is in a subtree of a different node.
Implementation of the spanning tree that can be queried for nodes location
in subtree is inspired by implementation suggested in [5].

The spanning tree is created from the initial graph as a graph object itself
by only selecting used edges and skipping the rest. The algorithm used for
this process in our implementation is suggested in [6]. It performs informed
search through the whole graph and always expands node that has currently
maximal number of neighbours and then closes it. This approach tries to
maximize the number of leafs in the spanning tree and thus maximize number
of agents that can be planned.

To query the basic tree if node A is in the subtree of node B it is required
to move from node A to the root of the tree and check whether node B is
encounted along the path. However, this approach is extremely inefficient
and because of that the approach proposed and implemented in [5] is used.
The main idea of this approach is to assign unique index to each node of the
spanning tree and use only these indices IA,IB to determine if A is in the

28

................................... 5.3. Implementation

G

D H

E B I

A C

F

a

I = 0
max = 8

I = 1
max = 2

I = 3
max = 6

I = 7
max = 8

I = 8
max = 8

I = 4
max = 6

I = 5
max = 5

I = 6
max = 6

I = 2
max = 2

Figure 5.3: Example of indexed spanning tree

subtree of B. The indices are assigned in such a way that subtree of node
A contains only nodes with higher indices than that of A. This is achieved
by performing DFS search through the created spanning tree and marking
the nodes in the order they are visited. Root of the tree has always index 0.
Example of indexed spanning tree 7.1b can be seen in Figure 5.3. If subtree
is then queried for relation of nodes A and B, the only following three cases
can happen:..1. Index of A is lower than that of B and A is not in the subtree of B...2. Index A is higher than B and node A is in the subtree of B...3. Index A is higher than B and node A is not in the subtree of B.

The first case can clearly determine the relation between A and B. The
second and third cases are then left to be distinguished. This can be achieved
if each node also saves the index of the highest node in its subtree. If this
information is known then the the following rule can be applied:. If IA ≥ IB ∧ IA ≤ IBmaxł then node A lies in the subtree of B.

5.3.2 Implementation of loop removal

As discussed in the Section 5.2.5 the plan created in by the first three phases
of the algorithm may contain a large number of maneuvers for each agent
that are unnecessary. Loop removal procedure tries to mitigate this issue by
looking for these loops in the plan and removing them. The procedure can
be seen in Algorithm 9. The process keeps information about node visits in
structure nodeV isits which is empty at the start (line 1) The algorithm then
iterates over all plan segments, extracts information about which agent it
belongs to and then iterates over all of its steps (lines 2-5). For every step the
algorithm checks which agents already stepped on the corresponding node. If
no agent stepped on or if other agent has stepped on said node the current
step is marked in nodeV isits structure along with the position in current
segment (lines 7-10). On the other hand, if the agent who previously visited
current node is the current agent, then the algorithm has found a cycle. This

29

5. A Complete and Scalable Strategy for Coordinating Multiple Robots Within Roadmaps.....
cycle is them removed and structure nodeV isits is updated for every node in
the removed cycle accordingly (lines 11 - 16).

Algorithm 9 LoopRemoval(planSegments)
1: nodeVisits = ∅
2: for planSegment ∈ planSegments do
3: agent← planSegment.first
4: segment← planSegment.second
5: for i = 1→ length(segment) do
6: node← segment [i]
7: if nodeV isits [node] isempty then
8: nodeV isits[node].addToTop(agent, segment, i)
9: if previous visit in node is not from agent then

10: nodeV isits[node].addToTop(agent, segment, i)
11: else
12: firstSeg ← nodeV isits[node].top()
13: secondSeg ← segment
14: startLoop← nodeV isits[node].top().pos
15: endLoop← i
16: removeLoop(firstSegment, startLoop, secondSeg, endLoop)

5.3.3 Implementation of concurrent plan building

As described in Section 5.2.6 the concurrent plan building is an essential
part of the algorithm because otherwise the agents always move one at a
time which in many instances results in plans that are longer than necessary
because of agents that are waiting.

In our implementation several versions of concurrent plan building were
tested. These implementations can be divided into two groups:..1. The first type of concurrent plan building is the one described in Section

5.2.6. For this type two versions were implemented. Both versions
consider each segment individualy and then shift it in time until suitable
start time is found. First version places the segment at the end of the
plan and then shifts it back in time until collision occurs. Second version
on the other hand places the segment to the time when the corresponding
agent last stopped and then shifts it later in time until no collision occurs...2. The second type of proposed concurrent plan building techniques are
heavily inspired by algorithm previously described in Chapter 3. Three
versions of this approach were implemented but all follow the same idea.
The original algorithm is given a start and end points and tries to find
a path through time intervals on given resource graph to connect these
points. The main idea of this proposed concurrent building is to modify
this algorithm in such a way that instead finding path through time
intervals on nodes of the entire graph, the algorithm is given sequence

30

................................... 5.3. Implementation

of resource nodes i.e. segments through which it needs to find a path.
These three versions differ in the type of search used: Depth first search,
Breadth first search and A*.

31

32

Chapter 6
Multi-robot Discrete Rapidly-Exploring
Random Tree

This chapter describes sampling-based algorithm called Multi-Robot discrete
Rapidly-Exploring Random Tree [3] (MRdRRT) which is an adaptation of a
well known rapidly-exploring random tree (RRT) algorithm [4] for a discrete
space (graph) embedded in Euclidean space. As opposed to A*-based ap-
proaches the sampling algorithms work well in high-dimensional configuration
spaces. The dRRT algorithm goes through composite roadmap that may pos-
sibly have an exponential (in a number of agents to be coordinated) number
of neighbours. High efficiency of traversal is achieved by using only partial
information about the roadmap. Only one neighbouring node is considered in
each step, which enables to find solutions for given scenarios while exploring
only small fraction of composite space.

The RRT algorithm is discussed in the Section 6.1 of this chapter. The
Section 6.2 is dedicated to description of necessary modifications to RRT that
allow it to work on discrete graph. The Section 6.3 follows up on the second
section and explains further modifications that enable dRRT to be utilized in
multi-agent use resulting in MRdRRT. Implementation of the basic algorithm
is discussed in the Section 6.4 as well as several modifications proposed by
this thesis which were inspised by modifications of RRT such as growing two
trees instead of one or “smarter” generation of random sample. The main
contributions of this thesis are proposed modifications to MRdRRT that are
inspired by changes introduced in RRT*[2] that bring multi-agent solution
of MRdRRT closer to optimum. These modifications include new version of
oracle and a new step called rewiring, that attempts to improve the structure
of the tree in every step. All of these changes are described in the Section 6.5.

6.1 Rapidly-exploring random tree

A Rapidly-exploring random tree(RRT)[4] is a well-known sampling based
algorithm which efficiently searches nonconvex high-dimensional spaces by
building a tree which grows towards randomly generated samples from the
search space. The main loop of the algorithm can be seen in Alg. 10. It starts
with a tree containing only initial configuration s (line 1) and the algorithm

33

6. Multi-robot Discrete Rapidly-Exploring Random Tree
expands the tree (Alg. 11) in every step. The next step of the algorithm
is the connector whose function is to attempt to connect the newly added
configuration qnew with the terminal state t. If the connector succeeds the
final path is obtained by concatenating the path obtained by connector and
backtracking steps in the tree from qnew to the initial configuration s (line
5). For example the easiest connector can be implemented as a check if any
obstacle intersects the line between newly added vertex qnew and terminal
node t. If no intersection if found then the line from qnew to t is returned.

The expansion function is seen in Algorithm 11. The procedure repeats
following steps N times where N is a parameter. The first step is randomly
drawing a sample qrand from search space C (line 2). RRT then finds the
nearest neighbour qnear of the generated sample in the tree (T) (line 3) and
generates a new configuration by expanding the tree from qnear towards the
sampled point qrand without violation any constraints, e.g. avoiding collisions
with obstacles (line 4). This configuration can be generated in several ways
such as having a fixed step size and making the step towards qrand towards
rnear or linking qrand and qnear directly in which case qrand becomes qnew.

Algorithm 10 RRT
1: T .init (s)
2: loop
3: EXPAND (T)
4: P ← CONNECT_TO_TARGET (T , t)
5: if not_empty(P) then return RETRIEV E_PATH (T ,P)

Algorithm 11 EXPAND (T)
1: loopi = 1← N
2: qrand = RANDOM_SAMPLE ()
3: qnear ← NEAREST_NEIGHBOUR (T , qrand)
4: qnew ← newConf (qnear, qrand)
5: T .add_vertex (qnew)
6: T .add_edge (qnear, qnew)

6.2 Discrete RRT

A discrete rapidly-exploring random tree (dRRT)[3] is a modification of
the RRT algorithm for pathfinding in implicitly given graphs embedded
in Euclidean space. The graph can be viewed as an approximation of the
relevant portion of Euclidean space and its traversal as an exploration of its
subspace. Let G = (V,E) be a graph, where every v ∈ V is embedded in
a point in Euclidean space Rd and every edge (v, v′) ∈ E is a line segment
connecting the points. Given two vertices s, t ∈ V the dRRT searches for
a path in G from s to t. Just like RRT, the dRRT grows a tree rooted in

34

.................................... 6.2. Discrete RRT

s by iteratively adding new points to the tree while also trying to connect
to t without violating any constraints, e.g. collision with environment. The
growth is achieved by randomly sampling a point in the composite space and
then extending the current tree towards this sample. In the discrete case the
newly added vertices and edges are taken from G as there are no new vertices
nor edges created during the process. Given implicitly represented graph G,
the information about neighbours of already visited nodes is retrieved by a
technique called oracle.

6.2.1 Oracle technique for querying the implicit graph

In order to generate neighbor nodes of already visited nodes dRRT uses
technique called oracle. Without loss of generality consider thatG is embedded
in [0, 1]d. For two points v, v′ ∈ [0, 1]d the ρ (v, v′) denotes a ray that begins in
v and goes through v′. ∠v (v′, v′′) given three points v, v′, v′′ ∈ [0, 1]d denotes
the (smaller) angle between ρ (v, v′) and ρ (v, v′′). The way the oracle is
used is given sample point u it returns the neighbour v′ of v such that angle
between rays ρ (u, v′) and ρ (v, v′) is minimized. This can be defined as

OD (v, u) := argmin
v′∈V

{
∠v

(
u, v′

)
|
(
v, v′

)
∈ E

}
.

6.2.2 dRRT description

At the first glance dRRT has similar structure to the RRT(see alg.10). The
algorithm starts in the initial node s (line 1) and iteratively grows a tree
(which is a subgraph of G). The growth is driven by expansion towards a
randomly generated sample while avoiding all conflicts (line 3). Additionaly,
the algorithm tries to connect to end node t in every iteration (line 4), if
connection to t is possible, meaning there exists a path from newly added
node to t, then the algorithm terminates and retrieves the path from built
tree.

On the other hand, the expansion step (see Alg.12) of the algorithm is
different from classical RRT in a sense that it only expands to vertices of
G. Every time expansion is called it runs following steps N times where N
is set parameter: Random sample point rrand ∈ [0, 1]d is generated (line 2)
and the nearest neighbour qnear of that sample that is already in the tree is
found (line 3). After that, the oracle OD is queried (line 4) to find a new
point qnew ∈ V that extends the tree towards qrand from qnear. Once qnew is
obtained, it is checked (line 5) whether it is already present in the tree. In
case it is not present it is added together with the respective edge (qnear, qnew)
to the tree (lines 6,7).

After each expansion step, the algorithm tries to connect to the node t using
CONNECT_TO_TARGET (Alg.13) operation. This operation tries to
connect t with its nearest neighbours q ∈ T using LOCAL_CONNECTOR
method. Once the CONNECT_TO_TARGET operation succeeds the

35

6. Multi-robot Discrete Rapidly-Exploring Random Tree
RETRIEV E_PATH operation is called, which concatenates path from s
to q with the path P.

Algorithm 12 EXPAND (T) for dRRT
1: for i = 1→ N do
2: qrand = RANDOM_SAMPLE ()
3: (qnear ← NEAREST_NEIGHBOUR (T , qrand))
4: qnew ← OD (qnear, qrand)
5: if qnew /∈ T then
6: T .add_vertex (qnew)
7: T .add_edge (qnear, qnew)

Algorithm 13 CONNECT_TO_TARGET (T , t)
1: for q ∈ NEAREST_NEIGHBOURS (T ,t,K) do
2: P ← LOCAL_CONNECTOR (q, t)
3: if not_empty (P) then return P

return ∅

6.2.3 Local connector

It is possible that the tree T will, if given sufficient time, eventually reach
t during the expansion phase. It is however unlikely for larger problems
and because of that it is necessary to use LOCAL_CONNECTOR. Given
two vertices q0, q1 ∈ G this method tries to search for a path between q0
and q1 without violating any constraints. It is assumed that connecting two
nearby samples requires less effort, than solving the whole initial problem.
The assumption is also that the local connector is effective on restricted
pathfinding problems only.

6.3 Multi-Robot discrete Dapidly-exploring
Random Tree

This section describes multi-agent adaptation of dRTT called Multi-Robot
discrete Rapidly-exploring Random Tree (MRdRRT). Specifically necessary
changes are described to each step of dRRT for it to work in pathfinding in a
composite roadmap G which is embedded in joint C − space of m agents.

6.3.1 MRdRRT description

On high level, MRdRRT executes the same operations as dRRT. Steps
necessary in each operation, however, slightly vary. A new sample s for
multi-agent scenario is generated in the expansion phase in a similar manner
as for a single agent. The only difference is that a sample s1,n ∈ [0, 1]d is
generated for each agent and all of them are then concatenated into s. Oracle

36

................... 6.3. Multi-Robot discrete Dapidly-exploring Random Tree

(a):

near

(b):

near

new

(c):

new

(d):

Figure 6.1: The illustration of expansion phase of dRRT algorithm. The tree T
is depicted in black edges and vertices. Gray vertices and edges depict unexplored
portions of the graph. In (a) a random sample qrand(red) is generated. (b) nearest
vertex qnear already in T using Euclidean distance is found. (c) neighbour vertex
qnew of qnear is found such that its direction from qnear is closest to the direction
to qrand from qnear. (d) vertex qnew is added to the tree T

and the CONNECT_TO_TARGET methods for multi-agent scenario are
discussed in more detail in the following sections.

6.3.2 Oracle OD for multi-agent scenario

As discussed in section 6.2.1 the oracle given q ∈ V and a random sample
s, OD (C, q) returns C ′ such that C ′ is a neighbouring node of C in G and
any other C ′′ of C the ρ (C, q) forms a smaller angle with ρ (C,C ′) than with
ρ (C,C ′′). It is needed for multiple agents to define C (ri) as the C − space
of a agent ri. Let q = (q1, ..., qm) where qi ∈ C (ri) and let C = (ci, ..., cm)
where ci ∈ Vi. In order to find a neighbour of C it is necessary to first find
the best neighbour for each agent and concatenate them into a candidate
neighbour C ′ for C. The next step is to validate whether (C,C ′) forms a
valid edge in G i.e. if no constraint is invalidated during this transition. If
valid, the new node C ′ is returned, an empty set is returned otherwise, the
sample s is ignored and a new sample is generated in the expansion phase.

6.3.3 Local connector for multi-agent scenario

The goal of the local connector is to connect two given vertices of a graph as
discussed in section 13. For a multiple agent scenario a framework described
by van den Berg et. al [13] is used. Given two vertices V = (v1, ..., vm) ∈ G

37

6. Multi-robot Discrete Rapidly-Exploring Random Tree
and V ′ = (v′1, ..., v′m) ∈ G the path πi is found for each agent ri on Gi from
vi to v′i. After this the connector attempts to find an ordering of agents in
which agents move one at a time meaning agent ri does not leave its starting
position vi untill all agents with higher priority reached their final positions on
their respective paths while avoiding collisions. When all agents with higher
priority reach their destinations the agent ri moves along its path while other
agents stand still. Any algorithm that finds such ordering can be used, but
in this case the technique discussed in [3] was used in our implementation.

The priorities are assigned according to Algorithm 14. The procedure starts
with a graph I containing m vertices representing m agents (line 2) but no
edges. For each agent ri it is then checked whether any other agent has its
start position or end position on a path of the agent ri (line 4). After that
for every colliding agent rj it is checked if his start position vj is on the path
of agent ri in which case agent rj must have higher priority than ri so edge
(rj → ri) is added to the graph I (line 7). Otherwise the coliding agent must
have its end position v′j on the path and in that case the edge (ri → rj) is
added because the agent ri must have higher priority than rj (line 9). When
all agents are processed it is checked if the graph I is acyclic (line 10), in
which case the topological sort of the graph is returned. An empty set is
returned otherwise (line 11).

Algorithm 14 Ordering of agents for local connector
1: paths← find_paths(V, V ′)
2: I ← (R, ∅)
3: for i = 1→ m do
4: π ← colliding_agents (paths [i])
5: for rj ∈ π do
6: if pos (rj) == V [j] then
7: I.add_edge ((rj , ri))
8: else
9: I.add_edge ((ri, rj))

10: if I.is_acyclic () then return I.topological_sort ()
11: elsereturn ∅

6.4 Implementation

This section discusses implementation of MRdRRT algorithm along with
changes made to the basic algorithm. Because the basic oracle implementation
ran into situations that caused it to repeatedly create conflicting configurations
which caused a large number of samples to be discarded, an improved version
of oracle was implemented that purposefully tries to generate new valid node
and only when it cannot generate it, the sample is discarded. Different
methods of getting random samples were also implemented and are described
in this section. The modifications of local connector were heavily inspired

38

................................... 6.4. Implementation

by overlaping path segments from algorithm which is described in Chapter
5. The last major improvement that was implemented was method that
grows two trees instead of one. This improvement was suggested because
in the original MRdRRT the distance in the composite space C between
newly created node qnew and terminal node t can be large and thus lowers the
chance of local connector success. The idea behind two trees is that by trying
to always connect two newly generated nodes both of which are generated
towards the same sample shortens the distance that needs to be bridged by
local connector and thus increases the chance of local connector success.

6.4.1 Basic implementation

The basic high level implementation of MRdRRT followed the structure of
the pseudocode in Alg. 15. The main difference is that the expansion phase
always generates one new node instead of N and this local connector is always
called only on this newly generated node instead of on N nearest neighbours
of terminal node t. This change was proposed because the base version tended
to check the same nodes multiple times and always checked the same number
of them. These modifications allow that all newly added nodes are checked if
they can be connected to the terminal node and thus increasing the chance
to success.

Algorithm 15 MRdRRT implementation
1: T .init (s)
2: loop
3: P ← CONNECT_TO_TARGET (T , t)
4: if not_empty (P) then
5: Break
6: EXPAND (T)

return RETRIEV E_PATH (T ,P)

Random sample generation

The expansion phase generates random sample as its first step to get a sample
node towards which the generated tree is extended. For this reason it depends
on random sample generation and because of this several possible ways how to
generate random samples in the expansion phase were implemented including:. Random samples from the bounding box of G. Random samples from the bounding box of G with addition of chance to

wait. Randomly chosen vertices of G. Randomly sampled points from neighbourhood of shortest paths for every
agent. Every such point q has the property that shortestPath(s, q) +

39

6. Multi-robot Discrete Rapidly-Exploring Random Tree
shortestPath(q, t) ≤ shortestPath(s, t) + N where N is a parameter
that can be arbitrary non-negative value.

The first approach is what the original MRdRRT uses but it proved
inefficient in maps with tight spaces as it would not allow agents to stay
put as their next action and would not find solution in situations where
standing still was required for one of the agents. Because of this the slightly
improved version was implemented, where for every agent there is a chance
for the oracle to make a given agent stay put in newly generated vertex. The
third version of random sample generation tried to incorporate the chance to
stay put directly into the random sample generation by generating random
vertices from G. If the same point is generated as in the nearest neighbour
then the agent stays put. The last iteration of random sample generation is
the improvement on the previous one with the change to vertices that are
generated from G. Before the main loop of path finding this method finds
shortest paths for every agent and after that it finds points from which the
sample is generated by going over all points p and checking if

shortestPath(s, q) + shortestPath(q, t) ≤ shortestPath(s, t) +N

where N can be arbitraty non-negative value.

Nearest neighbour search

Because of the significant impact on performance of brute-force search for the
nearest neighbour and also because exact nearest neighbour is not required
the Fast Library for Approximate Nearest Neighbour(FLANN)[7] was used.
This library was specificaly chosen because of its performance but also because
of its ability to add new points to the search index during the algorithm run.

Oracle OD

The first implementation of Oracle OD was made according to the Section
6.3.2 with the addition of chance for a agent to stay put discussed in the
Subsection 6.4.1. After generating a sample this way the new node had to be
checked for collisions. This method proved inefficient along with its associated
random sample generation. Implementation of the next version of a random
sample generation resulted in improvements in the second oracle version.
This version iterates over positions of all agents v and tries to generate a
new step v′ for them towards sample point u while avoiding collisions and
also minimizing the ∠v (u, v′) by keeping a list of collision configurations that
need to be avoided. The last iteration of the method Oracle only adds to the
previous one random ordering of agents in each query to avoid getting stuck.

6.4.2 Local connector

Local connector implementation was made in the same way as described
in Alg. 6.2.3 while also including postprocessing which improves a number

40

................................... 6.4. Implementation

of overall plan steps by reducing waiting required by the agents. The first
step is to find shortest paths for all agents from the current agent position
v to the end position v′. In the case where end positions are also target
positions t, the preprocessing before the start of algorithm was implemented.
This preprocessing includes calculation and storing of paths leading from all
nodes of the graph to all target positions. The next step is generating the
dependancy graph and acyclicity check described in Section 6.3.3. In the case
when the graph is acyclic the order in which the agents move is generated by
topologically sorting the nodes in the dependancy graph. Kahn’s algorithm[1]
was used to topologically sort the graph in our implementation. This process
creates the order in which agents are able to get into their end positions
without collisions if they move one by one. The main drawback of this is that
agents might wait unnecessarily. The standard connector implementation
can be seen in Fig. 6.4a. The goal of improvement is to shift the respective
intervals pi representing individual paths as early in time as possible. This
can be done by considering each interval pi individualy, setting its position
to its start position (line 2) vi and then shifting it to the right later in time
(line 6) until no conflict arises(see Alg.16). The result of this procedure can
be seen in Fig. 6.4b.

Algorithm 16 Ovelaping local connector intervals
1: I = LOCAL_CONNECTOR (v, v′)
2: OverlapingP lan = SetStartPositions (v)
3: for interval i ∈ I do
4: t = 1
5: while CONFLICT (OverlapingP lan, i, t) do
6: t = t+ 1
7: OverlapingP lan.add (i, t)

(a) : Before Overlap
v

v

v

v

1

2

3

4

p
1

p
2

p
3

p
4

(b) : Overlaped
v

v

v

v

1

2

3

4

p
1

p
2

p
3

p4

Figure 6.3: Shifting path segments

6.4.3 Two-tree version implementation

The local connector in the basic version of MRdRRT may sometimes have
troubles connecting terminal node t with the newly added node qnew because
their distance may be too big in the composite space. The main idea of
two-tree implementation is to grow two trees instead of one. One from the
initial configuration s and one from terminal configuration t. Main differences

41

6. Multi-robot Discrete Rapidly-Exploring Random Tree
to the basic MRdRRT are in the expansion phase (see Alg.17) where one
random sample is generated and new nodes qnewStartNode and qnewEndT ree

are created using the oracle. If none of them is already in its respective tree
they are added to them. Local connector then tries to connect these two new
nodes together instead of one new node and terminal node. This process
should help bring the nodes that need to be connected closer together and
increase the chance of success for local connector.

Algorithm 17 EXPAND_2TREES (Tstart, Tend)
1: for i = 1→ N do
2: qrand = RANDOM_SAMPLE ()
3: qnearStartT ree ← NEAREST_NEIGHBOUR (Tstart, qrand)
4: qnearEndT ree ← NEAREST_NEIGHBOUR (Tend, qrand)
5: qnewStartT ree ← OD (qnearStartT ree, qrand)
6: qnewEndT ree ← OD (qnearEndT ree, qrand)
7: if qnewStartT ree /∈ Tstart AND qnewEndT ree /∈ Tend then
8: T .add_vertex (qnew)
9: T .add_edge (qnear, qnew)

6.5 Steps towards optimality - RRT*

The main strength but also weakness of the RRT algorithm comes from the
fact that it searches for any path leading from an initial configuration s to a
terminal configuration t. This fact combined with the random nature of RRT
often results in longer paths than necessary. For this reason the algorithm
RRT*[2] was introduced which improves this behavious. RRT* (Alg.18)
which is known to converge to optimal solution makes improvements to the
expansion phase of RRT and it also introduces a new step called rewiring,
which locally improves the structure of the tree T .

The improved expansion phase(see Alg.19) adds one additional step to the
expansion phase of original RRT. The algorithm after generating new random
sample qrand (line 2), finding a nearest neighbour qnear (line 3) and generating
a new configuration qnew (line 4) iterates over all nodes of T that are within
radius r centered in qnew and connects it to the one which minimizes the
path length to the root of the tree from qnew if chosen as a predecessor. This
steps purpose is to drive the expansion in such a way that tries to eliminate
unnecesarily long paths.

The Rewiring (see Alg. 20) is the new step introduced in RRT* and its
purpose is to localy revise the structure of the tree T by considering the
newly added node qnew from expansion phase as a transit node. Rewiring
iterates over all nodes within the radius r of node qnew and checks if a path
leading to them from the root would be shorter if their predecessor was the
node qnew.

42

............................ 6.5. Steps towards optimality - RRT*

Algorithm 18 RRT* algorithm
1: T .init (s)
2: loop
3: EXPAND (T , r)
4: REWIRE (T , r, qnew)
5: P ← CONNECT_TO_TARGET (T , t)
6: if not_empty(P) then return RETRIEV E_PATH (T ,P)

Algorithm 19 RRT ∗ EXPAND (T , r)
1: qrand = RANDOM_SAMPLE ()
2: qnear ← NEAREST_NEIGHBOUR (T , qrand)
3: qnew ← newConf (qnear, qrand)
4: qbestP red = −1
5: dbest =∞
6: for n ∈ IN_RADIUS(T , qrand, r) do
7: if RootDist (n) + length (edge (n, qnew)) < dbest then
8: dbest = RootDist (n) + length (edge (n, qnew))
9: qbestP red = n

10: T .add_vertex (qnew)
11: T .add_edge (qbestP red, qnew)

6.5.1 RRT* modifications towards discrete multi-agent
scenario

For the RRT* to work in a multi-agent discrete scenario the expansion phase
of MRdRRT algorithm (see Section 6.3) needs to be modified. As discussed in
the Section 6.5 the change to expansion phase consists of connecting the new
node qnew to a node already in the tree T that minimizes the distance traveled
from the initial configuration s. For the purpose of distance measurement
between nodes in a multi-agent scenario the sum of Euclidean distances
traveled by each agent was used. In the original modification of the expansion
phase the additional step consists of checking nodes in the radius around
the new node qnew for the “best” predecessor and then connecting qnew to it.
However, in the multi-agent discrete scenario (Alg. 21) the computational
requirements to perform a similar task are much higher because it would
require to run a local connector method from section 6.3.3 on each node in
the radius and then perform the distance to root check. The expansion phase
was thus modified in such a way that used nearest neighbour search instead
of radius (line 2). The key difference is that in the first step of expansion
the random sample qrand (line 1) is generated but after that the new node
qnew is not created from the nearest neighbour of qrand. Instead, N nearest
neighbours of qrand are iterated over (lines 6-11), a new node qnew is generated
from them using oracle OD, but not added into the tree. Each qnew is checked
for the distance traveled through tree T towards the root s and only a node
that minimizes this distance is connected to its corresponding predecessor.

43

6. Multi-robot Discrete Rapidly-Exploring Random Tree
Algorithm 20 REWIRE (T , r, qnew)

for n ∈ IN_RADIUS (T , r, qadded) do
if RootDist (v) + length (edge (qnew, n)) < RootDist (n) then

n.predecessor = qnew

Rewiring step of RRT* localy revises a structure of T by checking whether
nodes in the radius r around newly added node qnew had distance traveled
towards the root node shorter if they were reconnected to qnew. This step
was modified for the use in a multi-agent discrete case by omitting the radius
and using N nearest neighbours search instead. Because these neighbouring
configurations qnear might not be direct neighbours of qnew in the composite
graph G the local connector is used to obtain a path between these two nodes.
If local connector fails to find the path, the neighbour is immediately skipped.
In the case of local connectors success in finding a path p between qnew and
qnear it is checked if a length of path from the root to qnew concatenated with
the path p and node the qnear is shorter than a distance traveled through
T from the root to qnear. If it is shorter then all nodes of p are added to T .
The first node of p is connected as successor of qnew and the last node of p is
chosen as a new predecessor of qnear.

Algorithm 21 MRdRRT ∗ EXPAND (T , r)
1: qrand ← RANDOM_SAMPLE ()
2: NNs← getNearestNeighbours(qrand)
3: qbestP red = −1
4: dbest =∞
5: qnewBest = ∅
6: for qnear ∈ NNs do
7: qnew ← OD (qnear, qrand)
8: if RootDist (qnear) + distance (qnear, qnew) < dbest then
9: dbest = RootDist (qnear) + distance (qnear, qnew)

10: qbestP red = qnear

11: qnewBest = qnew

12: T .add_vertex (qnewBest)
13: T .add_edge (qbestP red, qnewBest)

Algorithm 22 REWIRE (T , r, qnew)
NNs← getNearestNeighbours(qnew)
for qnear ∈ NNs do

p← LOCAL_CONNECTOR (qnew, qnear)
if RootDist (v) + length (edge (qnew, n)) < RootDist (n) then

n.predecessor = qnew

44

Chapter 7
Experiments

This chapter elaborates on the experiments performed on the implemented
algorithms from Chapters 3, 4, 5 and 6. These will be further referenced
to as mors, icts, peasgood and MRdRRT. Section 7.1 elaborates on the
methodology of the experiments performed in Chapters 7.2, 7.3,7.4 and 7.5.
Section 7.2 discusses the results obtained from the experiments done on
the mors algorithm. Results of experiments on the icts algorithm can be
found in Section 7.3. Section 7.4 presents the results from experiments on
peasgood algorithm, while Section 7.5 introduces the results obtained from
experiments on different versions of MRdRRT algorithm and discusses the
potential real-world use of the implemented algorithms.

The experiments described in this section were all performed on three types
of maps that are because of their size available on the enclosed CD...1. The first type of maps are the grid benchmark maps that are freely

accessible at [10]..2. Three versions of maps from a real-world robot warehouse that differ in
size...3. Map used for testing of icts algorithm which is a 5x5 grid.

7.1 Methodology

At first every algorithm is tested how it scales with the number of agents
placed on one map. For the algorithms that have had several versions of
their steps implemented the experiments first deduce their best setting that
is then used for the scaling experiments. Several performance indicators are
measured during these experiments, such as:. Number of time steps required until the last agent gets to his goal. This

is further referenced as the length of the plan.. Sum of distances traveled by particular agents.. Number of iterations of the algorithm required if applicable.

45

7. Experiments
. Number of failed plans. This means number of times the algorithm

overstepped the maximum number of iterations or also if algorithm
managed to plan only a partial number of agents.. Time required to obtain the plan. For algorithms that include prepro-
cessing the time is split into preprocessing time and planning time.

Once all scaling experiments are done, all algorithms are tested and com-
pared on the same assignments on a map of a large warehouse and other
selected maps.

7.2 Results of the mors algorithm

The experiment on the mors algorithm was performed on the largest map of
the robotic warehouse with 3315 vertices. The starting number of agents is
10 and this number is incremented in every cycle by 5 until 300 agents are
present. The algorithm was tested on 50 randomly generated assignments for
every number of agents where every agent starts at time 0 and two agents
can not have same start point or end point.

Because the algorithm is not complete it can happen that it will not be
able to find a path for every agent in the assignment. The success rate of
the algorithm was therefore also measured. For the testing purposes it is
considered that if a path is not found for all agents, then the algorithm failed
to find a plan for the given assignment.

One of the causes for a failure was in most cases non-sufficient length of
the free time window in which an agent enters the free time window graph
that caused its inability to expand into free time windows on neighbouring
resources.

(a) : First type of failure

A B

(b) : Second type of failure

A

B

Figure 7.1: Examples of two types of situations where the mors algorithm fails
to find a plan.

Another cause for a failure to find a path for an agent can be non-existence
of such path. Because the algorithm always considers only one agent at a
time it is likely to happen that currently planned agent can block a path
of subsequent agents if he stays in his goal position and does not disappear
from the map. An example of both types of a failure can be seen in Figure
7.1. The first figure shows the first type of a failure as if the agent A moves
to his goal with each step taking 1 unit of time then the middle node will

46

............................. 7.2. Results of the mors algorithm

0 50 100 150 200 250 300

Number of agents

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
uc

ce
ss

 r
at

e

Success rate for number of agents setting

Figure 7.2: The mors algorithm success rate scaling

have two free time windows for the agent B - [0, 1) and [2,∞). Because both
agents have entry time 0 the agent B has to use the free time window [0, 1)
for his entry but because the step length is 1, this time window can not be
used as its length is shorter and thus resulting in a failure. The second figure
shows the second type of a failure. The agent A moves to its goal node in
the middle which will leave only one free time window - [0, 1). But the agent
B can not use this window as it is not long enough for him to enter, traverse
and leave which leads to the second type of failure where the path does not
exist in the free time window graph for the current agent.

As seen in Figure 7.2. the success rate of the algorithm decreases rapidly
with the increasing number of agents. This issue can be mitigated however by
ensuring for example minimal distance between the start points of agents or
if the agents disappear from the graph once they reach their goal positions.

Considering only the plans that contain a path for all agents the algorithm
scales really well in terms of summed distance traveled by each agent as seen
in Figure 7.3

The experiments show that the mors algorithm scales incredibly well both
in sum of distances traveled but also in runtime but has a low success rate
for higher number of agents.

47

7. Experiments

0 20 40 60 80 100 120 140 160 180 200

Number of agents

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

S
um

 o
f d

ia
ta

nc
es

 tr
av

el
ed

Sum of distance traveled by each agent

Generated plan
Shortest paths

Figure 7.3: The mors algorithm scaling of a mean sum of distances traveled
by each agent in mors algorithm. The shortest paths values are obtained by
summing the shortest path length for each agent obtained by A* that ignore all
other agents in the assignment.

0 20 40 60 80 100 120 140 160 180 200

Number of agents

0

20

40

60

80

100

120

140

160

180

200

t[m
s]

time required to obtain plan

Figure 7.4: The mors algorithm scaling in terms of runtime.

48

.............................. 7.3. Results of the icts algorithm

7.3 Results of the icts algorithm

This section describes the experiment performed on icts algorithm. Due to its
computational complexity it is unsuitable for bigger problems and thus it was
tested on a 5x5 grid map with randomly generated start and end positions
for increasing number of agents. The number of agents starts at 1 and is
incremented by 1 until 10 agents are on the map. For every number of agents
5 different assignments were generated. No two start positions overlaped as
well as no two end positions overlaped in these assignments. The results of
this can be seen in Figure 7.5.

Because icts offers optimal solutions for given assignments the interesting
thing to see in the results is the difference between optimal solution and the
shortest one where all agents only follow their shortest paths to goal nodes.
The algorithm also does not scale really well in terms of runtime which is
expected because during the algorithm run all paths leading to goal with fixed
length have to be found, stored and then plan is found in their cross-product
which is a taxing operation.

49

7. Experiments

1 2 3 4 5 6 7 8 9 10

Number of agents

4

4.5

5

5.5

6

6.5

7

N
um

be
r

of
 s

te
ps

Length of plan

icts
shortest

1 2 3 4 5 6 7 8 9 10

Number of agents

0

5

10

15

20

25

30

35

S
um

 o
f t

ra
ve

le
d

di
st

an
ce

s

Sum of traveled distances

icts
shortest

1 2 3 4 5 6 7 8 9 10

Number of agents

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

t[m
s]

Runtime

Figure 7.5: Scaling of the icts algorithm.

50

........................... 7.4. Results of the peasgood algorithm

7.4 Results of the peasgood algorithm

Experiments on the peasgood were made on the largest map for the robotic
warehouse which consists of 3315 vertices. The number of agents started at
10 and was increased in increments of 10 until 500 agents were reached. For
each number of agents 10 different assignments were generated where no two
start positions and no two terminal positions overlap. Because Chapter 5
introduced several modifications to the algorithm the goal of this section is
to determine the ideal setting which is then used for the experiments in later
sections. The first modifications are to the choice of free leaf used in the first
phase of the algorithm. There are five versions for the leaf selection in total:..1. Random free leaf node..2. Nearest leaf to agent’s position..3. Random free leaf in agent’s goal subtree..4. Nearest free leaf in subtree of agent’s goal..5. Nearest free leaf in subtree of agent’s position

The results for this setting can be seen in Figure 7.6. For the purposes
of this experiment the choice of concurrent plan building was set to use the
version that places the segment to the end of the route of the corresponding
agent and then shifts it later in time until no conflict is present.

It can be seen that the setting where every agent is sent to his nearest
leaf performs the best out of the five variants because in all three observed
metrics it performed the best. What is interesting to observe is the runtime
performace of each setting. It was assumed that by moving agents directly
into the free nodes of their subtrees the number of necessary steps would
be reduced and thus the runtime would reduce. What can be seen is the
opposite, which might be caused by the second part of the first phase that
checks the paths to selected nodes for presence of other agents. If such agents
are found, then the one furthest along the path is selected and moved to the
selected free leaf node instead of the first considered agent. As a result of
this operation the agents can be moved further from their goal nodes than
they were at the start which causes the negative performance hit.

The second modifications are different versions of concurrent plan building
which has also five different variants:..1. Place segments to the end and shift them earlier in time until conflict..2. Place segments to the end of the route of their respective agent and shift

them later in time untill no conflict occurs..3. Depth-first search through time windows inspired by algorithm in Chapter
3

51

7. Experiments4. Breadth-first search variant of setting 3..5. A* search variant of setting 3

Results for the different settings in phase 4 of the algorithm can be seen in
Figure 7.7. Sum of distances traveled is the same for every setting because
concurrent plan building does not alter the paths agents take and thus is not
included in this comparisson. The results show that placing each segment
to the track end of its respective agent and then shifting it later in time
offers the best performace out of the five options in terms of plan quality and
second best performace in terms of runtime. The interesting part is the fact
that in terms of plan quality the depth first search is identical to A* search
and breadth first search is almost the same as placing the segment at the end
of the plan and then shifting it back untill no collision occurs.

It is possible to say from the previous experiments that the best settings
are using nearest free leaf node search in the first phase and placing the path
segments to the end of their respective agent’s path and shifting them later
in time untill no conflict arises. All previous experiments were performed
with the optional removal of loops from the plan. The results of experiments
with the best setting that compare the results of the algorithm with and
without the loop removal can be seen in Figure 7.8. Interesting observation in
these results is that while loop removal helps to reduce the distances traveled
by the agents, it starts to have a negative impact on the plan length as the
number of agents in the system increases. This behaviour seems counter
intuitive but possible explanation is that when the necessary maneuvers are
removed from the individual agent plans it also decreases the maneuverability
for the concurrent plan building and forces the individual path segments to
be pushed much later in time then if the loops were not removed.

52

........................... 7.4. Results of the peasgood algorithm

0 50 100 150 200 250 300 350 400 450 500

Number of agents

0

1

2

3

4

5

6

7

8

9

S
um

 o
f t

ra
ve

le
d

di
st

an
ce

s

104 Average sum of traveled distances for phase 1

Random leaf
Nearest leaf
Random leaf in goal subtree
Nearest leaf in goal subtree
Nearest leaf in start subtree

0 50 100 150 200 250 300 350 400 450 500

Number of agents

0

500

1000

1500

2000

2500

3000

3500

4000

N
um

be
r

of
 ti

m
e

st
ep

s

Average plan length for phase 1

Random leaf
Nearest leaf
Random leaf in goal subtree
Nearest leaf in goal subtree
Nearest leaf in start subtree

0 50 100 150 200 250 300 350 400 450 500

Number of agents

0

0.2

0.4

0.6

0.8

1

1.2

1.4

t[s
]

Average runtime for phase 1

Random leaf
Nearest leaf
Random leaf in goal subtree
Nearest leaf in goal subtree
Nearest leaf in start subtree

Figure 7.6: The peasgood algorithm comparison of different settings for phase 1.

53

7. Experiments

0 50 100 150 200 250 300 350 400 450 500

Number of agents

0

2000

4000

6000

8000

10000

12000

14000

16000

18000
N

um
be

r
of

 ti
m

e
st

ep
s

Average plan length for concurrent plan building variants

Shift earlier in time
Shift later in time
DFS through time
BFS through time
A* through time

0 50 100 150 200 250 300 350 400 450 500

Number of agents

0

1

2

3

4

5

6

t[s
]

Average runtime for concurrent plan building variants

Shift earlier in time
Shift later in time
DFS through time
BFS through time
A* through time

Figure 7.7: The peasgood algorithm comparison of different settings for concur-
rent plan building

54

........................... 7.4. Results of the peasgood algorithm

0 50 100 150 200 250 300 350 400 450 500

Number of agents

0

500

1000

1500

2000

2500

3000

3500

N
um

be
r

of
 s

te
ps

Comparison of average plan lengths

Without loop removal
With loop removal
Shortest paths

0 50 100 150 200 250 300 350 400 450 500

Number of agents

0

1

2

3

4

5

6

7

8

S
um

 o
f t

ra
ve

le
d

di
st

an
ce

s

104 Comparison of sum of traveled distances

Without loop removal
With loop removal
Shortest paths

0 50 100 150 200 250 300 350 400 450 500

Number of agents

0

100

200

300

400

500

600

700

800

t[m
s]

Comparison of runtime

Without loop removal
With loop removal

Figure 7.8: The peasgood algorithm scaling with increasing number of agents

55

7. Experiments
7.5 Results of the MRdRRT algorithm

This section describes experiments performed on the MRdRRT algorithm.
The Chapter 6 described several implemented versions of this algorithm such
as the basic version that uses one tree, modified version that uses two trees
that try to connect to each other and lastly the new approach presented in
this Thesis that was inspired by the RRT* algorithm. These variants are
further refered to as 1-tree, 2-tree and star variants.

The experiments are performed by generating 10 assignments for 10 different
numbers of agents from 10 to 100. Each of these assignments is then run 10
times and the displayed results are averages over each number of agents. All
versions of the algorithm are tested on the large map of the robotic warehouse.
The obtained results for the first two versions of the algorithm can be seen in
Figure 7.9.

The results show that the basic (1-tree) implementation performs better
than 2-tree version on the selected map in terms of quality of the plan but at
the cost of several times higher runtime and number of iterations.

To compare the proposed star version of the algorithm it is required to
first determine the best setting for the parameter N , which is number of
nearest neighbours that are checked during the search and substitutes the
radius parameter used in the original RRT algorithm. The comparison of
different settings for this parameter is displayed in Figure 7.10.

For this specific map the settings performed similarly but N = 20 is chosen
for the future experiments as it provides good ratio between the complexity
and quality.

Once the parameter N is chosen it is possible to make comparison between
all three versions of the algorithm. This comparison can be seen in Figure
7.11.

The results show that the proposed star version of the algorithm performs
significantly better than 1-tree, 2-tree variants but at the cost of a higher
number of iterations and runtime. During the experiments the maximum
number of iterations the algorithms were able to perform was set to one milion.
Once one milion iterations is reached, it is considered that the algorithm
failed. 1-tree, 2-tree variants never failed while the failure rate of the star
variant can be seen in Figure 7.12.

56

........................... 7.5. Results of the MRdRRT algorithm

10 20 30 40 50 60 70 80 90 100

Number of agents

60

80

100

120

140

160

180
N

um
be

r
of

 s
te

ps
Plan lengths

1 tree plan length
2 trees plan length
shortest length

10 20 30 40 50 60 70 80 90 100

Number of agents

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

S
um

 o
f d

is
ta

nc
es

 tr
av

el
ed

Sum of traveled distances

1 tree
2 trees
shortest length

10 20 30 40 50 60 70 80 90 100

Number of agents

0

1

2

3

4

5

6

N
um

be
r

of
 it

er
at

io
ns

104 Performed iterations

1 tree
2 trees

10 20 30 40 50 60 70 80 90 100

Number of agents

0

2000

4000

6000

8000

10000

12000

t[s
]

Runtime

1 tree preprocessing
2 trees preprocessing
1 tree planning time
2 trees planning time

Figure 7.9: MRdRRT scaling with increasing number of agents

10 20 30 40 50 60 70 80 90 100

Number of agents

60

70

80

90

100

110

120

130

140

150

N
um

be
r

of
 s

te
ps

Plan lengths

N = 1
N = 5
N = 10
N = 15
N = 20
N = 25

10 20 30 40 50 60 70 80 90 100

Number of agents

0

2000

4000

6000

8000

10000

12000

14000

S
um

 o
f d

is
ta

nc
es

 tr
av

el
ed

Sum of traveled distances

N = 1
N = 5
N = 10
N = 15
N = 20
N = 25

10 20 30 40 50 60 70 80 90 100

Number of agents

0

2

4

6

8

10

12

14

N
um

be
r

of
 it

er
at

io
ns

104 Performed iterations

N = 1
N = 5
N = 10
N = 15
N = 20
N = 25

10 20 30 40 50 60 70 80 90 100

Number of agents

0

0.5

1

1.5

2

2.5

t[s
]

105 Runtime

N = 1
N = 5
N = 10
N = 15
N = 20
N = 25

Figure 7.10: MRdRRT star scaling with increasing number of agents for different
values of N

57

7. Experiments

10 20 30 40 50 60 70 80 90

Number of agents

60

80

100

120

140

160

180

N
um

be
r

of
 s

te
ps

Plan lengths

1 tree
2 trees
Star
shortest length

10 20 30 40 50 60 70 80 90

Number of agents

0

2000

4000

6000

8000

10000

12000

14000

S
um

 o
f d

is
ta

nc
es

 tr
av

el
ed

Sum of traveled distances

1 tree
2 trees
Star
shortest

10 20 30 40 50 60 70 80 90

Number of agents

0

2

4

6

8

10

12

N
um

be
r

of
 it

er
at

io
ns

104 Iterations

1 tree
2 trees
Star

10 20 30 40 50 60 70 80 90

Number of agents

0

5

10

15

t[m
s]

104 Runtime

1 tree
2 trees
Star

Figure 7.11: Scaling of all three versions of MRdRRT algorithm

10 20 30 40 50 60 70 80 90

Number of agents

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

F
ai

lu
re

 r
at

e

Failure rate out of 100 runs

Figure 7.12: MRdRRT star variant failure rate

58

..................................... 7.6. Comparison

7.6 Comparison

This section shows the comparison of the implemented algorithms on three
selected maps - large and medium sized maps of the robotic warehouse and
open arena map from the open data set [10]. These are further denoted as
arena,medium and large. Only the mors, peasgood and all three variants of
MRdRRT algorithm are tested in this part because icts is extremely inefficient
for pathfinding in these problems.

The measured performance indicators are the same as in the previous
section. The quality of the plans is also compared in terms of PDB and PDM
because they offer fairer comparison and insight into the quality of found
solutions. PDB is percent deviation from the best known solution, in case of
this thesis the best solution is considered to be the solution that would occur
if all agents moved from their start positions to their goal positions without
considering any other agents (further refered to as shortest). PDB is thus
defined as a difference between the best solution found by the algorithm in
consecutive runs on the same assignment (denoted as best) and the shortest
divided by the shortest i.e

PDB = best− shortest
shortest

PDM is a simular measure but instead of the best found solution considers
the mean value of the solution(denoted mean). It can be then defined as

PDM = mean− shortest
shortest

In case of mors and peasgood algorithms the PDB and PDM are the same
for every assignment because they are executes only once. On the other hand,
MRdRRT is a probabilistic algorithm and as such is executed multiple times
on each assignment and the PDB and PDM are calculated from the results.

Every algorithm is tested on the same set of assignments. These are 8
different number of agents in the system from 10 to 80 in the increments
of 10. For every number of agents 5 assignments are generated. Because
MRdRRT is a probabilistic algorithm each assignment is ran 5 times. The
limit for iterations for all versions of MRdRRT algorithm is set to 500 000. If
the algorithm can not find solution by then, it is considered as a failure.

The results on the arena map can be found in Figure 7.13 and the results
on medium and large map are to be seen in Figures 7.14 and 7.15 respectively.
More details about the gathered results can be seen in Tables 7.1, 7.2 and
7.3 respectively. The results are average values from the successful runs of
the algorithms.

The gathered results show that when mors algorithm finds a solution it
is extremely close to optimum. In these experiments the difference between
the shortest solution and the found by mors was zero. The problem with
mors on the other hand is its low success rate for higher numbers of agents.
The peasgood algorithm performed as expected with lower quality plans in

59

7. Experiments
terms of performed steps but 100% success rate and decent quality in terms
of distances traveled by each agent. Its main advantage is also the time
required to obtain the plan which showed to be low in comparisson to other
algorithms.

The variants of MRdRRT performed as expected with the star variant
offering the best quality of plans which were close even to solutions found
by mors. On the contrary its performance in terms of time and iterations
required to obtain the solution it performed the worst out of the three variants
even failing to find a plan for all assignments with 80 agents on medium map,
because the number of iterations always exceeded 500000 which was set as a
limit. Because the algorithm is probabilistic the algorithm would eventually
find solution if no limit of iterations was set. The 2-tree variant performed
the worst in terms of plan quality but offered the best results in terms of
success rate to find the solution. The results for higher numbers of agents
are skewed by the fact that the results are averages and 2-tree variant has
100% success rate on all 3 maps, therefore the average is calculated over more
results than for other two variants. The 1-tree variant offers better quality
solutions than 2-tree version but for the tradeoff of lower success rate and
higher number of iterations.

Because the mors algorithm scales really well with the number of agents in
the system in terms of distance traveled the real-world application can be any
highly dynamic environment that can ensure the spacing between starting
points, a low number of choke points or end points not in choke points, or
for example that the agents disappear once they reach their goal node. A
choke point can be seen as point through which most agents have to pass in
order to get to their goals. If such choke point is the goal destination of one
of the agents A then all agents that arrive to this point after A can not pass
through and as such no path exists for them.

Robotic warehouse or airports can be ideal examples of such environments
because these usually have fixed entry points and goal nodes that are usually
node choke points of the graph and in case of airports once agent reaches the
goal point, which can be for example runway it disappears from the graph
because it takes off.

The icts algorithm showed extreme problems in terms of scaling with
increasing number of agents and map sizes. As such it is unusable for large
scale problems such as planning robots in roadmaps. But for smaller problems
with limited number of agents and small number of potential states for each
agent where the the main focus if optimality of the solution the icts algorithm
can provide great results.

While the peasgood algorithm provides plans that with lower quality than
other solvers, its main strength is that when the number of planned agents is
lower than the number of leafs in the spanning tree it plans on, the algorithm
has 100% success rate and scales incredibly well in terms of time required
to obtain the plan. This algorithm is applicable in any field where the main
focus is maximal success rate and low time to obtain the plan rather than
overall plan quality. It is also worth to mention that this algorithm performs

60

..................................... 7.6. Comparison

extremely well in maps that are not as open as the maps that were tested i.e.
maps with tunnels.

The MRdRRT algorithm offers middle ground between the previous algo-
rithms with better solutions then peasgood but worse than mors with higher
success rate depending on the variant. Therefore the algorithm could be used
in any field the previous algorithms would be used with the exception of
environment that requires maximal success rate which may cause a problem
because of MRdRRT random nature.

61

7. Experiments

10 20 30 40 50 60 70 80

Number of agents

0

100

200

300

400

500

600

700

800

N
um

be
r

of
 s

te
ps

Plan length - Arena map

mors
peasgood
1 tree
2 trees
star
shortest

10 20 30 40 50 60 70 80

Number of agents

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

S
um

 o
f t

ra
ve

le
d

di
st

an
ce

s

sum of traveled distances - Arena map

mors
peasgood
1 tree
2 trees
star
shortest

10 20 30 40 50 60 70 80

Number of agents

0

1

2

3

4

5

6

7

8

9

10

N
um

be
r

of
 s

te
ps

 P
D

B

Length PDB - Arena map

mors
peasgood
1 tree
2 trees
star

10 20 30 40 50 60 70 80

Number of agents

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

S
um

 o
f t

ra
ve

le
d

di
st

an
ce

s
P

D
B

Sumdist PDB - Arena map

mors
peasgood
1 tree
2 trees
star

10 20 30 40 50 60 70 80

Number of agents

0

1

2

3

4

5

6

7

8

9

10

N
um

be
r

of
 s

te
ps

 P
D

M

Length PDM - Arena map

mors
peasgood
1 tree
2 trees
star

10 20 30 40 50 60 70 80

Number of agents

0

0.5

1

1.5

2

2.5

S
um

 o
f t

ra
ve

le
d

di
st

an
ce

s
P

D
M

Sumdist PDM - Arena map

mors
peasgood
1 tree
2 trees
star

10 20 30 40 50 60 70 80

Number of agents

0

2

4

6

8

10

12

t[m
s]

104 Runtime - Arena map

mors
peasgood
1 tree
2 trees
star

10 20 30 40 50 60 70 80

Number of agents

0

2

4

6

8

10

12

Ite
ra

tio
ns

104 Iterations

1 tree
2 trees
star

Figure 7.13: Comparison of the algorithms on the arena map

62

..................................... 7.6. Comparison

10 20 30 40 50 60 70 80

Number of agents

0

100

200

300

400

500

600

700

800

900

1000

N
um

be
r

of
 s

te
ps

Plan length - medium warehouse map

mors
peasgood
1 tree
2 trees
star
shortest

10 20 30 40 50 60 70 80

Number of agents

0

0.5

1

1.5

2

2.5

3

S
um

 o
f t

ra
ve

le
d

di
st

an
ce

s

104sum of traveled distances - medium warehouse map

mors
peasgood
1 tree
2 trees
star
shortest

10 20 30 40 50 60 70 80

Number of agents

0

1

2

3

4

5

6

7

8

9

N
um

be
r

of
 s

te
ps

 P
D

B

Length PDB - medium warehouse map

mors
peasgood
1 tree
2 trees
star

10 20 30 40 50 60 70 80

Number of agents

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

S
um

 o
f t

ra
ve

le
d

di
st

an
ce

s
P

D
B

Sumdist PDB - medium warehouse map

mors
peasgood
1 tree
2 trees
star

10 20 30 40 50 60 70 80

Number of agents

0

1

2

3

4

5

6

7

8

9

N
um

be
r

of
 s

te
ps

 P
D

M

Length PDM - medium warehouse map

mors
peasgood
1 tree
2 trees
star

10 20 30 40 50 60 70 80

Number of agents

-1

0

1

2

3

4

5

S
um

 o
f t

ra
ve

le
d

di
st

an
ce

s
P

D
M

Sumdist PDM - medium warehouse map

mors
peasgood
1 tree
2 trees
star

10 20 30 40 50 60 70 80

Number of agents

0

0.5

1

1.5

2

2.5

t[m
s]

105 Runtime - medium warehouse map

mors
peasgood
1 tree
2 trees
star

10 20 30 40 50 60 70 80

Number of agents

0

0.5

1

1.5

2

2.5

3

Ite
ra

tio
ns

105 Iterations - medium warehouse map

1 tree
2 trees
star

Figure 7.14: Comparison of the algorithms on the medium map

63

7. Experiments

10 20 30 40 50 60 70 80

Number of agents

0

100

200

300

400

500

600

700

800

900

N
um

be
r

of
 s

te
ps

Plan length - large warehouse map

mors
peasgood
1 tree
2 trees
star
shortest

10 20 30 40 50 60 70 80

Number of agents

0

2000

4000

6000

8000

10000

12000

S
um

 o
f t

ra
ve

le
d

di
st

an
ce

s

Sum of traveled distances - large warehouse map

mors
peasgood
1 tree
2 trees
star
shortest

10 20 30 40 50 60 70 80

Number of agents

-2

0

2

4

6

8

10

N
um

be
r

of
 s

te
ps

 P
D

B

Length PDB - large warehouse map

mors
peasgood
1 tree
2 trees
star

10 20 30 40 50 60 70 80

Number of agents

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

S
um

 o
f t

ra
ve

le
d

di
st

an
ce

s
P

D
B

Sumdist PDB - large warehouse map

mors
peasgood
1 tree
2 trees
star

10 20 30 40 50 60 70 80

Number of agents

-2

0

2

4

6

8

10

N
um

be
r

of
 s

te
ps

 P
D

M

Length PDM - large warehouse map

mors
peasgood
1 tree
2 trees
star

10 20 30 40 50 60 70 80

Number of agents

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

S
um

 o
f t

ra
ve

le
d

di
st

an
ce

s
P

D
M

Sumdist PDM - large warehouse map

mors
peasgood
1 tree
2 trees
star

10 20 30 40 50 60 70 80

Number of agents

0

2000

4000

6000

8000

10000

12000

14000

16000

t[m
s]

Runtime - large warehouse map

mors
peasgood
1 tree
2 trees
star

10 20 30 40 50 60 70 80

Number of agents

0

0.5

1

1.5

2

2.5

Ite
ra

tio
ns

104 Iterations - large warehouse map

1 tree
2 trees
star

Figure 7.15: Comparison of the algorithms on large map

64

..................................... 7.6. Comparison

n-agents Criterion Mors Peasgood 1 tree 2 trees Star

10

length PDB 0.00 1.89 0.05 0.00 0.05
length PDM 0.00 1.89 0.05 0.00 0.05
sumdist PDB 0.00 1.08 0.00 0.00 0.00
sumdist PDM 0.00 1.89 0.00 0.00 0.00
runtime[ms] 4.00 3.60 0.04 2.84 11.60
success rate 1.00 1.00 1.00 1.00 1.00

20

length PDB 0.00 2.92 0.09 0.03 0.09
length PDM 0.00 2.92 0.09 0.03 0.09
sumdist PDB 0.00 1.06 0.00 0.02 0.00
sumdist PDM 0.00 2.92 0.00 0.03 0.00
runtime[ms] 10.00 7.80 0.20 19.12 6.48
success rate 0.80 1.00 1.00 1.00 1.00

30

length PDB 0.00 4.89 0.04 0.17 0.02
length PDM 0.00 4.89 0.08 0.17 0.08
sumdist PDB 0.01 1.39 0.04 0.02 0.01
sumdist PDM 0.01 4.89 0.12 0.17 0.01
runtime[ms] 15.00 13.60 1.48 34.20 17.40
success rate 1.00 1.00 1.00 1.00 1.00

40

length PDB 0.00 4.40 0.07 0.12 0.01
length PDM 0.00 4.40 0.13 0.12 0.11
sumdist PDB 0.00 1.13 0.23 0.18 0.04
sumdist PDM 0.00 4.40 0.34 0.12 0.05
runtime[ms] 28.00 17.20 6.72 96.76 24386.44
success rate 0.40 1.00 1.00 1.00 1.00

50

length PDB 0.00 5.61 0.20 0.41 0.09
length PDM 0.00 5.61 0.31 0.41 0.23
sumdist PDB 0.01 1.12 0.19 0.30 0.04
sumdist PDM 0.01 5.61 0.44 0.41 0.05
runtime[ms] 47.00 23.00 6.24 265.08 509.12
success rate 0.40 1.00 1.00 1.00 1.00

60

length PDB 0.01 5.26 0.19 0.44 0.02
length PDM 0.01 5.26 0.30 0.44 0.14
sumdist PDB 0.00 1.25 0.45 0.96 0.09
sumdist PDM 0.00 5.26 0.85 0.44 0.12
runtime[ms] 41.50 27.80 19.56 265.60 1618.00
success rate 0.40 1.00 1.00 1.00 1.00

70

length PDB 0.00 7.26 0.48 0.67 0.05
length PDM 0.00 7.26 0.56 0.67 0.15
sumdist PDB 0.01 1.26 1.09 1.69 0.14
sumdist PDM 0.01 7.26 1.36 0.67 0.18
runtime[ms] 59.00 33.40 588.84 522.44 85075.75
success rate 0.20 1.00 1.00 1.00 0.76

80

length PDB 0.00 9.60 0.39 0.72 0.06
length PDM 0.00 9.60 0.52 0.72 0.12
sumdist PDB 0.01 1.39 1.25 1.82 0.18
sumdist PDM 0.01 9.60 1.47 0.72 0.21
runtime[ms] 64.00 42.40 287.56 838.12 88170.44
success rate 0.40 1.00 1.00 1.00 0.76

Table 7.1: Comparison of algorithms on arena map

65

7. Experiments

n-agents Criterion Mors Peasgood 1 tree 2 trees Star

10

length PDB 0.02 2.07 0.18 0.18 0.18
length PDM 0.02 2.07 0.18 0.18 0.18
sumdist PDB 0.02 1.02 0.00 0.00 0.00
sumdist PDM 0.02 2.07 0.00 0.18 0.00
runtime[ms] 3.20 4.80 0.28 2.96 1.60
success rate 1.00 1.00 1.00 1.00 1.00

20

length PDB 0.04 2.74 0.30 0.32 0.31
length PDM 0.04 2.74 0.34 0.32 0.33
sumdist PDB 0.03 1.35 0.01 0.01 0.00
sumdist PDM 0.03 2.74 0.02 0.32 0.00
runtime[ms] 4.25 8.40 1.00 13.60 2.24
success rate 0.80 1.00 1.00 1.00 1.00

30

length PDB 0.04 2.63 0.19 0.36 0.22
length PDM 0.04 2.63 0.30 0.36 0.32
sumdist PDB 0.04 0.93 0.01 0.02 0.00
sumdist PDM 0.04 2.63 0.09 0.36 0.01
runtime[ms] 11.75 12.40 2.12 56.40 6.96
success rate 0.80 1.00 1.00 1.00 1.00

40

length PDB 0.02 4.11 0.44 0.76 0.43
length PDM 0.02 4.11 0.66 0.76 0.58
sumdist PDB 0.04 1.10 0.31 0.42 0.04
sumdist PDM 0.04 4.11 0.64 0.76 0.07
runtime[ms] 12.67 18.80 8.24 241.88 207.24
success rate 0.60 1.00 1.00 1.00 1.00

50

length PDB 0.04 4.67 0.53 0.96 0.53
length PDM 0.04 4.67 0.82 0.96 0.80
sumdist PDB 0.05 1.21 0.73 1.59 0.14
sumdist PDM 0.05 4.67 1.23 0.96 0.16
runtime[ms] 24.00 23.80 196.80 536.24 33387.44
success rate 0.40 1.00 1.00 1.00 0.92

60

length PDB 0.04 5.15 0.88 1.36 0.53
length PDM 0.04 5.15 1.14 1.36 0.64
sumdist PDB 0.06 1.24 2.04 3.26 0.16
sumdist PDM 0.06 5.15 2.35 1.36 0.20
runtime[ms] 27.33 31.40 10737.50 2380.45 165418.30
success rate 0.60 1.00 0.68 1.00 0.44

70

length PDB 0.03 7.11 0.83 1.30 0.30
length PDM 0.03 7.11 1.14 1.30 0.48
sumdist PDB 0.05 1.35 1.53 3.23 0.07
sumdist PDM 0.05 7.11 2.16 1.30 0.12
runtime[ms] 24.50 37.40 1578.12 3963.92 30709.04
success rate 0.40 1.00 1.00 1.00 0.60

80

length PDB 0.08 8.55 1.50 3.17 N/A
length PDM 0.08 8.55 1.63 3.17 N/A
sumdist PDB 0.07 1.30 2.83 6.67 N/A
sumdist PDM 0.07 8.55 2.97 3.17 N/A
runtime[ms] 42.50 50.40 28722.20 129270.00 N/A
success rate 0.40 1.00 0.32 1.00 0.00

Table 7.2: Comparison of algorithms on medium map

66

..................................... 7.6. Comparison

n-agents Criterion Mors Peasgood 1 tree 2 trees Star

10

length PDB -0.01 2.74 0.05 0.01 0.05
length PDM -0.01 2.74 0.05 0.01 0.05
sumdist PDB 0.01 1.47 0.00 0.00 0.00
sumdist PDM 0.01 2.74 0.00 0.01 0.00
runtime[ms] 6.20 6.80 0.44 5.76 2.96
success rate 1.00 1.00 1.00 1.00 1.00

20

length PDB 0.01 3.64 0.00 0.00 0.00
length PDM 0.01 3.64 0.00 0.00 0.00
sumdist PDB 0.02 1.60 0.00 0.00 0.00
sumdist PDM 0.02 3.64 0.00 0.00 0.00
runtime[ms] 10.00 13.60 0.76 8.56 2.88
success rate 1.00 1.00 1.00 1.00 1.00

30

length PDB 0.00 4.74 0.09 0.05 0.09
length PDM 0.00 4.74 0.09 0.05 0.09
sumdist PDB 0.03 1.84 0.00 0.01 0.00
sumdist PDM 0.03 4.74 0.00 0.05 0.00
runtime[ms] 17.20 23.00 1.16 27.28 3.24
success rate 1.00 1.00 1.00 1.00 1.00

40

length PDB -0.02 4.45 0.05 0.10 0.05
length PDM -0.02 4.45 0.07 0.10 0.06
sumdist PDB 0.03 1.69 0.02 0.02 0.01
sumdist PDM 0.03 4.45 0.04 0.10 0.02
runtime[ms] 22.50 29.00 2.72 59.60 35.40
success rate 0.80 1.00 1.00 1.00 1.00

50

length PDB -0.03 5.69 0.17 0.18 0.05
length PDM -0.03 5.69 0.25 0.18 0.10
sumdist PDB 0.02 1.79 0.32 0.02 0.07
sumdist PDM 0.02 5.69 0.45 0.18 0.08
runtime[ms] 31.33 36.80 17.28 85.20 15609.88
success rate 0.60 1.00 1.00 1.00 1.00

60

length PDB 0.01 7.28 0.21 0.35 0.10
length PDM 0.01 7.28 0.42 0.35 0.18
sumdist PDB 0.03 1.82 0.27 0.11 0.04
sumdist PDM 0.03 7.28 0.61 0.35 0.06
runtime[ms] 43.00 52.80 22.68 358.12 6986.80
success rate 0.60 1.00 1.00 1.00 1.00

70

length PDB 0.00 7.62 0.15 0.49 0.20
length PDM 0.00 7.62 0.30 0.49 0.34
sumdist PDB 0.04 1.81 0.21 0.40 0.04
sumdist PDM 0.04 7.62 0.53 0.49 0.06
runtime[ms] 42.67 58.60 10.44 667.04 193.24
success rate 0.60 1.00 1.00 1.00 1.00

80

length PDB 0.01 9.59 0.33 0.88 0.14
length PDM 0.01 9.59 0.48 0.88 0.28
sumdist PDB 0.04 1.97 0.46 1.52 0.05
sumdist PDM 0.04 9.59 0.77 0.88 0.08
runtime[ms] 44.00 69.80 16.72 981.60 359.20
success rate 0.40 1.00 1.00 1.00 1.00

Table 7.3: Comparison of algorithms on large map

67

68

Chapter 8
Conclusion

This thesis discussed the task of multi-agent pathfinding. Four different
algorithms were chosen from the different categories of multi-agent pathfind-
ing algorithms. These were then studied and implemented in C++. Each
algorithm was discussed and described in a separate chapter. Several improve-
ments of the peasgood and the MRdRRT algorithms based on the experience
of their function were proposed and tested in experiments in Chapter 7.
Among the improvements to the peasgood algorithm are different techniques
of obtaining leaf node in the first phase of the peasgood algorithm, imple-
menting an algorithm to remove loops in the resulting plan and proposing
different techniques for concurrent plan building.

The MRdRRT algorithm was enhanced by different sampling methods
for the random sample in addition with accompanying versions of oracle
implementation that reduce the number of thrown away samples by trying to
generate a valid new configuration of agents from a given sample. Another
addition for the MRdRRT algorithm is the 2-tree version that modified the
original algorithm to use 2 trees, one from the start and one from the target
configuration that are actively trying to connect to each other with the
purpose of reducing the required number of iterations to find solution. Lastly
from the experience with the two previous versions a new approach inspired
by the known RRT* algorithm is proposed in this thesis whose goal is to
improve the quality of the solution obtained by the MRdRRT algorithm.

All algorithms and their improvements were thoroughly tested in the
Chapter 7 of this thesis along with comparing their desired properties with
the experimental results.

The results showed that the 2-tree variant increased the success rate of the
algorithm in assignments where 1-tree variant had low success rate while the
star variant found better quality solutions than the previous two variants
in almost all cases but for the cost of longer runtime which in some cases
exceeded the given limit of iterations.

The star version of the MRdRRT algorithm showed promise in bringing the
obtained solution closer to optimum but for the cost of increased execution
time. For this reason the future work should focus on improvement of this
proposed algorithm in terms of reducing the number of required iterations
to find the first solution. This could be done for example by reducing the

69

8. Conclusion......................................
dimensionality of the problem by planning smaller groups of agents in batches
and then considering them as obstacles moving in time for following groups.
Another major improvement would be finding more powerful local connector
and devising more intelligent expansion phase.

70

Bibliography

[1] A. B. Kahn. Topological sorting of large networks. Commun. ACM,
5(11):558–562, November 1962.

[2] Sertac Karaman and Emilio Frazzoli. Incremental sampling-based algo-
rithms for optimal motion planning. CoRR, abs/1005.0416, 2010.

[3] Dan Halperin Kiril Solovey, Oren Salzman. Finding a needle in an
exponential haystack: Discrete rrt for exploration of implicit roadmaps
in multi-robot motion planning. Algorithmic Foundations of Robotics
XI, pages 591–607, 2014.

[4] Steven M. LaValle. Rapidly-exploring random trees: A new tool for path
planning. Technical report, October 1998.

[5] Martin Makovička. Koordinace v systémech s více roboty. Master’s
thesis, Czech Technical University in Prague, Czech Republic, 2012.

[6] John McPhee Mike Peasgood, Christopher Michael Clark. A complete
and scalable strategy for coordinating multiple robots within roadmaps.
IEEE Transactions on Robotics, pages 283–292, 2008.

[7] Marius Muja and David G. Lowe. Fast approximate nearest neighbors
with automatic algorithm configuration. In International Conference on
Computer Vision Theory and Application VISSAPP’09), pages 331–340.
INSTICC Press, 2009.

[8] Bertram Raphael Peter E. Hart, Nils J. Nilsson. A formal basis for the
heuristic determination of minimum cost paths. IEEE Transactions on
Systems Science and Cybernetics SCC-4, pages 100–1007, 1968.

[9] Guni Sharon, Roni Stern, Meir Goldenberg, and Ariel Felner. The
increasing cost tree search for optimal multi-agent pathfinding. Artif.
Intell., 195:470–495, February 2013.

[10] N. Sturtevant. Benchmarks for grid-based pathfinding. Transactions on
Computational Intelligence and AI in Games, 4(2):144 – 148, 2012.

71

Bibliography
[11] Adriaan ter Mors, Cees Witteveen, Jonne Zutt, and Fernando A. Kuipers.

Context-aware route planning. In Juergen Dix and Cees Witteveen, edi-
tors, Multiagent System Technologies, 8th German Conference, MATES
2010, Leipzig, Germany, volume 6251 of Lecture Notes in Computer
Science, pages 138–149. Springer, 2010.

[12] Adriaan W. ter Mors. Conflict-free route planning in dynamic environ-
ments. In Nancy M. Amato, editor, Proceedings of the 2011 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 2166–
2171. IEEE, September 2011.

[13] J. van den Berg, J. Snoeyink, M. Lin, and D. Manocha. Centralized
path planning for multiple robots: Optimal decoupling into sequential
plans. In Proceedings of Robotics: Science and Systems, Seattle, USA,
June 2009.

72

Chapter 9
Enclosed CD contents

The root directory on the enclosed CD contains the following items:. thesis.pdf: The PDF file of this thesis.. [text_source]: Directory containing latex source files of the document.. [source]: Directory containing source codes written in C++. The
project can be built with Visual Studio.. [maps]: Directory containing files of used maps.

73

	Introduction
	Pathfinding problem
	Problem definition and terminology
	Problem inputs and outputs
	Actions
	Constraints
	Composite roadmaps
	Chosen algorithms

	Conflict-Free Route Planning in Dynamic Environments
	Model
	Route plan
	Resource load
	Free time windows
	Free time window graph

	Planning algorithm

	Increasing Cost Tree Search
	High-level search
	Low-level search
	Multi-value decision diagrams
	k-agent MDD space searching algorithm

	A Complete and Scalable Strategy for Coordinating Multiple Robots Within Roadmaps
	Map representation and spanning tree selection
	Planning algorithm description
	Phase 1: Reaching leaf nodes
	Phase 2: Sorting agents by depth of goals
	Phase 3: Filling remaining goals
	Optimizing created plan
	Loop removal
	Phase 4: Building a concurrent plan

	Implementation
	Data structure
	Implementation of loop removal
	Implementation of concurrent plan building

	Multi-robot Discrete Rapidly-Exploring Random Tree
	Rapidly-exploring random tree
	Discrete RRT
	Oracle technique for querying the implicit graph
	dRRT description
	Local connector

	Multi-Robot discrete Dapidly-exploring Random Tree
	MRdRRT description
	Oracle OD for multi-agent scenario
	Local connector for multi-agent scenario

	Implementation
	Basic implementation
	Local connector
	Two-tree version implementation

	Steps towards optimality - RRT*
	RRT* modifications towards discrete multi-agent scenario

	Experiments
	Methodology
	Results of the mors algorithm
	Results of the icts algorithm
	Results of the peasgood algorithm
	Results of the MRdRRT algorithm
	Comparison

	Conclusion
	Bibliography
	Enclosed CD contents

