
Ing. Michal Valenta, Ph.D.
Head of Department

prof. Ing. Pavel Tvrdík, CSc.
Dean

Prague March 2, 2017

CZECH TECHNICAL UNIVERSITY IN PRAGUE

FACULTY OF INFORMATION TECHNOLOGY

ASSIGNMENT OF BACHELOR’S THESIS

 Title: Pseudo-Random Numbers Prediction

 Student: Richard Molnár

 Supervisor: Ing. Filip Štěpánek

 Study Programme: Informatics

 Study Branch: Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of winter semester 2018/19

Instructions

Random numbers are generated by using the so-called pseudo-random number generators (PRNG). These
deterministic algorithms use a seed to generate a sequence of numbers that satisfy the parameters on
randomness. The sequence can be predicted in case the seed value is known. The goal of the thesis is to
design and implement an universal tool for cracking common PRNGs used by web applications.
Tasks:
- Analyze the PRNG algorithms used by PHP and web applications. Focus on algorithms that are not
considered secure by current standards.
- Analyze existing solutions for cracking of these PRNG algorithms.
- Design and implement a tool for discovering the seed of given PRNG sequence. The tool will be used by
security specialists or penetration testers.
- Verify the functionality of the tool by using it to exploit PRNG weakness of the applications running in a
laboratory environment (open software instances).
- Discuss the results.

References

Will be provided by the supervisor.

Czech Technical University in Prague

Faculty of Information Technology

Department of Software Engineering

Bachelor’s thesis

Pseudo-Random Numbers Prediction

Richard Molnár

Supervisor: Ing. Filip Štěpánek

16th May 2017

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on 16th May 2017 .

Czech Technical University in Prague
Faculty of Information Technology
© 2017 Richard Molnár. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Molnár, Richard. Pseudo-Random Numbers Prediction. Bachelor’s thesis.
Czech Technical University in Prague, Faculty of Information Technology,
2017.

Abstrakt

Táto práca sa všeobecne zameriava na tému generátorov pseudonáhodných
č́ısel so zamerańım na PHP. V úvode práce je rozobraná analýza existujúcich
generátorov pseudonáhodných č́ısel a ich využitie a implementácia v praxi.
Ďalej sú hodnotené rôzne techniky na prelamovanie týchto generátorov. Úlohou
implementačnej časti práce je implementovat algoritmy na prelamovanie
generátorov č́ıselných rád a súčasne vyvinút sadu nástrojov na podporu te-
jto činnosti. Tieto nástroje budú využ́ıvat novú techniku na prelamovanie
za pomoci dúhovych tabuliek. Následne sú porovnané existujúce programy s
nástrojmi vyvinutými v tejto práci, aby boli preukázné ich schopnost.

Kĺıčová slova pseudonáhodost, generátory náhodnych cisel, PHP, bezpecnost,
Mersenne Twister, .NET

Abstract

This thesis focuses on the topic of pseudo-random number generators (PRNG)
in general with focus on PHP. This work starts by analyzing existing random
number generators and their implementation in real world. It continues by
assessment of several techniques to crack PRNGs. The implementation goal
of this thesis is to implement current techniques for PRNG cracking and to

vii

develop a set of tools to make this task easier by implementing supporting
tools. The toolkit also makes uses of new PRNG cracking technique with a
use of rainbow tables. Existing software for PRNG cracking is later explorer
and performance benchmarks made to showcase abilities of newly developed
toolkit.

Keywords pseudo-random number generators, PHP, security, Mersenne Twister,
.NET

viii

Contents

Introduction 1

1 Analysis 3
1.1 What are random numbers . 3
1.2 Problem with random numbers in computers 4
1.3 Qualities of random numbers 5
1.4 State of PRNG/RNG usage in reality 6
1.5 Common PRNG algorithms . 7
1.6 PRNGs in PHP . 9
1.7 PRNG Cracking . 10
1.8 Cracking PRNGs in PHP . 11
1.9 Existing software for PRNG cracking 14

2 Design 15
2.1 Basic explanation of toolkit . 15
2.2 Target users . 15
2.3 Non-functional requirements . 15
2.4 Functional requirements . 16
2.5 Use cases . 16
2.6 Application architecture and components 18
2.7 Mode of interaction . 20
2.8 PRNG Cracker Design . 21
2.9 Apache Process Pwner design 24

3 Realization 25
3.1 Choosing a development platform 25
3.2 Implementing mt rand() in C# 26
3.3 Implementing seed bruteforcing cracker 27
3.4 Rainbow tables for seed finding 28
3.5 Implementing rainbow table generator 28

ix

3.6 Implementing the rainbow table cracker 31
3.7 User input parsing . 32
3.8 Apache Process Pwner implementation 33

4 Testing 35
4.1 Testing configuration . 35
4.2 Basic Functionality tests . 35
4.3 Apache Process Pwner Test . 36
4.4 PRNG Cracker Test . 36
4.5 PRNG Explorer and finder . 37
4.6 Speed comparison with other software 38

Conclusion 41

Bibliography 43

A Acronyms 45

B Contents of enclosed memory card 47

x

List of Figures

1.1 Bad uses of insecure PRGN . 6

2.1 Application architecture . 18

3.1 Apache Process Pwner timeline . 33

xi

List of Tables

1.1 Common Software Environments and LCG state sizes[1] 8

xiii

Introduction

Random numbers are number sequence that are part of almost every com-
puter program. They are used to randomly initialize variables, to randomly
perform some actions or to simulate AI behavior. But random numbers are
often used where the next random number should be absolutely unpredictable
– in lotery numbers, cryptographic tokens or password generation. Generators
that satisfy this requirement are called cryptographically secure.
Plenty of pseudo-random number generators (PRNGs) satisfy this condition.
However, in reality, difference between secure and insecure generators is often
not stressed enough. Almost every software platform offers insecure PRNG
by default and the programmer needs to know that he needs the secure one.
But programmers often don’t know this difference or don’t pay too much at-
tention to it, which can introduce new vulnerabilities to the system.
The job of security penetetration testers (or pentesters) is to asses the security
of the given software. They usually check for variety of vulnerrabilities such
as SQL injection or XSS. Vulnerabilities of these types can be easily exploited
by powerful toolkits available for pentesters.
PRNG vulnerabilities don’t have this luxury. Some tools exists, but they are
far from widespread, hard to use and very slow. This has a consequences
that pentesters rarely test these vulnerabilities a they are left in the system.
A highly motivated hacker can then exploit these even though the system
passed all the ussual penetetration tests.
This thesis starts first by exploring the topic of pseudo-random number gen-
erators. Many of their properties are explained, which is going to be critical
for understanding the exploits.
Next, several popular software platforms are listed with their respective PRNGs.
The analysis chapter ends by showing several existing software solutions for
PRNG cracking.
In the Design chapter, I focus on designing PRNG cracking toolkit based on
the knowledge from the Analysis chapter. Main focus is on simplicity of usage
and flexible software architecture. The final toolkit consists of several tools,

1

Introduction

all of which can be used without exiting the program.
The toolkit uses existing techniques for PRNG cracking, but during the im-
plementation process a new technique was discovered, which makes the whole
toolkit much faster.
In the end, the whole result of implementation is tested and compared against
other software solutions.

2

Chapter 1
Analysis

In this chapter, I will first start with definition of random numbers, how
are they used in computers, the way of generating them and some of their
properties. Then I will move to the way they are actually implemented in
different software environments. I will finish this chapter with common ways
of cracking random number generators and existing algorithms of doing so.

1.1 What are random numbers

Although the word random is often used in everyday language, it it pretty
hard to define, what randomness actually is. Oxford dictionary defines it with
the following definition :

“randomness[noun]:The quality or state of lacking a pattern or principle of
organization; unpredictability.”[2]

“A random sequence is a vague notion... in which each term is unpredictable
to the uninitiated and whose digits pass a certain number of tests traditional
with statisticians”[3]

In computers and computer programs, there are two important concepts
for this thesis : Random Number Generator and Random Number Sequence.
Random Number Generator (or RNG for short) is a device that produces a se-
quence of numbers that meets certain statistical requirements for randomness.[4]
Random numbers are essential part of almost every computer program – they
are used for generating passwords, encryption tokens, in games or randomly
generating a new profile picture for a forum user.

3

1. Analysis

1.2 Problem with random numbers in computers

Processors have generally big problems with generating random numbers.
Every CPU in every computer should be and usually is deterministic, which
means that every execution of algorithm with equal inputs will have equal
outputs – which is the opposite of Random. That means there is no magical
algorithm that can generate random numbers on its own. This problem has
two solutions: introduce a real source of randomness – entropy, or try to trick
the user and produce number sequence, which only looks random, but actually
isn’t.

1.2.1 Problematic random numbers

The obvious solution for random numbers is to get some form of “entropy”
source. In this context (as the word ”entropy” usually has many meanings),
entropy is some form of noise which can be used as an input for the RNG. For
computer applications, the usual sources are atmospheric noise, noise from
the microphone, ping time to a web server, spin time of the hard-drives, tem-
perature of the CPU and so on[5].
Although these are easily accessible and generally good quality sources, they
are rarely used – every one of them requires specific hardware or software,
which doesn’t have to be present on other computers. This makes the com-
puter program less portable and less appealing to programmers, especially
when they don’t actually need real random numbers.

1.2.2 Pseudo-random number sequences

Another solution for the problem of generating random numbers is not to
create random numbers at all. Instead, random-looking numbers can be pro-
duced – these are called pseudo-random numbers. Let’s consider this number
sequence :

1, 6, 3, 7, 9, 10, 5, 8, 4, 2

If a random observer would be asked to tell us if there is any order in this
sequence, the obvious answer would be that this sequence has no order and
thus is random. The truth is actually the opposite of this, since the previous
sequence has this exact formula:

an = an−1 ∗ 6 mod 11

Is this sequence unpredictable ? Far from it, but the knowledge of underlying
generator is required, which can be hard to guess. This was pretty simple
example, but in real-world cases, the algorithms used can be much more ad-
vanced.

4

1.3. Qualities of random numbers

1.3 Qualities of random numbers

Pseudo-random numbers can be judged from few different viewpoints. First
category of tests are statistical tests, which judge random numbers in their
mathematical and statistical similarity to real random numbers. Second view-
point is security - how well the number sequence can be predicted, if previous
outputs are known to an attacker.

1.3.1 Die hard tests

To test the quality of the RNG, the so called “Die hard tests” can be used.
They are statistical test created by George Marsaglia in 1995 to test the
statistical properties of random sequences[6]. Many pseudo-random number
generators (PRNGs) can output sequences with the same statistical properties
as real RNGs, making them suitable for a broad range of applications, such as
Monte-Carlo simulations or randomly selecting movements of an AI enemy in
a video-game. While most PRNGs easily pass these tests, they can still still
be easily predictable, which the Die hard tests don’t account for.

1.3.2 Security tests of random numbers

In some cases, it is required that any attacker observing the output of the
PRNG will not be able to predict the next outputs based on his knowledge of
the previous numbers. Almost any advanced PRNG has an internal state – a
set of variables which are not visible outside of the algorithm. This internal
state is used to create outputs. If the attacker can guess the algorithm that
produces the random numbers and also the internal state of the generator, the
attacker can predict all the future outputs, so secure algorithms cannot leak
the internal variables.

1.3.3 NIST

In 2010, the National Institute of Standards and Technology has released
a standardized test suit to test PRNGs from a variety of perspectives for
various uses[7]. This is also the first test suite to test PRNGs for suitability in
cryptographic applications. The test suit is available on-line, and generally all
PRNGs that pass these tests can be considered secure by modern standards.

1.3.4 Periodicity

Every PRNG which is using only internal state to produce outputs (no more
entropy is entered into it) has a “period” - a number of outputs after which the
output will start to repeat. Ideal PRNGs can have periods as large as number
of different internal states. Since period is bounded by the state “size”, some

5

1. Analysis

Figure 1.1: Bad uses of insecure PRGN

PRNGs will start to repeat after 32768 values (15-bit), while some, such as
MT19937, can have extremely large periods, in this case 219937 − 1.[8]

1.4 State of PRNG/RNG usage in reality

Although many secure solutions are already available, insecure PRNGs are
often used where secure ones should be implemented, as seen in figure 1.1.
On almost all software platforms the default PRNG is not cryptographically
secure and many programmers don’t realise this and use them, creating new
vulnerabilities in their applications. These vulnerabilities can often be ex-
ploited and that is going to be the main focus of this thesis.

6

1.5. Common PRNG algorithms

1.5 Common PRNG algorithms

There are many ways to generate pseudo-random numbers, but for use in
practice there are few criteria which are important. Since computers always
had problems with enough resources, real world applications must be efficient
and fast. PRNGs are also a field of computer science very few people are
familiar with, so only very few generators are actually used in reality. These
generators have age-proven properties and satisfy many requirements of soft-
ware developers.
Bellow are listed two most used PRNGs today.

1.5.1 Linear congruential generator

Linear congruential generator is any RNG defined as:

Xn = aXn−1 + c mod n

where a is multiplier, c is increment and n is modulus. Xn and Xn−1 are
current and previous outputs of the generator.
LCG is probable the simplest PRNG in use. Since it has very small state size,
it doesn’t take a lot of memory and puts very little stress on CPU cache. Each
output also needs only few integer operations, so it can output numbers fairly
quickly.
Disadvantages are extremely low period sizes, which are at best as large as
state size. Most implementations use only 32-bit state size, which means that
this generator inevitable repeats after 232 outputs. A solution to this problem
can be larger state, however a problem with performance can easily occur -
most CPUs don’t support integer operations larger than 32-bit, so much slower
vector operations are required. Table 1.1 is a list of state sizes vs software
platform. The table also shows how popular LCG is.

This generator is also really bad from security point of view as will be
discussed in later chapters.
Another issue can be high periodicity when plotted in some dimensions, which
can cause problems in Monte Carlo simulations[9].

1.5.2 Mersenne Twister

It is by far the most widely used general-purpose PRNG. The most commonly
used version of the Mersenne Twister algorithm is based on the Mersenne
prime 219937-1[10]. The standard implementation of that, MT19937, uses a
state of 624 32-bit integers.
MT has the following merits:

• Far longer period and far higher order of equidistribution than any other
implemented generators. (It is proved that the period is 219937-1, and
623-dimensional equidistribution property is assured.)

7

1. Analysis

Environment State size in Bits
Borland C/C++ 32
glibc (used by GCC) 31
ANSI C:, Digital Mars, CodeWarrior, C99, C11 31
Borland Delphi, Virtual Pascal 32
Turbo Pascal 32
Microsoft Visual/Quick C/C++ 32
Microsoft Visual Basic (6 and earlier) 24
RtlUniform from Native API 31
Apple CarbonLib, C++11’s minstd rand0 31
C++11’s minstd rand 31
MMIX by Donald Knuth 64
Newlib, Musl 64
VMS’s MTH$RANDOM 32
Java’s java.util.Random 48
POSIX rand48, glibc rand48 48

Table 1.1: Common Software Environments and LCG state sizes[1]

• Fast generation.

• Efficient use of the memory. (The implemented C-code mt19937.c con-
sumes only 624 words of working area.)

For Mersenne Twister, two functions are usually implemented. Seeding –
which initializes the state according to the seed value, and generating a ran-
dom number. Each random number generation takes a single integer from
state, does a little bit of bit-shifting and then outputs the number. After all
624 integers from state are exhausted, Mersenne Twister performs “reload”
operation - takes the integers in the state a performs a “twisting” operation
between them, producing a new set of state numbers[8].

1.5.3 Default PRNG algorithms by software platforms

Since PRNGs are so essential in software applications, some form of PRNG is
included in every software development environment. Bellow is a list of few
popular software platforms and their basic PRNGs.

1.5.3.1 Java - java.util.Random

• Linear congruential pseudorandom number generator[11], as defined by
D. H. Lehmer and described by Donald E. Knuth[12]

• The class uses a 48-bit seed and state, which is modified using a linear
congruential formula.

8

1.6. PRNGs in PHP

• It is not producing secure random numbers, and is very easy to crack as
will be shown later, but Java does provide
secure PRNG - java.security.SecureRandom

1.5.3.2 .NET - System.Random

• Subtractive random number generator algorithm[13], this algorithm comes
from Numerical Recipes in C (2nd Ed.). The current implementation of
the Random class is based on a modified version of Donald E. Knuth’s
subtractive random number generator algorithm.

• State : 56 * 32-bit int

• Does not provide secure random numbers, but .NET also offers secure
solution by default - RNGCryptoServiceProvider

1.6 PRNGs in PHP

PHP has more than one commonly used PRNG, this is the list of all generators
that are easily accessible in PHP. There are many others available for PHP,
but in the form of plug-ins, so their market share is orders of magnitude lower
and they won’t be discussed in this thesis.

1.6.1 lcg value()

Rarely used PRNG based on combined linear congruential generator. From
docs: “lcg value() returns a pseudo random number in the range of (0, 1).
The function combines two CGs with periods of 231 - 85 and 231 - 249. The
period of this function is equal to the product of both primes.”[14]
Using the search function on GitHub we can see that it returns only 14,000
results compared to 336,000 for openssl random pseudo bytes and 2,700,000
for mt rand and so this function will not be discussed further.

1.6.2 random int() / random bytes()

New functions introduced in PHP7[15]. Since they are available only from
PHP7 and later which was released recently in December 2015, almost no ap-
plications use them yet. They are also declared and considered cryptograph-
ically secure with no known vulnerabilities, so they will also not be discussed
further.

1.6.3 openssl random pseudo bytes()

This function is available since PHP 5.3 and in most cases generates crypto-
graphically secure sequences (this is not guaranteed) . This function is also

9

1. Analysis

not frequently used – many developers don’t know about it and often it’s not
included in the PHP environment since it’s an OpenSSL extension.

1.6.4 rand()

Most used PRNG function alongside with mt rand(). This function has many
implementations – rand() has no guarantee what implementation will be used
during runtime, since this depends on PHP version, host operating system
and environment variables.[16]

• If the PHP 7.1 and higher is used, rand() is alias for mt rand(). How-
ever, PHP 7.1 is rarely used since it was release only a few months
ago(December 2016) and majority of web servers still run much older
PHP 5 or more recent PHP 7.0 from the end of year 2015.

• Windows version of PHP uses PRNG from Visual C++ stdlib library,which
is linear congruential generator with 32-bit internal state and 32-bit out-
put - output is the same as internal state, so the generator has no hidden
state.

• Linux version uses glibc implementation of rand(). This is also linear
congruential generator, but in this case with much larger 1024-bit space
(32 32-bit integers). Native output of the generator is 31-bit number
(last bit is cut of).

1.6.5 mt rand()

Most popular PRNG for PHP. This generator has known and consistent
characteristics regardless of PHP version or host operating system[16]. The
source code of this function mentions that this is MT19937 implementation
of Mersenne Twister, but I have found that mt rand() differs a little and pro-
duces different output than MT19937 (this will be discussed in later chapters).
This function has an internal state of 624 integer values (19968 bits) and very
large period of 219937-1. However, this function does not offer cryptographic-
ally secure output, making this function ideal target for my toolkit.

1.7 PRNG Cracking

If pseudo random number generator is supposed to provide seemingly random
values, process of PRNG cracking is trying to make this values as “un-random”
as possible, sometimes even not random at all. By cracking and predicting
PRNG, an attacker has a lot to gain since PRNG outputs are often very
valuable:

• Password recovery links in recovery emails

10

1.8. Cracking PRNGs in PHP

• System generated user passwords

• Lottery numbers

• Encryption keys (HTTPS, TLS, SSL. . .)

• Hidden identifiers

• Access tokens

Predicting outputs of PRNG is not the only exploit arising from poor PNRG
usage. Seed recovery can leak critical information to the attacker, since some
applications use secret informations as PRNG seeds. Some cracking methods
can reveal how many times was the PRNG used by the application - usually
not providing critical info to the attacker, but should still be considered as
possible vulnerability.

1.7.1 Basics of PRNG cracking

In order of the attacker to know the future outputs of the PRNG, he must
know two informations about the target application - type of PRNG used
and what is the current state of the PRNG. The first information is rarely
a problem for attacker - as previously discussed, only handful of PRNGs are
used in reality, the PRNG used for each output is the same and source code for
the target application is often accessible, so it easily be assumed the attacker
knows or can trivially guess this information.

1.7.2 State recovery

Since PRNG output is entirely based on the PRNG used and the PRNG
state, the attacker must also know the current generator state. Good and
secure PRNG will never leak the current state. Sometimes, it’s not required
to find the state directly - the attacker just needs to find the seed that was
used to initialize the generator and this information can be easily used to
reconstruct the current state just by replicating the PRNG behavior on the
attackers side.

1.8 Cracking PRNGs in PHP

In this section, I will describe issues with cracking PHP PRNGs and existing
algorithms used for cracking various rand() implementations and mt rand()
in PHP.

11

1. Analysis

1.8.1 PRNG output truncating issue

Both mt rand() and rand() have some ”native” output size. For mt rand(),
the generator outputs 31-bit number, for rand(), it can be 16, 31 or 32 bits,
depending on platform and PHP version. But sometimes, a programmer needs
much smaller output, for example a number between 1 and 10. In this case,
both rand() and mt rand() offer bounding of the output between two numbers.
If the user requests a number between 0 and 255 (8-bits), PRNG like mt rand()
needs to scale the 32-bit output to this range and loses 24 bits of data in the
process. This means the attacker can extract much less state data from each
generator output.

1.8.2 Seeding time issue and Apache

As mentioned previously, both rand() and mt rand() require to be seeded be-
fore use. However, developers don’t need to do this manually (srand()/mt srand()
) and they rarely do so – PHP does this automatically but the question is when
and how.
In order to answer this, one thing must be explained. As of May 2017, most
PHP servers currently use Apache to handle user requests.[17]
Each user request is handled by some Apache process which is already run-
ning. If the the PHP script that the user is requesting uses PRNG, this PRNG
is seeded at the first call. However, if another user comes to the same Apache
process, he will access the same PRNG as the user before him and this PRNG
was already seeded, so no need to reseed it. This brings a new issue - there
may be many PRNG outputs between seeding and an attacker getting PRNG
output, which is bad for seed brute-forcing, as will be explained later. Ideally,
an attacker wants PRNG that was freshly seeded, and luckily there are meth-
ods to force Apache to reseed its PRNG.
One could ask what value does PHP use for seeding. A lot of programmers
use trivial seeding values, such as current time. This is terrible solution, since
current time is absolutely not unpredictable. Very old versions of PHP used
entropy from multiple sources, which could lead to some seed attacks, but it
was fixed long time ago and majority of PHP servers deployed use /dev/ran-
dom, which is cryptographically secure PRNG[18].

1.8.3 Seed brute-forcing

Seed bruteforcing is probably the easiest and most straightforward way of
cracking PRNGs. Let’s have some PRNG (doesnt’t matter if rand() or mr rand()
), seed it with some hidden value and then output 5 public numbers. Since
both generators are seeded using 32-bit number, there are only 232 ways of
seeding this PRNG.
An attacker could simple try all 4,294,967,296 numbers to seed the PRNG,
output 5 numbers and if the 5 numbers match, he has revealed what was the

12

1.8. Cracking PRNGs in PHP

hidden seed value. For this attack, he needs to output 5*232 numbers from
PRNG, which is around 21 billion outputs, a number of computations possible
to compute on a single machine in matter of hours.
However, in this example it was assumed, that the attacker got his 5 numbers
immediately after seeding. As mentioned previously, this might be hard, be-
cause the attacker will most likely receive received outputs from PRNG which
was seeded a long time ago and might have produced thousands to millions of
outputs. He needs to check much more outputs per seed and the computation
suddenly becomes unfeasible.
Even though this method has many issues, this thesis will continue with main
focus on this method, since it is the best method for real-world attacks.

1.8.4 Cracking rand() - Windows

Cracking rand() function running in Windows environment is actually really
easy. Since state size of Windows implementation of rand() is only 32-bits,
we can just trivially try all the possible states and check, if some state is
returning the same sequence as the target server. It should take only few
minutes, if parallelization and vector computations are used, times under one
minute should easily be possible.[19]

1.8.5 Cracking rand() - Linux

Since most PHP servers run Linux, this version is more used than the Windows
version. In Linux environment, rand() uses glibc implementation of rand().
This means, that the state size is 1024, which is too many possible states to
brute-force. So the only possible methods left are brute-forcing or some ad-
vanced state recovery attack. There are some state recovery attacks possible
by solving complex systems of linear equations, however they are using com-
plicated math and are far beyond the scope of this thesis, so I will focus on
seed recovery methods.[18]

1.8.6 Cracking mt rand() – State recovery

State recovery attacks for mt rand() are also possible - these attacks don’t
aim to recover the seed, so they can be used also for PRNGs, that have been
seeded a long time ago. However, for this attack, the attacker needs to get 624
full consecutive outputs from the PRNG, since mt rand() is returning output
from different state integer on each call. Getting 624 consecutive outputs is
actually really hard in reality.
Another issue is output truncating discussed previously – this can lead to
necessity to output multiple of 624 outputs and then solve systems of com-
plicated linear equations. Some cracking methods like this for mt rand() have
been proposed, but in reality they are hard to implement, in most cases im-
possible to execute, so they will not be implemented in this toolkit.

13

1. Analysis

1.9 Existing software for PRNG cracking

Cracking sequences generated by PRNGs is nothing new and many attempts
to create a PRNG cracker have been already made. These are some of them
for mt rand() cracking.

1.9.1 php mt seed

A tool that was originally made public on openwall.com as one of the first
mt rand() crackers[20]. It uses seed bruteforcing technique to recover the seed
of a given number sequence. It supports cracking numbers from a specified
range, but no advanced parsing options or cracking techniques. It’s main
strength is very high optimization – it can leverage AVX2 vector instructions,
which helps greatly when running on modern CPUs and even more on Xeon
Phi accelerators. This is probably the fastest solution for seed bruteforcing
available.

1.9.2 Untwister

Another tool for PRNG cracking is Untwister[21]. This tool supports mul-
tiple PRNGs based on Mersenne Twister such as ones used in Java, Ruby,
glibc and PHP. It supports seed bruteforcing, but at much lower speeds than
php mt seed, making this option impractical as will be shown in Testing
chapter. However, this tool can use state recovery methods discussed pre-
viously, which other tools don’t support. It also has more advanced user
interface with support for using files as inputs.

14

Chapter 2
Design

The second part of this thesis will explain what is expected from the final
product and how is it going to be implemented. Focus is going to be given on
application requirements, use cases, architecture and other aspects of software
engineering.

2.1 Basic explanation of toolkit

In simple terms, the main goal of the toolkit is finding and exploiting PRNG
vulnerabilities in PHP applications. The core functionality of the toolkit
should allow the user to find the seed of the given number sequence. In
order for the toolkit to be useful in practice, it will also include few tools to
support this whole process. This will include PHP PRNG emulator, tools for
connecting to Apache process and few more.

2.2 Target users

As previously mentioned, it is expected that the core user group of this toolkit
are going to be web application penetration testers. These users are expected
to be natural with command-line based tools and basic scripting with Python.
However, it cannot be expected from these users to know details about PRNG
cracking, so the toolkit must be reasonable simple to use.

2.3 Non-functional requirements

• N1 Multi-platform : Application is required to run on multiple dif-
ferent operating systems, with main focus on Windows and Linux. Al-
though it is expected that most users will run Linux (Debian-like systems
like Kali), some users prefer using Windows environment.

15

2. Design

• N2 Responsiveness : Application needs to run quickly and quickly
respond to user commands.

• N3 Easy-to-use : Application should be accessible even to users which
don’t know the specifics of PRNG cracking.

• N4 Streamlined workflow : Application must be designed in a way
which will allow the user to use it in professional environment without
slowing down the user workflow.

2.4 Functional requirements

• F1 Open and hold connection to server : Function to force target
server to create new Apache process.

• F2 Save data from server connection : Tied to F1, function required
to capture data from fresh Apache process.

• F3 Define input formatting : This is required if the target application
uses random numbers from some sequence.

• F4 Parse input sequence : based on formatting : Application
needs to be able to parse input to number sequence from previous
formatting command.

• F4 Crack sequence : Core functionality of application, find the seed
of the target number sequence.

• F5 Seed PRNG : Create a new PRNG in memory from the supplied
seed.

• F6 Get PRNG output : Get output from selected or all in-memory
PRNGs based on formatting from previous commands.

• F6 Find PRNG output : Find which PRNG outputted the requested
number from the previously seed PRNGs.

• F7 Seek PRNG : Move forward in PRNG period.

2.5 Use cases

In this section, several use cases are going to be listed, which describe how
the application is going to be used and interaction between the user and the
application.

16

2.5. Use cases

2.5.1 U1 – Get data from fresh PHP processes

Let’s have a remote PHP application running on Apache server, which gener-
ates number sequences using PRNG. In order to get ”fresh” PRNG outputs,
we need to get fresh Apache process (details of design will be discussed later).

1. User enters target URL to the toolkit alongside other input parameters
such as number of connections to create, protocol, etc.

2. Toolkit then creates first set of open connections to the target server
and keeps them open.

3. After a while, toolkit will open second, smaller set of connections, forcing
the target server to spawn new Apache processes.

4. Toolkit will close the first set of connections, forcing Apache to kill
processes hosting these connections.

5. Toolkit will download and save data from second set of processes and also
close the connections. Processes hosting these connections will probably
stay alive.

2.5.2 U2 – Crack PRNG sequence

In this case, the user has already a sequence he wants to crack (for example
obtained from the first use case) and he wants to find the seed of the sequence.

1. (Optional) User enters formatting sequence to supply formatting meta-
data for the cracker.

2. User enters a sequence to be cracked.

3. Cracker tries to crack the sequence and if successful, outputs possible
seeds to the console.

2.5.3 U3 – explorer further PRNG outputs

Let’s say there is a webserver with 10 processes running on it and the user
knows the internal state of these processes. User also has another output from
the application, but he needs to know which PRNG generated this sequence.
The application should be able to find this and also simulate more outputs.

1. Users initializes PRNG in memory using seeds from previous crack com-
mand.

2. User enters PRNG output to be searched for.

3. Toolkit finds which PRNG generated the output and how many outputs
have the PRNG generated in between.

17

2. Design

Figure 2.1: Application architecture

4. (Optional) User can continue to explore what outputs has the generator
outputted before or what is going to be generated later.

2.6 Application architecture and components

The application is divided into two parts, where the first part is responsible
for input handling and Task creation and the second part processes the Tasks.
Task is an universal object for storing information about what the application
should do.
A general architecture description can be seen in Figure 2.1. In interactive
mode, all inputs are handled by Console Input Reader which produces Tasks.
These tasks are processed by Task Processor, that decides which component
should execute the task based on the Task type.
Although the application component diagram mentions multiple inputs for
task creation, this thesis will focus only on CLI interface. More input/output
interfaces could be easily implemented, but they are beyond the scope of this
thesis.

18

2.6. Application architecture and components

2.6.1 Apache Process Pwner

Component used to connect to the target Apache web-server. This component
will be used to handle connections, download data and save results to local
hard-drive.

2.6.2 Task Processor

This component will receive task from any input reader in universal format
and try to execute the task. Execution of task consists mainly of routing it to
the right component, which is able to execute it.

2.6.3 Console Input Reader

This component will handle raw user interaction with interactive command-
line interface. When the user enters the task in CLI, this component will
parse the task and when successful, it will send the task to Task Processor
component.

2.6.4 PRNG Cracker

This component receives task as a series of numbers to crack. After the
algorithm searches for all possible seeds, it will output the possible seeds for
this series.

2.6.5 Rainbow Table Reader

This component is used by PRNG Cracker component and it is used to access
the rainbow table files and provide rainbow table cracking services. This
component will be discussed further in the Realization chapter, since it was
initially not intended to be included in the toolkit. However, the performance
improvement was so large, I decided to implement it.

2.6.6 PRNG PHP

Emulator of PHP mt rand() PRNG re-implemented in .NET Framework.
Provides faster execution than PHP variant and is used to emulate PHP
PRNG by PRNG Cracker.

2.6.7 PRNG Explorer and generator

This component will be used once the user finds the desired seed. For ex-
ample, let’s say the target Apache/PHP server is running 12 processes and an
attacker has found seed of all this PRNGs. He then asks the server to send
a password recovery email for some victim user. This email is going to con-
tain randomly generated recovery token, which the attacker wants to guess.

19

2. Design

However, the attacker doesn’t know, which process the user connected to and
which PRNG was actually used.
In this case, the attacker can request the server to output each PRNG (using
the same method as getting the initial PRNG output). This output is then
entered into the PRNG explorer. The explorer will output few outputs from
each generator and find out not only which PRNG matched the output, but
also how many times the PRNG was used between initial seeding and this
search. The PRNG that outputs something is the one that was used to send
the email to the victim user.
The generator can then reveal future outputs, which are going to contain the
desired recovery token. This attack will be simulated in the Testing chapter.

2.7 Mode of interaction

For this application, I have chosen command-line interface (CLI) . This should
be not a problem but actually an advantage, since most users are accustomed
to CLI anyways. Since PRNG cracking is usually multi-step process as it can
be seen in Use-Cases, an interactive CLI was chosen. Toolkit will have some
context between commands which can be used for command input. Com-
mands will consist of two parts, command name and optionally parameters.
Considering the functional requirements of the application, these commands
will be available to the user :

• overload target url [-n1,-n2,-o]
Opens a set of connections to the target server. After a while, the applic-
ation will open second smaller set, which is a set of connections, whose
host processes should remain alive. After a while, first set of connections
is close and later the second set of connections is closed and their output
saved to disk.
-n1 n : Number of connections in first set, default is 15
-n2 n : Number of connections in second set, default is 15
-o filename : Filename prefix of output files, default is connectionData

• crack element1 element2 ... elementN
Core functionality of the cracker. Searches for a seed for a given se-
quence. The number of the elements must be the same as speified in
the format command. Each element is delimited by a space character.
After the operation finishes, it outputs possible seeds and execution time
in milliseconds to the console.

• format format1 format2 ... formatN
Sets the formatting meta-data for the cracker, generator and other com-
ponents. Formating types are listed in separately in section 2.8.2.

20

2.8. PRNG Cracker Design

• seed n
Seeds a new instance of mt rand() PRNG in memory for later use.
n : Number to use as a seed. Must be able to fit in 32-bit unsigned
integer.

• seedlast
The same as seed command, but uses the output from last cracking
command as input. This command is present mainly for faster work-
flow.

• loadcrack filename
The same as crack command, but instead loads the inputs from the
supplied file. This can be used to execute a number of cracking tasks in
sequence, since each each input of the file is treated as separate crack
task.
filename : Name of the file to use as input.

• find element1 element2 ... elementN
Searches all the initialized PRNGs and checks, if any on them can pro-
duce the selected sequence. If some generator satisfies this, the command
prints the generator ID, how many states the generator produced since
seeding and the original seed. Uses the formatting from the format
command.

• loadfind filename
The same as find, but uses file on disk as input.

• resetformat
Resets the format to the default format (one native 31-bit output) .

• generate
Generates the output from all the initialized PRNGs based on the cur-
rent format.

2.8 PRNG Cracker Design

Every PRNG is implemented in a way that produces series of numbers in
their native form. Since programmers rarely need numbers in this form, they
often use function, which generates random numbers from some range. Then
they can convert numbers from this range to some other symbols, for example
alphabet letters.

The PRNG Cracker is guessing seed from the PRNG outputs, so the cracker

21

2. Design

needs to get this native output back. First, the cracker reverses the last trans-
formation. This is not trivial, since the transformation can have many forms
- the alphabet could be reversed, meaning number 0 is transformed to ’Z’ and
not ’A’. Luckily, there are not so many transformations and they are fully
reversible.
The second transformations is a little problematic. Since the transformation
is transforming from a large range to a much smaller range, a lot of data is
lost in the process. There is no way to recover this data, so there are many
possible outputs that can be transformed to the same number. The smaller
the target range, the larger the number of possible outputs, in this case it’s
231/26 possible outputs that transform to the same number.
In order for the cracker to be as flexible as possible, it just needs to know the
values generated by mt rand() and from what range they were generated.

With this information the generator can do the actual cracking. It goes
through all possible seeds (seed bruteforcing mentioned previously) and if
some seed generates the target sequence (this is the reason the cracker needs
to re-implement mt rand()) , this seed is returned as a result. If the sequence
is very short, there can be more seeds that satisfy this, so all of them must be
returned.

2.8.1 PRNG Crack Task Parser

As mentioned previously, PRNG Cracker is cracking a sequence of outputs
from mt rand(). However a user would like to enter a direct output from the
target application. This could be anything, from Universally unique identifier
to a hex number.
This parser consists of two modes, blind and formatted. In blind format, the
user will not enter any formatting information about the input, so the parser
will have to guess this information using some basic heuristics.
In second formatted mode, the user first describes the sequence he wants to
crack, e.g. he knows that it’s a sequence of 5 words, each word consisting of 4
hex letters and each word generated by single mt rand() call. The formatter
then knows that this can be transformed to sequence of 5 integers with values
between 0 and 65535 (24*4).

22

2.8. PRNG Cracker Design

2.8.2 Sequence formats

The user has an option to specify what elements is the target sequence going
to contain. Each element is going to be delimited by a space character. Each
element is specified by text identifier and it can be followed by a specified
range following a comma. Generaly, each element will look like this :

identifier[, min − max]

Few formats have been proposed, but much more could easily be added. For
now, only the decimal identifier is supported with range definition.

• n : Identifier for decimal number. For example a decimal number
between 0 and 1000 will be specified like n,0-1000.

• h4 : Four character hex identifier. Translates to a decimal number
between 0 and 216-1. Alphabetical symbols can be both lower and upper
case. Example : 30FF is parsed to 12543.

• h2 : Same as h4, two he characters, range is 0-28-1

• h8 : Same as h4, two he characters, range is 0-232-1

• uuid1 : Universally unique identifier. Although UUID should be stand-
ardized, in reality many different implementations are used and some
of them use only output from mt rand(). The following implementation
is grabbed from Adobe Developer portal as ”good” implementation of
UUID.[22]
function UUIDv4 ()
{
return sprintf (

’%04x%04x -%04x -%03x4 -%04x -%04x%04x%04x’, mt_rand (0,
65535) , mt_rand (0, 65535) ,mt_rand (0,
65535) ,mt_rand (0,
4095) ,bindec (substr_replace (sprintf (’%016b’,
mt_rand (0, 65535)), ’01’, 6, 2)),mt_rand (0,
65535) , mt_rand (0, 65535) , mt_rand (0, 65535));

}

This will be parsed to a sequence of integers, most of them in range
between 0-65535 (216-1). This format is used surprisingly often.

To show an example, let’s say a user wants to find a seed of this sequence :
a random number betwen 0 and 100000 and followed by uuid specified above.
He would enter a formatting command like this:

format n,0-100000 uuid1

23

2. Design

And then enter the cracking command:

crack 74030 8f7e289f-c8fb-4734-8907-7595f625acba

That sequence was generated using the following PHP code :
<?php
echo mt_rand (0 ,100000)." ". UUIDv4 ();
?>

2.9 Apache Process Pwner design

This component of the toolkit is responsible for forcing Apache to spawn new
processes with freshly seeded PRNG. This is a form of attack based on method
proposed by George Argyros and Aggelos Kiayias.[18]
As mentioned in previous chapters, if PHP is running under Apache, each
user is accessing only one process at a time. Default installation of Apache
is keeping around 10-12 processes alive and ready for incoming users, so the
server can service up to 12 users without creating new processes, which is
CPU expensive operation. This doesn’t sound like a lot, but each process
can service new user as soon as the previous user is finished downloading the
request and 10-12 processes is actually plenty for most of the websites.
However, the user has an option to connect to more than one process at a time.
In order to do this, the user of the server needs to open few parallel connections
to the server. Each new connection connects to a different process and if the
number of connections is larger than number of unoccupied processes, Apache
is forced to spawn new processes (with freshly seeded PRNG !). By performing
few tests, it was discovered that default installation of Apache doesn’t limit
a single user in number of open connections. Even if the server would be
configured in a way that limits the number of open connections per user, an
attacker could use a fairly small network of proxy servers (this will not be
implemented in this thesis, but should be easy to add later).
Once the Apache sees that it has a lot of unused processes, it starts to shut
them down, or until it is at the default value of 12 processes. The first processes
to be killed are the ones that have been unused for the longest time. Apache
Process Pwner (APP) makes sure the newly created processes stay alive - it
does it by keeping the connection to them open as long as possible (how it
does that is discussed in Realization chapter). APP also saves response from
this processes, which can contain sequence data for PRNG cracker and this
sequence data is going to come from freshly seeded PRNG.

24

Chapter 3
Realization

3.1 Choosing a development platform

As mentioned previously by our non-functional requirements, application should
be multi-platform and high-performance. For this task, many solutions are
already available. Python looks like and obvious choice, however, in many
tasks it’s performance would be a serious bottleneck.
Another choice is Java, which is fast enough for this toolkit and portable to
more platforms than required, but personally I don’t prefer Java Program-
ming language and there is a better option available.
I have been using .NET for professional projects for a few years now and I
have grown very fond of it. At first, I was afraid of it’s performance compared
to compiled native languages like C/C++, but after testing few PRNG gen-
erators coded in both C++ and C#/.NET, there was almost no performance
difference.
Another concern was portability – this is nicely solved by the newest .NET
Core branch of .NET. It builds on the .NET Standard and is available on Win-
dows, Linux, Mac and in Docker environment, fully satisfying non-functional
requirements.

25

3. Realization

3.2 Implementing mt rand() in C#

As discussed previously, C#/.NET version of PHP’s mt rand() was required
to be reimplemented. This component is used to verify results and check
which seeds actually generate the requested results. PHP function mt rand()
is based on Mersenne Twister. The source code for the function mentions
MT19937[16], so it can be assumed that mt rand() uses standardized MT19937
implementation of Mersenne Twister.
After implementing standard MT19937 generator in C#, it was discovered
that this generator was outputting different number sequences than mt rand(),
so reverse engineering the PHP source code was required.
From the source analysis, it can be seen that mt rand() implementation is
fairly simple. The generator has an array of 624 32-bit integers that hold
the current state of the generator. The generator must first be seeded –
this is done at first call of mt rand() or it can be done manually by calling
mt srand(). Internally, mt srand() calls php mt reload() function, which is
doing the actual “twisting” in the algorithm.

uint32_t *p = state;
N = 624;M = 397;
for (i = N - M; i--; ++p)

*p = twist(p[M], p[0], p[1]);
for (i = M; --i; ++p)

*p = twist(p[M-N], p[0], p[1]);
*p = twist(p[M-N], p[0], state [0]);

Listing 3.1: php mt reload()

As it can be seen, the algorithms takes pairs of numbers in the state and mixes
them up to produce new numbers.
After the state is initialized, mt rand() takes one number from the state and
outputs it on each call of mt rand(). This means that after 624 calls, the state
must be “retwisted” and php mt reload() is called again. Each mt rand() call
looks like this:

s1 = * state(next)++;
s1 ˆ= (s1 >> 11);
s1 ˆ= (s1 << 7) & 0 x9d2c5680U ;
s1 ˆ= (s1 << 15) & 0 xefc60000U ;
s1 ˆ= (s1 >> 18);
return s1 >>1;

Listing 3.2: Core of mt rand()

As seen above, mt rand() cuts of the last bit of the output on the last line,
which is something not included in standartd MT19937. This means that
PHP implementation of MT19937 outputs only 31-bit numbers ! This has
some serious consequences.

26

3.3. Implementing seed bruteforcing cracker

First one is that this generator in incompatible with other MT19937 gener-
ators. Although generally not an issue, it took me few hours of debugging,
since I assumed PHP uses correct MT19937 implementation and I was really
surprised when my reimplementation generated different sequences.
The other more important issue is that all Mersenne Twister cracking methods
assume that on each mt rand() call, the generator outputs full 32-bits. If the
bit-shifting operation is skipped, the whole algorithm can be fully reversed – if
the output of the generator is captured, one integer of the state be recovered.
If 624 consecutive outputs are captured, the whole state can be trivially re-
covered. This is not possible in the PHP implementation of MT19937 – the
last bit is always lost and there is is no way to recover it. Many theoretical
attacks on mt rand() don’t consider this fact and thus they are not actually
possible in reality.
Seed bruteforcing attack is still possible in the same way.

3.2.1 Changes in PHP 7.1.0

During the development of this thesis, PHP team released a new version
of PHP, which makes important changes to mt rand(). Since version 7.1.0
mt rand() uses correct MT19937 implementation, without any bit-shifting, so
previous attack on mt rand() is actually even simpler, since the state can be
easily captured.
This issue was reported only recently in 2016 as bug #71152 and fix was sub-
mitted the same year.
Since most PHP environments don’t use PHP 7.1 yet, since it was released
only recently, I will be targeting only the older versions mt rand(). Although
the implantation is now fixed, with some very minor changes to my cracker
the toolkit works also on newer versions of mt rand() and some previously dis-
cussed attacks are actually easier. However, all the currently existing PRNG
cracking tools are not yet updated for this new version.

3.3 Implementing seed bruteforcing cracker

This is the actual main component of the toolkit. The component is very
basic in the core concept – it loops through all possible seeds, generates the
sequence according to the input format and if the output matches with the
target sequence, this seed is added to the list of outputs.
This algorithm was implemented to use multiple threads to speed up search-
ing for the seeds. It was discovered that this scales directly with number of
threads with no performance hit from synchronization, since there is no syn-
chronization required – each thread is assigned the same amount of work and
it is expected to finish at roughly the same time – this is not exact, so in
the last few moments of cracking, not all CPU cores are going to be used.
However, this last phase is usually only few seconds long and it not worth to

27

3. Realization

implement more advanced thread synchronization.

3.4 Rainbow tables for seed finding

During the development of this toolkit, I came up with an idea of implement-
ing rainbow tables for seed recovery. It was an idea I came up with while
watching some security conference. I started searching for some mentions of
it, but not only nobody tried to implement it before, Google was unable to
find a single mention of this method. This was the reason I dismissed the idea
at first.
But later I tried a fast and simple proof-of-concept application, and it showed
the method might by viable, so I decided to explore this further and soon
it became the main feature of this application. Since the architecture of the
toolkit was designed for high flexibility, it was very easy to include this com-
ponent so late in development.
Rainbow tables are nothing new in cracking and security applications. They
are used mostly for reversing hash functions. They do this by first comput-
ing all the results (e.g. hashes of popular password), sorting them and then
instead of hashing all passwords for each hash reverse, the user can just look
up the hash in the results directly (since they are sorted, this is instant) and
easily recover the password from the hash. It is the typical example of space/-
time trade-off.
Next section is going to show how can be this method used with seed recovery
attacks.

3.5 Implementing rainbow table generator

The rainbow table for this toolkit is going to be used to lookup seeds of PRNG
outputs. However, there is one problem – multiple PRNG outputs can have
the same seed. PHP mt rand() is seeded by 32-bit number and produces 31-bit
output(the last bit of output from mt rand() is discarded). This means, that
there are 4,294,967,296 possible seeds and 2,147,483,648 possible outputs (in
this context, output means first number that PRNG generates), which guar-
antees that there must seeds with the same output, so this is not one-to-one
relationship.
At first, it would be useful to know, how many ”multiplicities” there are -
PRNG outputs with same seed.
In the first test, I have created a program which creates an array of bytes for
each output, setting the initial value to 0. Then the program goes through
all 4,294,967,296 possible seeds and gets the first output of PRNG for each
seed and then increments the value in the array using the PRNG output as

28

3.5. Implementing rainbow table generator

index. After this program finishes, at the n-nth position in the array should
be number of seeds that generate output n.
After this program finished, I created a script that would count how many
PRNG outputs had 0 seeds, 1 seed, 2 seeds, etc. and this was the result:

Seeds Count
0 290634907
1 581260248
2 581239311
3 387541467
4 193731467
5 77501756
6 25838524
7 7381257
8 1844208
9 410505
10 82132
11 14978
12 2473
13 348
14 59
15 7
16 1
17 0

As it can be seen, there are 16 seeds that have the same number as their first
output – let’s call this first output “image”, which is number 423,148,348 the
only number with this interesting property.
This caused a little problem during the development since in one of the early
iterations of the toolkit, each PRNG output had only 4-bit counter for number
of seeds, since I wrongly assumed there are no numbers with this property and
the program was silently overflowing causing a range of problems.
It can be also seen that 290,634,907 outputs have no seed – there is no way a
PHP mt rand() is going to output these numbers as first output, so an average
output has 2.31 seeds.
So, after it is known how many seeds each output has, the rainbow table can
be constructed. It should work like this – the target PRNG output for which
the application is finding the seed is used as index in the rainbow table. But
this is not that straightforward, since some outputs have multiple seeds and
some have none, so the algorithm cannot index the seed table directly.
Index table is required first, which will tell contain the target index in the final
table. The value at index n is going to be the position in the second table for
the output n. Generating the first “index” table is easy, the table generator

29

3. Realization

just uses the first table with seed counts and iterates through it, each time
increasing the current index by the number of seeds for given output.

long positionCounter = 0;
for (long i = 0; i < (UInt32 . MaxValue +1L)/2L; i++)
{

int numSeeds = countsFile . ReadByte ();
indexFile .Write ((UInt32) positionCounter);
positionCounter += numSeeds ;

}

Listing 3.3: code for generating index table

This table will take 8 GB of memory, since it stores 32-bit positions for
231 images.
Now, the generator creates the final seed table, which is going to contain the
seeds for each PRNG output. This table is going to be the largest : 232 32-bit
seeds, or 16 GB. The generator first populates the table with zeros and slowly
fills it with seeds :

long numSeeds = UInt32 . MaxValue + 1l;
long numImages = (UInt32 . MaxValue + 1L) / 2L;
uint[numSeeds] preimageBuffer ;// this contains only zeroes

now
uint[numImages] indexTableBuffer ;// this contains data

from index table
for (long i = 0; i < numSeeds ; i++)
{

var seed = i;
var image = PHP_MersenneTwister . GetFirst ((UInt32)seed);
var preimageTablePosition = indexTableBuffer [image];
var existingValue =

preimageBuffer [preimageTablePosition];
while (existingValue != 0);

preimageTablePosition ++;
preimageBuffer [preimageTablePosition] = seed;

}

Listing 3.4: code for generating preimage table

Since the table generator is accessing this table and also indexing table very
randomly, HDD or even SSD would be way too slow for this, so they need to
be stored in RAM. This makes a requirement of at least 24+ GB RAM for
target computer to run this. The memory was needed to be split to 64 KB
blocks, since .NET(and many other SW platforms) doesn’t support memory
blocks of this size.
However, this table needs to be generated only once and users don’t have to
generate it at all, they can just download it from the Internet instead.

30

3.6. Implementing the rainbow table cracker

3.5.1 Faster mt rand() for rainbow table generator

Generating the rainbow tables was a very slow task so I was trying to find
any way to make the process faster. I soon realized that the process seeds the
whole Mersenne Twister, initializes it and then gets only one output from it
– the rest of the state is never used. This means that the runtime needs to
allocate and initialize 19968 bits of memory for each table entry.
I decided to create very lightweight version of mt rand(), which would be able
to generate only one output – exactly how much it is required for rainbow table
generation. Since how mt reload() is implemented, this generator requires only
2 state values and this can easily fit into CPU cache, making the whole process
much faster.
Some very quick testing showed that after switching to this faster generator,
CPU time spent on generating numbers decreased 20-times.

3.5.2 Running the table generator

Since I needed to test this functionality, I needed to obtain powerful enough
machine. First few iterations of table generator required 32GB of memory,
since they were not optimized enough. The only way for me I could run this
program was to launch an Amazon EC2 Instance with 60 GB RAM and 8
CPU cores. I was able to easily parallelize the code – I have ignored any
synchronization problems, since the possibility of two threads generating two
seeds with the random number output at the same time was extremely low
and this was confirmed during testing. The computation of all the tables took
only 2-3 hours, as opposed to 10-15 hours without parallelization.
One hour of Amazon EC2 r3.2xlarge instance running Windows Server in
Frankfurt region costs about 1.2 USD per hour, so this computation was rather
cheap and could be made even cheaper using ”spot” instances (computation
usually during night, when Amazon has a lot of spare capacity).[23]

3.6 Implementing the rainbow table cracker

Since I have generated the rainbow tables, finding the seed of PRNG output
is fairly simple. If the target PRNG output is known, full list of seeds can be
retrieved almost instantly from the rainbow table. However, this works only if
the cracker has full 31-bit output of PRNG. The problem arises when the PHP
application needs random numbers from a specified range and PRNG tosses
away a part of the output, for example when generating a random number
between 0 and 65536.
Here is again the problem with transforming native mt rand() output, the
programmer requested number from 0-65535 range, while native output from
PHP mt rand() is from 0-2147483647 range. Let’s say, there are three different
seeds, and the first outputs of PRNGs from these seeds are 1000000,1000001

31

3. Realization

and 1000002. However, if the PRNG would be asked to generate numbers
from the reduced range of 0-65535, all three outputs would be transformed
to the same number : 30. So although the attacker could know the output
of the target PRNG was for example 4670, he cannot know what was its real
output, since 15 bits of data were lost in the process.
However, the cracker can just try all the possible outputs. If the cracker scales
back the number 4670, he discovers that the native output of the PRNG was
somewhere between 153026560 and 153059328 – that’s 32768 possible outputs.
To crack 32768 outputs using conventional brute-force state-of-the-art brute-
force method would take one year even while using powerful GPU. However,
the rainbow-table cracker can do the same task in milliseconds.
Once the cracker finds the potential seed to the first output, it will confirm
the seed against all the other outputs in the target sequence. If the rest of the
output matches, the sequence was successfully cracked.

3.6.1 Downsides of rainbow-tables

This method works very well for cracking numbers from larger range. Obvi-
ously this method doesn’t work if the cracker doesn’t have the first PRNG
output available, since the first number is required for rainbow-table lookup
(however, second number rainbow-tables are possible to be generated, but
probably too complicated for real use) .
Another issue is cracking numbers generated from very small range. If the
cracker has a series of hex symbols to crack, where each hex symbol was
generated separately, it needs to check seeds for 134,217,728 PRNG out-
puts (231

/16). Although this looks like scary large number, even this can
be cracked. In this case, the rainbow tables could be loaded to RAM and
make the whole look-up process much faster. This computation will take
longer time, but it is still in pretty reasonable time – more will be discussed
in ”Testing” chapter. The major downside to this is that user will need 24GB
of free RAM to use this functionality.

3.7 User input parsing

Personally I have already implemented several CLI-type tools before, so I
decided not to be fancy and just create very simple interface. Each user com-
mand starts on a new line and is defined by a keyword. All parameters come
after the command keyword. If the keyword is not recognized, the program
executes the help command. Output of the command parser is instance of
”PRNG Task”, which is then handled by the Task Processor.

32

3.8. Apache Process Pwner implementation

Figure 3.1: Apache Process Pwner timeline

3.8 Apache Process Pwner implementation

After trying several different different implementations of the APP, the fol-
lowing attacks have been implemented:

1. Open first set of connections to occupy all existing Apache processes.

2. Open second set of connections to force Apache to spawn more processes.

3. Close first set of connections.

4. Download response from second set of connections and close them.

The timeline of the whole process can be seen in figure 3.1. During the imple-
mentation, a new problem was discovered – first set of connections must stay
alive until at least all of second set of connections are open. If this doesn’t
happen, some connection from the second set can be handled by an existing
process, which will fail to spawn new process.
An obvious solution to this was to open connection as fast as possible, possibly
by making conenctions from server that is nearby. However a much nicer and
more reliable solution exists by manipulating speed of request downloading.

3.8.1 Slow loris attack implementation

Connections can be forced to stay open longer by manipulating the speed
of handling network requests. Instead of using basic network components to
handle requests and responses, slow loris attack was implemented.
This attack was invented by Robert Hansen[24]. The attack sends and down-
loads requests byte by byte and waits a little bit between each byte. This way
the server is forced to let the connection be open for very long time without
time-outing, since the user is actually active, but at very slow speed.

33

3. Realization

Even a simple GET request with no parameters is usualy pretty big. A simple
GET request from Chrome web-browser to localhost server with no data or
parameters has 415 characters, so we can expect every request from attacker
to contain at least 200 characters. If the attacker wants to keep the connec-
tion open for 10 seconds, he just waits for 50 ms between each character sent.
After 200 charaters (or 10 seconds), he can choose to close the socket or
upload and read response at the normal speed if the response is required.
Response can be required, since this is the first response of the given process.
If the GET request contains request for page with random sequence, the at-
tacker will want to save this request and extract the sequence later. This could
be done using wide range of tools, for example using built in text editing tools
in bash such as cat, top, cut, awk or sed.

34

Chapter 4
Testing

In this chapter I will check the toolkit functionality against few vulnerable ap-
plications. The applications are just proof-of-concepts created just to showcase
the toolkit.

4.1 Testing configuration

For these tests only my laptop is used. Host operating system is Windows
10. Apache/PHP is running inside VirtualBox under Ubuntu 16.04 LTS. The
Ubuntu virtual machine and host Windows system are connected to the same
virtual network, so the host OS can access Apache in virtual machine. Host
OS can access Apache on port 8085.
Some supporting applications for text parsing are going to be used during
testing to extract sequence data for the toolkit. These are running under
Linux subsystem for Windows.
The whole software stack is running on my laptop with Intel i7-2640M CPU
with 2 cores and 4 threads at 3 GHz. There is 16 GB of available RAM and
500 GB SSD is used for storage.

4.2 Basic Functionality tests

In this section, a simple PHP script was generated, that generates and outputs
two UUID. This section will be used to validate functionality of almost all
toolkit components.
The UUID is created using the code mentioned in the Design chapter. The
whole script looks like this :

<?php
function UUIDv4 () {...}
echo UUIDv4 ();

35

4. Testing

?>

4.3 Apache Process Pwner Test

First, the target sequence must be obtained from the server. If the attacker
would simple download the UUID from the server, he would probably not get
output from freshly seeded PRNG. In order to get data from freshly seeded
PRNG, the overload command of the toolkit is executed:
>>overload 127.0.0.1:8085/ toolkitTest1 .php -n1 15 -n2 15

-o uuidOut

Before executing this command, the following bash command can be used on
the target server to check currently running Apache processes:
$ps aux | grep apache

Running this command reveals 10 running processes on my configuration of
Apache. The process IDs are 4944-4953. Now the overload command can be
executed and while it operates, the Apache process manager behavior can be
observer by running the ps command repeatedly.
During the execution of the command, a sudden spike in number of running
Apache processes was observed, as expected. After the command finished,
the ps command was executed for the final time. It showed that again only
10 Apache processes were running – this time with process IDs 5045-5054,
confirming that Apache has indeed created 10 new processes and killed the
old ones.
On the SSD were added 15 new files, named uuidOut1.txt to uuid15.txt and
each contains some UUID, which allows the simulated attack to progress.
This confirmed the functionality of the APP component. If the APP would
not be able to create new processes, number of connections can be adjusted
to get the right results.

4.4 PRNG Cracker Test

During this test, functionality of the cracker is tested and it is going to advance
the attack started in previous section.
First, input data is prepared. The toolkit expects the input sequence in the
command line input or as a single file. In this case, input from the file is
tested. To create the input file, a very simple bash script is executed which
just joins the 15 files from previous section into one file.
After this, the cracker must be told, what kind of data is it going to crack.
This is done using this command:
>>format uuid1

36

4.5. PRNG Explorer and finder

The format parser component of the toolkit responds to this message as ex-
pected :

Accepted new formatting : [UUID1]

Now, the cracker is told to load file named uuidOutputs.txt and the cracker
tries to find seed to each line of the input.

>>loadcrack uuidOutputs .txt

After running this command it can be seen that the seed was successfully
found for each PRNG output, confirming the ability of the toolkit to crack
the sequences.
The toolkit also reports the time it took to crack each sequence. It was 2000
ms for each input, so the cracking took 30 seconds it total.
In this case, the cracker not only found the seed for each PRNG that is cur-
rently running on the Apache server, it has also replicated the PRNG with
the same state in the memory, which will be showcased in next section

4.5 PRNG Explorer and finder

Let’s now say some victim user calls this UUID-generating script and receives
an UUID, which the attacker would like to know. Even though the attacker
knows the internal state of each PRNG on the server, he doesn’t know which
PRNG the user accessed. Luckily, the toolkit can reveal this information.
First, it gets output from each Apache process again, this time without spawn-
ing new processes. This is done by setting first parameter of overload to 0,
so output from each request is saved.

overload 127.0.0.1:8085/ toolkitTest1 .php -n1 0 -n2 15 -o
uuid2Out

Next, this outputs are again joined together into single file. The attacker is
then going to test new command : loadfind. The command loads the file,
and searches each in-memory PRNG if it generates given output. The output
looks something like this :

...
Output found ! Seed = 1980426548 , position = 8, generator

ID = 2
Output found ! Seed = 1411765300 , position = 8, generator

ID = 3
Output found ! Seed = 2906512837 , position = 16,

generator ID = 5
Output not found ...
Output not found ...
...

37

4. Testing

In the excerpt from the console, it can be seen that for two outputs, the output
couldn’t be generated by any internal PRNG. This is because the overload
was accessing more processes then Apache was running, so Apache had to
create new processes which were not cracked yet.
First two outputs were found in generators with IDs 2 and 3. It can be seen
that generators created 8 outputs since seeding. This is correct, since one
UUID needs 8 mt rand() calls.
However, the generator number 5 has been used for 16 outputs. And since
the attacker was not using the server in the meanwhile, this is the generator
the victim used for creating his secret UUID. So the only thing left, is to
generate two UUIDs – first will be the one the server generated in the first
call of overload command and the second will be the secret UUID token.
Generating output from each in-memory PRNG is easy and it’s done with
the generate command. After testing the whole process locally I was able to
check that the toolkit indeed found the secret UUID !
This last section confirmed the function of PRNG Explorer and generator,
since it successfully found and generated the same UUID as PHP server. By
performing this whole attack, each component of the toolkit was tested and
shown to be functional. PRNG vulnerability exploitation using this toolkit
was also showed feasible.

4.6 Speed comparison with other software

In this section, I will compare cracking speed with other software solutions.
For this, I have selected php mt seed and Untwister from the Analysis chapter.
I will show few scenarios, where my solver is faster, and scenarios where my
solver is getting slower.

4.6.1 Cracking native mt rand() output

In this test, the PRNG is manually seeded with mt srand, so the seed is known
for sure. The job for the crackers is to crack the seed of the following output :

<?php
mt_srand (123456789) ;
echo mt_seed ();
?>

The output of the script is 997730858. This result actually has 3 different
seeds and the solver is expected to find them all. The results are following
(the toolkit in this thesis is named rm toolkit) :

• php mt seed : Running at 100 %, fully utilizing all CPU cores, the solver
ran for 2 minutes and 40 seconds. It fully recovered all 3 seeds.

38

4.6. Speed comparison with other software

• Untwister : Never finished. Expected time to finish the computation
was 32 hours, so the computation was terminated manually.

• rm toolkit : Less than 1 ms. The computation finished almost instantly
and successfully found all three seeds.

4.6.2 Cracking bounded mt rand() output

In this section, mt rand() output is bounded, so rm toolkit has to make more
lookups in the rainbow table. The script used was following :
<?php
mt_srand (123456789) ;
echo mt_seed (0 ,1000000) ." ". mt_seed (0 ,1000000) ;
?>

This script generated two numbers : 464605 and 11913. All three solvers were
supplied with information about the target range of 0 to 1000000. The results
are following :

• php mt seed : The solver ran for the same time of 2 minutes and 40
seconds. The computation ran for equal time, since it was required to
make the same number cycles, it simply checks all the seeds. The seed
was recovered successfully.

• Untwister : Again, the solver failed to finish under one day.

• rm toolkit : the computation ran for 120 ms. This is much slower than
in first case, but still much faster than other solutions. The seed was
recovered correctly. In order to tell the solver what to solve, these two
commands were used :
>>format n ,0 -1000000 n ,0 -1000000
>>crack 464605 11913

If the range of the mt rand() was bounded even more, the php mt seed would
eventually become faster. However, the whole rainbow table could be moved
from SSD into RAM, making it again a few orders of magnitude faster. Since
I currently don’t have access to a machine with enough RAM, these tests were
not completed).
These tests showed, that in many cases, rm toolkit is much faster than other
solutions.

39

Conclusion

The goal of this thesis was to implement a set of tools for easier and faster
exploitation of PRNG vulnerabilities.
Maximum effort was given into fulfilling these goals, but only time and user
reports can prove this. However, the toolkit successfully implements several
techniques discussed in the Analysis chapter. The toolkit also implements all
the functional requirements, satisfy all non-functional requirements and all the
use cases presented in the Design are executable and working as previously
tested.
The toolkit implements a new technique for PRNG cracking using rainbow
tables. This technique is much faster in many scenarios as shown in the
Testing chapter. By loading the rainbow tables into memory, even bigger
speed-up can be achieved. Other improvements could be later made – per
application table creator, more advanced cracking alorithms and so on.
There is a lot that can be improved in this toolkit,since this is such a huge
topic. Automatic input parsing is one of the ideas – the toolkit would include
advanced heurictic and it would be able to parse the input without the previous
format commands.
The toolkit also focuses only on PHP’s PRNG. Crackers for other platforms,
such as Java, .NET, glibc, JS and others could be easily added and it would
further aid pentesters in their work.
I hope somebody finds some uses for techniques described in this thesis, since
they have the potential to finaly aid in birth of fully universal PRNG cracking
toolkit. Personally, I have found this topic to be very interesting and I hope
more attention would be given to it.

41

Bibliography

[1] Linear congruential generator. 2017. Available from: https://
en.wikipedia.org/wiki/Linear_congruential_generator

[2] Definition of randomness in English:. 2017. Available from: https://
en.oxforddictionaries.com/definition/randomness

[3] Davis, P. J. Mathematics and common sense. Wellesley, Mass.: A.K.
Peters, 2006th edition, 2006, ISBN 15-688-1270-1.

[4] Random Class. 2017. Available from: https://msdn.microsoft.com/en-
us/library/system.random(v=vs.110).aspx

[5] Quantum Random Number Generators. 2017. Available from: https:
//arxiv.org/abs/1604.03304

[6] The Marsaglia Random Number CDROM including the Diehard Battery
of Tests of Randomness. 1995. Available from: http://stat.fsu.edu/
pub/diehard/

[7] A Statistical Test Suite for Random and Pseudorandom Number
Generators for Cryptographic Applications. 2010. Available from:
http://csrc.nist.gov/groups/ST/toolkit/rng/documents/SP800-
22rev1a.pdf

[8] What & how is MT? 2016. Available from: http://
www.math.sci.hiroshima-u.ac.jp/˜m-mat/MT/ewhat-is-mt.html

[9] Problems with Linear Congruential Generators. 2016. Available
from: https://cs.adelaide.edu.au/˜paulc/teaching/montecarlo/
node106.html

[10] Machine Learning: An Algorithmic Perspective. Chapman and
Hall/CRC, first edition, 2011, ISBN 9781439889213.

43

https://en.wikipedia.org/wiki/Linear_congruential_generator
https://en.wikipedia.org/wiki/Linear_congruential_generator
https://en.oxforddictionaries.com/definition/randomness
https://en.oxforddictionaries.com/definition/randomness
https://msdn.microsoft.com/en-us/library/system.random(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.random(v=vs.110).aspx
https://arxiv.org/abs/1604.03304
https://arxiv.org/abs/1604.03304
http://stat.fsu.edu/pub/diehard/
http://stat.fsu.edu/pub/diehard/
http://csrc.nist.gov/groups/ST/toolkit/rng/documents/SP800-22rev1a.pdf
http://csrc.nist.gov/groups/ST/toolkit/rng/documents/SP800-22rev1a.pdf
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/ewhat-is-mt.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/ewhat-is-mt.html
https://cs.adelaide.edu.au/~paulc/teaching/montecarlo/node106.html
https://cs.adelaide.edu.au/~paulc/teaching/montecarlo/node106.html

Bibliography

[11] Random (Java Platform SE 8). 2017. Available from: https://
docs.oracle.com/javase/8/docs/api/java/util/Random.html

[12] Knuth, D. E. The art of computer programming. Reading, Mass.:
Addison-Wesley, third edition, c1997, ISBN 02-018-9684-2.

[13] Reference Source. Available from: https://
referencesource.microsoft.com/#mscorlib/system/random.cs

[14] Lcg value. 2001-2017. Available from: http://php.net/manual/en/
function.lcg-value.php

[15] PHP 7 ChangeLog. 2001-2017. Available from: http://php.net/
ChangeLog-7.php#7.0.0

[16] Openssl random pseudo bytes. 2001-2017. Available from: http://
php.net/manual/en/function.openssl-random-pseudo-bytes.php

[17] Comparison of the usage of Apache vs. Nginx vs. Microsoft-IIS for web-
sites. 2009-2017. Available from: https://w3techs.com/technologies/
comparison/ws-apache,ws-microsoftiis,ws-nginx

[18] Argyros, G.; Kiayias, A. I Forgot Your Password: Random-
ness Attacks Against PHP Applications. 2012. Available from:
https://www.usenix.org/conference/usenixsecurity12/technical-
sessions/presentation/argyros

[19] Langkemper, S. Cracking PHP rand(). Available from: http://
www.sjoerdlangkemper.nl/2016/02/11/cracking-php-rand/

[20] Php mt seed - PHP mt rand() seed cracker. Available from: http://
www.openwall.com/php_mt_seed/

[21] GitHub - altf4/untwister: Seed recovery tool for PRNGs. Available from:
https://github.com/altf4/untwister

[22] Using Web Service Credentials. 2017. Available from:
https://marketing.adobe.com/developer/ja/documentation/
authentication-1/using-web-service-credentials-2

[23] Amazon EC2 Pricing. 2017. Available from: https://aws.amazon.com/
ec2/pricing/on-demand/

[24] SecTheory. 2017. Available from: https://samsclass.info/seminars/
slowloris.pdf

44

https://docs.oracle.com/javase/8/docs/api/java/util/Random.html
https://docs.oracle.com/javase/8/docs/api/java/util/Random.html
https://referencesource.microsoft.com/#mscorlib/system/random.cs
https://referencesource.microsoft.com/#mscorlib/system/random.cs
http://php.net/manual/en/function.lcg-value.php
http://php.net/manual/en/function.lcg-value.php
http://php.net/ChangeLog-7.php#7.0.0
http://php.net/ChangeLog-7.php#7.0.0
http://php.net/manual/en/function.openssl-random-pseudo-bytes.php
http://php.net/manual/en/function.openssl-random-pseudo-bytes.php
https://w3techs.com/technologies/comparison/ws-apache,ws-microsoftiis,ws-nginx
https://w3techs.com/technologies/comparison/ws-apache,ws-microsoftiis,ws-nginx
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/argyros
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/argyros
http://www.sjoerdlangkemper.nl/2016/02/11/cracking-php-rand/
http://www.sjoerdlangkemper.nl/2016/02/11/cracking-php-rand/
http://www.openwall.com/php_mt_seed/
http://www.openwall.com/php_mt_seed/
https://github.com/altf4/untwister
https://marketing.adobe.com/developer/ja/documentation/authentication-1/using-web-service-credentials-2
https://marketing.adobe.com/developer/ja/documentation/authentication-1/using-web-service-credentials-2
https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/pricing/on-demand/
https://samsclass.info/seminars/slowloris.pdf
https://samsclass.info/seminars/slowloris.pdf

Appendix A
Acronyms

GUI Graphical user interface

CLI Command line interface

RNG Random number generator

APP Apache Process Pwner

PRNG Pseudo-random number generator

PHP PHP: Hypertext Preprocessor

MT Mersenne Twister

CPU Central processing unit

RAM Random access memory

SSD Solid-state drive

HDD Hard-disk drive

UUID - Universally unique identifier

AWS - Amazon web services

AVX2 - Advanced Vector Extensions 2

LCG - Linear congruential generator

NIST National Institute of Standards and Technology

45

Appendix B
Contents of enclosed memory

card

readme.txt...the file with memory card contents and project description
rm toolit solution.................the directory with project solution

rm toolkit APP.............Apache Process Pwner project directory
rm toolkit...........................main toolkit project directory

bin... compiled binaries
thesis source the directory of LATEX source codes of the thesis
text..the thesis text directory

thesis.pdf...........................the thesis text in PDF format
tests................Directory with some of the scripts used for testing

47

	Introduction
	Analysis
	What are random numbers
	Problem with random numbers in computers
	Qualities of random numbers
	State of PRNG/RNG usage in reality
	Common PRNG algorithms
	PRNGs in PHP
	PRNG Cracking
	Cracking PRNGs in PHP
	Existing software for PRNG cracking

	Design
	Basic explanation of toolkit
	Target users
	Non-functional requirements
	Functional requirements
	Use cases
	Application architecture and components
	Mode of interaction
	PRNG Cracker Design
	Apache Process Pwner design

	Realization
	Choosing a development platform
	Implementing mt_rand() in C#
	Implementing seed bruteforcing cracker
	Rainbow tables for seed finding
	Implementing rainbow table generator
	Implementing the rainbow table cracker
	User input parsing
	Apache Process Pwner implementation

	Testing
	Testing configuration
	Basic Functionality tests
	Apache Process Pwner Test
	PRNG Cracker Test
	PRNG Explorer and finder
	Speed comparison with other software

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed memory card

