Části tohoto posudku byly použit se souhlasem firmy Metrostav. Posudek pro Metrostav zpracovala firma MACCAFERRI.
SOIL PROPERTIES

Soil: F6/CI
- Description: il tuhy - kvarter
- **Cohesion Class**: Effective cohesion
- **Cohesion** \([\text{kN/m}^2]\) \(\text{[kN/m}^2]\) \(\ldots\) \(\ldots\) \(\text{10.00}\)
- **Friction Angle Class**: Angle of shearing resistance (\(\text{Tan} \phi\))
- **Friction Angle** \([\text{a}]\) \(\text{[a]}\) \(\ldots\) \(\ldots\) \(\text{18.00}\)
- **Ru value** \(\text{[\ldots]}\) \(\text{[\ldots]}\) \(\ldots\) \(\ldots\) \(\text{0.00}\)
- **Weight Class**: Weight density
- **Bulk unit weight - above GWT** \(\text{[kN/m}^3]\) \(\text{[kN/m}^3]\) \(\ldots\) \(\ldots\) \(\text{21.00}\)
- **Bulk unit weight - below GWT** \(\text{[kN/m}^3]\) \(\text{[kN/m}^3]\) \(\ldots\) \(\ldots\) \(\text{21.00}\)
- **Elastic Modulus** \(\text{[kN/m}^2]\) \(\text{[kN/m}^2]\) \(\ldots\) \(\ldots\) \(\text{0.00}\)
- **Poisson's ratio** \(\text{[\ldots]}\) \(\text{[\ldots]}\) \(\ldots\) \(\ldots\) \(\text{0.30}\)

Soil: F6/CL
- Description: il pevný - krieda
- **Cohesion Class**: Effective cohesion
- **Cohesion** \(\text{[kN/m}^2]\) \(\text{[kN/m}^2]\) \(\ldots\) \(\ldots\) \(\text{12.00}\)
- **Friction Angle Class**: Angle of shearing resistance (\(\text{Tan} \phi\))
- **Friction Angle** \([\text{a}]\) \(\text{[a]}\) \(\ldots\) \(\ldots\) \(\text{21.00}\)
- **Ru value** \(\text{[\ldots]}\) \(\text{[\ldots]}\) \(\ldots\) \(\ldots\) \(\text{0.00}\)
- **Weight Class**: Weight density
- **Bulk unit weight - above GWT** \(\text{[kN/m}^3]\) \(\text{[kN/m}^3]\) \(\ldots\) \(\ldots\) \(\text{21.00}\)
- **Bulk unit weight - below GWT** \(\text{[kN/m}^3]\) \(\text{[kN/m}^3]\) \(\ldots\) \(\ldots\) \(\text{21.00}\)
- **Elastic Modulus** \(\text{[kN/m}^2]\) \(\text{[kN/m}^2]\) \(\ldots\) \(\ldots\) \(\text{0.00}\)
- **Poisson's ratio** \(\text{[\ldots]}\) \(\text{[\ldots]}\) \(\ldots\) \(\ldots\) \(\text{0.30}\)

Soil: G
- Description: strk
- **Cohesion Class**: Effective cohesion
- **Cohesion** \(\text{[kN/m}^2]\) \(\text{[kN/m}^2]\) \(\ldots\) \(\ldots\) \(\text{0.00}\)
- **Friction Angle Class**: Angle of shearing resistance (\(\text{Tan} \phi\))
- **Friction Angle** \([\text{a}]\) \(\text{[a]}\) \(\ldots\) \(\ldots\) \(\text{35.00}\)
- **Ru value** \(\text{[\ldots]}\) \(\text{[\ldots]}\) \(\ldots\) \(\ldots\) \(\text{0.00}\)
- **Weight Class**: Weight density
- **Bulk unit weight - above GWT** \(\text{[kN/m}^3]\) \(\text{[kN/m}^3]\) \(\ldots\) \(\ldots\) \(\text{19.00}\)
- **Bulk unit weight - below GWT** \(\text{[kN/m}^3]\) \(\text{[kN/m}^3]\) \(\ldots\) \(\ldots\) \(\text{19.00}\)
- **Elastic Modulus** \(\text{[kN/m}^2]\) \(\text{[kN/m}^2]\) \(\ldots\) \(\ldots\) \(\text{0.00}\)
- **Poisson's ratio** \(\text{[\ldots]}\) \(\text{[\ldots]}\) \(\ldots\) \(\ldots\) \(\text{0.30}\)

Soil: N
- Description: Nasyp
- **Cohesion Class**: Effective cohesion
- **Cohesion** \(\text{[kN/m}^2]\) \(\text{[kN/m}^2]\) \(\ldots\) \(\ldots\) \(\text{8.00}\)
- **Friction Angle Class**: Angle of shearing resistance (\(\text{Tan} \phi\))
- **Friction Angle** \([\text{a}]\) \(\text{[a]}\) \(\ldots\) \(\ldots\) \(\text{23.00}\)
- **Ru value** \(\text{[\ldots]}\) \(\text{[\ldots]}\) \(\ldots\) \(\ldots\) \(\text{0.00}\)
- **Weight Class**: Weight density
- **Bulk unit weight - above GWT** \(\text{[kN/m}^3]\) \(\text{[kN/m}^3]\) \(\ldots\) \(\ldots\) \(\text{20.00}\)
- **Bulk unit weight - below GWT** \(\text{[kN/m}^3]\) \(\text{[kN/m}^3]\) \(\ldots\) \(\ldots\) \(\text{20.00}\)
- **Elastic Modulus** \(\text{[kN/m}^2]\) \(\text{[kN/m}^2]\) \(\ldots\) \(\ldots\) \(\text{0.00}\)
- **Poisson's ratio** \(\text{[\ldots]}\) \(\text{[\ldots]}\) \(\ldots\) \(\ldots\) \(\text{0.30}\)

Soil: S4
- Description: piesok hlinitý, stredne ulahnutý
- **Cohesion Class**: Effective cohesion
- **Cohesion** \(\text{[kN/m}^2]\) \(\text{[kN/m}^2]\) \(\ldots\) \(\ldots\) \(\text{0.00}\)
- **Friction Angle Class**: Angle of shearing resistance (\(\text{Tan} \phi\))
- **Friction Angle** \([\text{a}]\) \(\text{[a]}\) \(\ldots\) \(\ldots\) \(\text{28.00}\)
- **Ru value** \(\text{[\ldots]}\) \(\text{[\ldots]}\) \(\ldots\) \(\ldots\) \(\text{0.00}\)
Weight Class: Weight density
Bulk unit weight - above GWT \([\text{kN/m}^3]\) \(=\) 18.00
Bulk unit weight - below GWT \([\text{kN/m}^3]\) \(=\) 18.00

Elastic Modulus \([\text{kN/m}^2]\) \(=\) 0.00
Poisson's ratio \(=\) 0.30

Soil: S5
Description: piesok ilovity, ulahnuty

Cohesion \([\text{kN/m}^2]\) \(=\) 8.00
Friction Angle \(=\) 28.00
Ru value \(=\) 0.00

Weight Class: Weight density
Bulk unit weight - above GWT \([\text{kN/m}^3]\) \(=\) 19.50
Bulk unit weight - below GWT \([\text{kN/m}^3]\) \(=\) 19.50

Elastic Modulus \([\text{kN/m}^2]\) \(=\) 0.00
Poisson's ratio \(=\) 0.30

STRATA PROFILES

Stratum: F6/CI
Description: il tuhy, kvarsre
Soil : F6/C1

<table>
<thead>
<tr>
<th>(X)</th>
<th>(Y)</th>
<th>(X)</th>
<th>(Y)</th>
<th>(X)</th>
<th>(Y)</th>
<th>(X)</th>
<th>(Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>([m])</td>
<td>([m])</td>
<td>([m])</td>
<td>([m])</td>
<td>([m])</td>
<td>([m])</td>
<td>([m])</td>
<td>([m])</td>
</tr>
<tr>
<td>0.00</td>
<td>0.94</td>
<td>5.37</td>
<td>0.95</td>
<td>7.74</td>
<td>0.00</td>
<td>8.85</td>
<td>0.44</td>
</tr>
<tr>
<td>9.50</td>
<td>-0.21</td>
<td>18.17</td>
<td>-0.21</td>
<td>38.55</td>
<td>-0.62</td>
<td>39.35</td>
<td>0.18</td>
</tr>
<tr>
<td>40.86</td>
<td>0.94</td>
<td>41.04</td>
<td>0.93</td>
<td>42.13</td>
<td>0.95</td>
<td>52.51</td>
<td>0.97</td>
</tr>
<tr>
<td>60.52</td>
<td>0.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stratum: F6/CL
Description: il penvy, krieda
Soil : F6/CL

<table>
<thead>
<tr>
<th>(X)</th>
<th>(Y)</th>
<th>(X)</th>
<th>(Y)</th>
<th>(X)</th>
<th>(Y)</th>
<th>(X)</th>
<th>(Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>([m])</td>
<td>([m])</td>
<td>([m])</td>
<td>([m])</td>
<td>([m])</td>
<td>([m])</td>
<td>([m])</td>
<td>([m])</td>
</tr>
<tr>
<td>0.00</td>
<td>-8.24</td>
<td>60.52</td>
<td>-8.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stratum: NASYP
Description: S2
Soil : N

<table>
<thead>
<tr>
<th>(X)</th>
<th>(Y)</th>
<th>(X)</th>
<th>(Y)</th>
<th>(X)</th>
<th>(Y)</th>
<th>(X)</th>
<th>(Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>([m])</td>
<td>([m])</td>
<td>([m])</td>
<td>([m])</td>
<td>([m])</td>
<td>([m])</td>
<td>([m])</td>
<td>([m])</td>
</tr>
<tr>
<td>10.13</td>
<td>0.96</td>
<td>16.07</td>
<td>6.70</td>
<td>17.57</td>
<td>6.82</td>
<td>20.83</td>
<td>6.90</td>
</tr>
<tr>
<td>29.09</td>
<td>7.11</td>
<td>32.59</td>
<td>7.11</td>
<td>40.85</td>
<td>6.90</td>
<td>44.11</td>
<td>6.82</td>
</tr>
<tr>
<td>45.61</td>
<td>6.70</td>
<td>46.77</td>
<td>6.03</td>
<td>50.42</td>
<td>3.95</td>
<td>57.93</td>
<td>0.94</td>
</tr>
</tbody>
</table>

Stratum: S4
Description: hlity piek
Soil : S4

<table>
<thead>
<tr>
<th>(X)</th>
<th>(Y)</th>
<th>(X)</th>
<th>(Y)</th>
<th>(X)</th>
<th>(Y)</th>
<th>(X)</th>
<th>(Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>([m])</td>
<td>([m])</td>
<td>([m])</td>
<td>([m])</td>
<td>([m])</td>
<td>([m])</td>
<td>([m])</td>
<td>([m])</td>
</tr>
<tr>
<td>0.00</td>
<td>-12.64</td>
<td>60.52</td>
<td>-12.64</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stratum: S5
Description: piesok ilovity
Soil : S5

<table>
<thead>
<tr>
<th>(X)</th>
<th>(Y)</th>
<th>(X)</th>
<th>(Y)</th>
<th>(X)</th>
<th>(Y)</th>
<th>(X)</th>
<th>(Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>([m])</td>
<td>([m])</td>
<td>([m])</td>
<td>([m])</td>
<td>([m])</td>
<td>([m])</td>
<td>([m])</td>
<td>([m])</td>
</tr>
<tr>
<td>0.00</td>
<td>-2.14</td>
<td>60.52</td>
<td>-2.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Stratum: Z
Description: strkovy zaklad

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>X</th>
<th>Y</th>
<th>X</th>
<th>Y</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>[m]</td>
<td>[m]</td>
<td>[m]</td>
<td>[m]</td>
<td>[m]</td>
<td>[m]</td>
<td>[m]</td>
<td>[m]</td>
</tr>
<tr>
<td>8.85</td>
<td>0.44</td>
<td>10.13</td>
<td>0.96</td>
<td>11.75</td>
<td>0.96</td>
<td>13.70</td>
<td>0.96</td>
</tr>
<tr>
<td>14.63</td>
<td>0.66</td>
<td>39.35</td>
<td>0.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WATER TABLE PROFILES

Water table: HPV
Description: HPV

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Y</th>
<th>P</th>
<th>X</th>
<th>Y</th>
<th>Y</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>[m]</td>
<td>[m]</td>
<td>[m]</td>
<td>[kN/m²]</td>
<td>[m]</td>
<td>[m]</td>
<td>[m]</td>
<td>[kN/m²]</td>
</tr>
<tr>
<td>0.00</td>
<td>-4.94</td>
<td>60.52</td>
<td>-4.94</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REINFORCED BLOCKS

Block: GTM 1
Block dimensions: [m] = 6.00
Base width: [m] = 6.00
Height: [m] = 2.28
Block Origin: Abscissa = 10.00
Ordinate = 0.59
Face inclination: [°] = 20.00

Structural embankment type: Sandy Clay
Structural embankment: N
Backfill soil: N
Covering soil: N
Foundation soil: N

Brinch Hansen, Vesic or Meyerhof bearing capacity parameters
Embedment depth: [m] = 0.00
Natural soil slope: [°] = 0.00

Reinforcements pattern:
Maccaferri - Green Terramesh - 70° - 8/2.7P - 0.76
Length: [m] = 6.00
Vertical spacing: [m] = 0.76
Wrapped length: [m] = 0.65

Block: GTM 2
Block dimensions: [m] = 4.00
Base width: [m] = 4.00
Height: [m] = 1.52
Back Shift: [m] = 0.00 by GTM 1
Face inclination: [°] = 20.00

Structural embankment type: Sandy Clay
Structural embankment: N
Backfill soil: N
Covering soil: N
Foundation soil: N

Brinch Hansen, Vesic or Meyerhof bearing capacity parameters
Embedment depth: [m] = 0.00
Natural soil slope: [°] = 0.00

Reinforcements pattern:
Maccaferri - Green Terramesh - 70° - 8/2.2P - 0.76
Length: [m] = 4.00
Vertical spacing: [m] = 0.76
Wrapped length: [m] = 0.65
Block covering:

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>X</th>
<th>Y</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>[m]</td>
<td>[m]</td>
<td>[m]</td>
<td>[m]</td>
<td>[m]</td>
<td>[m]</td>
</tr>
<tr>
<td>0.00</td>
<td>0.00</td>
<td>4.69</td>
<td>2.31</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SURCHARGE LOADS

Distributed Loads: Q1
- Description: pruh 1
- Class: Variable unfavourable
- Magnitude: \([\text{kN/m}^2]\) = 45.00
- Inclination angle: \(\text{[°]}\) = 0.00
- Abscissa: \([\text{m}]\): from = 17.57 To = 20.57

Distributed Loads: Q2
- Description: pruh 2
- Class: Variable unfavourable
- Magnitude: \([\text{kN/m}^2]\) = 26.50
- Inclination angle: \(\text{[°]}\) = 0.00
- Abscissa: \([\text{m}]\): from = 20.57 To = 23.57

Distributed Loads: Q3
- Description: pruh 3
- Class: Variable unfavourable
- Magnitude: \([\text{kN/m}^2]\) = 14.50
- Inclination angle: \(\text{[°]}\) = 0.00
- Abscissa: \([\text{m}]\): from = 23.57 To = 26.57

PROPERTIES OF THE USED REINFORCEMENTS

Maccaberry - Green Terramesh - 70° - 8/2.2P - 0.76

- Tensile strength UTS: \([\text{kN/m}]\) = 35.00
- Plastic extension ratio: 2.00
- Elastic extension coefficient: \([\text{m}^3/\text{kN}]\) = 1.10e-04
- Reinforcement Stiffness: \([\text{kN/m}]\) = 330.00
- Minimum anchorage length: \([\text{m}]\) = 0.15
- Breakage Safety Factor (gravel): 1.28
- Pull-out Safety Factor: 1.00
- Breakage Safety Factor (sand): 1.11
- Pull-out Safety Factor: 1.00
- Breakage Safety Factor (silty sand): 1.11
- Pull-out Safety Factor: 1.00
- Breakage Safety Factor (sandy clay): 1.11
- Pull-out Safety Factor: 1.00
- Interaction factor reinforcement/reinforcement: 0.30
- Pullout coefficient reinforcement-gravel: 0.30
- Pullout coefficient reinforcement-sand: 0.65
- Pullout coefficient reinforcement-silt: 0.50
- Pullout coefficient reinforcement-clay: 0.30

Maccaberry - Green Terramesh - 70° - 8/2.7P - 0.76

- Tensile strength UTS: \([\text{kN/m}]\) = 50.00
- Plastic extension ratio: 2.00
- Elastic extension coefficient: \([\text{m}^3/\text{kN}]\) = 1.10e-04
- Reinforcement Stiffness: \([\text{kN/m}]\) = 500.00
- Minimum anchorage length: \([\text{m}]\) = 0.15
- Breakage Safety Factor (gravel): 1.26
- Pull-out Safety Factor: 1.09
- Breakage Safety Factor (sand): 1.09
- Pull-out Safety Factor: 1.09
- Breakage Safety Factor (silty sand): 1.09
- Pull-out Safety Factor: 1.09
- Breakage Safety Factor (sandy clay): 1.09
- Pull-out Safety Factor: 1.09
- Interaction factor reinforcement/reinforcement: 0.30
- Pullout coefficient reinforcement-gravel: 0.30
- Pullout coefficient reinforcement-sand: 0.65
- Pullout coefficient reinforcement-silt: 0.50
- Pullout coefficient reinforcement-clay: 0.30
Pullout coefficient reinforcement-sand: 0.65
Pullout coefficient reinforcement-silt: 0.50
Pullout coefficient reinforcement-clay: 0.30
CHECKS RESULTS

Internal Stability:
Multiplier combination: A2 + M2 + R3
Reinforcements active Forces according to Rigid Method
Stability analysis with circular surfaces according to Bishop's Method
Evaluated Safety Factor: 1.097

Surfaces searching range

<table>
<thead>
<tr>
<th>Block</th>
<th>Arrival range, abscises [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>First point</td>
</tr>
<tr>
<td>GTM 2</td>
<td>14.00</td>
</tr>
</tbody>
</table>

Number of starting point on the starting segment: 1
Total number of trial surfaces: 500
Minimum base length of slices: [m]: 0.50
Superior limit search angle: [*]: 0.00
Inferior limit search angle: [*]: 0.00

Multiplier
- 1.30 Variable unfavourable
- 1.25 Angle of shearing resistance (Tan phi)
- 1.25 Effective cohesion
- 1.00 Weight density
- 1.00 Tensile strength of reinforcement
- 1.00 Pullout resistance of reinforcement
- 1.00 Ground resistance for overall stability

GTM 1
W=6.00 H=2.28 a=20.0
Maccaferri Green Terramesh - 70° 82.2 J.P - 0.76 6.00 - 0.76

GTM 2
W=4.00 H=1.52 a=20.0
Maccaferri Green Terramesh - 70° 82.2 J.P - 0.76 4.00 - 0.76

Proposal:

Date:
07/29/2016

Section:

File: bosile-sevetin_km112.500_var2

Folder:

MACSTARS W – Copyright © Maccaferri 1998 – Release 4.0
Internal Stability:
Multiplier combination: A2+M2+R3
Reinforcements active Forces according to Rigid Method
Stability analysis with circular surfaces according to Bishop’s Method
Evaluated Safety Factor: 1.141

Surfaces searching range

<table>
<thead>
<tr>
<th>Block</th>
<th>Arrival range, absicise [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTM 1</td>
<td>First point 14.00 Second point 24.00</td>
</tr>
</tbody>
</table>

Number of starting point on the starting segment: 1
Total number of trial surfaces: 500
Minimum base length of slices [m]: 0.40
Superior limit search angle [°]: 0.00
Inferior limit search angle [°]: 0.00

Block: GTM 1
Maccferri - Green Terramesh - 70° - 8/2.7P - 0.76

<table>
<thead>
<tr>
<th>Y</th>
<th>Tb (kN/m)</th>
<th>Tp (kN/m)</th>
<th>Td (kN/m)</th>
<th>Tb/Td</th>
<th>Tp/Td</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.760</td>
<td>50.0</td>
<td>23.6</td>
<td>23.6</td>
<td>2.12</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Multiplier
1.30 Variable unfavourable
1.25 Angle of shearing resistance (Tan phi)
1.25 Effective cohesion
1.00 Weight density
<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>Tensile strength of reinforcement</td>
</tr>
<tr>
<td>1.00</td>
<td>Pullout resistance of reinforcement</td>
</tr>
<tr>
<td>1.00</td>
<td>Ground resistance for overall stability</td>
</tr>
</tbody>
</table>
Wall Checks:
Multiplier combination: A2+M2+R3
Considered block: GTM 1
Resisting force: 331.58 [kN/m]
Active force: 214.45 [kN/m]
Sliding class: Sliding resistance
Sliding safety factor: 1.546
Restoring moment: 2337.90 [kN*m/m]
Overturning moment: 688.09 [kN*m/m]
Overturning class: Overturning
Overturning safety factor: 3.398

Ultimate bearing pressure computed with Limit Equilibrium method
Ultimate bearing pressure: 80.30 [kN/m²]
Active pressure: 112.94 [kN/m²]
Pressure class: Bearing capacity
Bearing capacity safety factor: 0.711
Equivalent bearing area: 5.57 [m]
Eccentricity of normal force: 0.21 [m]
Lever arm of overturning force: 3.21 [m]
Normal force on the base: 591.94 [kN]
Outer edge stress: 119.65 [kN/m²]
Inner edge stress: 77.66 [kN/m²]

Multiplier Class
1.30 Variable unfavourable
1.25 Angle of shearing resistance (Tan phi)
1.25 Effective cohesion
1.00 Weight density
1.00 Tensile strength of reinforcement
<table>
<thead>
<tr>
<th>1.00</th>
<th>Pullout resistance of reinforcement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>Sliding resistance</td>
</tr>
<tr>
<td>1.00</td>
<td>Bearing capacity</td>
</tr>
<tr>
<td>1.00</td>
<td>Overturning</td>
</tr>
</tbody>
</table>
Global Stability Check:
Multiplier combination: A2 + M2 + R3
Reinforcements active Forces according to Rigid Method
Stability analysis with circular surfaces according to Bishop's Method
Evaluated Safety Factor: \(SF = 1.086 \)

Surfaces searching range

<table>
<thead>
<tr>
<th>First point</th>
<th>Second point</th>
<th>Arrival range, abscises [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>9.00</td>
<td>13.50</td>
</tr>
<tr>
<td>30.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Number of starting point on the starting segment: 100
Total number of trial surfaces: 1000
Minimum base length of slices: \(0.50 \) m
Superior limit search angle: \(0.00 \)°
Inferior limit search angle: \(0.00 \)°

<table>
<thead>
<tr>
<th>Multiplier</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.30</td>
<td>Variable unfavourable</td>
</tr>
<tr>
<td>1.25</td>
<td>Angle of shearing resistance (Tan phi)</td>
</tr>
<tr>
<td>1.25</td>
<td>Effective cohesion</td>
</tr>
<tr>
<td>1.00</td>
<td>Weight density</td>
</tr>
<tr>
<td>1.00</td>
<td>Tensile strength of reinforcement</td>
</tr>
<tr>
<td>1.00</td>
<td>Pullout resistance of reinforcement</td>
</tr>
<tr>
<td>1.00</td>
<td>Ground resistance for overall stability</td>
</tr>
</tbody>
</table>

Officine Maccaferri assumes no responsibilities for the drawings and calculations submitted to the customer based on the data provided by him, nor it is responsible for the project and site visits that were