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Abstrakt

Tato práce se zabývá replikaćı útoku na RSA kryptosystém časovým postranńım
kanálem, který je realizován měřeńım času algoritmu opakovaných čtverc̊u s
Montgomeryho násobeńım. Útok se zameřuje na měřeńı času trvańı dešifrováńı
rozd́ılných zpráv s určitými vlastnostmi. Práce popisuje základńı principy
a slabiny RSA kryptosystému. Výsledkem práce je demonstrativńı aplikace,
která bude použita ve výuce v předmetech, zabyvaj́ıćımi se poč́ıtačovou bezpečnost́ı.

Kĺıčová slova RSA, kryptoanalýza, časový útok, postranńı kanál, Mont-
gomeryho násobeńı
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Abstract

This thesis is focused on replication of timing attack on RSA cryptosystem
introduced by Paul Kocher, which is done by measuring time of square and
multiply algorithm with Montgomery multiplication. The attack is based on
measuring execution time of decryption function on messages with different
properties. The thesis describe main principles and vulnerabilities of RSA
cryptosystem. Implementation should be used for education purposes, mainly
in security courses.

Keywords RSA, cryptanalysis, timing attack, side channel, Montgomery
multiplication
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Introduction

In 1996 Paul Kocher presented timing attack on several cryptosystems in-
cluding RSA. The cryptosystems have in common that all of them are using
modular exponentiation and they are public key cryptosystems. Kochers idea
was to attack square and multiply algorithm which uses Montgomery mul-
tiplication. He intend to exploit execution time of decrypting and signing
algorithms because there is dependency on private exponent. After Kocher
there have been more tries with better success, for example J.-F. Dhem, F.
Koeune, P.-A. Leroux, P. Mestre, J.-J. Quisquater and J.-L. Willems who
improved Kochers study.

This thesis will explain the main thoughts of RSA cryptosystem, its known
vulnerabilities and how to defend against them. Thesis also introduce reader
to timing attack problematic. It will compare two targets of timing attack,
Kochers original attack on multiplication versus Dhems attack on square. Al-
though both attack can be easily defended just by eliminating data depend-
ency in decryption (resp. signing) algorithm.
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Chapter 1
State-of-the-art

By exploiting data dependency on secret exponent we should be able to
recover key.

We should decide what is the optimal amount of messages. It should not
be too many so that we can guess the key in reasonable time but it have to
be enough to guess the key.

Next, we should create some defensive mechanism in cryptosystem in order
to make attack fail.
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Chapter 2
RSA

RSA is public-key cryptosystem which was invented by Ron Rivest, Adi
Shamir and Leonard Adleman. The cryptosystem was published in the 1977.

2.1 Principle

The cipher is based on modular exponentiation. The whole process of crypt-
ing message is divided to four steps

2.1.1 Key generation

These steps are needed to generate public and private keypair

• Generate p and q, which have to be distinct prime numbers.

• Compute n, where n = pq

• Compute Euler’s totient function φ(n). Because we know p and q it is
simple to compute it.

φ(n) = (p− 1)(q − 1)

• Generate e such as gcd(e, φ(n)) = 1. To fasten calculation number with
small Hamming weight is used. Usually it is 65537 because it is prime
and have Hamming weight 2

• Compute d = e−1 mod φ(n)

• The pair (e, n) is released as public key

• The pair (d, n) is secret private key

5



2. RSA

2.1.2 Key distribution

• Alice would like to send Bob secret message.

• Bob generates public key (e, n) and his private key (d, n).

• Bob sends Alice public key using reliable route (it has not to be secret
route).

• Due to high value of n possible attacker will not be able compute d
from public keypair (e, n) because factorization of n is not possible in
polynomial time.

• Alice uses it to encrypt her message and sends it to Bob. Bob decrypts
her message using his private key.

2.1.3 Encryption

Encryption is done by using public keypair (e, n):

c = |me|n

where m is plaintext message and c is encrypted message which will be sent
to receiver.

2.1.4 Decryption

Decryption is done similar thanks to relation ed ≡ 1 (mod φ(n)). We can
simply power ciphertext to our private exponent d to obtain original message.

|cd|n = |(me)d|n = |med|n = |m1|n = m

2.1.5 Signing

RSA signing is used to verify identity of sender. The process is similar
to decryption but instead of message we are powering hash of the message.
We are using our private exponent to sign hash so the receiver could easily
decrypt hash using public exponent and compare it to actual hash of the
received message.

2.1.6 Example

Prime numbers p = 7 and q = 5 are chosen. Modulus is computed

n = p ∗ q = 7 ∗ 5 = 35.

6



2.2. Optimization

Figure 2.1: RSA illustration[1]

Next we generate public exponent e usually we use number with small Ham-
ming weight. Let e = 17. Condition that gcd(e, φ(n)) = 1 is met since

φ(n) = (p− 1)(q − 1) = 6 ∗ 4 = 24.

Now we can compute private exponent

d = e−1 mod φ(n) = 17.

Now we send public keypair (17, 35) to subject which we want to communicate
with. Other subject powers his message using public exponent 17. Let m = 10
so our encrypted message will be

c = me mod n = 1017 mod 35 = 5.

Subject sends 5 as encrypted message, we decrypt it using private exponent

m = cd mod n = 517 mod 35 = 10

and we have desired message.

2.2 Optimization

Because we generally use high value of modulus n the exponentiation of
such high numbers is very time consuming so there are some algorithms to
increase speed of computation.

7



2. RSA

2.2.1 Chinese remainder theorem

By using CRT we can significantly speed up decryption of received messages.
This method is not usable during encrypting phase because we need to know
p and q factors of n. Assuming that p > q we can precompute:[2]

dP = e−1 (mod p− 1)

dQ = e−1 (mod q − 1)

qInv = q−1 (mod p)

After that, we compute message m with given c:

m1 = cdP (mod p)

m2 = cdQ (mod q)

h = qInv · (m1 −m2) (mod p)

m = m2 + hq

Finding modular exponentiation cost grows with cube of number of the
bits in n, so it is still more efficient to do two exponentiation with half sized
modulus

2.2.2 Montgomery Multiplication

Classic modular multiplication could be quite slow for large numbers, due
to processor have to run several operations before it gets desired remainder.
On the other hand P. L. Montgomery developed algorithm which assumes that
processor do division by power of 2 really fast.

Montgomery presented algorithm, which transform numbers to Montgomery
base and then compute modular multiplication efficiently. To transform num-
ber to Montgomery base we need to compute ā = ar (mod n) where r is the
next greater power of 2 than n. For example if 263 < n < 264 then desired r
will be 264. The multiplication in Montgomery base is done by:

ū = āb̄r−1 (mod n)

where r−1 is modular inversion of r.

8



2.2. Optimization

As we can see ū is in Montgomery base of the corresponding u = ab (mod n)
since

ū = āb̄r−1 (mod n)
= (ar)(br)r−1 (mod n)
= (ab)r (mod n)

(2.1)

Montgomery reduction which gives us ū is implemented this way:

Algorithm 1 Montgomery Reduction
1: function Mon Red(ā, b̄, N)
2: t← ā ∗ b̄
3: m← N−1 ∗ t (mod r)
4: ū← (t+mN)/r
5: if ū > N then
6: ū← ū−N
7: end if
8: return ū
9: end function

Its main advance is that it never performs division by the modulus n but
we still need to find out u and precompute n−1 using the extended Euclidean
algorithm. It is done by this algorithm:[3]

Algorithm 2 Montgomery Multiplication
1: function Mon Mult(a, b, n)
2: r ← 2BitLen(n)

3: Compute n−1 using the extended Euclidean algorithm
4: ā← a ∗ r (mod n)
5: b̄← b ∗ r (mod n)
6: ū←MonRed(ā, b̄)
7: u←MonRed(ū, 1)
8: return u
9: end function

2.2.3 Square and Multiply

This optimization uses bitwise representation of the exponent. The al-
gorithm picks all byte from left (MSB) to right and despite their value, it
determines which operation will be performed for each bit. For bits equal to 1

9



2. RSA

we perform squaring preset value c then we multiply it with the base of ex-
ponentiation m. For bits equal to 0 we just perform squaring part. Therefore
we get data dependent operation, which will be used in our attack. For even
faster implementation we use Montgomery multiplication instead of normal
one. In some theses this Square and Multiply algorithm is called Montgomery
exponentiation

Algorithm 3 Square & Multiply algorithm
1: function Square and Multiply(m, e, n)
2: c← 1
3: k ← BitLen(e)
4: for i← k − 1, 0 do
5: c←MonMult(c, c)
6: if e[i] == 1 then . ith bit of exponent e
7: c←MonMult(c,m)
8: end if
9: end for

10: return c
11: end function

10



Chapter 3
Attacks

The basic idea of timing attacks was presented by Kocher in 1996. He
specified theoretical attacks not only on RSA.

Both variant of attack are based on similar principle. They divide messages
from set M to several subsets Mi due to response of some Oracle O. Then by
measuring time of decrypting or signing and guessing bits of secret exponent
by comparing times of each set.

3.1 Attack on multiply

First Kochers idea was to exploit multiply operation in Square and Multiply
algorithm. Kocher mean to measure time of decryption (or signing) messages
using the private key d and focus on conditional multiply step. We are attack-
ing each bit of d with knowledge of i − 1 bits we can guess the ith bit. Let
d = d1, d2, . . . , dk where k is bit length of d and d1 is MSB. We can assume
that d1 = 1 so we can attack bit d2.

We need oracleO which predict whether final Montgomery reduction happened
during multiply step:

O(m) =
{

1 if m2 ∗m is done with final reduction
0 if m2 ∗m is done without final reduction

where m is message from set M . We can now divide messages to 2 subsets:

M1 = {m ∈M : O(m) = 1}

M2 = {m ∈M : O(m) = 0}

11



3. Attacks

We can now measure time of these two subsets. We are expecting same
times for doing square part, but in multiply part will be messages from M1
higher, due to final Montgomery Reduction. We compare means of sets M1
and M2. If time of M1 is significantly bigger then the final reduction was done
therefore bit d2 is 1. If the times of M1 and M2 are equal then bit d2 is 0. .

Problem: We cannot be sure what is significant difference between time
means. So our guesses cannot be precise.

3.2 Attack on square

Focusing on squaring operation will give us better results. The procedure
is similar but we generate two oracles and four sets of messages. We similarly
iterate through the bits of secret key d as in multiply attack. When we know
i−1 bits and we are guessing ith bit we compute mtemp which has value before
unknown possible multiplication step.[4]

We first presume that bit di is 1. If the presumption is right then the
following steps will be executed. mtemp will be multiplied by m, then the
result of multiplication will be squared. We will execute the multiplication
step and then we will check if in the square step is done with or without
reduction. By this criterion we divide messages to subsets M1 if the reduction
was computed or M2 if not. The oracle will be:[5]

O1(m) =
{

1 if (mtemp ∗m)2 is done with final reduction
0 if (mtemp ∗m)2 is done without final reduction

Secondly, we presume that bit di is 0. In that case only the square phase
m2

temp will be executed so we similarly divide messages to subsets M3 with
reduction and M4 without reduction. Oracle O2:

O2(m) =
{

1 if m2
temp is done with final reduction

0 if m2
temp is done without final reduction

We now get 4 subsets of M :

M1 = {m ∈M : O1(m) = 1}

M2 = {m ∈M : O1(m) = 0}

M3 = {m ∈M : O2(m) = 1}

M4 = {m ∈M : O2(m) = 0}

12



3.2. Attack on square

Let Ti(Mi) be the mean time of computing messages from Mi.

Certainly, only one of oracles is giving us the right results. We can compare
time difference between O1 and O2. That means if T1 − T2 is greater than
T3−T4 then we can be sure that bit di is 1, otherwise d− i is 0. The problem
from multiply attack is no more actual because one of the differences have to
be higher than other.

13





Chapter 4
Defense

4.1 Additional reduction

The most obvious defense is to add dummy subtraction to Montgomery
reduction algorithm which does not change any value but consume the same
amount of time as if the real subtraction was performed. This should not
significantly slow the computation but it totally eliminate this type of timing
attack by making Montgomery reduction constant time function.

4.2 Masking

We can mask the ciphertext before computation of cd (mod n) so the at-
tacker will not know which cipher text is decrypted. It is done simply by
generating pair of masks before each exponentiation. We generate random
mask m. Then we compute m′:

m′ = (m−1)e (mod n)

where e is public exponent.

Before each exponentiation we multiply the ciphertext c with mask m′ so
we get masked xm:

xm = (c ∗m′)d (mod n)
= (c ∗ (m−1)e)d (mod n)
= cd ∗m−1 (mod n)

(4.1)

15



4. Defense

from where we can see that cd is our desired message masked by m−1. Then
we simply recover x by multiplying by m[6]:

x = xm ∗m (mod n)
= x ∗m−1 ∗m (mod n)
= x (mod n)

(4.2)

To avoid situation when even generating of mask could become target of
timing attack, there is simple workaround. To generate new mask, just square
the mask pair:[6]

m = m2 (mod n)

m′ = m′2 (mod n)

16



Chapter 5
Realisation

5.1 RSA implementation

For our purposes we cannot use existing RSA implementation because they
commonly have this vulnerability fixed. So it was needed to write own unse-
cure implementation of RSA cryptosystem. It is still possible use key genera-
tion algorithm from OpenSSL because it is not target of our attack. Python
3.6.1 was used and module Crypto for working with keys.

5.1.1 Montgomery

The main part of RSA is mechanism for modular exponentiation. As was told
before we are using Montgomery multiplication for speed up computation. It
is based on pseudocode in section 2.2.2.

def montgomery product ( a , b , n , r , n inv ) :
t = ( a ∗ b)
m = ( ( t & ( r − 1) ) ∗ n inv ) & ( r − 1)
u = ( t + m ∗ n) >> ( r . b i t l e n g t h ( ) − 1)
i f u > n :

return u − n
return u

Some optimization was done to let reduction have greater time impact.
Instead of modulo r is used bitwise AND with r − 1 and instead of division
by r is used bitwise shift to right r.bit length()− 1.

17



5. Realisation

5.1.2 Square and Multiply

Due to computation in Montgomery base we also need to little edit the square
and multiply algorithm to transform arguments to Montgomery base and at
the end back to normal base. We also need precompute r and n−1.

def square and mul t ip ly ( ot , n , e ) :
r = 2 ∗∗ (n . b i t l e n g t h ( ) )
g , n inv , r i n v = egcd (n , r )

i f ( r ∗ r i n v + n ∗ n inv ) == 1 :
n inv = −n inv % r

else :
raise Exception ( ”bad GCD” )

ot = ( ot ∗ r ) % n
s t = (1 ∗ r ) % n
for i in ” {0 : b}” . format ( int ( e ) ) :

s t = montgomery product ( st , st , n , r , n inv )
i f i == ’ 1 ’ :

s t = montgomery product ( st , ot , n , r , n inv )
return montgomery product ( st , 1 , n , r , n inv )

5.1.3 Encryption and decryption

Encryption and decryption are done just by loading keys from .pem file, then
passing them to square and multiply function

18



5.2. Attack implementation

5.2 Attack implementation

5.2.1 Generating and sorting messages

For both types of attack we are starting with set of randomly generated
messages. We give them to oracle which tell us which subset message belongs
to. Python module timeit is used for time measurements. This chunk of code
assign times to messages:

import t i m e i t

message t imes = dict ( )
message range = 50000

for i in range (0 , message range ) :
tmp = random . rand int (0 , n )

t = t i m e i t . Timer ( ’ decrypt . decrypt ( i n t (m1) ) ’ ,
setup=’ import decrypt ; m1 = %i ’ % tmp)

r = t . t i m e i t (1 )

message t imes [ tmp ] = r

5.2.1.1 Multiply

In this version we are attacking multiply operation. We use oracle which
is very similar to RSA square and multiply function only with one difference.
When the final reduction is processed, function return not only result of ex-
ponentiation but also bit which tell us that the reduction has been done.

. . .
i f u > n :

return u − n , 1
return u , 0

Based on this bit we decide in which subset the message is. The subsets
are distinct. Experimentally, we can say that about one quarter of messages
belongs to subset with reduction computed.

19



5. Realisation

5.2.1.2 Square

Square attack is similar but we have two oracles which are telling us about
reduction on squaring phase. Every time we give the oracle even exponent so
multiplication phase will never be the last operation. Each of these oracles
divide set of messages to two subsets which are distinct to each other. Each
message belongs to one of M1 or M2 and to one of M3 or M4.

5.2.2 Deciding the bit

5.2.2.1 Multiply

We will compare mean times of the subsets of messages. IfM1 is significantly
greater then we set guessed bit to 1 and if they differ slightly we set the bit
to 0. There is problem with telling what is significant difference because there
is lot of noise. The noise is caused by other reductions done by other bits of
secret key.

5.2.2.2 Square

We will compare differences between oracles. If oracle predicting multiply
has greater difference between subsets we set the bit to 1, otherwise we set it
to 0.

I tested two different implementation of square attack. The difference is
between oracles. One implementation has naive oracle which simply do whole
square and multiply algorithm for each message. The second approach is to
safe values of particular powers so the oracle does not need to compute whole
square and multiply algorithm in each iteration. It just need one square and
optional multiplication in each step.

On the other hand, the naive implementation gives better results but is
slightly slower.

5.2.3 Assembling secret exponent

After every guessed bit, it is added to variable d which is used by the
oracles. After concatenation the new guessed exponent is tested if it is correct
exponent. The the test is:

• Pick some message from set

• encrypt that message

• power encrypted message on guessed private exponent d

20



5.2. Attack implementation

During attack on square we are one cycle ahead so we have no option how
to decide LSB so we just try concatenate both values of last bit.

21





Conclusion

In my environment it was impossible to make any attack sufficient. The
main problem was setting the border when the times differs. Even with suffi-
cient coefficient and 10 000 samples there was no more than 50% success on
guessing first unknown bit. I cannot reliably guess first unknown bit so it is
not possible to guess another bits. I have even tried to do some dummy steps
in reduction phase of Montgomery multiplication due to increasing time of
this phase, but it does not helped in this case.

Attacking square was far more interesting. On 50 000 samples algorithm
occasionally fails guessing less than 3 bits, but there were more cases when
algorithm correctly guess more than 40 bits of key. But it is due to enormous
artificial delay in reduction step.

I believe that when enough time would be given to run this algorithm, it
could find the secret key, but I failed in my time management because I had
stuck for two weeks not able to sort messages using oracle.

Because attacks do not work entirely there was no need of implementing
defenses in RSA implementation.
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Appendix A
Acronyms

RSA Rivest, Shamir, Adleman

MSB Most significant bit

LSB Least significant bit

CRT Chinese remainder theorem
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Appendix B
Contents of enclosed CD

readme.txt ....................... the file with CD contents description
exe ..................................... the directory with executables
src.......................................the directory of source codes

wbdcm ...................................... implementation sources
thesis..............the directory of LATEX source codes of the thesis

text..........................................the thesis text directory
thesis.pdf...........................the thesis text in PDF format

keys.......................set of private and public key in PEM format
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