Master’s Thesis

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Computer Science

Algorithms for
Automatic Label Placement

Tomas Chamra

Open Informatics
Artificial Intelligence

May 2017
Supervisor: Ing. Petr Posik, Ph.D.

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Computer Science

DIPLOMA THESIS AGREEMENT

Student; Tomas Chamra

Study programme: Open Informatics
Specialisation: Artificial Intelligence

Title of Diploma Thesis: Algorithms for Automatic Label Placement

Guidelines:

1) Familiarize yourself with the Automated label placement problem
2) Investigate different approaches to solve this problem
3) Design and implement at least two different non-trivial algorithms which solve this

problem
4) Define a metric for scoring label placement algorithms and use it to compare

algorithms implemented in the previous task

Bibliography/Sources:

[1] IMHOF, Eduard. Positioning names on maps. The American Cartographer, 1975, 2.2:

128-144.
[2] KOBR, Ale$. Automatické rozmistovani popiski na mapé. 2013.
[3] WOLFF, Alexander. The Map-Labeling Bibliography.

Diploma Thesis Supervisor: Ing. Petr Posik Ph.D.

Valid until the end of the winter semester of academic year 2017/2018

5 SEST
Head of Department - Dean

Prague, September 8, 2016

Acknowledgement

First of all, I would like to thank my
supervisor Ing. Petr Posik, Ph.D. for a
huge amount of patience and being very
nice and helpful during the preparation
of this thesis and during our frequent
meetings. Without him, this work prob-
ably would not be finished ever.

Very special thanks goes to my family,
which supported me and believed in me
during my whole studies, and especially
during my last year at the university,
which was quite challenging for all of us.

Huge credits for helping me during
preparation of this thesis goes to all my
friends and colleagues, especially those
at the university and at FREQUENTIS
Czech Republic.

Computational resources were pro-
vided by the CESNET LM2015042
and the CERIT Scientific Cloud
LM2015085, provided under the pro-
gramme “Projects of Large Research,
Development, and Innovations Infras-
tructures”.

/ Declaration

I hereby declare that I worked out
the presented thesis independently and
I quoted all used sources of information
in accord with Methodical instructions
about ethical principles for writing an
academic thesis.

Prague, May 25th, 2017

Prohlasuji, Ze jsem predlozenou préa-
ci vypracoval samostatné a ze jsem
uvedl veskeré pouzité informacni zdroje
v souladu s Metodickym pokynem o do-
drzovani etickych principt pri pripravé
vysokoskolskych zavérecnych praci.

V Praze dne 25. kvétna 2017

Abstrakt

Prace popisuje problém automatic-
kého umistovani popiski do mapy. Jed-
notlivé bodové, ¢arové a plosné objekty
v mapé je tfeba oznacit odpovidaji-
cimi textovymi ¢i obrazkovymi popisky.
Tyto popisky je nutné rozmistit tak,
aby se vzdjemné neprekryvaly a zaroven
byly jasné pritaditelné k odpovidajicim
objektim. O problému je znamo, ze
je NP-tézky a nalezeni optiméalniho
rozmisténi vSech popiski je vypocetné
velmi naroc¢né i pro nejjednodussi mapy.

Pozornost je vénovana umistovani
popiskil oznacujicich bodové a carové
objekty, vcéetné prvniho kroku obnéa-
Sejictho pripravu moznych pozic pro
umisténi téchto popiski, pfi dodrzeni
béznych kartografickych pravidel pro
rozmistovani popiskt. Nasledné jsou na
problém aplikovany tii ruzné druhy al-
goritmu — greedy (,,hladové“) algoritmy
v kombinaci s lokalnim prohledavanim,
matematickd optimalizace (v podobé
0-1 celo¢iselného programovani) a gene-
tické algoritmy.

Popsané algoritmy jsou v softwarové
Casti prace implementovany a na zavér
porovnany na nékolika riznych dato-
vych sadach, vychéazejicich z realnych
geografickych podkladi a z nahodné
vygenerovanych map. Zavéreéné srov-
nani se zaméruje na kvalitu vysledného
rozmisténi (dle metrik definovanych
v préaci), ¢asu potiebnému k nalezeni
feSeni a také na deterministicnost da-
nych algoritmd.

Kli€¢ova slova: umistovani popiskii do
mapy, hladové algoritmy, genetické algo-
ritmy, matematicka optimalizace

P¥eklad titulu: Algoritmy pro auto-
matické umistovani popisku

/ Abstract

Vi

Thesis describes the problem of au-
tomatic map label placement. Various
point, line or area features in maps
must be marked with matching text or
graphic labels. These labels have to
be placed so they do not overlap with
each other and they are clearly associa-
ble with corresponding map features.
The problem is known to be NP-hard
and finding optimal positions of all
map labels is highly computationally
expensive, even for the simplest maps.

Focus is given to the placement of
labels describing point and line map
features, including the initial phase of
enumerating possible label positions,
respecting the basic cartographic rules
common for those labels. Afterwards,
three different algorithm types are ap-
plied to the problem itself — greedy
algorithms (in combination with local
search optimization), mathematical op-
timization (0-1 integer programming)
and genetic algorithms.

Ultimately, the described algorithms
are implemented in the software part
of the work and compared on various
data sets, based on both real world
geographical data and randomly gen-
erated maps. The final comparison
focuses especially on the quality of the
result (scored by the metrics defined
in the thesis), time needed to find the
solution and determinism of the given
algorithms.

Keywords: map label placement,
greedy algorithms, genetic algorithms,
mathematical optimization

Contents

1 Introduction 1
1.1 Thesis objectives................. 2
1.2 Thesis structure.................. 2

2 Stateof theart 3
2.1 Search spaces.............c....... 3
2.2 Optimization goals............... 3

2.3 Mathematical programming..... 4
2.4 Stochastic methods
2.5 Other approaches
2.6 Commercial solutions............ 5

3 Basics of label placement 7
3.1 Features and labels 7
3.2 Problem definition 8
3.3 Solving the problem 8
3.4 Labeling rules 8

3.4.1 Point feature labels 9
3.4.2 Line feature labels 10
3.4.3 Area feature labels....... 11

4 Metricsccoovinnin... 12

4.1 Scoring individual labels....... 12
4.1.1 Label position penalties . 12
4.1.2 Map feature conflicts 14

4.1.3 Other labels conflicts 14

4.2 Scoring whole solutions........ 14
5 Greedy algorithms................ 15
5.1 Basic greedy................ ... 15
5.2 Advanced greedy 17
53 GRASP ... 18
6 Mathematical optimization...... 21

6.1 Mathematical programming ... 21
6.2 Branch and cut 22
6.3 Available solvers 23
6.3.1 CPLEX................... 23
6.3.2 Gurobi.................... 23
6.3.3 MOSEK 23
6.3.4 GLPK 24
6.3.5 Problem definition 24
6.4 Using CPLEX solver........... 25
6.5 Terminating the optimization . 26
6.6 Performance issues............. 26
7 Genetic algorithms 28
7.1 Parts of genetic algorithm 28
7.2 Genetic algorithm for label
placement 31
7.2.1 Building blocks 32
7.2.2 Memetics 34

vii

8 Software implementation
8.1 Used technologies
8.2 Features

8.2.1 Available algorithms
8.2.2 Candidate generation
8.2.3 Map editor
8.2.4 Metrics and styles........
8.2.5 Geospatial data import ..
8.2.6 Data persistence
8.3 User interface

9 Evaluation and results
9.1 Map categories
9.2 Environment
9.3 Data sets
9.4 Results

9.4.1 Random points...........

9.4.2 Populated places.........

9.4.3 Roads.....................

9.5 Summaryc.oooiiiiia..
10 Conclusion
References

A Computational geometry al-

gorithms...........................

A.1 Convex hull
A.2 Line clipping
A.3 Polygon clipping

B Contents of the attached CD ...

C List of abbreviations

9.1.
9.2.
9.3.
9.4.
9.5.
9.6.
9.7.
B.1.

Tables
Data setsoooiiiiiil 43
Random points results 44

Random points times 44
Populated places results 46
Populated places times......... 47
Roads results 48
Roads times 48
Contents of attached CD 59

/ Figures

viii

2.1.
3.1.
3.2.
3.3.
3.4.
3.5.
4.1.
6.1.
7.1.
7.2.
7.3.
8.1.
8.2.
9.1.
9.2.
9.3.
9.4.

9.5.
9.6.
9.7.
A.l1.
A.2.
A.3.

Google Maps
Basic positions for points 10
More positions for points
Line labels rotations
Line labels verticals 11

Line labels horizontals 11
Positions for points 13
Branching in MILP 22
Genetic algorithm 31
Hierarchical clustering 32
Single-point crossover 34
Label Placement UI............ 35
Metrics and Styles Ul.......... 38

Progress on map of 500 points . 45

Map of 500 points.............. 45
Map of Canada................. 46
Progress on map of the Czech

Republic ... 47

Map of the Czech Republic.... 48
Map of Poland 49
Progress on map of Poland 49

Convex hull..................... 55
Line clipping 57
Polygon clipping 58

Chapter].
Introduction

Cartographers all around the world have to face many difficulties and barriers during
preparation and publication of maps. Apart from mapping the terrain data itself, they
also have to mark and label all important features using various symbols and labels. For
each of these symbols or labels, cartographers have to decide about the best position
to place them, in order to maintain readability and usability of the whole map.

Labels can have various forms — they might be represented by texts, graphical sym-
bols, or even holes drilled in a metal, in some very special cases. Also, labels can have
miscellaneous shapes, colors or sizes. They represent different map objects, which can
be usually categorized as points, lines or areas.

According to various reports [1], cartographers can spend even more than a half of
the map preparation time just by placing labels on the map — and that is a lot of time!
Because of this, any kind of help that would simplify this process is obviously highly
appreciated. It is quite surprising to find out how many people have been working
on this problem (even long time ago, when computers were much less powerful than
they’re today) and how many companies struggle with this problem even now, in the
21st century.

There are two basic types of maps [2], which quite differ in the process of their
preparation and the form how they are presented to users:

m Static maps are mostly intended for viewing and printing. During preparation, all
desired features (e.g. cities, rivers or protected areas) and parameters (map size,
scale, etc.) of these maps are already known since the beginning, so they can be
hand-designed by the cartographers or generated by a computer and then either
printed or distributed as images or PDF documents.

s Dynamic maps on the other hand allow more interactivity, like enabling/disabling
data layers or changing the map scale or size. Changing these parameters could
dramatically affect which objects (either map features or labels) should be visible
and how they should be rendered (e.g. all cities should be marked in large maps with
higher scales, while smaller maps with small scales should only display the largest
cities). This category of maps is represented by various online map services and
nowadays becomes more and more popular.

This thesis focuses on the first case, i.e. static maps, as they can be completely
precalculated and rendered during the preparation time. Creating dynamic maps and
rendering them in real time is a quite different task, requiring use of different other
technologies and algorithms, which are usually commercially developed and they are
not subject of this work.

Unfortunately, even the most simplified variation of the label placement task (labeling
only point features and choosing just from four available positions for each label) has
been proven to be NP-hard [3]. Knowing this, computer scientists have to look for some
better heuristics than just relying on the brute force approach, which has unacceptable
complexity for any reasonable number of labels.

Originally, this thesis was inspired by problems solved during preparation of aero-
nautical charts, which are maintained and regularly published by civil aviation agencies
all around the world. However, the thesis itself is targeted on general label placement
problem, instead of focusing purely on a single class of maps. This work is also highly
influenced by the Master’s thesis of Ales Kobr [4], who has applied simulated annealing
to label placement on aeronautical charts.

I 1.1 Thesis objectives

The goal of this work is to investigate and compare different available approaches to
the solution of the label placement problem, and to find out which of the analyzed
algorithms fits the best to this problem. For the comparison, there are three algorithms
chosen for the deeper analysis:

= Greedy algorithms can often provide good results in a very short time, but they have
a high chance of getting stuck in a local minima.

s Mathematical optimization methods can provide optimal solutions after performing
exhaustive and long-running calculations.

m Genetic algorithms on the other hand have a chance to find quite good results in
not so long time, but they are not deterministic and finding optimal solution is not
guaranteed at all.

In order to compare the algorithms, it is necessary to define a metric determining
which placement is nice and which is not. This metric should be used by the algorithms
as an optimization criterion.

I 1.2 Thesis structure

First part of the thesis introduces and provides basic description of the map label place-
ment problem and the basic rules which should be followed during the map preparation
and label placement. It also contains a brief summary of existing works and approaches.

The following part describes metrics used to score different label positions and to
choose the best ones, as well as metrics used to evaluate the whole map configuration,
considering all labels together.

Third part deeply describes all three algorithm classes mentioned in this work —
greedy algorithms, mathematical optimization and genetic algorithms.

Ultimately, the last part contains description of data sets used to compare the de-
scribed algorithms and shows some sample maps labeled by these algorithms. It also
contains detailed description of software implemented as a part of this work (including
all previously described algorithms) and the conclusion of the thesis.

In the appendix of this thesis, there is a brief description of the computational ge-
ometry problems faced to properly calculate label positions and all necessary metrics.
Appendix also contains contents of the attached CD disc and the list of abbreviations
used in the thesis.

Chapter 2
State of the art

Over the past fifty years, authors from all over the world have published hundreds of
articles about label placement, and especially its automated variant. German scientist
Alexander Wolff (who is also author of many publications on this topic) has gathered
The Map-Labeling Bibliography [5], containing most of the articles related to this topic.
However, the list was not updated since 2009 and it is obviously not complete.

First article describing the problem was written in the 1960s by Swiss cartographer
Eduard Imhof [6-7], who has thoroughly described placement rules of different labels
for points, lines and areas. Imhof’s work is considered as the base for all following works
on label placement, as he briefly described which label positions are good and which
are not.

Another important work was published ten years later by Israeli cartographer Pin-
has Yoeli [8], who described his computer program for label placement and (probably
more importantly) defined recommended positions for placing labels around points and
described their priorities — which positions are better than the others.

I 2.1 Search spaces

One of the most important differences between various works done on this topic is a
choice of a search space. There are two basic approaches to address this problem —
either “discretizing” the search space by enumerating all possible label positions for
each of the map features, or searching in continuous space [9].

Both of these options have their advantages, but also require different techniques to
solve the problem — and this is not only question of the optimizer itself, but there is
also a need for specialized algorithms used in analytical and computational geometry.

The first mentioned “discretization” approach is much more common and it is usually
realized by enumerating possible positions according to some pattern (e.g. basic four
or eight positions around a point object on a map, as proposed in already mentioned
Yoeli’s work [8]) and then choosing the best combination of these positions. These
solutions are obviously restricted by the selected generation or enumeration pattern,
but it is possible to avoid this issue by randomizing some positions over the map.

On the other hand, it is possible to consider labels all over the map (not just re-
stricted by some patterns). This approach can offer many solutions that the previously
mentioned one would not even consider, but this approach may bring the problem
complexity even higher. Authors following this way sometimes use specific ways of sim-
plifying the problem, and also use various discretization techniques, e.g. working with
pixels that are going to be rendered on a computer screen [10].

I 2.2 Optimization goals

Within these hundreds of articles, researchers were facing many different variants of the
label placement problem. Many of them focused just on labels related to point features
on the map, while others labeled lines and areas as well.

Even more important decision is whether one wishes to find only “perfect” solution
having zero collisions with other labels and/or map features (this definition is well
suitable for methods of constraint satisfaction programming). Other possibilities are
to remove labels that would cause conflicts in the map (and minimize number of the
labels being removed), or allow collisions but penalize them using a fitness function.

Interesting subproblem might be the label size maximization [11], which focuses on
finding maximal size of labels, either directly or by searching for some label size scaling
coefficient.

I 2.3 Mathematical programming

As described in works of Robert Cromley [12] and Steven Zoraster [13-14], the label
placement problem could be also handled by methods of mathematical programming.
Cromley formulated the problem as a generic linear program, while Zoraster applied
0-1 integer linear programming. Both solutions were implemented in Fortran and
Zoraster’s solution was (or maybe still is?) used by many American companies active
in the petroleum industry.

Zoraster used Lagrangian relaxation and subgradient optimization methods to solve
the optimization problem, but probably the most interesting part is how he worked with
constraints. In the first iteration, only the constraints related to initial solution were
considered. Then, over time, additional constraints related to partial solutions were
added. Thanks to this relaxation, the solver was presented with much less constraints
then it would be with all constraints given in the beginning.

I 2.4 Stochastic methods

Due to overwhelming size of the search space, it might be a very good idea to con-
sider applying some of the stochastic methods, like simulated annealing or evolutionary
algorithms.

Jon Christensen et al. [9] described the use of simulated annealing algorithm for point
feature label placement and according to their benchmarks, the algorithm outperformed
other solutions like Zoraster’s 0—1 ILP. Simulated annealing was also used by Ales
Kobr [4] for preparation of aeronautical charts. Kobr’s work is also interesting as it
uses Octree [15] for storing and manipulating large amounts of geometric data, making
collision detection much easier and faster.

In 2001, Steven van Dijk used genetic algorithm in his thesis [16]. He implemented
the algorithm for labeling point and line features, compared different crossover functions
and proposed various improvements that may lead to better GA solutions, particularly
inspired by heuristics proposed by Verner et al. [17] and Raidl [18].

Another implementation of genetic algorithm was presented by Karolina Bu-
resova [10], whose work is also outstanding for solving the problem in a continuous
space, i.e. mnot just generating pattern-defined positions and choosing from them.
Apart from just changing the label position, she considered different label variants
(e.g. with different shape or size) as well.

Multicriterial approach was investigated by Bradstreet et al. [19], optimizing three
different criteria (maximal font-size, minimum number of conflicts and maximal clarity)
and resulting multiple solutions. Final stage of the method involved manual interven-
tion, which was required to choose the finest solution.

I 2.5 Other approaches

Among hundreds of other publications, one of the proposed solutions is reformulation
of the label placement problem as relatively easily solvable 2-SAT problem [20-21].
However, this approach works only for very restricted variations of the problem.

Another way to approach the problem is application of various greedy and local
search heuristics, or their combinations like GRASP (Greedy Randomized Adaptive
Search Procedure). Cravo et al. [22] applied GRASP to point feature label placement
problem in 2008 with quite good results, considering the short running time of the
algorithm.

I 2.6 Commercial solutions

It is really nice to study and design algorithms for academic use, but sometimes the
usability requirements in academic sphere are quite different from the ones in the com-
mercial sphere. As already mentioned, some of the listed algorithms (e.g. Zoraster’s
algorithm) are used commercially, but many of them are only usable under very specific
circumstances.

Unfortunately, users are not always willing to wait for hours (or even days) until
the best algorithm potentially finds the best solution, so the developers often have to
choose sub-optimal algorithms providing good solutions in minutes or even fractions of
seconds, depending on the product type.

Another important aspect which has to be taken into account is a determinism of
the solution. Stochastic algorithms bring a chance to find a really good solution, but
this is generally not guaranteed and the performance in a single run might be poor.
Also, users might be quite uncomfortable with computer programs producing various
outputs for the same input data.

There are two major areas which could make use of label placement — GIS software
suites used for creating maps, and various web applications displaying and using these
maps. Both categories are represented by many different computer programs, but due
to obvious reasons the algorithms used internally in these software suites are usually
not very well documented.

B GIS systems

Highest commercial potential for use of label placement algorithms is probably in the
area of geographical information systems (GIS), that are used for various manipulations
with geographical and spatial data, including preparation of maps. GIS systems often
support both static and dynamic maps, according to classification described in the
introduction.

Examples of these systems are GeoMedia' or ArcGIS?, which are both widely used
and among other features they both contain integrated modules for label placement.
Apart from integrated algorithms, most GIS systems support third party plugins so
they can be extended by even more complex and configurable solutions — for example,
some maps might require use of special label shapes, which may not be supported by
integrated label placement tools.

! http://www.hexagongeospatial .com/products/power-portfolio/geomedia
2 https://www.arcgis.com/features/index.html

http://www.hexagongeospatial.com/products/power-portfolio/geomedia
https://www.arcgis.com/features/index.html

2. State of the art

B Online maps

Second area where label placement could be heavily utilized is represented by web
applications like Google Maps' or Mapy.cz?, which provide online access to maps to
the general public. These maps are usually dynamic, i.e. the content displayed in them
changes when user zooms the map in or out.

Obviously, when the visible content changes, the labels have to change as well in
order to be usable and easily readable. For example, when user observes some city
in detail, he sees all streets with their names and possibly even with house numbers.
While the user zooms out, the streets disappear and he sees the city name instead.
Then, when he zooms out even more, he may still see the city name, but in smaller
letters (if the city is large), or it might disappear completely and it can be just replaced
by the name of the region or the country.

Technically, these labels could be placed (and even determined whether they should
be visible or not) either in real time, or they can be precalculated for different map
scales — but due to performance reasons, in most web services it is probably the latter
option, as the user wants to browse the map in real time, without waiting for some
label placement process to be finished.

na & + 2
; Seirg @
i 5 .
finiénich horach Vysoka Skola o o i ‘
' chemicko-technologickd © .2 2 B g
v Praze & 5

S >
o 2

ka

DEJVICE 5
b 5
BUBENEC & 5
Mydl (okd Eropsks PRAGUE 6 e 5 g
=] — @] e
=] 2z i T GENERALI Arena
a & 8
T 2 4 Horako
JVICE Gen. Piy . " oS
= 3 K =
)) Dejuické Dejvicky tunel MistsW
5 3 = Praha qure ¥ [=]
z % g O 2
Y 2 = 2 Z g i 3
1 £l Délostielacy; & % .
B o 3 o
& & e X
1, 5 %, hradbar 0 \ +
2 + 2 G, .q\o\‘\l
5 = Z 8 oo _
g B
mickd 3. = Al
9 o s fradty, 2 .
g Google plarianse 1§ EEE =~
= Jelent = c
Stfesovicka g e Mep data 2017 Google Terma _ Send feechack 200mL_———

Figure 2.1. Example of maps provided by Google, containing many labels with different
levels of importance

Also, many of these map applications use the same data sources in the background,
like the data sets publicly provided by Open Street Map? (which are often based on
cadastral maps published by the local governments), or other free or proprietary map
providers. Therefore, most differences between online map platforms are not in the
map content itself, but in their presentation, readability (this is the part related to this
thesis) and additional features like journey planning or navigation.

! https://www.google.cz/maps
2 https://mapy.cz/zakladni
3 https://www.openstreetmap.org

https://www.google.cz/maps
https://mapy.cz/zakladni
https://www.openstreetmap.org

Chapter 3
Basics of label placement

This section little bit more formally introduces the label placement problem and related
definitions interesting for the purpose of this thesis. It summarizes basic rules for
positioning labels — both general ones, applicable to all labels, and specific ones for
different kind of labels.

I 3.1 Features and labels

First of all, the very basic and essential part of the problem is a map. Map is a drawing
containing various map features, which can be generally divided into three basic classes:

m Point features represent small objects or points in the map. They may describe
various points of interest, and with decreasing map scale they might describe even
large objects (e.g. city is pretty huge area feature on a large scale map, but just a
little point feature on a small scale map). In the computer, point features are usually
stored as a point coordinates.

m Line features represent objects that can be stored and described by a line or curve.
Examples of a line features are streets, rivers and similar objects. In the computer,
line features are stored as lines, polylines, curves, arcs and similar structures.

= Area features covers all other features that cannot be represented by neither points
nor lines, because they cover large area of the map (and therefore the point repre-
sentation would not fully describe their size and shape) and they do not have linear
shape. Example of these area features could be countries or regions, larger cities,
lakes, forests and many other map features. In the computer, area features are
stored as polygons (or sets of polygons).

Along with map features, there are also labels describing those features. Labels
could have a form of text label or a small picture, and they are intended to describe
the meaning of the features they are attached to. Content and visual appearance of the
labels highly depends on the type and purpose of the map (road maps, tourist maps,
aeronautical charts, etc.) as the labels can have various meanings in different maps.

Text labels have many parameters — the most important is definitely their content,
but they also can use different fonts combined together with different styles (bold, italic,
etc.) and sizes. And obviously, the important parameter for this work is the label
position. Label, with all these parameters, define the meaning of related map features,
their type, importance and determine how the reader will perceive and understand the
whole map.

Image labels (pictograms) are usually based on images from a predefined set (which is
also domain specific, as aeronautical charts will likely use different symbols than maps
intended for tourists), and can represent various objects in a real world. For those
symbols, there are two basic properties which have to be set — size and position.

In this thesis, the type, content and meaning of the label is not really important. It
is enough to know the size and shape of the label (which is rectangular in most cases),

and the feature the label belongs to. This said, the algorithms presented further in this
thesis expect to receive a list of labels, with their sizes and shapes, prepared in advance.
The task of these algorithms is to find the best position for all labels — nothing less,
nothing more.

B 3.2 Problem definition

The problem is simple — given a set of map features and a set of labels belonging to these
features (with known sizes and shapes of the labels), find the best possible position for
each label.

More specifically, each label has its bounding box, represented by a convex polygon
(or a non-convex polygon, which can be converted to a convex one using one of the
algorithms allowing to find a convex hull, as described in the Appendix A). The task
is to find a position for each label, determined by a set of coordinates (the exact form
is dependent on the coordinate system used) and angle. In most cases the labels are
placed horizontally, but they do not necessarily have to be (non-horizontal labels are
typical for example for description of linear features).

I 3.3 Solving the problem

As already mentioned in the previous section, there are two basic approaches to solve
this problem — labels can be either moved in a continuous space, allowing many possible
positions, or the solution space can be discretized by enumerating a set of possible can-
didate positions for each label and consequently assigning the best available candidate
position for each label.

In this thesis, the latter mentioned approach is utilized. However, this basically
divides the whole problem into two subproblems:

= Candidate generation is an essential preprocessing phase, which handles generation
of candidate position set for each label. Positions are generated according to the
rules described in the following sections, and they should respect various configurable
parameters (e.g. the requirement might be to place a label along a line, preferably
near to the left end of that line). This process is exactly the same for all of the
placement algorithms used in the next step, and does not have to be repeated unless
some placement rules have been changed or reconfigured).

= Label placement phase is the main topic of this thesis. Described algorithms take a
set of candidates available for each label, together with other information about the
map and some metric for measuring the quality of the solution, and they propose the
best positions of all labels.

I 3.4 Labeling rules

The basic rules for placing labels were first described long time ago by Eduard
Imhof [6-7] and even though they are quite old, they’re still applicable and represent
a good starting point for rule definitions.

First, Imhof described basic rules for all kinds of map features and those will be
followed in this thesis as well (however, it is quite different task to just describe them on
a paper, compared to incorporating them into a computer program). Consequently, he

described rules for various cartographic phenomena (dealing with rivers or mountains,
various shapes of labels, etc.), but these are not so important for the purpose of this work
— which is meant to be quite general, and not deep focusing into specific cartographic
topics.

B Legibility

As the most important property, labels in the map should be legible. That means
that they should be easily readable, discriminable and visible. Legibility depends on
the properties of used font (typeface, style, size, color, etc.), as well as on the visual
arrangement of other labels and map features [7].

I Clear graphic associations

It is extremely important to be able to quickly distinguish associations between map
features and labels. This property is also tightly connected with previously mentioned
legibility, since the visual look and contents of labels are also determined by the type
and importance of the specific map features.

Sometimes, when the association between the label and the map feature it belongs
to is not so clear, it might be a good idea to use a leader line. This line can simply
visualize which label belongs to which feature, but on the other hand it can also make
the whole map even more messy, because adding leader lines increases the number of
elements visible in the map.

I Avoiding overlaps

Third important factor during map labeling is avoidance (or minimization) of overlaps.
These can happen both between two labels, as well as between a label and some map
feature. Overlapping of map elements dramatically decreases the readability of the map,
as the reader might easily get confused (overlapping may break previously mentioned
clear graphic associations), as well as he may not even be able to read the label contents.

In the algorithms implemented as a part of this thesis, candidate position generation
is focused on following all other rules, without considering any overlaps. Later, in the
label placement phase, the placement itself is mostly based on minimization of overlaps.

B 3.4.1 Point feature labels

As already mentioned before, algorithms in this thesis use “discrete” space for solving
the problem. In order to discretize the solution space, all labels must have a set of
generated candidate positions, defining where they might be placed. There are many
ways to generate these positions — they can be calculated according to various rules,
or they can even by randomly generated (with a rare chance to find some excessively
good position).

In the software part of this thesis, all candidate positions for labels belonging to
either point, line are area map features will be generated according the rules described
in the following sections. All of them are deterministic, so they can be recalculated at
any time with the same result (unless some configuration has been changed).

Positions for point feature labels will be calculated according to some of the Yoeli’s [8]
rules. Basic four positions are demonstrated in Figure 3.1. All of these positions are
easily computable, based on label size and point position in the map. Point can be also
represented by a small polygon, which defines a buffer around the point — this is quite
important, because otherwise the labels would touch the point directly and make the
point barely visible.

Figure 3.1. Basic four positions for point labels

Figure 3.2. Additional four positions for point labels

However, having only four positions would be quite restricting. In Figure 3.2 there
are another four positions, which are also very trivial to determine:

Usually the positions from the first set are considered first (with the top-right position
being considered as the best one), while the positions from the second set are considered
as the second option. In each of these two sets, some positions are better than others
— but these preferences will be mentioned later, in the description of metrics.

Generally, point feature labels should be preferably placed on the right side of the
feature (better than on the left side), and labels placed on the top are preferred to the
ones on the bottom [7]. Labels should be as near to the point as possible, but they can
be also placed further from the owning feature and connected using a leader line.

B 3.4.2 Line feature labels

Placing labels describing line features is a bit tricky, as those linear features could be
made of various curves or similar graphic elements. Quite often those labels have a
shape that copies the shape of the owning element (e.g. label for a river is often placed
along the river, following the shape of the river). For the purpose of this thesis, all labels
are expected to be straight — but this is not a restriction for the placement algorithms,
as they work with bounding boxes and hence they do not need any more information
about formatting of the label content.

In order to maintain readability, label should not cross the feature it belongs to. It
should be preferably along the feature, not too far from it but also not touching it.
Ultimately, the label should be placed as horizontally as possible.

Label generator used by the algorithms in this thesis offers multiple approaches to
generate the labels for linear features. Labels could be placed either along the line,
perpendicular to the line (or a specific segment of a line feature), or they can be placed
horizontally without respecting the angle of the line, as shown in Figure 3.3.

Figure 3.3. Rotations of line feature labels

10

Figure 3.4. Vertical positions of line feature labels

In a similar manner, the labels can be placed either above, belong or directly on the
line, as shown in Figure 3.4.

Ultimately, last proposed preference is the position on the feature — whether the label
should be placed on the left end, in the center or on the right end, as shown in Figure
3.5. Unlike the remaining rules, which restrict possible positions for the candidate
position generator, this setting is just a preference for the placement algorithm — not a
constraint.

Figure 3.5. Horizontal positions of line feature labels

B 3.4.3 Area feature labels

Probably the most complicated map features are areas. They are usually bordered by
some linear object, and there can be many other objects inside the area. Moreover, the
areas could even overlap and that makes finding possible label positions quite difficult
task.

Similar to line feature labels, the text inside the labels could be deformed in many
ways, in order to fit into the map. Labels for area features can lie inside or outside of
the area (but they shall not cross the border, as well as they shall not cross borders of
other areas). Especially in case of overlapping areas, it is necessary to ensure the clear
graphic associations between the area and the label — once more, leader lines might be
helpful for this.

In this thesis, the problem of area feature labeling is not described any further as it
is quite complicated and not directly the topic of this work. In the software part, all
area feature labels are always placed exactly in the center of the area.

11

Chapter 4
Metrics

Algorithms described later in this thesis are designed to assign each label the best
available position. But that task brings one important question: Which position is the
best?

The question is not easy to answer. Cartographer (a human) usually decides based
on his senses and subjective perception — what he believes that looks the best. For the
computer, this task is complicated as “being the best” is quite difficult to define — in
the world of computers, everything has to be described by numbers, and it could be a
pretty difficult task to “numerize” a human’s subjective point of view.

In fact, this simple question can be even divided into two separate questions, both
of them being important for the solution of the problem:

1. Which label position is the absolutely the best?
2. Which label position is the best for the whole placement task?

In the first part of this chapter, labels are analyzed and scored individually, in order
to decide which position is the best for a given label, without considering any other
labels in the problem. This part is based on the rules described in the previous chapter.

In the second part, scoring of the problem is analyzed globally, considering positions
of other labels as well. This part is applicable in the label placement algorithms, as
this is the metric they’re trying to minimize.

I 4.1 Scoring individual labels

Finding the best position for a specific label is basically equal to a minimization of
penalties. There are three basic categories that can be penalized:

1. Label positions, because some of them are nicer than the others, e.g. if the top-right
corner of a point is considered to be the best, all other (non-optimal) solutions should
be penalized

2. Conflicts with map features should be penalized because of overlaps between map
features and labels tend to decrease readability of the map

3. Conflicts with labels should be penalized as well, because overlaps between two labels
also decrease the readability

Final score of the label position is equal to the weighted sum of these three penalties.
In the software part of this thesis, default weights are 10% for label position penalty,
40% for conflicts with map features and 50% for conflicts with other labels. However,
these weights are not fixed and can be changed to better fit a specific map.

B 4.1.1 Label position penalties

In the previous chapter, there was a list of rules used for labeling point, line and area
features. It was also mentioned, that positions generated according to those rules have
different priorities, i.e. some of them are better and nicer than the others.

12

Obviously, the computer must somehow consider and respect those priorities as well.
One of the ways to approach this issue is to consider the priority as a part of the metric.
In the implementation developed as a part of this thesis, the label position penalties
are hardcoded for each candidate position generation rule. The penalties are between
zero and one, and in the final metric they are multiplied by the respective weight.

Il Point feature labels

For point feature labels let’s recall the basic eight positions presented in the previous
chapter, as they are pictured in Figure 4.1.

Figure 4.1. Basic eight positions for point labels

Generally, the best position for point feature label is considered to be the top-right
corner and hence its penalty is zero. Other available positions from the basic set are top-
left corner with penalty of 1/8, bottom-right corner with penalty of 2/8 and bottom-left
corner with penalty of 3/8.

Another four positions are on the right side of the label with penalty of 4/8, on the
left side with penalty of 5/8, on the top with penalty of 6/8 and ultimately on the
bottom with penalty of 7/8.

It is obvious that fractions of seven could have been used instead of fractions of eight,
but this decision would not make any significant difference and fractions of eight are
easier to represent — there is no higher purpose in this decision.

I Line feature labels

Candidate positions of the line feature labels can have three preferred positions — on
the left end of the line, in the center or on the right end of the line, and calculation of
the label position penalty differs based on this preference:

m Left end — labels on the left end have zero label position penalty, while those on the
right end have label position penalty of 1. Penalties of all positions between left and
right end are calculated linearly, hence the position in the center of the line would
have a penalty of 1/2.

m Center — labels in the center have zero position penalty, and labels on the left or
right ends have a position penalty of 1. Penalties for all points between center and
any end of the line are calculated linearly.

m Right end — labels preferring right end are calculated in the similar manner as labels
which should be placed on the left end. However, labels on the right end of the line
have zero position penalty, while those on the left end have a penalty of 1.

B Area feature labels

Since area feature labels are not handled in this thesis, they are always placed in the
center of their owning map feature and hence the penalty is always zero (as there are
no other candidates).

13

B 4.1.2 Map feature conflicts

Conflicts (overlaps) between labels and map features can have various impact on the
label readability — same overlap with a specific feature can do just a little harm by
covering part of a huge label, but it can also cover nearly whole area of a small (but
important) label.

To handle these differences, label penalty for conflicts with map features is calculated
as a ratio of label area covered by map features and the area of the whole label. This
means, that an uncovered label should have zero feature conflict penalty, while fully
covered label should have a penalty of one.

This penalty can possibly even exceed one, if the label area is covered by multiple
objects. This happens because upper limit for penalties is not implemented, in order to
make the problem easily tractable even for mathematical optimization solvers, where
each additional constraint can have a huge performance impact.

B 4.1.3 Other labels conflicts

Label conflict penalty works exactly the same way as the map feature conflict penalty
— the penalty is equal to the ratio of a label area covered by overlaps with other labels,
and the whole area of the label. However, same conflict can inflict different penalties
for different labels, as each label can have a different size and hence the damage caused
by the conflict can vary.

This penalty is calculated separately, because it can have different weight as the
impact on the overall map quality can be different.

I 4.2 Scoring whole solutions

It is nice to be able to find the best placement for individual labels, but solvers presented
in this thesis are interested in finding the best possible placement of all labels on the
map, and hence they have to minimize a fitness function representing the quality of the
whole placement.

Proposed fitness function for evaluating the placement of all labels on the map is
quite straightforward — the total fitness value is equal to the sum of fitness values of all
individual labels as they’re currently placed in the map.

This fitness function is used in all algorithms mentioned further in this thesis, and
to evaluate the maps in Chapter 9.

14

Chapter 5
Greedy algorithms

One of the simplest (but also very common) programming paradigms for solving various
algorithmic problems is the application of greedy algorithms [23]. Greedy algorithms
generally choose the best option available at a time, without reconsidering any decisions
previously made.

Obviously, it is possible to reconsider the options by running the algorithm again in
an iterative manner, but the basic paradigm is still the same — within one iteration of
the algorithm, any choice is “fixed” and cannot be changed until the next iteration.

These properties make greedy algorithms quite fast, but also very fragile as the
solution can easily fall into a local minimum and it is not very likely that it will ever
get out of it. Local search based on iterative variant might help to handle this problem,
but there are still no guarantees of success (and it also slows down the process, as it
forces the algorithm to reassign the same variables again and again).

There are three algorithms presented in this chapter. Two of them are single-iteration
algorithms, as they only assign candidate position to each label once. First of these two
algorithms is simple and fast, as it calculates all important metrics in the beginning,
without changing them during the optimization. Second algorithm presents a possible
improvement by updating the metrics during the optimization process, based on the
choices previously made by the algorithm.

Third presented algorithm makes use of the “GRASP” paradigm, which starts with
a greedy algorithm to find an initial solution, and then improves the solution using
a greedy based local search. This solution is inspired by works of Ales Kobr [4] and
Brazilian scientists Cravo, Ribeiro and Lorena [22], but uses the improved version of
the greedy algorithm as an initial step.

I 5.1 Basic greedy

The first greedy algorithm initially computes metrics for all candidates of all labels
(while all possible conflicts with other candidates belonging to other labels are counted).
Later, the algorithm passes through the list of all candidates in the ascending order
defined by their metrics and assigns them to their labels, if they were not assigned any
other candidate so far.

The implementation available as a part of this thesis internally uses min-heap priority
queue for sorting and processing all label candidates one by one. It would be also
possible to use standard arrays (or similar data structures) and apply any other sorting
algorithms.

All metrics calculated in the preprocessing step of the algorithm are final and will not
be recalculated during later phases. This obviously degrades the quality of solutions (as
the metric considers conflicts which cannot happen anymore as the affected candidates
could not be selected), but makes the algorithm very fast.

Pseudocode of the Basic greedy algorithm is quite simple:

15

// Calculate penalties
foreach candidatel in candidates:
foreach candidate2 in candidates:
if candidatel.label != candidate2.label:
candidatel.penalty += intersection(candidatel, candidate2)

// Add candidates to priority queue

pPq = new priority queue

foreach candidate in candidates:
pg.push(candidate.penalty, candidate)

// Process queue
for candidate in pq:
label = candidate.label
if label.selected_candidate == null:
label.selected_candidate = candidate

B Analysis and complexity

Since the Basic greedy algorithm is expected to be deterministic (depending on data
structure used for storing labels — using lists would make the algorithm deterministic,
while using sets may not, and also on selection of the algorithms used for sorting the
list /queue of candidates), the complexity of the algorithm can be found easily.

In order to find out the complexity of the Basic greedy algorithm, let’s assume that
L is a set of all labels and C'is a set of all possible label positions (candidates) available
in the problem. Consequently, |L| is the number of labels and |C| is the number of
candidates in the problem.

As a first step, the algorithm calculates conflicts between all pairs of candidates.
Assuming that there are |C| candidates present in the problem, the complexity of this
preparation step is

o(lcP)
For each of these pairs, it is necessary to calculate their intersection, which could be
quite computationally expensive, but the complexity of a single intersection calculation
is expected to be negligible in comparison with the total number of candidate pairs to
be processed.

According to the pseudocode, the second step puts all candidates to the priority
queue. If it is possible to put the whole list of candidates to the list at once, the
complexity could be lower, but in case of inserting the candidates one by one, the
complexity is

O(|C] - log |CY)

Finally, in the last step the candidates are popped out of the priority queue and
processed one by one until all of the labels have been assigned some candidate. The
complexity of popping all elements from the priority queue is again

O(|C| - log |CY)

If the algorithm would use an array instead of priority queue, the complexities of
pushing/popping new elements would be lower, but there would be additional cost for
sorting the array.

Ultimately, the whole algorithm analyzed above have a complexity of

o(ICP)

as the calculation of all label conflict penalties is the most expensive part.

16

I 5.2 Advanced greedy

The speed of Basic greedy algorithm is awesome, but since the label conflicts are cal-
culated only at the beginning (and they are calculated considering all possible candi-
dates), they are getting more and more obsolete as the algorithm progresses — most
of the possible label candidates will get deprecated over time, but the penalty would
be still considered. In order to fix this issue, the Advanced greedy algorithm decreases
penalties of candidates affected by selecting or rejecting other candidates.

The first part of the algorithm is exactly the same as in the previous case — intersection
penalties are calculated for all possible candidate pairs.

Unfortunately, priority queue is not exactly the best option for storing objects with
variable penalties (because with each penalty change, the algorithm would have to find
the original element in the queue, pop it and enqueue it again — there is no easy way to
decrease key/penalty of existing item in most priority queue implementations). Because
of this, the list of candidates is not stored in a priority queue, but it is just a generic
array (or list structure), where the candidate with the minimum penalty has to be
found by iterating through the whole list.

The other half of the algorithm is also quite similar to the Basic greedy — but,
obviously, without having the minimum element easily found by the priority queue, it
has to be found by traversing through the whole candidate list in each round. However,
the most important difference happens when the candidate is assigned to a specific
label — as the selection of a specific label candidate automatically rejects all other
candidates belonging to a specific label, the algorithm finds all candidates conflicting
with those newly rejected candidates and decreases their penalty. This way, penalty
always reflects only intersections with candidates that are still in the game, and does
not consider intersections that could not happen anymore.

The algorithm is described by the following pseudocode:

// Calculate penalties
foreach candidatel in candidates:
foreach candidate2 in candidates:
if candidatel.label != candidate2.label:
candidatel.penalty += intersection(candidatel, candidate2)

// Create list of labels without candidate
unassigned_labels = new list
unassigned_labels.push_all(labels)

// Process candidates (always the one with minimum penalty)
while unassigned_labels not empty:
best = null
foreach candidate in candidates:
if candidate.label in unassigned labels:
if best == null or candidate.penalty < best.penalty:
best = candidate
label = best.label
label.selected_candidate = best
foreach denied in label.candidates where denied != best:
// Recalculate penalties for relates of denied candidate
foreach related in find_related_candidates(denied):
related.penalty -= intersection(denied, related)

17

B Analysis and complexity

Identically to the Basic greedy, the Advanced greedy algorithm is also expected to be
deterministic if the data structures used for storing labels and candidates preserve the
order of elements stored inside (once more, this rule may not always hold e.g. for sets).

Same as in the previous case, in order to find out the complexity of the Advanced
greedy algorithm, let’s assume that L is a set of all labels and C' is a set of all possible
label positions (candidates) found in the problem. Consequently, |L| is the number of
labels and |C| is the number of candidates in the problem.

The first step (calculation of conflicts between all pairs of candidates) remains exactly
the same as in the Basic greedy algorithm. Assuming that there are |C| candidates
present in the problem, the complexity of this preparatory step is

o(ICP)

For each pair of candidates, it is necessary to calculate their intersection, which could
be quite computationally expensive, but the complexity is expected to be negligible in
comparison with the total number of candidate pairs being processed. It may also be
a good idea to note down the list of related candidate pairs, in order to be able to find
them quickly during the following steps.

On the other hand, the selection of candidates and application of this choice is much
more complicated here (in comparison with the Basic algorithm). In this part, there
are |L| labels to be assigned and processed, causing |L| rounds to be run. For each of
them, it is necessary to check O(|C|) candidates to find the one with the lowest penalty,
causing this part to cost

O(L]-1CT)

In the same |L| rounds, the best candidate found is assigned to the label it belongs
to and O(|C|) candidates are marked as deprecated (unless there is a specific candi-
date limit known for each label). For each of these deprecated candidates, there are
O(]|C) related candidates and for each of them the metric is decreased, as the conflict
between the deprecated candidate and the related candidate is not possible anymore.
Complexity of this step is then

O(IL| - |CP?)

However, it is really important to realize that there are like to be only a few candidates
for each label and only a few candidates related to them, so the complexity looks horrific
but with real data it is not so dramatic.

Ultimately, the complexity of the analyzed algorithm is

o(L] - |cP?)

as a consequence of the last part, which is the most computationally expensive one.

B 53 GRrAsP

The Advanced greedy algorithm is nice — it still works quite fast in comparison with
other types of algorithms, and the result usually is not so bad — but it definitely can
be much better! The logic behind the decisions made in the Advanced greedy is simple
— consider all conflicts with already placed labels, together with all possible conflicts
with candidates belonging to the not yet placed labels.

18

Obviously, this heuristic is quite pessimistic as most of the considered conflicts will
never happen. In comparison with the Basic greedy, it is improved in the fact that those
candidates are no more considered when they are denied, but it is still not perfect.

Let’s consider a situation after the greedy algorithm has finished (i.e. there is a
position assigned for each label). Now, if the algorithm would try to improve the
solution and select better position for a specific label, the decision would be faster as
the algorithm can only calculate conflicts with other currently placed label positions
(and does not have to consider positions with other, currently unused positions). This
way, after the initial position is found (constructed), the algorithm could go through
all labels and check if there is a better placement choice for them, based on current
situation (and this way it will likely improve the solution).

This metaheuristic is known as Greedy Randomized Adaptive Search Procedure
(GRASP) [24]. It is a pattern consisting of two basic steps:

m Greedy (randomized) construction is a way how to obtain some solution. Some-
times, the greedy solutions are good enough to be an optimal solution, but in this
case, it is perfectly enough to construct some feasible solution.

= Local search then improves (or at least tries to improve) the solution constructed by
the greedy algorithm. Various kinds of local search methods could be used, including
some greedy ones (in that case, the GRASP results in a greedy optimization for
constructing initial solution, improved by another greedy optimization step).

Usually, GRASP runs these two steps many times, as the greedy construction is
expected to be randomized. In that case, it constructs multiple solutions and each of
them is then improved by the local search. However, due to randomness, the algorithm
is not deterministic.

In the algorithm designed and implemented as a part of this thesis, only one itera-
tion is applied — one solution is constructed and then improved. Both parts are also
deterministic (under the same circumstances as are the previously described Basic and
Advanced greedy algorithms):

s Greedy (randomized) construction step is equal to the Advanced greedy algorithm,
i.e. the best label position is determined, based on conflicts with both already placed
labels and all not yet denied label positions of unplaced labels.

m Local search step iteratively traverses through the list of labels and for each of
them, it checks whether there is a position that would fit better, considering current
positions of other labels. If so, the label is moved and hence the fitness will improve in
most cases. Number of the local search iterations (where each iteration consists of one
pass through the list of labels) is limited by a constant number, but the improvement
process can be terminated earlier if there is zero number of changes done in a specific
iteration, because any improvement in subsequent iterations is impossible — due to
the determinism of the algorithm, the next iteration would result in the exactly same
result (i.e. no changes at all).

Despite the fact, that GRASP will likely provide better results than just a pure greedy
constructive algorithm, there is still a chance of getting stuck in a local minimum, as
only one label is being moved at a time, which is quite limiting (like most local search
algorithms). Fortunately, the results are quite good (and if the outcome of the Advanced
greedy algorithm was considered good, this is even better) and for most situations,
they’re pretty nice. The algorithm is described by the following pseudocode:

19

// Run the Advanced greedy algorithm as an initial step
advanced_greedy(labels, candidates)

// Now, run N iterations of improving local search
for iteration in 1..N:
// For each label...
foreach label in labels:
// ...find the best candiate...

best = null
foreach candidatel in label.candidates:
// ...according to other current choices

candidatel.penalty = 0O
foreach label2 in labels where labell != label2:
candidate2 = label2.selected_candidate
candidatel.penalty += intersection(candidatel, candidate2)
if best == null or candidatel.penalty < best.penalty:
best = candidatel
label.selected_candidate = best

B Analysis and complexity

Same as in the Basic and Advanced greedy algorithms, it is a good idea to use de-
terministic data structures for storing data, to ensure the determinism of the whole
algorithm.

In order to find out the algorithmic complexity of the GRASP algorithm, let’s assume
that L is a set of all labels and C' is a set of all possible label positions (candidates)
found in the problem. Consequently, |L| is the number of labels and |C/| is the number of
candidates in the problem. Also, let’s assume that N is the maximum allowed number
of improvement iterations.

The first part of the algorithm is the Advanced greedy algorithm itself, together with
its complexity of

o(L] - |cP?)

It would be possible to use another algorithm to find the initial solution as well (possibly
faster one), but in most cases the Advanced greedy algorithm is fast enough and finds
reasonable solutions, that could be used as a base for the subsequent improvement
iterations.

In the second part of the algorithm, there are up to N improvement iterations. In
each of these iterations, all of |L| labels are reconsidered, and for each label there are
|L| — 1 possible conflicts calculated, setting the complexity of this step to be

O(N - |L?)

Assuming that number of iterations is lower than the number of all label possible
label positions for all labels, the complexity of the whole algorithm is determined by
the first step:

O(IL| - |CP?)

In the end, the improvement part of the algorithm generally takes shorter time than
the search for initial solution. Knowing this, the GRASP combination of a the con-
structive greedy part and the improving local search part is better option than “just”
the single-round option, as the extra performance required for the improvements is not
so high (at least for reasonable number of local search iterations).

20

Chapter 6
Mathematical optimization

Even though the greedy algorithms can find the solution quite fast, the solution quality
could be very poor. On the other hand, there are ways to find exactly the best (and
therefore the most optimal) solution — without any dependence on non-deterministic
algorithms or approximations.

One of these ways is describing the task as a mathematical optimization problem
and solving it. Unfortunately, optimality guarantee is computationally hard task and
therefore very time demanding. But there are many commercial or non-commercial
solvers, able to apply various optimizations and heuristics to find the optimal solution
without searching the whole solution space.

I 6.1 Mathematical programming

Mathematical optimization (or mathematical programming) is a problem of finding the
best assignment of variables in order to optimize some objective — most commonly
to minimize or maximize the value of some objective function, dependent on a set of
variables, while ensuring that additional constraints (if given) will hold.

There are many subfields of mathematical programming, but for the purpose of this
thesis, the following subfields (or their combinations) are the most interesting ones:

= Linear programming is a subset of mathematical programming, where the objective
function is linear and all constraints are linear equalities or inequalities.

= Quadratic programming is a subset of mathematical programming, where the ob-
jective function can be quadratic, but all constraints are still limited to be linear
equalities or inequalities.

= Bilinear programming [25] is a subset of quadratic programming, where the objective
function contains product of two different variables. There are special heuristics for
solving this type of tasks, such as fixing one of the variables and hence simplifying
the remaining problem to be a linear one.

= Integer programming is a subset of mathematical programming, where all of the
variables can be assigned only integer values. It is quite common to combine linear
and integer programming, known together as Integer linear programming (ILP) task.

= Mixed integer linear programming is a subset of linear programming, where some
variables can be assigned only integer values (like in ILP), while other variables can
be assigned non-integer values as well.

m 0-1 integer programming is a subset of integer programming, where the variables
can be assigned only 0 or 1, making them binary variables.

One more related field is constrained programming [26], which is not a subset of
mathematical programming, but may allow to solve problems that could not be solved
using mathematical programming techniques, as it allows more complex constraints
and offers different solving methods.

21

6. Mathematical optimization

Problem variations described in this thesis utilize the 0-1 integer linear and bilinear
programming techniques, as the decision task is always about choosing some label
position or not (restricting the variables to be binary), and calculating the fitness based
on individual positions of labels or pairwise relations between labels.

I 6.2 Branch and cut

In order to solve the mixed integer linear programming tasks, most solvers use an
algorithm called Branch and cut [27].

Since the (mixed) integer linear programs are just “standard” linear programs with
additional integrity restrictions, the solver first solves a relaxed version of the program,
which ignores all of these integrity restrictions. Those relaxed linear programs may be
solved using simplex method.

When the optimal solution of the relaxed problem is known, the solver has to check
whether the solution complies with integral restrictions. If so, then the solution is the
optimal solution of the whole MILP program.

However, in most cases this does not hold and some variables have decimal value. In
that case, one of those variables with decimal values is chosen (possibly with the aid
of various heuristics and strategies) and the problem is split into two subproblems: for
a branching variable z with optimal value of Zz, first new subproblem will contain an
additional restriction of x < |[Zz], while the other subproblem will contain additional
restriction of x > [Z].

9 0000

Figure 6.1. Example of branching of the MILP problem?

This process creates a huge tree, which the optimizer has to traverse. Fortunately,
there are some ways to limit the number of nodes to be traversed. Any subtree of the
problem has a solution of it’s own relaxed linear program, which cannot be surpassed
by any integer solution in that particular subtree (hence its criterion value is a lower
limit of that subtree). As the optimizer finds some solutions, it can remember the best
criterion value of the (mixed) integer linear program found so far as a global upper limit,
because there is no point in finding any solution that is inferior to this one. Knowing
this, any subtree which has a lower limit higher than is the global upper limit at a time,
is not interesting for next analysis and therefore can be ignored.

! http://www.gurobi.com/resources/getting-started/mip-basics

22

http://www.gurobi.com/resources/getting-started/mip-basics

I 6.3 Available solvers

There are tens of various software suites available for solving many kinds of mathemat-
ical optimization problems. The following list describes four major tools, three of them
being developed as a commercial product, while the last mentioned one is licensed as
open source and freely available.

M 6.3.1 CPLEX

IBM ILOG CPLEX Optimizer! is a commercial optimization toolbox currently devel-
oped by IBM. CPLEX contains multiple solvers for solving various linear programming,
(mixed) integer programming, quadratic programming and constrained programming
tasks (the last one mentioned could utilize different techniques than the “pure” math-
ematical optimization solvers, as already mentioned before).

CPLEX can be integrated into custom applications using APIs available for various
programming languages (including Matlab plugin) or it can be used to run tasks defined
using various modelling languages, including the OPL (Optimization Programming
Language) which is intended for usage specifically with CPLEX.

There are two freely available versions for academic use — CPLEX Optimization
Studio Community Edition is the publicly available free edition (with restriction to
problems with up to 1000 variables and 1000 constraints). The other edition is a
standard CPLEX Optimization Studio available through the IBM Academic Initiative.
The latter mentioned is also available at the MetaCentrum? compute grid.

B 6.3.2 Gurobi

Gurobi Optimizer® is a commercial optimization toolbox developed by Gurobi Opti-
malization and like CPLEX, it contains multiple solvers for linear, (mixed) integer,
quadratic and various forms of constrained programming.

Usage options are also quite similar to CPLEX, as Gurobi offers API for most used
programming languages, Matlab and R connectors and it can process tasks described
using common modelling languages.

There is academic license available for students and academic institutions, but it is
not available on MetaCentrum. Free version is not available.

M 633 MOSEK

The last mentioned commercial optimizer is MOSEK?. Like already mentioned CPLEX
and Gurobi solvers, it can solve linear, (mixed) integer, quadratic and other program-
ming tasks. Its main strength is in fast solving continuous linear, quadratic and conic
problems.

MOSEK can be officially used through APIs, as a Matlab toolbox and it can execute
tasks defined in AMPL (which is also one of the modelling languages also supported by
the two previously mentioned suites).

Like in case of Gurobi, there is no free version available, but there is an academic
license offered to students and academic institutions.

https://www-01.1ibm.com/software/commerce/optimization/cplex-optimizer/
https://www.metacentrum.cz/en
http://www.gurobi.com/products/gurobi-optimizer
https://www.mosek.com/products/mosek

=W N =

23

https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
https://www.metacentrum.cz/en
http://www.gurobi.com/products/gurobi-optimizer
https://www.mosek.com/products/mosek

B 634 GLPK

GNU Linear Programming Kit (GLPK)! is a free and open source suite backed by
the Free Software Foundation. It is capable of solving various linear programming and
mixed integer programming tasks.

GLPK offers bindings for various programming languages and can be also run from
command line to solve tasks defined in GNU MathProg modelling language (which is
specific to GLPK, but it is a subset of AMPL).

B 6.3.5 Problem definition

There are many ways to formulate the problem, but let’s start with the most common
and already known formulation, and reformulate it as a mathematical optimization
problem. Slightly less formally, the problem can be described as follows:

“There is a list of labels and corresponding possible label positions (candidates) for
each of these labels. For each label, there must be exactly one candidate selected (placed
on the map). There is a non-negative penalty for each selected candidate (representing
conflicts with map objects), and also a non-negative intersection penalty for each pair
of two selected candidates (representing intersections of these labels). The goal is to
minimize the total sum of penalties in the whole solution.”

This description can be formulated as the following 0-1 bilinear programming task:

mmz Se- P+ Z Z Sey * Sey ICl,CQ (1)

ceC c1€C cpeC
subject to
VeeC,le L:s; <Ay (2)
VIEL:) so=1 (3)
ceC
VceC:Zst < s, (4)
leL

The description above uses the following symbols:

m L is a set of label identifiers

s C is a set of label candidate (possible label position) identifiers

m s. € {0,1} is a boolean variable representing the choice whether the candidate c is
selected or not

m s.; € {0,1} is a boolean variable representing the choice whether the candidate c is
selected for label [or not

m P, > 0 is a non-negative integer penalty for selecting the candidate ¢

m I, ., > 0 is a non-negative integer intersection penalty for selecting both candidate
c1 and c¢o

m A.; € {0,1} is a boolean flag stating whether the candidate ¢ belongs to label

Constraints in the definition have a quite straightforward meaning — for each label
only its candidate positions can be chosen, for each label exactly one candidate position
has to be chosen, and if some position choice flag is true for some label/candidate pair,
it is true for the choice of candidate itself as well.

! https://www.gnu.org/software/glpk/

24

https://www.gnu.org/software/glpk/

B Linear vs bilinear definition

The problem definition above describes a bilinear programming problem. The good
thing about it is that all variables are binaries (0-1 integers). The not so good thing is
that the problem is bilinear, instead of just a linear one.

Basically, it is not a problem to convert the task to be a linear one, by simply intro-
ducing a variable for each pair of candidates, stating whether both of them are chosen.
Unfortunately, it is not very effective because this little change would generate another
|C|? new variables and constraints (at least one constraint for each new variable). For
just one thousand candidate positions, there would be another million of additional
variables and a million of additional constrains.

Good optimizers can do very effective preprocessing and eliminate most of the un-
necessary variables, but many of them will still remain in the problem. For this reason,
there is the bilinear definition used in this work, as CPLEX can handle the problem
quite well (and much easier than the linear one with many additional variables).

I 6.4 Using CPLEX solver

For the purpose of this thesis, CPLEX will be used to solve the task, because it is
probably one of the most effective software tools available for this class of problems,
and offers free academic license. Even more important fact is that this academic license
is usable on MetaCentrum cluster, used for comparing algorithms later in this work (as
the computer cluster offers much more computational power than all personal computers
available during the time of writing this thesis together).

There are few basic ways to solve mathematical optimization problems using CPLEX:

= Providing definition in a supported format is the lowest-level usage mode offered by
CPLEX. Problem definition stored in LP (Linear Programming) or other supported
format has to be passed directly to the solver, which finds out the optimal solution
and writes it into SOL (Solution) file, that is XML based and can be parsed by any
other software. The LP definition describes the optimization problem in its purest
form, without any additional abstractions like arrays or similar data structures.

s OPL (Optimization Programming Language) (or other modelling languages like
AMPL) represent a higher-level way of using the optimizer. OPL describes the
problem using various abstraction techniques like arrays (including multi-dimensional
ones), and allows writing the data in more user-friendly manner, using various loops
and integrated functions. Ultimately, the OPL can also contain additional scripts,
e.g. for writing the output to a file when the solution is found.

® APlIs can be used to run the optimizer directly from the source code of other applica-
tions. CPLEX provides API interfaces for many programming languages like Java or
C#, or as a Matlab toolbox. This way it is possible to manipulate the data in more
complex and easier ways (in comparison with quite restrictive modelling languages),
and there is no need for the additional intermediary step of calling the CPLEX solver
(or OPL runner) from a command line.

The software implementation distributed as a part of this thesis uses the OPL models
to pass the data to the optimizer. This approach allows more flexibility, in comparison
with LP files (such as more comfortable way to describe the problem using arrays and
loops, or the ability to write out the solution to a simply readable file like CSV, instead
of parsing complex XML files produced directly by the optimizer).

25

Another option considered during the program implementation was the direct usage
of CPLEX through Java API. However, since the problem is likely to be solved on
another computer (e.g. high performance server) than the one used to design it, it
would be necessary to have the program available on that server as well. With OPL,
the program does not have to be installed on the CPLEX machine as only the OPL
model file is necessary. After the OPL execution, there is a single file created, which
has to be fetched and loaded into the application.

I 6.5 Terminating the optimization

Mathematical optimization is an exact method and can provide truly optimal solutions.
Unfortunately, with the optimality comes the price — there might be enormous amount
of time and computational power needed to find the solution, and this factor can be
limiting for anybody trying to solve anything more complex than just the most trivial
problems.

Because both time and computational power are usually limited (and also connected
with each other, as more computational power will likely decrease the amount of time
required to find the optimal solution), it is necessary to decide when it’s the best time
to stop the whole optimization process.

In CPLEX (and likely in the other optimization toolkits as well), there are multiple
conditions that can be used to stop the MILP (Mixed Integer Linear Programming)
optimization process at the right time:

= Optimal solution has been found is the best option if it will happen in a reasonable
time. It requires the problem to be either completed by ensuring that any better
solution does not exist, and in case of using branch and cut method it requires the
whole branching tree to be processed (or cut away). However, for larger problems
this is likely to take unacceptable amount of time.

m Time or memory limits can limit the time spent on the optimization process, or
computer memory used by the optimizer (as the branch and cut tree data can occupy
huge amount of memory). When the time or memory limit is reached, the optimizer
returns the best result found so far and marks it as a final result.

= Relative and absolute gaps are restrictions specific to the branch and cut method.
During the optimization process, the difference between the value of the best feasible
solution found so far (upper limit) and the value of the best discovered (or expected
to be discovered) solution that might still be found (lower limit) is called the “gap”.
When this gap is small enough, the optimizer process can be finished as searching for
more optimal solution may take too much time considering just the little improvement
that can be found.

Thanks to these termination conditions, the mathematical optimization is more us-
able for solving real world problems, as people usually need solution that is “good
enough”, but in a reasonable time and without having to buy costly pieces of hardware.

I 6.6 Performance issues

Although CPLEX is a very powerful software and the problem itself is very simpli-
fied during the preprocessing part of the optimization process, it still needs a lot of
computational resources in order to find the optimal solution of the task.

26

Basically, there are two steps of the mixed integer programming solution process in
CPLEX. In the first step, the problem is reduced by relaxing unnecessary variables and
constraints from the problem. In terms of the label placement, the intersection matrices
representing penalties for label intersections (conflicts) are expected to be pretty much
sparse (as each label usually has conflicts only with few other labels), causing many
variables and constraints to be eliminated in this step. The amount of memory needed
in the preprocessing step depends on the problem size, and generally is lower than the
memory needed further during the optimization process.

The second step is the optimization itself. Depending on the optimization problem
type, combinations of various methods like simplex method or branch and cut are used.
Using the branch and cut forces the algorithm to consume huge amount of memory as
it remembers a lot of data about processed solutions. As mentioned in the previous
section, it is possible to set memory restrictions for the memory used by the solver,
but according to experiences during the preparation of this thesis, in most cases the
memory limits are not really respected.

On MetaCentrum computer cluster used evaluating all algorithms mentioned in this
work, there are two options how to handle memory usage limits — either allow the
optimizer to take as much memory as it wants, and kill it when these limits are exceeded,
or to hard restrict the memory available to the CPLEX process. With the first option,
there is a risk that the optimizer will cross the limit before writing out at least some of
the results and causing the whole optimization process to be halted without producing
any result. In the latter case the optimizer cannot cross its allocated memory limit, but
if the available memory is not enough for some optimization step, the optimizer might
halt the process as well.

For testing the algorithms on MetaCentrum, the first option is used — there are
no hard limits configured for the process, but if the allocated memory is not enough
to finish the process, the whole process is halted. In order to successfully solve the
problem, it is necessary to assign enough memory allowance to the task.

27

Chapter 7
Genetic algorithms

In previous chapters, the label placement problem was solved either using quick (but
very “fragile”) greedy algorithms, or by describing the task as a mathematical opti-
mization problem and passing it to some of the high performance solvers in order to
find a solution.

Unfortunately, mathematical optimization is an exact science and optimizers have to
consider all possible options in order to be able to guarantee optimality of the solution.
This way, the outcome of the algorithm is completely deterministic and will be found
for sure. But everything comes with a price — in this case, finding the optimal solution
can take enormous amount of time.

On the other hand, what if some non-deterministic algorithm would be used instead?
There would be absolutely no guarantees of finding the optimal solution, but there is
always a chance of finding quite good solution within a short time periods — but still, no
guarantees. Some of the possible representatives of these non-deterministic algorithms
are called evolutionary algorithms.

Evolutionary algorithms are optimization techniques inspired by biological evolution,
and share its basic concepts like selection, mutation and reproduction mechanisms.
However, in contrast to the biological form, individuals evolved in evolutionary algo-
rithms are solutions to the given optimization problem. There are multiple types of
evolutionary algorithms like genetic algorithms (searching for the genotype represent-
ing the optimal solution) or genetic programming (searching for optimal computer
program).

This part of thesis solves the label placement problem using genetic algorithm [28].
Moreover, the presented genetic algorithm introduces hierarchical clustering as an en-
hancement allowing the usage of point based crossover functions. Furthermore, it in-
troduces a memetic part in the form of local search step, which allows faster evolution
of promising individuals.

I 7.1 Parts of genetic algorithm

Genetic algorithm itself is just a metaheuristic inspired by biological evolution and
natural selection. However, in order to apply it on a real world (or any other) problems,
some basic, problem dependent building blocks have to be defined as a part of the
algorithm.

In the following sub-sections, all important parts of genetic algorithms are described
one by one, together with commonly used examples.

B Genetic representation

In the world of genetic algorithms, all individuals (possible problem solutions) are
represented by genotypes (or chromosomes). Genotypes are made of variables, known
as genes. In most cases, genotypes can be represented as strings (either consisting
solely of binary values, integers, or other generic values).

28

In a couple with each genotype, there should exist a phenotype, which represents
the genotype meaning in the problem solution domain. It is also essential to be able
to encode phenotypes to genotypes, and — even more important, to be able to decode
genotypes of the solutions back to the phenotypes.

B Initialization

As a first step in the genetic algorithm, it is necessary to get the initial population
of individuals (candidate solutions). This population (set of individuals) can be estab-
lished by many ways — individuals could be generated randomly without the need of
any deeper knowledge of the problem domain, or they can even be a product of another
(likely fast) optimization algorithm.

Individuals in the initial population should be feasible, forcing the initialization al-
gorithm to respect this condition as well. There are two ways to achieve this property —
either by designing generator providing only feasible solutions, or by generating “some”
solutions and then fixing them to make them feasible.

B Fitness function

In order to compare individuals and decide which one is better (and hence has higher
chance to survive), there must be some metric able to score each genotype and assign
it a comparable value. In case of genetic algorithm, this metric is called the fitness
function and generally assigns each individual a real number score.

Since the fitness function is used very often (as the whole evolution process is based
on comparing individuals), it is absolutely necessary for it to be fast. It is a very good
idea to use various caching techniques to reduce the number of fitness calculations as
much as possible, but in case of very complicated fitness functions it may be also a
good idea to use reasonable level of approximations in order to speed up the process.

B Selection operator

In each iteration, the algorithm creates a new generation — population evolved from the
population produced in the previous iteration. Population is evolved using crossover
and mutation operators as described further, but in order to perform the crossover, it
has to be somehow decided which individuals from the previous generation are so good
that they should be preserved or passed to the crossover process.

When talking about the possibility of preserving a candidate from the previous gen-
eration without modification, this option is called elitism and it may be a good idea to
“pass” few best candidates from the previous iteration without having to go through
the crossover and mutation process, as the candidate could be degraded during these
steps and the good candidate would be lost, without ability to recover it and use it
anymore in subsequent iterations.

There are many ways to select individuals from a generation and here are some of
them:

= Random selection is for sure the easiest option — candidates for the crossover are
selected randomly, even without looking at their fitness values (which can, on the
other hand, be quite performance consuming).

= Roulette wheel selection is more advanced method, where the options are given a
probability of being selected equal the ratio of the fitness function value for given
individual, and sum of fitness values of all individuals in the population. Candidates
for the next generation (either for elitism or crossover) are then selected according
to these weighted probabilities.

29

= Tournament selection consists of two steps. In the first step, k individuals are
randomly selected from the previous population. Selected individuals are then sorted
by their fitness and the winner is selected randomly with a given probability p (in
the manner that the best candidate has a chance p of being selected, and in case of
not being selected, then the second best candidate has a p chance of being selected,
and so on). In a special case, tournament selection can become just a pure random
selection (when k = 1) or the second (“tournament”) part can be skipped by always
selecting the candidate with highest probability (when p = 1).

B Crossover operator

Finally, when two (or possibly even more) parents are selected for the crossover step,
it is time to combine them to produce a new individual (child, also called an offspring).
In most cases, the crossover step is designed so that two parents are transformed to two
new individuals, but depending on the selected crossover operator these attributes can
vary.

In the following list, there are some of the most common crossover operators, but
the choice (or design of custom operator) is highly dependent on the chosen genetic
representation and the problem definition.

= Single-point crossover is easily applicable technique, usable for most string genotype
representations. A single position in the genotype (crossing point) is selected and
each child receives the first part (from the beginning of the genotype to the selected
crossing point) from one parent, while the other part (from the crossing point till the
end of the genotype) is copied from the other parent.

m Two-point crossover is similar to the previous one, but there are two crossing points.
Therefore, first child will receive first and last part from the first parent, and the
middle part from the other parent. The other child will be created in the same
manner, taking middle part from the first parent and the rest from the other parent.

= Uniform crossover might look a bit drastic, but in many cases, it could be quite
effective to choose each separate gene randomly from one of the parents. This way,
crossover is done separately for each gene, instead of crossing only whole segments
as in case of single-point or two-point crossover.

After applying any crossover operator, it is necessary to check whether the generated
genotype is feasible (i.e. if the corresponding phenotype has a meaning in the problem
solution domain and if no constraints are violated). If the produced solution is not
feasible, it has to be repaired (if possible) or trashed.

B Mutation operator

After performing the crossover part of the reproduction process, there is one more way
to improve (or worsen) the newly created children individuals — mutation. In this step,
some genes in the child’s genotype can be changed to different genes.

Some basic universal options are flipping randomly selected genes to another ones (es-
pecially in combination with binary string representation of genotype), either randomly
selected or acquired using other techniques (lower/upper bounds, or averages).

However, mutation operators could be much more powerful when they are tailored
directly to meet needs of a specific problem, as the mutation is going to be much more
meaningful in terms of the problem domain. Also, same as in the crossover step, the
mutation outcome has to be feasible, which is much more likely to be fulfilled with
custom mutation operator than just a generic one.

30

7.2 Genetic algorithm for label placement

B Termination condition

When the algorithm is in progress, it iteratively evolves the generations, one by one.
But at some point in the time, this whole lifecycle has to stop. Here are some basic
termination conditions, which could be used to determine the right time for stopping
the algorithm:

= Fixed number of generations is probably the most intuitive termination condition,
and it is common to use it as an “emergency break” in combination with other
options.

= Optimal solution is found is a very nice and powerful condition, but only in case
when the algorithm is able to recognize the optimal solution — which is usually not
easy.

= Fitness function call count can be restricted in a similar manner as the number of
iterations.

= The solution is not improving anymore (or the improvement is very small) for some
number of generations, and therefore any further improvement in the subsequent
iterations is considered unlikely (however, this condition is quite dangerous due to
stochasticity of genetic algorithms).

I 7.2 Genetic algorithm for label placement

Previous section generally described the structure of the genetic algorithm. This section
describes the genetic algorithm designed specifically for label placement problem.
The algorithm follows the basic scheme as illustrated in the Figure 7.1:

1. Initial population is generated and the fitness is evaluated for each individual

2. In each iteration, new parents are selected and used for crossover. Afterwards, mu-
tation is applied to the offsprings and the fitness values are evaluated for each newly
created individual.

3. The whole process continues, iteration by iteration, until the termination condition
stops it.

Initial population
generation

Figure 7.1. Basic scheme of a genetic algorithm®

! https://genetic.io/en/introduction-genetic-algorithms/

31

https://genetic.io/en/introduction-genetic-algorithms/

B 7.2.1 Building blocks

In the previous part, there is a list of generic building blocks of genetic algorithms.
In this part, specific components used in the implemented algorithm are described in
detail.

B Genetic representation

The problem being solved by the algorithm is simple — every label has to be assigned
a candidate position, which has to be chosen from the list of previously generated
candidates.

Each label can be assigned a sequence number, representing its position in some
integral list of labels. In a similar manner, each label position candidate can be assigned
a sequence number representing its position in a previously generated candidate list.
This leads to a natural choice of a genetic representation — an array of integer values,
where i-th value represents candidate choice for i-th label.

However, there is one more question remaining to be answered — would there be a
difference, if the labels in the genotype would have any other order? In fact, there could
be a big difference, especially in combination with some operators like single-point or
two-point crossover. In case of random label numbering, these types of crossover will
likely do more harm than good, as the crossover would just combine two randomly
chosen sets of label positions.

Better idea might be to order labels, so that labels near each other (“clusters”)
would be placed together. In that case, if the crossover chooses a crossover point on
the border between two clusters (or near to it), there is a chance of using one half of
genotype describing good placement of labels in specific clusters, and joining it with
half of another genotype representing good placement of the remaining clusters.

To allow this, the algorithm presented in this thesis uses hierarchical clustering [29]
to find a good order of labels for a genotype. There are many other techniques available
(various kinds of clustering, bandwidth minimization algorithms, etc.), but hierarchical
clustering was chosen because it does not need any prior knowledge about the number
of clusters and it is easy to use. As a distance function, the number of conflicting label
candidates between two labels is used (in a slightly modified way, so that the highest
number of conflicting label candidates represents the nearest labels).

e rm e T

Figure 7.2. Outcome of hierarchical clustering represented as a dendrogram

1

For the implementation available as a software part of this thesis, hierarchical clus-
tering is provided by the freely available Java library by Lars Behnke?.

! http://flybrain.mrc-lmb.cam.ac.uk/si/nblast/www/nblast_desktop/
2 https://github.com/1lbehnke/hierarchical-clustering-java

32

http://flybrain.mrc-lmb.cam.ac.uk/si/nblast/www/nblast_desktop/
https://github.com/lbehnke/hierarchical-clustering-java

B Initialization

Now, when the genetic representation (or gene mapping) is known, it is time to create an
initial population of individuals. In this algorithm for label placement, it is undesirable
for any candidate to be infeasible, as there would have to be a method to “repair”
individual genotypes during the evolution.

That said, all individual genotypes at any step of the evolution should be feasible.
In terms of population initialization, the easiest way is to generate random individuals
by randomly assigning one of the available candidates to each label.

There are more sophisticated ways to generate individuals for an initial population,
like local search — which is, in fact, used in the presented algorithm in this thesis as
well. This is described later in the section about memetics.

B Fitness function

Fitness function of this algorithm is exactly the same, as the one used in the whole
thesis — each label candidate position has a metric value consisting of a static part
(representing conflicts with other map objects, whose positions do not change during
the placement process, and also penalties for representing a less preferable positions),
and a relative part (representing conflicts with other label positions — or label candidate
positions, which will likely change during the optimization process).

The fitness function then sums all penalties (both static and relative) of candidate
positions selected for all individuals, weighted according to the given metric definition
(containing weights of label conflict penalty, map object penalty and label position
penalty).

Since the fitness function value is not cached during the evolution, all penalties for
conflicts between two labels are recalculated in each iteration. In case of more complex
geometries (e.g. polygons with high number of vertices), this might be computationally
expensive, but in most cases it is easier than storing data about all possible overlaps.

Il Selection operator

Selection in this algorithm is quite straightforward, as it uses the classic tournament
selection with 4 randomly generated individuals considered for each selection, and the
one with the best (i.e. lowest) fitness value is always selected.

This selection operator is quite common and often used in many genetic algorithms.

Il Crossover operator

Crossover is probably the most dangerous part of the whole genetic optimization pro-
cess, as there is a high chance of “breaking” the solution. First of all, it is necessary
to ensure the feasibility of the solutions produced by crossover — this is not difficult as
currently used genetic representation allows only a specific set of values for each gene,
and there are no additional constraints to be held.

Algorithm uses a single-point crossover, which combines two parents into two off-
springs. First offspring has the first part of genotype (ending at arbitrary crossover
point) from the first parent, and the remaining part of the genotype from the other
parent. The second offspring has first part from the second parent, while the other part
from the first parent. Crossover is illustrated in Figure 7.3.

Thanks to the usage of clustering in the preparation of genetic representation,
crossover has a chance to be processed in a point near to the border between clusters,
and the offsprings can possibly benefit from getting two good parts merged together.

33

7. Genetic algorithms

! crossover point
1

.]
Children i

Parents

Figure 7.3. Single-point crossover!

However, due to possible dramatic effect on the fitness of the offsprings, the crossover
is processed only sometimes, with limited probability. In the remaining cases, parents
are just copied and passed to the next step.

Il Mutation operator

During the mutation step, all labels are processed one by one. Each label has a quite
low probability that its gene will get changed to another randomly chosen (but feasible)
candidate.

B Termination condition

Termination condition is quite simple — number of iterations of the algorithm is limited.
It would be possible to implement other conditions, e.g. stopping after some number
of iterations without any fitness improvement. However, it would be necessary to have
in mind that many improvements happen during the memetic part described further.

B 7.2.2 Memetics

In fact, the algorithm implemented as a part of this thesis is not just a pure genetic
algorithm, but it is an example of a memetic algorithm [30]. This kinds of algorithm
is a combination of two approaches — evolutionary algorithm (e.g. a genetic one) and a
local search method, like hill climbing or simulated annealing.

In this label placement algorithm, local search is injected into two phases:

1. During the initialization of the first population, some of the randomly generated
individuals are improved by the local search

2. During the evolution, once per an arbitrary number of generations, few randomly
chosen individuals are improved by the local search and passed to the next generation

The local search method used for improving the individuals is exactly the same as
the one used in the GRASP. The algorithm iteratively traverses through the list of
labels and for each of them, it checks whether there is a position that would fit better,
considering current positions of other labels in the same solution (individual). If so,
the label is moved by changing the value of a gene representing the label.

! https://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)

34

https://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)

Chapter 8
Software implementation

Integral part of this thesis is the implementation of all mentioned algorithms, and user
interface providing comfortable way to test and benchmark them. In this chapter, the
whole software part is briefly introduced, together with description of used technologies
and available features.

In order to use any of the label placement algorithms, user needs “only” one essential
thing — the data. The best way to try the proposed algorithms is to bring already
prepared data set, and transform it into one of the formats supported by the “Label
Placement” application. When the data is loaded, application allows user to display all
geometric objects and labels present in the map, and to perform basic modifications.
Ultimately, as the most important feature, the software allows user to apply available
labeling algorithms to the data and visually evaluate the output.

In order to try the algorithms without having data in advance, it is possible to

import map objects existing maps in ESRI Shapefile! format, which can be obtained
from sources later described in Evaluation and results section.

| £ Automatic label placement — [m] %
File Project Designtocls Geospatial tocls Display Help

Current project Solvers

Random peints Edit name Available solvers:

IBM ILOG CPLEX Optimizer w
250 randomly generated points Edit description

Configure styles

Map

[show all label candidates Show label candidates for selected object [] BRow confiicts [] Show leader lines Configure metric

Prepare placement
Solve

Read external solution

Clear current solution

Data explorer

Random points
Labels by style
[l Labels by object
[| Objects by layer

Imported solutions from IBM ILOG CPLEX Optimizer solver, fitness: 43,990537800142135

Figure 8.1. User interface of the Label Placement application

=

https://www.esri.com/library/whitepapers/pdfs/shapefile.pdf

35

https://www.esri.com/library/whitepapers/pdfs/shapefile.pdf

I 8.1 Used technologies

In the client part of the application, many technologies and frameworks were used.
These are the most important ones:

= Java SE! is an imperative object-oriented programming language and platform orig-
inally developed by Sun Microsystems and currently maintained by Oracle. Java
language is popular because of its platform independence — code is compiled into a
bytecode, that can be run on almost any commonly used platform. Java language
and the platform itself is known as Java SE (Standard Edition), while the web a
business logic technologies are known as Java EE (Enterprise). In this work, all al-
gorithms are implemented in Java SE 7, together with the user interface (and so are
all additional libraries used in the project).

s Maven? is a build management and project management utility designed primarily
for Java development. It maintains the whole build process, including the compila-
tion itself, unit testing and possibly even deployment of the final packages intended
for release. The whole label placement application is developed as a set of Maven
modules, distinguished by their purpose — core (with geometries, problem definitions,
etc.), user interface module, solvers and geospatial tools for working with Shapefiles.

= Jackson® is a library allowing to easily work with JSON files in Java. It allows
to serialize and deserialize objects to/from JSON and few other formats, including
XML and YAML. All these three formats are supported by the Label Placement
application, as described later.

= GeoTools is a library for working with geospatial data in Java. It can work with
many geospatial data formats including Shapefile, which is interesting for importing
data into the Label Placement application. GeoTools provide access to many geospa-
tial and geometric operations, but the only feature used in this work is loading files
and parsing geometries with their metadata.

I 8.2 Features

In the following sections, there is a brief description of major features implemented in
the label placement application.

B 8.2.1 Available algorithms

Probably the most important part of the program is a set of available label placement
algorithms. The list of algorithms follows and corresponds to the algorithms described
in previous chapters:

m Random is just a test algorithm, which assigns randomly selected candidate to each
label.

m Greedy Basic is a fast version of greedy algorithm, based on initial calculation of
possible conflicts between all pairs of the candidates, and subsequent processing of
the candidates one by one, starting the one with the lowest metric.

http://www.oracle.com/technetwork/java/javase/overview/index.html
https://maven.apache.org/

http://wiki.fasterxml.com/JacksonHome

http://www.geotools.org/

=W N =

36

http://www.oracle.com/technetwork/java/javase/overview/index.html
https://maven.apache.org/
http://wiki.fasterxml.com/JacksonHome
http://www.geotools.org/

s Greedy Advanced is similar to the Greedy Basic, but the Advanced version recalcu-
lates metrics for remaining unassigned labels, based on choices made for the already
assigned labels.

s GRASP is based on Greedy Advanced, which is used to generate the initial label
placement. After some solution is found, the algorithm iteratively traverses through
all labels and tries to find better positions for them, based on current arrangement
of other labels.

= IBM ILOG CPLEX Optimizer is a deterministic option for those who want optimal
results, but are willing to wait some time. Label Placement application generates
OPL module, which has to be run by the user on a server or workstation equipped
with the commercial or academic version of CPLEX. The result is saved into a CSV
file, which can be imported back to the application and displayed. By default, OPL
contains instruction to terminate the calculation process after one hour and return
the best solution found so far (if the process did not finish yet), but this restriction
can be lifted by manually altering the OPL script.

m Genetic algorithm is non-deterministic algorithm, which has a chance to find a good
result in a short period of time, but there are no guarantees at all. While the
algorithm works, it is possible to observe the progress, as the best solution found so
far is periodically rendered to the screen.

B 8.2.2 Candidate generation

As a preprocessing step shared for all of the listed placement algorithms, it is necessary
to generate list of possible positions (described as “candidates” in this work) for each
label. This process is executed only once (unless the user executes the preparation
again, because of style or metric changes), and generates possible candidates based on
placement style configured for each object (either individually for specific objects, or
commonly for the whole layer or even whole project).

The following rules and styles are used for generation of label candidates:

m Points — for each feature point label, there could be either basic four (top-left, top-
right, bottom-left, bottom-right) or eight (basic four + top, bottom, left, right)
positions generated. Their priorities (labels with higher priority have lower label
position penalty) are defined by rules described previously in Chapter 3.

m Lines and polylines — line feature labels have more complex rules. All generated
candidates could be rotated either along the line (or specific part of a polyline),
perpendicular to the line or they can be just placed horizontally. Labels could be
placed above, below or directly on the line and the preferred label position could be
on the left end, right end or in the center of the line (polyline) — again, this preference
determines the label position penalty later considered by the placement algorithms.

s Rectangles and polygons — label is always placed to the middle of the object.

Placement rules for labels belonging to rectangles and polygons were omitted from
this thesis, as they would be either too complicated (because of various possible shapes
and sizes of those map objects), or they would be non-deterministic (which is not
very handy, considering that some most of the examined placement algorithms are
deterministic, so it would be pointless to give up this property by just choosing bad
preprocessing methods). In that case, generating a good set of candidates could be
considered as another optimization problem, which is out of this thesis’s scope.

37

B 8.2.3 Map editor

Even though the map data are usually expected to be imported from external data
source, there is also a simple editor integrated in the Label Placement application to
allow creating or removing map content.

There are few basic geometry types supported — point, line, polyline, polygon and
rectangle (which is, in fact, also a polygon). Drawing tools are available for all of them,
and it is also possible to automatically generate default labels for newly created objects.

In order to simplify work with map features and labels, each map feature belongs to
a named layer intended for holding objects with some level of similarity (type, location,
etc.), and each label is attached to a specific map feature.

Another level of distinction is style, which defines basic placement rules for a given
set of labels. Styles can be applied for specific labels, layers or a whole project (in case
of conflict, the one nearest to the label level is used), and they describe placement rules
for labels belonging to all kinds of supported map objects.

B 8.2.4 Metrics and styles

Application contains basic editors for metrics and styles, which define supporting rules
for candidate generation and the label placement itself.

Metric editor allows to define weights of three basic penalty factors:

m Label position for penalization of not ugly positions, with default weight of 10

m Conflicts with other labels for penalization of overlaps between labels, with default
weight of 50

m Conflicts with map objects for penalization of overlaps between labels and other
map features, with default weight of 40

Metric configuration * Styles configuration *
Metric Styles
Here you can edit how label positions will be scored. Here you can edit how labels should be placed.

Sum of all penalty weights should be equal to 100%6.
Style to edit:

Save + =
Label position penalties (priorities)
@1 General
Penalty weight (in perctents): [10% Buffer around labels (space between map objects and respective labels)
i : o
() Do not penalize label positions, all have same priority Point labels

() Basic four candidates (top-eft, top-right, bottom-eft, bottom-right)
Conflicts with other labels

@) Allow Iabel confi th i (®) Eight candidates (basic four + top, bottom, left, right)
Allow label conflicts with penalization

) Line labels
Penalty weight (in perctents): |50%:
Vertical position: Horizontal position: Rotation:
Do not allow label conflicts, remove conflicting labels instead @ Online @ Center @ Along the ne
Conflicts with map objects (O Above line O Left (O Perpendicular
(® Allow map object conflicts with penalization (O Below line (O Right (O Mo rotation
Penalty weight (in perctents): [40%: () Abave or below line (O Left or right
Do not allow map object conflicts, remove conflicting labels instead Area labels

Consider both inside and outside positions
Consider only inside positions

Consider only outside positons

oK Cancel Close

Figure 8.2. User interface of metric and style editors

Like the metric editor, style editor allows to modify styles that are later applied to
the labels or layers and used for candidate generation.

38

B 8.2.5 Geospatial data import

In order to import existing real data into the application, it is possible to make use of
Shapefile import capabilities. Using the GeoTools library, geometries can be imported
as map objects. By analyzing the metadata attached to the geometries, it is possible
to automatically classify the meaning of objects being imported, and the corresponding
labels can be generated as well.

Shapefile (which, in fact, consists of multiple files with geometries and metadata)
contains a definition of geometries found in the map (similar to the geometries internally
used by the Label Placement application, but usually a bit more complicated) and
metadata about each object. Content of the metadata varies between data sources,
some maps contains tens or even hundreds of parameters about each object, but some
of them contain just a handful of these.

Unfortunately, due to severe differences in structure of various map data, it is nec-
essary to have a specific “view” describing scheme of each file being imported. As a
part of the implementation, few views corresponding to selected Shapefile sources are
available and applicable to the Natural Earth data, described later in the Evaluation
and results section. Additional feature of these views is filtering — each of them allows
to filter the imported data based on some criteria, like the name of the country or the
continent.

B 8.2.6 Data persistence

In order to provide standard save and load functionality, Label Placement client allows
to export and import data in three commonly used data exchange formats:

= XML! (eXtensible Markup Language) is a markup language standardized by the
World Wide Web Consortium (W3C) as a platform independent format for publishing
various data (this is the reason why it is called eXtensible) and transferring them
between different computer systems. Along the XML data format itself, there are
also many other technologies inside taking part in the XML ecosystem, like XML
schemas describing the content form and structure, XSLT transformations (which
easily transform XML data into another form, even a human readable one like HTML)
and XQuery for executing queries on the data.

= JSON? (JavaScript Object Notation) is a lightweight portable data format originally
designed with a similar syntax as the one used for describing objects in JavaScript.
Nowadays, it is a very popular format for storing and transferring data, especially in
combination with REST web services. In comparison with XML, it has much smaller
overhead, but it is schemaless and not so strict as is XML.

= YAML? (YAML Ain’t Markup Language) is a format offering more or less the same
possibilities as JSON does, but it is also clearly human readable. XML or JSON
can be well readable be a person when it is nicely formatted, but YAML is nicely

readable by definition. It is also schemaless, but usually has a larger overhead than
JSON.

Using these more or less standard data formats also allows to exchange data (espe-
cially map data) with other applications.

Due to complexity of existing file formats for storing map data, this application
uses its own data structure, that is simplified as much as possible to contain only the

! https://wuw.w3.org/XML/
2 http://www. json.org/
3 http://yaml.org/

39

https://www.w3.org/XML/
http://www.json.org/
http://yaml.org/

necessary data. There are some standardized formats like GML!, but they’re still too
complex and dealing with various parts of these formats and recalculating data between
different coordinate systems would exceed the scope of this thesis. Therefore, any map
data must be converted to supported data scheme.

The internal data scheme structure usable by the application can be easily stored
and read to/from all of the mentioned formats (XML, JSON, YAML). For the examples
distributed as the part of the thesis, YAML is used in order to be able to easily read
the data even in a plain text, without running the application and rendering all the
geometries.

I 8.3 User interface

The “Label Placement” application offers two different interfaces for communication
with the user:

= Graphical user interface (GUI) is a full featured graphical application, offering all
features described above. However, due to its dependence on graphical libraries, it
may not be possible to use this client on all devices.

s Command line interface (CLI) on the other hand is a very restricted client intended
purely for running solvers with already prepared input data. It is independent on
any graphical libraries, making it usable on servers, where it can either run internal
solvers directly, or prepare input files for external solvers.

Since the whole source code is implemented in Java, the application should be usable
on all standard platforms including Windows, Linux and Mac.

! http://www.opengeospatial .org/standards/gml

40

http://www.opengeospatial.org/standards/gml

Chapter 9
Evaluation and results

After all algorithms have been described, it is time to benchmark them and compare
them. This section describes the data sets used for testing, and presents the most
significant results.

I 9.1 Map categories

In order to benchmark the described algorithms, it is necessary to define basic categories
of maps that shall be used. Unfortunately, it is extremely difficult to find usable map
data (especially in some raw and simply readable way), as most of the companies
owning these data are guarding them very carefully (since it is the essential part of
their business).

B Randomly generated maps

The easiest way to get some map is to generate it randomly (or pseudo-randomly, in
order to get some specific characteristics). Random maps were also used in many works
cited in this thesis, as they allow for testing the behavior of the algorithms in specific
situations. It is easily possible to benchmark the algorithms on maps with various label
counts, densities and label sizes.

Unfortunately, there is one obvious disadvantage of automatically generated maps
— they usually do not even look like real maps. They are very nice for theoretical
performance comparison, but in real maps the algorithms can behave differently.

B Realistic maps

Another important class of maps contains real (or real-like) maps. As already men-
tioned, they are usually not freely available (as they are mostly used commercially),
but they serve as a very good benchmark for finding algorithms suitable for the real
world problems — and not just for academic comparisons of theoretical performance.

Although it is quite difficult task to find some freely available map sources, it is not
impossible. There are multiple open source projects maintaining their own cartographic
data and distributing them freely over the internet.

Il Open Street Map

Probably the most known project focusing on public map data is Open Street Map!.
Unfortunately, the data is definitely not perfect — the maps look very nice when dis-
played on a computer screen, but sometimes the data are not really suitable for machine
processing (many features are duplicated or encoded in strange ways).

However, many companies still use them, as they are probably the most reliable free
source, so it is better for them to clean and preprocess the data to make it usable.
Notable advantage is that Open Street Map is often based on local cadastral maps,
making the maps quite precise.

! https://www.openstreetmap.org

41

https://www.openstreetmap.org

I Natural Earth

Another interesting map data source is Natural Earth!. Volunteers involved in this
project maintain various cultural and physical data sets, including maps of countries,
populated places, coastlines, rivers, etc.

These data are published in ESRI Shapefile format, which can be imported by most
GIS software suites (even by the open source ones like QGIS?).

In comparison with Open Street Map, these data are much “nicer and cleaner”, which
makes their processing easier. However, they are definitely not such complex and they
contain only major cartographic features — they miss any low scale data, like small cities
or streets.

I 9.2 Environment

B Hardware and software

All algorithms were evaluated on MetaCentrum clusters Zebra® and Zefron?.
Machines in these clusters are running on Intel Xeon E7-4860 (2.27 GHz) processors
in case of Zebra cluster, or Intel Xeon E5-4627 v3 (2.6 GHz) processors in case of Zefron
cluster. Total available memory on the compute nodes is 256 GB on Zebra nodes and
1 TB on Zefron nodes.
All used machines are running Debian 8.8, Oracle Java JDK 8 and CPLEX 12.6.1.

B Algorithm configuration

During the evaluation process, the following settings were configured in the Label Place-
ment application and algorithms:

s CPU limit: 1 core
= Memory limit: As much as required by the applications, up to 100 GB
= Metric weights
= Label position penalty: 10%
s Penalty for conflicts with other labels: 50%
= Penalty for conflicts with map objects: 40%
s CPLEX
m Time limit: 1 hour
= Memory limit for Branch and cut tree: 1 GB
= Genetic algorithm
m The whole algorithm was started 10 times for each data set
m Population size: 100
s Termination: After 100 generations
= Gene mapping: Based on hierarchical clustering
= Initializaton: 50% random, 50% random with 2 iterations of local search
m Elitism: 1 individual per generation
m Selection mode: Tournament with 4 candidates
» Crossover mode: Single point crossover with 10% probability
= Mutation rate: 0.4% for each label

! http://www.naturalearthdata.com

2 http://www.qgis.org/en/site/

3 https://metavo.metacentrum.cz/pbsmon2/resource/zebra.priv.cerit-sc.cz
* https://metavo.metacentrum.cz/pbsmon2/resource/zefron.priv.cerit-sc.cz

42

http://www.naturalearthdata.com
http://www.qgis.org/en/site/
https://metavo.metacentrum.cz/pbsmon2/resource/zebra.priv.cerit-sc.cz
https://metavo.metacentrum.cz/pbsmon2/resource/zefron.priv.cerit-sc.cz

m Memetics: Every 5 generations, 10 randomly chosen individuals are improved by
2 iterations of local search

I 9.3 Data sets

Algorithm were evaluated on 23 data sets (maps) listed in Table 9.1. They’re divided
into three basic categories:

s Random points: Dense generated maps with three different size levels (small,
medium and large) containing only points to be labeled

m Populated places: Country maps with populated places and sometimes with regional
borders as well. Populated places are labeled and considered as point features.

m Roads: Country map with roads that are labeled as line features.

Label coverage in the Table 9.1 is determined as a ratio of the area used by all labels,
and the area used covered by a convex hull of all map features. Even though this metric
is not exact and precise, it can give an overview on the density of the map. Area of
a convex hull of all features is used instead of the area of the whole map, in order to
ignore possible huge uncovered areas in the corners of the map.

Map name Labels Features Label coverage
100 Random points - Small labels 100 100 5.65%
100 Random points - Medium labels 100 100 17.67%
100 Random points - Large labels 100 100 42.42%
250 Random points - Small labels 250 250 12.21%
250 Random points - Medium labels 250 250 40.58%
250 Random points - Large labels 250 250 97.04%
500 Random points - Small labels 500 500 23.7%
500 Random points - Medium labels 500 500 78.77%
1000 Random points - Small labels 1000 1000 46.55%
Australia - Populated places 224 317 21.14%
Canada - Populated places 254 664 16.02%
Czech Republic - Populated places 12 27 6.66%
Germany - Populated places 57 117 7.29%
Spain & Portugal - Populated places 66 74 12.41%
Great Britain - Populated places 57 114 10.35%
Sweden - Populated places 34 75 13.56%
Turkey - Populated places 84 90 16.25%
Ukraine - Populated places 55 88 9.19%
Czech Republic - Roads 157 257 6.86%
Spain & Portugal - Roads 334 544 11.78%
Ireland - Roads 57 164 5.65%
Poland - Roads 327 660 13.36%
Sweden - Roads 195 640 6.55%

Table 9.1. List of data sets used for the evaluation.

43

I 9.4 Results

This section briefly describes observations and results achieved on the described data
set, summarized according to the basic categories which the labels belong to.

B 9.4.1 Random points

Random points maps contain labels of various sizes. The best results for most of these
maps were provided by CPLEX, but this is not a rule — for some larger data sets
(with higher percentage of covered map area), the CPLEX solver returned suboptimal
solutions, mostly because of time and memory limitations.

Table 9.2 presents the best the fitness values of the solutions found by each evaluated
algorithm, on each data set. “GA” denotes the best result provided by the genetic
algorithm over all 10 runs, “Greedy 1”7 denotes the result of the Basic greedy algorithm
and “Greedy 2”7 denotes the result of the Advanced greedy algorithm. Bold values in
the table represent the best fitness value for given data set.

Map GA Greedy 1 Greedy 2 GRASP CPLEX
100 small 0.10 1.03 0.15 0.10 0.10
100 medium 0.69 3.82 1.06 0.76 0.69
100 large 3.66 15.20 6.70 4.28 3.21
250 small 1.25 7.89 2.54 1.42 1.20
250 medium 8.68 43.35 16.73 10.01 6.43
250 large 55.38 131.14 74.22 56.72 65.54
500 small 7.61 45.39 15.19 8.15 6.39
500 medium 73.05 206.71 109.90 77.52 86.91
1000 small 50.21 231.50 90.92 54.25 42.55

Table 9.2. Best solutions found for random points maps

Table 9.3 presents the times needed to find a solution using given algorithms. Time
listed for the genetic algorithm is a time required to perform a single algorithm run,
and hence the time needed to execute all 10 runs was approximately 10 times higher.
CPLEX results with times marked by “M” or “T” symbols were terminated before the
optimal solution was found, either due to memory (M) or time (T) limits, and therefore
the solutions returned in these cases represent the best solutions found before the limits
were exceeded.

Map GA Greedy 1 Greedy 2 GRASP CPLEX
100 small 0:40 0:01 0:01 0:02 0:01
100 medium 0:25 0:01 0:01 0:01 0:01
100 large 0:45 0:01 0:01 0:01 0:28
250 small 2:34 0:02 0:02 0:03 0:02
250 medium 6:53 0:04 0:05 0:07 3:18
250 large 4:03 0:02 0:06 0:06 (M) 33:19
500 small 13:46 0:07 0:13 0:15 0:09
500 medium 11:41 0:05 0:17 0:49 (T) 1:00:01
1000 small 1:12:25 0:25 59:00 1:16 (T) 1:00:17

Table 9.3. Solution times for random points maps

44

For maps with label coverage lower than 50%, CPLEX was the winner. Usually,
the results provided by genetic algorithm (over 10 runs) were also very good, followed
by the solutions provided by GRASP. Other greedy algorithms are far behind these
three mentioned and they’re not pictured in any charts, as their results are not very
convincing.

Typical evolution progress is obvious from Figure 9.1, which shows the evolution of
randomly generated map with 500 medium sized labels, depicted in Figure 9.2.

500 RANDOM POINTS - MEDIUM LABELS

GRASP

CPLEX ——GAMinimum GA Average GA Maximum
100

a3

80

85

FITNESS

80

75

70
0 i0 20 30 40 50 60 70 20 S0 100
GENERATIOM OF GENETIC ALGORITHM

Figure 9.1. Progress on map of 500 random points with medium sized labels

Figure 9.2. Map of 500 random points with medium sized labels

45

In the evolution progress, there is an obvious influence of the local search during the
optimization, as the memetic part triggering the local search is activated in each fifth
iteration — exactly at the moments with significant fitness improvements.

B 9.4.2 Populated places

Similar situation is in the category of populated places, as these maps also contain only
labels associated with point features. In contrast to the generated maps, there are also
other map features. These are without labels, but they have much more complicated
shapes — e.g. in the map of Canada, as pictured in Figure 9.3.

Figure 9.3. Map of populated places in Canada

Fortunately, these complicated geometries do not have to be considered during the
label placement itself, as the overlaps between label candidates and map objects do not
change during the placement process — and therefore they can be precalculated during
the preparation of candidate positions.

Once more, best results were provided by the CPLEX solver — in all cases except the
map of Australia, which is visually quite similar to Canada (as most of the populated
places in Australia are located near the coastline, and therefore all labels have to fit
around it).

Complete results are presented in Tables 9.4 and 9.5, showing the best fitness values
found by the algorithm and time required for the optimization. Markup used in these
tables is exactly the same as the one in case of random points results.

Map GA Greedy 1 Greedy 2 GRASP CPLEX
Australia 17.56 59.62 28.15 19.38 19.37
Canada 15.70 60.34 27.47 16.34 15.19
Czech Republic 0.10 0.10 0.10 0.10 0.10
Germany 1.22 2.59 1.53 1.39 1.22
Spain & Portugal 0.92 3.14 1.42 0.98 0.92
Great Britain 1.14 4.21 2.32 1.48 1.09
Sweden 0.66 2.93 0.92 0.75 0.64
Turkey 1.05 5.58 1.84 1.13 1.02
Ukraine 0.18 0.66 0.27 0.20 0.18

Table 9.4. Best solutions found for populated places maps

46

9.4 Results

Map GA Greedy 1 Greedy 2 GRASP CPLEX
Australia 3:16 0:04 0:05 0:07 (M) 7:35
Canada 5:32 0:10 0:14 0:15 (M) 6:06
Czech Republic 0:01 0:01 0:01 0:01 0:01
Germany 0:17 0:01 0:01 0:01 0:01
Spain & Portugal 0:16 0:01 0:01 0:01 0:01
Great Britain 0:16 0:02 0:02 0:02 0:02
Sweden 0:03 0:01 0:01 0:01 0:01
Turkey 0:35 0:01 0:01 0:02 0:01
Ukraine 0:15 0:02 0:02 0:02 0:02

Table 9.5. Solution times for populated places maps

Very nice results were also provided by GRASP and the genetic algorithm. Due to
the low complexity of some populated places maps, the solutions were usually found
quickly by most of the algorithms.

There are also two interesting data sets (populated places in the Czech Republic
and Ukraine), that were always optimally solved during the initialization phase of the
genetic algorithm. These maps are quite easy to process, and hence the local optimizer
used for the initialization of the algorithm always solved the problem directly. This
happened in all 10 runs of the algorithm, as depicted in Figure 9.4 (the lower line
represents CPLEX solution combined with minimum, average and maximum of the
genetic algorithm solutions).

CZECH REPUBLIC - POPULATED PLACES

GRASP =——(PLEX —=——GAMinimum GA Average GA Maximum

00985
0.092
005985
0.058

005975

FITMESS

0.087
0.0965
0.096
0.0935

0.085
10 20 30 40 50 &0 70 B0 20 100
GEMNERATION OF GENETIC ALGORITHM

Figure 9.4. Progress on map of populated places in the Czech Republic

B 9.4.3 Roads

Last category contains maps of the major roads in European countries. These roads
are represented as line features, and generally their geometries are polylines (because
the roads are usually not straight).

Line feature labels are computationally more expensive than point based ones, as the
number of candidate positions is higher — each point feature label had 8 candidate posi-
tions, while each line feature label has 32 possible positions. This drastically increases
the problem complexity for all placement algorithms.

47

Complete results are presented in Tables 9.6 and 9.7, showing the best fitness values
found by the algorithms and time required for this optimization. Markup used in these
tables is exactly the same as the one in case of random points and populated places
results.

Map GA Greedy 1 Greedy 2 GRASP CPLEX
Czech Republic 3.89 6.02 4.06 3.91 4.02
Spain & Portugal ~ 19.85 95.21 92.46 20.11 19.85
Ireland 2.62 3.22 2.84 2.64 2.62
Poland 28.79 34.76 31.96 29.01 29.06
Sweden 17.58 20.70 18.81 17.73 17.70

Table 9.6. Best solutions found for roads maps

Map GA Greedy 1 Greedy 2 GRASP CPLEX
Czech Republic 7:04 0:34 0:44 0:49 26:00
Spain & Portugal 54:14 4:08 6:03 6:05 (M) 26:56
Ireland 1:39 0:11 0:14 0:14 0:05
Poland 31:49 2:21 3:37 3:57 (M) 33:16
Sweden 9:37 1:13 1:43 1:48 (M) 41:41

Table 9.7. Solution times for roads maps

Surprisingly, very similar results were provided by all three major algorithms —
GRASP, CPLEX and genetic algorithm. The difference between solution fitness values
were around 1% on all road maps. However, due to the high number of candidate po-
sitions, some algorithms needed a lot of time and computational resources in order to
find a solution. This applies especially to the genetic algorithm (where a single run on
the Spain & Portugal took nearly 1 hour to compute) and for CPLEX, which consumed
over 80 GB during the preprocessing phase, and in most cases the optimization was
terminated due to the limited amount of memory available for the Branch and cut tree.

Figure 9.5 shows the map of roads in the Czech Republic, as placed by the GRASP
algorithm. The placement looks nice, but this does not necessarily apply for all maps.

o
&0 = % 14

)
Asa@ Asg Alq

3
o
A
i sy
&, =3
% & &3 P o
7 S &
66’156‘7@ ® =0
o g%
B Fag €40 g5 12 Ee7 % e
&
500 B _/51\\ 4
g T . %, % s \46 kA
O
= € oy B TNt
& B ak gsl\«h
9

S AL yeh6l
a zeeﬂ‘ﬂﬁemz %

5
Bz g,) STy

ass | B
RS
o
[
&
S
S
SPESS g
E55)
&
o Es9
L
m
&
' E461
&
m
b
g
P
8
g5
& 2
&
27
m
8
G
&

o
&
e
&
-2
iy
& o

7
£75.

b
m
aQ
b4

Figure 9.5. Map of roads in the Czech Republic

48

As a contrast to the previously displayed map, Figure 9.6 shows the map of roads in
Poland. This map obviously has too many labels and therefore the map looks messy.
However, this is mostly caused by the quality of the original data source, which described
each road as a set of multiple geometries.

&l &5 2
£, %, #
£28 &
o v B Mo
EW
) g 28 2
% o 23 k! Z2 % &
R :
5 o o B £ i
I % iy % 53
& 75 =
28 4
10 1 N
by b il A ot
k) g i { SNy w i
& &
% . >
D A 2 & .
E39 Ed
= Eso_ 261 £
‘129 5 o e 3 2 B e
- = & 4
<, 2B 2 & 5 5 A o @) s,
Eed
58 s o S T ow 2y e G,
’ 3 e e 125&7_3" 7 Edry
. . e i 2 7y 1
240 E«g‘% g4 {,.‘? ¥ 6@ 5 5
3 / AL TN % & R
(220 o /‘E—-_A? S ab P 74 uﬂ:&*
/\V~> 56 ‘d‘m o &

& & e 2‘7 &7) & & 3
L% E o Ean % é‘ 452 g b
gﬁ T fS N e gt B0

Bl0Es, N & R il &{E40EaD E40
b S e ;
S, Ban o gls £ 4
% R £ ?A@g"ﬁ%‘iggz@ D * *
5 @\ £y Ay D1 2 [H iy
fé’j) 7 3 B Emmsy, oo & M
% S o G Estesa0 g0 P

Figure 9.6. Map of roads in Poland

Evolution progress of the described map of roads in Poland is shown in Figure 9.7.
It is a nice example of an evolution with a major progress in later iterations, and not
only in the beginning.

POLAND - ROADS

GRASP =——(PLEX =——GAMinimum GA Average GA Maximum

FITNESS
(o]
w
=

|

0 10 20 30 40 50 &0 70 :14] 50 100
GENERATION OF GENETIC ALGORITHM

Figure 9.7. Progress on map of roads in Poland

The only suspicious result is the placement of the Czech map provided by CPLEX.
The final solution found is worse than some of the other algorithms. However, accord-

49

ing to the log provided by the CPLEX solver, the algorithm was terminated because
it reached a small gap (this topic was described in the chapter about mathematical
optimization). In this case, the default gap limit probably caused the premature ter-
mination of the optimization process.

I 9.5 Summary

According to the described benchmark, there are three major algorithms which generally
provide very good results — GRASP, CPLEX and the genetic algorithm.

In most cases, GRASP was the fastest algorithm and provided quite nice results.
However, in most situations the results provided by other algorithms were slightly
better. A big advantage for many users is the determinism of the algorithm, which
returns always the same solution (for the same input data).

CPLEX can always provide the best results, but for a very high price — it can either
return beautiful solutions after a long processing time, or it can return suboptimal solu-
tion after the allowed time or memory limit has been reached. Unfortunately, CPLEX
often consumes overwhelming amount of resources, especially memory — sometimes even
during the preprocessing phase, which cannot be simply controlled. Like GRASP, the
algorithm is deterministic.

Genetic algorithm performed quite well, but it is not deterministic and hence the
algorithm had to be restarted multiple times in order to find a nice solution. But still,
the genetic algorithm usually outperformed the GRASP algorithm and it was able to
find a reasonable solution with much lower computational power than CPLEX.

Remaining greedy algorithms were always outperformed by all other algorithms, but
they work really fast and the Advanced greedy algorithm is a good starting point for
GRASP.

50

Chapter].0

Conclusion

Thesis described and compared three different approaches to the map label placement
problem. In order to compare the solutions provided by the algorithms, it defined a
metric penalizing maps with overlaps between labels and other map elements (map
features or other labels), and prioritizing placements having a good position according
to standard cartographic rules.

Greedy based algorithms were able to provide some results very quickly, but the
solution quality was not exactly the best. However, when the greedy algorithm was
improved by adding a local optimization step (together called “GRASP”), the perfor-
mance got much better and preserved the speed of the greedy approach. The algorithm
is deterministic, which is an important advantage for many potential users.

Mathematical optimization (represented by the 0-1 bilinear programming, and solved
using the IBM ILOG CPLEX toolbox) showed, that exact methods can find the op-
timal results. Unfortunately, with the growing problem size, the complexity becomes
intractable and the optimization process consumes huge amount of time and compu-
tational power. However, for smaller problems the mathematical optimization might
be a good way to go. For larger problems, it is still an option, but it is necessary to
properly limit resources (especially time) allocated to the solver.

Because of the time and computational power demands of the mathematical opti-
mization solvers, it is often necessary to use external servers or workstations. Such
hardware could be very costly, and considering the price of the major mathematical
programming solvers, the financial aspect could be also important for deciding whether
this solution shall be used or not.

Genetic algorithm performed quite well, especially because of the memetic part. The
evolutionary approach itself has just a limited capability of improving the solution, but
the integration of local search into the placement process brings the ability to evolve
selected solutions faster, speeding up the whole optimization process. However, due to
non-determinism of the algorithm, it may be necessary to restart the evolution multiple
times to find satisfying results.

Unlike many other similar works, this thesis evaluated the presented algorithms on
real cartographic data, instead of only random and fictional data sources. Interesting
improvement presented in the thesis is the combination of the local search techniques
together with advanced greedy algorithm, which has excellent time-performance ratio.
Another interesting algorithm is the genetic algorithm, combined with a local search
and hierarchical clustering, allowing meaningful crossovers during the evolution.

51

References

[1] Anthony C. Cook and Christopher B. Jones. A Prolog Rule-Based System for
cartographic Name Placement. Computer Graphics Forum, 9(2):109-126, 1990.

[2] Jan-Menno Kraak. Settings and needs for web cartography. In Jan-Menno Kraak
and Allan Brown, editors, Web Cartography. Taylor & Francis, London, 2001.

[3] Joe Marks and Stuart Shieber. The Computational Complexity of Cartographic
Label Placement. Technical Report TR-~05-91, Harvard University, 1991.

[4] Ales Kobr. Automatic map label placement. Master’s thesis, Czech Technical
University in Prague, Faculty of Information Technology, 2013. Available only in
Czech.

[5] Alexander Wolff and Tycho Strijk. The Map-Labeling Bibliography.
http://illwww.ira.uka.de/map-labeling/bibliography, 1996.
Accessed: 2016-09-30.

[6] Eduard Imhof. Die Anordnung der Namen in der Karte. International Yearbook
of Cartography, pages 93-129, 1962.

[7] Eduard Imhof. Positioning Names on Maps. The American Cartographer,
2(2):128-144, 1975.

[8] Pinhas Yoeli. The Logic of Automated Map Lettering. The Cartographic Journal,
9(2):99-108, 1972.

[9] Jon Christensen, Joe Marks, and Stuart Shieber. An empirical study of algorithms

for point-feature label placement. ACM Transactions on Graphics, 14(3):203-232,
1995.

[10] Karolina Buresovd. Placement of map symbols. Bachelor’s thesis, Charles Uni-
versity, Faculty of Mathematics and Physics, Prague, 2015. Available only in
Czech.

[11] Alexander Wolff. Automated Label Placement in Theory and Practice. PhD thesis,
Free University of Berlin, 1999.

[12] Robert G. Cromley. An LP Relaxation Procedure for Annotating Point Features
Using Interactive Graphics. In Proceedings of the Seventh Auto-Carto Conference,
pages 127-132, 1985.

[13] Steven Zoraster. Integer programming applied to the map label placement prob-
lem. Cartographica, 23(3):16-27, 1986.

[14] Steven Zoraster. The solution of large 0—1 integer programming problems encoun-
tered in automated cartography. Operations Research, 38(5):752-759, 1990.

[15] Donald Meagher. Geometric Modeling Using Octree-Encoding. Computer Graph-
ics and Image Processing, 19(2):129-147, 1982.

[16] Steven van Dijk. Genetic Algorithms for Map Labeling. PhD thesis, Utrecht
University, 2001.

53

http://i11www.ira.uka.de/map-labeling/bibliography

[17] Oleg V. Verner, Roger L. Wainwright, and Dale A. Schoenefeld. Placing Text
Labels on Maps and Diagrams using Genetic Algorithms with Masking. INFORMS
Journal on Computing , 9(3):266-275, 1997.

[18] Gunther R. Raidl. A Genetic Algorithm for Labeling Point Features. In Proceed-
ings of the International Conference on Imaging Science, Systems and Technology,
pages 189-196, 1998.

[19] Lucas Bradstreet, Luigi Barone, and Lyndon While. Map-labelling with a Multi-
objective Evolutionary Algorithm. In Proceedings of the 7th Annual Conference
on Genetic and Evolutionary Computation, GECCO ’05, pages 1937-1944, 2005.

[20] Michael Formann and Frank Wagner. A Packing Problem with Applications to
Lettering of Maps. In Proceedings of the Seventh Annual Symposium on Compu-
tational Geometry, SCG 91, 1991.

[21] Chung Keung Poon, Binhai Zhu, and Francis Chin. A polynomial time solution for
labeling a rectilinear map. Information Processing Letters, 65(4):201-207, 1998.

[22] Gildésio Lecchi Cravo, Glaydston Mattos Ribeiro, and Luiz Antonio Nogueira
Lorena. A greedy randomized adaptive search procedure for the point-feature
cartographic label placement. Computers € Geosciences, 34(4):373-386, 2008.

[23] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms. The MIT Press, Cambridge, MA, third edition, 2009.

[24] Mauricio G. C. Resende and Celso C. Ribeiro. Greedy Randomized Adaptive
Search Procedures. In Fred Glover and Gary A. Kochenberger, editors, Handbook
of Metaheuristics, pages 219-249. Springe US, Boston, MA, 2003.

[25] Artyom G. Nahapetyan. Bilinear programming. In Christodoulos A. Floudas
and Panos M. Pardalos, editors, Encyclopedia of Optimization, pages 279-282.
Springer US, Boston, MA, 2009.

[26] Susanne Heipcke. Comparing Constraint Programming and Mathematical Pro-
gramming Approaches to Discrete Optimisation — The Change Problem. Journal
of the Operational Research Society, 50(6):581-595, 1999.

[27] Manfred Padberg and Giovanni Rinaldi. A Branch-and-Cut Algorithm for the
Resolution of Large-scale Symmetric Traveling Salesman Problems. SIAM Review,
33(1):60-100, 1991.

[28] Melanie Mitchell. An Introduction to Genetic Algorithms. The MIT Press,
Cambridge, MA, 1996.

[29] Lior Rokach and Oded Maimon. Clustering Methods. In Data Mining and
Knowledge Discovery Handbook, pages 321-352. Springer US, Boston, MA, 2005.

[30] Pablo Moscato. On Evolution, Search, Optimization, Genetic Algorithms and
Martial Arts - Towards Memetic Algorithms. Technical Report 826, California
Institute of Technology, Pasadena, CA, 19809.

[31] James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes. Com-
puter Graphics, Principles and Practice. Addison-Wesley, Reading, MA, second
edition, 1990.

[32] Ivan E. Sutherland and Gary W. Hodgman. Reentrant Polygon Clipping. Com-
munications of the ACM, 17(1):32-42, 1974.

[33] Kevin Weiler and Peter Atherton. Hidden Surface Removal Using Polygon Area
Sorting. ACM SIGGRAPH Computer Graphics, 11(2):214-222, 1977.

54

Appendix A
Computational geometry algorithms

In order to properly penalize overlaps between pairs of labels, or conflicts between labels
and map objects (which are important to score the label positions and even the whole
solutions), there must be a way to properly work with various geometries and to be
able to find their intersections.

Algorithms described in this part belong to the category of computational geometry,
and allow to find intersections of lines or polygons with another polygon. Fortunately,
all problems solved in order to find a solution to the label placement problem, have to
be solved just in two-dimensional space.

Also, all polygons representing labels geometries could be considered as convex ones.
Of course, there could be some strange and non-convex shaped label in the problem as
well, but replacing these non-convex polygons by their convex hulls should not do much
harm. Such relaxation could rarely change possible label positions, but this would be
very uncommon, while having all polygons convex can heavily simplify many operations
like line clipping or polygon clipping.

B A1 Convex hull

“Convex hull of a set of points is a smallest convex polygon for which each of the points
in the given set is either on the boundary of the convex polygon or in its interior.” [23]

Figure A.1. Convex hull of a point set!

Less formally said, convex hull is the smallest convex polygon that covers all of the
given points. Convex polygon (also not so formally) is such polygon, where any point

! https://hcmop.wordpress.com/tag/combinatorial-geometry

55

https://hcmop.wordpress.com/tag/combinatorial-geometry

between the two points belonging to the polygon is also inside or on the border of the
polygon.

Convex hulls are interesting for the geometry tasks that are to be subsequently ex-
ecuted during the preparation of the label position candidates and execution of the
algorithms themselves, as it is much easier to calculate intersections of convex polygons
than just generic ones without the convexity property.

There are many algorithms designed for the calculation of convex hulls, and the most
known ones are the following two:

= Graham’s scan algorithm is an algorithm with nlogn complexity (where n is number
of points in the set). First, the points are sorted by polar angle, related to some
arbitrary point (usually the bottom-left one). Then, all of the points are processed
one by one and added to the convex hull. In case when adding some point shows up
that the previously added point breaks the convexity property, then the previously
added points are removed until the hull is convex again.

= Jarvis’s march algorithm (gift wrapping) is alternative algorithm with nh complexity
(where n is number of points in the set and h is number of points in the hull). In each
iteration of the algorithm, one new edge to the hull is added (by adding one point)
so that all of the remaining points on the set are on the right side of line represented
by that specific edge. This way, when the hull is closed, all points must necessarily
be inside the set and the hull is guaranteed to be convex.

In the implementational part of this thesis, there is the Graham’s scan algorithm
used to calculate convex hulls of label geometries.

I A.2 Line clipping

In order to calculate intersections of labels and various linear map objects (like lines
or polylines), it is necessary to have some line clipping algorithm. There are multiple
commonly used algorithms for line clipping, and some or the most known ones are [31]:

m Cohen-Sutherland algorithm is only intended for clipping lines by rectangles. The
algorithm divides the area around the rectangle to eight areas (top, left, top-left, etc.),
as these can be simply determined based on coordinates of the clipping rectangle —
and with the same ease, any point can be classified either to be inside the rectangle
or to belong to one of these eight areas. And based on specific rules, it quickly
determines whether the processed line lies inside the rectangle, outside the rectangle
or if it somewhere intersects the border of the rectangle. If so, the line is clipped
by the intersecting part of the rectangle border and the process is repeated until the
line is clipped completely.

m Cyrus-Beck algorithm is slightly more advanced algorithm, which can clip lines by
any complex polygon (hence, it is more universal method than Cohen-Sutherland).
Internally, the algorithm uses parametric equation of the given line and calculates
conflicts with the edges of the clipping polygon in order to clip the line appropri-
ately. Generally, this algorithm tends to be more effective than the Cohen-Sutherland
(which, on the other hand, has the ability to quickly filter out lines that have no in-
tersection with the clipping rectangle at all).

These algorithms are intended for clipping lines by rectangles or convex polygons,
and this operation can always produce only a single line, single point or no intersection
geometry at all. If there would be any need for intersecting lines with non-convex
polygons, the output could possibly be a set of lines.

56

In case of intersection of polyline and any polygon (even convex one or a rectangle),
the result of the operation could be a set of lines as the polyline could freely enter and
leave the clipping object multiple times. Hence, it is necessary to analyze each line in
the polyline (or polygon border — which is in fact also a polyline) separately.

/

Figure A.2. Line clipping using Cohen-Sutherland algorithm?!

In the implementation part of this thesis, Cohen-Sutherland is used to compute
intersections of lines and rectangles, while an algorithm inspired by the Cyrus-Beck is
used to find intersections of lines and convex polygons. Due to convexity, it is not even
necessary to compute all intersections with edges of the polygon, but only the first two
(as the line can enter the polygon no more than once, and in a similar way it can leave
the polygon no more than once).

I A.3 Polygon clipping

For calculating label overlaps, it is essential to be able to clip a polygon by another
polygon. Again, there are multiple algorithms designed to solve this problem, and the
two most notable follows:

m Sutherland—Hodgman algorithm [32] is primarily intended for clipping a “subject”
polygon by a convex “clipping” polygon, resulting a new polygon if the original
two had some intersection. If both of the input polygons are convex, the outcome
is guaranteed to be a single polygon. The algorithm processes all edges from the
clipping polygon, and finds all its intersections with the subject polygon by edges.
If some intersections are found, the subject polygon is cropped accordingly and only
the updated polygon is considered in the subsequent iterations. After all edges have
been processed, updated version of the subject polygon is the intersection of both
input polygons.

s Weiler—Atherton algorithm [33] is a more complicated algorithm, which can also clip
any simple polygon (i.e. polygon where any two edges do not intersect each other)
by another simple polygon, without relying on convexity. It is also possible to extend

! https://en.wikipedia.org/wiki/Line_clipping

57

https://en.wikipedia.org/wiki/Line_clipping

A Computational geometry algorithms

this algorithm to support more complex polygons containing holes. Result of this
algorithm might consist of multiple different polygons.

Since all label geometries in this thesis are already restricted to be convex polygons
(or they’re converted to convex polygons using an algorithm for finding convex hulls,
as mentioned before), there is no need for the complexity of Weiler—Atherton algorithm
and hence the implementationally simpler and faster Sutherland—Hodgman algorithm
could be used.

WAl o
Wi

Figure A.3. Polygon clipping using Sutherland-Hodgman algorithm?

! https://en.wikipedia.org/wiki/Sutherland-Hodgman_algorithm

58

https://en.wikipedia.org/wiki/Sutherland-Hodgman_algorithm

Appendix B
Contents of the attached CD

Important part of this thesis is a compact disc containing the following files:

data/
sources/
tex/
thesis.pdf

map data used for the evaluation

Java implementation of the Label Placement UI and algorithms
TeX sources of this thesis

this thesis in PDF

Table B.1. Contents of attached CD

59

Appendix C
List of abbreviations

Following abbreviations were used in this thesis:

API
CAD
CLI
CSp
GA
GIS
GLPK
GML
GRASP
GUI
ILP
JSON
LP
MILP
OPL
PDF
SAT
XML
YAML

Application Programming Interface
Computer Aided Design

Command Line Interface

Constraint Satisfaction Problem

Genetic Algorithm

Geographic Information System

GNU Linear Programming Kit

Geography Markup Language

Greedy Randomized Adaptive Search Procedure
Graphical User Interface

Integer Linear Programming

JavaScript Object Notation

Linear Programming

Mixed Integer Linear Programming
Optimization Programming Language
Portable Document Format

Satisfiability (Boolean Satisfiability Problem)
eXtensible Markup Language

Yet Another Markup Language / YAML Ain’t Markup Language

61

	Title page
	Specification
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents
	Tables/Figures
	Introduction
	Thesis objectives
	Thesis structure

	State of the art
	Search spaces
	Optimization goals
	Mathematical programming
	Stochastic methods
	Other approaches
	Commercial solutions

	Basics of label placement
	Features and labels
	Problem definition
	Solving the problem
	Labeling rules
	Point feature labels
	Line feature labels
	Area feature labels

	Metrics
	Scoring individual labels
	Label position penalties
	Map feature conflicts
	Other labels conflicts

	Scoring whole solutions

	Greedy algorithms
	Basic greedy
	Advanced greedy
	GRASP

	Mathematical optimization
	Mathematical programming
	Branch and cut
	Available solvers
	CPLEX
	Gurobi
	MOSEK
	GLPK
	Problem definition

	Using CPLEX solver
	Terminating the optimization
	Performance issues

	Genetic algorithms
	Parts of genetic algorithm
	Genetic algorithm for label placement
	Building blocks
	Memetics

	Software implementation
	Used technologies
	Features
	Available algorithms
	Candidate generation
	Map editor
	Metrics and styles
	Geospatial data import
	Data persistence

	User interface

	Evaluation and results
	Map categories
	Environment
	Data sets
	Results
	Random points
	Populated places
	Roads

	Summary

	Conclusion
	References
	Computational geometry algorithms
	Convex hull
	Line clipping
	Polygon clipping

	Contents of the attached CD
	List of abbreviations

