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Abstrakt

Tato práce je zaměřena na algoritmus Conflict resolution, který je určený
k řešeńı systémů lineárńıch nerovnic. Účelem práce je nalézt efektivńı im-
plementaci algoritmu s použit́ım bežných optimalizačńıch technik a porovnat
výkonnost algoritmu pro ř́ıdké a husté systémy nerovnic. Práce obsahuje popis
algoritmu, popis procesu optimalizace a výsledky měřeńı výkonnosti.

Kĺıčová slova řešič, lineárńı nerovnice, Conflict resolution algoritmus, paralelńı,
OpenMP, C++, ř́ıdké matice

Abstract

This thesis is focused on the Conflict resolution algorithm, which is used to
solve systems of linear inequalities. The purpose of this thesis is to find an
effective implementation of the algorithm using common optimization tech-
niques and to compare the performance of the algorithm for sparse and dense
representations of linear systems. The thesis contains the description of the
algorithm, the description of the optimization process and the results of per-
formance measurements.
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Introduction

To solve a set of linear inequalities is arguably one of the most common tasks
in linear optimization. The aim of a linear optimization process is to find a best
fitting solution for a mathematical model represented by linear relationships.
Solutions for such models are often required in economics, business and many
other industries (transportation, manufacturing etc.).

There are a few existing algorithms designed to solve these particular prob-
lems. For example: Fourier-Motzkin method (from the year 1827) or Chernikov
algorithm (which improves over the Fourier-Motzkin). However, both of these
algorithms solve a lesser amount of problems than CRA. [1]

K. Korovin, N. Tsiskaridze and A. Voronkov created and published CRA
in 2009. This algorithm performs better than Fourier-Motzkin method and
Chernikov algorithm – in some cases even by order of magnitude. [2] The goal
of this thesis is to design an effective version of this algorithm and compare
representations of sparse and dense matrices.

In the first chapter I introduce the reader of this thesis to basic definitions,
algorithm description and algorithm’s real world usages. In the second chapter
I present design of programs which are results of this thesis. In the third
chapter I evaluate the performance of my implementation and in the final
chapter I give the overall conclusion to this thesis.
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Chapter 1

Problem description

In this chapter I present basic definitions (as presented in [2]) and explain how
CRA works. By the end of the chapter I show how the algorithm is applicable
on real world problems.

1.1 Basic Definitions

Let Q denote the set of rationals. Throughout this thesis I denote by n
a positive integer and by X a finite set of variables {x1, . . . , xn}.

1.1.1 Linear constraint

A rational linear constraint over X is either a formula 1

anxn + . . .+ a1x1 + b ≥ 0

where b ∈ Q and ai ∈ Q for 1 ≤ i < n, or one of the formulas >, ⊥. The
formula > is always true and ⊥ is always false. Such rational linear constraints
over X are called simply linear constraints throughout this thesis.

1.1.2 System of linear inequalities

A system of linear inequalities can be formally expressed as

Ax ≥ b with A ∈ Rn,m, b ∈ Rn

Usually, we need to find a solution x ∈ Rm. Throughout this thesis a system
of linear inequalities is viewed as a set of linear constraints.

1 Although any of symbols in {>,≥, 6=,=} could stand instead of a symbol ≥, I allow
only linear constraints written in this specific format as input for the Conflict resolution
algorithm as I implemented it. Therefore only linear constraint with symbol ≥ are discussed
in this thesis.
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1. Problem description

1.1.3 Sparse and dense matrices

A matrix is considered to be a sparse matrix if the majority of elements is
equal to 0. If the majority of elements in a matrix is not equal to 0, we speak
about a dense matrix.

Let M be a matrix with m rows, n columns and z elements equal to 0.
The sparsity and density of M are equal to z

m·n and 1− z
m·n respectively.

1.1.4 Level of a constraint

Let � be a total order on X. Let us assume that xn � xn−1 � . . . � x1. Let c
be a linear constraint. The level of a linear constraint level(c) is defined to be
0 if c contains no variables. Otherwise the level of c is k if xk is the maximal
variable in c.

1.1.5 Level of a system of constraints

Let S be a system of constraints. Level of a system of constraints level(S) is
defined as follows:

level(S) = max {level(c) | c ∈ S}

1.1.6 Normalized constraint

Let c be a linear constraint and let k be a level of c. If c is of the form >, ⊥ or
a1x1 + · · ·+ ak−1xk−1± 1 · xk + b ≥ 0 (where b ∈ Q and ai ∈ Q for 1 ≤ i < k).
It is evident that every linear constraint can be easily normalized.2

1.1.7 k-system

Let S be a system of linear constraints and k a level of S. Then I denote such
S by S(k).

1.1.8 Assignment

An assignment over X is defined as a mapping from X to Q.

By σvx, given an assignment σ, a variable x ∈ X and a value v ∈ Q, I denote
the assignment obtained from σ where the former value of x is replaced by v
and the rest of values stays unchanged. The denotation σvx is referred to as
an update of σ at x by v throughout this thesis.

Let q be a polynomial over X. By qσ I denote a value of q where every
variable was replaced by a corresponding value from σ.

2 The normalization can be accomplished by dividing the right side and every coefficient
on the left side by |ak|.
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1.1. Basic Definitions

Let S be a set of linear constraints and σ an assignment. σ is said to be a
solution of (or to satisfy) a constraint q ≥ b if qσ ≥ b is true. If σ is a solution
for every constraint in S, σ is said to be a solution of (or to satisfy) S.

If a solution σ exists for S, S is said to be satisfiable. Otherwise it is said
to be unsatisfiable.

1.1.9 Lower bound of a constraint

Let c be a normalized linear constraint and let k be a level of c. Then a lower
bound l(c,X) of a linear constraint c is defined as follows:

l(c,X) =

{
−(a1x1 + · · ·+ ak−1xk−1) + b, if ak > 0

−∞, otherwise

1.1.10 Upper bound of a constraint

Let c be a normalized linear constraint and let k be a level of c. Then an
upper bound u(c,X) of a linear constraint c is defined as follows:

u(c,X) =

{
(a1x1 + · · ·+ ak−1xk−1)− b, if ak < 0

∞, otherwise

1.1.11 Lower and upper bound of a set of linear constraints

Let S be a set of n linear constraints, k ∈ N, 1 ≤ k ≤ n. Then lower and upper
bounds L(S, k,X), U(S, k,X), respectively, are defined as follows:

L(S, k,X) = max {l(c,X) | c ∈ S(k)}

U(S, k,X) = min {u(c,X) | c ∈ S(k)}

1.1.12 k-conflict

Let S be a set of n linear constraints, k ∈ N, 1 ≤ k ≤ n. S is said to contain
a k-conflict if:

L(S, k,X) > U(S, k,X)

1.1.13 Boundary interval

Let S be a set of n linear constraints, k ∈ N, 1 ≤ k ≤ n. Then a boundary
interval I〈S, k,X〉 is defined as follows:

I(S, k,X) = 〈L(S, k,X), U(S, k,X)〉

This interval is non-empty if S has no k-conflict. [2]

5



1. Problem description

1.2 Conflict Resolution algorithm

The algorithm’s approach to finding the solution is fairly simple. The ba-
sic idea is that the algorithm comes up with an initial assignment. (That
assignment could be very well any random assignment.)

Of course the initial assignment (or rather a random guess of the solution)
is mostly completely incorrect. The algorithm therefore gradually adjusts the
assignment while adding new constraints during the process based on well
defined rules until a single solution is found or the given system of linear con-
straints is decided to be unsatisfiable. It is quite obvious that the adjustment
of an assignment3 and the process of creating new constraints4 are crucial for
the algorithm.

A detailed description of the algorithm and its rules is found in the follow-
ing sections.

1.2.1 Input and output of the algorithm

The input of the Conflict Resolution algorithm is a set of linear inequalities
and the output is either a single solution of the system or a statement that
the system of given inequalities in not solvable.

1.2.2 Algorithm’s description

Let S be the input of the algorithm, S is a set of linear inequalities. Let us
assume that n is the count of variables occurring in S.

Firstly, the algorithm chooses an initial value for each variable occurring
in the system of linear inequalities (an assignment σ). The algorithm then
selects a subset S(0) of linear inequalities and checks whether every constraint
in the subset is > or ⊥. Constraints in S(0) are trivial to be checked, because
they contain only inequalities without variables in them. If ⊥ is found among
them, the problem offers no solution.

The algorithm then works with a subset S(k), starting from a subset S(1)
and iterating up to S(n). For every subset S(k) it checks whether σ (current
assignment) satisfies every constraint in the subset.

If σ satisfies every constraint in a subset, the algorithm then proceeds to
the next iteration. Otherwise, if σ does not satisfy S(k), the algorithm may
decide that the S is not satisfiable or update the value of σ.

Definition 1.2.2.1 (Assignment refinement) Let S be a set of linear con-
straints and let σ be an assignment. The assignment refinement rule at level
k is then

(S, σ)⇒ (S, σvxk
),

3Assignment refinement (AR), see 1.2.2.1.
4Conflict resolution (CR), see 1.2.2.2.
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1.2. Conflict Resolution algorithm

where

1. σ satisfies all constraints in S(0), S(1), . . . S(k−1) ,

2. σ violates at least one constraint in S(k),

3. and σvxk
satisfies S(k).

Definition 1.2.2.2 (Conflict resolution) Let S be a set of linear constraints,
let ci and cj be two constraints in a k-conflict and let σ be an assignment. The
conflict resolution rule at level k is then

(S, σ)→ (S ∪Normalized(ci) +Normalized(cj), σ),

where the sum of normalized forms of ci and cj does not contain xk. This
implies that one of the normalized constraints contains −1 ·xk while the other
contains +1 · xk.5

Before the algorithm applies the assignment rule and thus adjusts the value
of σ, it must resolve all k-conflicts.

Therefore, it tries to find a k-conflict. If a k-conflict is found, the algorithm
applies the conflict resolution rule and changes k (a level of constraints’ subset)
to a level of the newly added constraint. If the level k is decreased to 0, the
algorithm ends and sets the statement that S is not satisfiable as its output.
If k is decreased to a positive integer, the algorithm then proceeds to resolve
all k-conflicts for the assignment σ, one after another, while again possibly
decreasing the value of k.

Finally, if no k-conflict is found, the boundary interval I〈S, k,X〉 must be
non-empty. [2] The algorithm then applies the assignment refinement rule.
The assignment may be updated by any value in the boundary interval.

After the assignment is updated, σ satisfies all constraints {c|level(c) ≤ k}.
The value of k is incremented and the algorithm repeats all the steps above
starting by checking if the assignment satisfies the S(k).

The algorithm ends when k > n (or when k drops to 0 during the conflict
resolution, as mention above).

1.2.3 Example

The example given in the following paragraphs demonstrates how exactly the
conflict resolution algorithm processes its input and how it obtains a solution
(or decides that no solution exists).

5 An occurrence of a k-conflict implies that the lower bound of one constraint is greater
than the upper bound of the other. Therefore two constraint with the same sign by the xk

variable cannot be in a k-conflict. See 1.1.9 and 1.1.10.
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1. Problem description

Algorithm 1 Conflict resolution algorithm CRA

Input: A set S of linear constraints
Output: A solution of S or ”unsatisfiable”

1: procedure CRA(S)
2: if ⊥ ∈ S(0) then
3: return ”unsatisfiable”
4: end if
5: k← 1
6: n← maximum level of constraints in S
7: σ ← {x1 7→ 0, x2 7→ 0 . . . xn 7→ 0} . initial assignment
8: while k ≤ n do
9: if not isSatisfied(S, k, σ) then

10: if containsConflict(S, k, σ) then
11: (ci, cj)← getConlict(S, k, σ)
12: cnew ← {normalize(ci) + normalize(cj)}
13: S ← S ∪ cnew . conflict resolution rule
14: k ← getLevel(cnew)
15: if k = 0 then
16: return ”unsatisfiable”
17: end if
18: end if
19: I ← getBoundingInterval(S, k, σ) . See 1.1.13
20: σ ← σvxk

, v ∈ I . assignment refinement rule
21: end if
22: k ← k + 1
23: end while
24: return σ
25: end procedure

Algorithm 2 Helper procedure – checking whether the k-system is satisfied

Input: A set S of linear constraints, a level k, an assignment σ
Output: true – σ satisfies S(k); false – otherwise

1: procedure isSatisfied(S, k, σ)
2: for all c ∈ S(k) do . c is in a form of a1x1 + a2x2 . . . anxn ≥ b
3: b← b value from c
4: if cσ < b then . See 1.1.8
5: return false
6: end if
7: end for
8: return true
9: end procedure
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1.2. Conflict Resolution algorithm

Algorithm 3 Helper procedure – finds constraints in k-conflict

Input: A set S of constraints with a k-conflict, a level k, an assignment σ
Output: two constraints in k-conflict

1: procedure getConlict(S, k, σ)
2: for all ci ∈ {c | c ∈ S(k), ak > 0} do
3: for all cj ∈ {c | c ∈ S(k), ak < 0} do
4: l← lowerBound(ci, σ) . See 1.1.9
5: u← upperBound(cj , σ) . See 1.1.10
6: if l > u then
7: return (ci, cj)
8: end if
9: end for

10: end for
11: end procedure

Algorithm 4 Helper procedure – checking whether the k-system contains
conflicts

Input: A set S of linear constraints, a level k, an assignment σ
Output: true – S(k) contains at least one conflict; false – otherwise

1: procedure containsConflict(S, k, σ)
2: L← −∞
3: U ←∞
4: for all c ∈ S(k) do
5: L← Max(lowerBound(c, σ), L) . See 1.1.9
6: U ← Min(upperBound(c, σ), U) . See 1.1.10
7: end for
8: if L > U then
9: return true

10: end if
11: return false
12: end procedure

Algorithm 5 Helper procedure – normalizing a constraint of a given level

Input: A constraint c in a form a1x1 + a2x2 + · · · akxk ≥ b, a level k of the
constraint

Output: An equal constraint in the normalized form.
1: procedure normalize(c, k)
2: cnorm = a1x1

|ak| + a2x2
|ak| + · · ·+ akxk

|ak| ≥
b
|ak|

3: return cnorm
4: end procedure

9



1. Problem description

1.2.3.1 Problem statement

Let the input of the algorithm be the system S of following inequalities:

4x1 + 2x2 − x3 ≥ 4 (c1)
2x1 − 2x2 + x3 ≥ 2 (c2)

x1 − x2 ≥ 2 (c3)

1.2.3.2 Problem processing

1. A total order x3 � x2 � x1 and an initial assignment σ : x1 7→ 0, x2 7→ 0, x3 7→ 0
are assumed.6

2. The variable k is set to 0. Because every constraint contains at least
one variable, S(0) is empty. Therefore S(0) is implicitly satisfied. Let us
increment k.

3. The variable k is set to 1. Because no constraint contains only x1, S(1)
is empty. Therefore S(1) is implicitly satisfied. Let us increment k.

4. The variable k is set to 2. S(2) contains only a constraint c3. The
constraint c3 is violated by the assignment x1 7→ 0, x2 7→ 0, x3 7→ 0. No
conflict exists in S(2), because there is only one constraint and it is
impossible for one constraint to be in a conflict.7 In order to update the
assignment, the bounding interval must be calculated.

I(S, 2, X) = (−∞,−2〉

The assignment refinement rule is applied and the assignment is up-
dated:

σ ← σ−4x2

σ : x1 7→ 0, x2 7→ −4, x3 7→ 0

Let us increment k.

5. The variable k is now set to 3. S(3) contains two constraints: c1 and
c2. The constraint c1 is violated by the assignment. Let us check for
conflicts. Constraints c1 and c2 are in the k-conflict :

L(S, 3, X) > U(S, 3, X)

−6 > −12

6 This particular initial assignment is also used by the authors of the algorithm in their
paper, which investigates various heuristics for optimization of the algorithm.[3]

7 For any constraint c of the level k, the bounding interval is always in a form of 〈i,∞)
or (−∞, i〉, where i ∈ Q.
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1.2. Conflict Resolution algorithm

Let us apply the conflict resolution rule by adding a new constraint c4:

4x1 + 2x2 − x3 ≥ 4 (c1)
2x1 − 2x2 + x3 ≥ 2 (c2)

x1 − x2 ≥ 2 (c3)
6x1 ≥ 6 (c4)

Let us set k to the level of the newly added constraint c4, k ← 1. Because
S(1) contains no conflicts, the algorithm may calculate the bounding
interval and apply the assignment rule.

I(S, 1, X) = 〈1,∞)

σ ← σ2x1

σ : x1 7→ 2, x2 7→ −4, x3 7→ 0

Let us increment k.

6. The variable k is now set to 2. The assignment satisfies every constraint
(a constraint c3) in S(2). Let us increment k.

7. The variable k is now set to 3. S(3) contains constraints c1 and c2. The
constraint c1 is violated by the assignment x1 7→ 2, x2 7→ −4, x3 7→ 0. No
conflict exists in S(3).

L(S, 3, X) ≤ U(S, 3, X)

−10 ≤ −4

I(S, 3, X) = 〈−10,−4〉

The assignment refinement rule is now applied and the assignment is
updated:

σ ← σ−7x3

σ : x1 7→ 2, x2 7→ −4, x3 7→ −7

Let us increment k.

8. The variable k is now set to 4. The maximum level of constraints in S
is only 3, therefore the algorithm finishes its task and returns the final
result.

11



1. Problem description

1.2.3.3 Final solution

Although this example was very trivial and only one constraint was added
to the set of linear inequalities (the conflict resolution rule was applied only
once), it shows well how the algorithm processes the input step by step and
how conflicts are resolved.

The algorithm returned the correct solution of the given system

σ : x1 7→ 2, x2 7→ −4, x3 7→ −7.

The solution can be easily verified:

4 · 2 + 2 · (−4)− (−7) ≥ 4 (c1)
2 · 2− 2 · (−4) + (−7) ≥ 2 (c2)

2− (−4) ≥ 2 (c3)

7 ≥ 4 (c1)
5 ≥ 2 (c2)
6 ≥ 2 (c3)

1.3 Real world applications

What are linear inequalities actually good for and why is it important to solve
them?

With systems of linear inequalities one can design a mathematical model
of their business’ expenses, of a town’s public transportation means, of a man-
ufacturing process. Biologists and chemists may simulate how fast different
chemical reactions are occurring in cells and there are plenty of other examples
of applications of theses systems, which can be found.

Linear systems are generally used to find the best possible solution in
allocating limited resources to achieve maximum profit (or minimum cost).

Although in simple examples (often used in economics textbooks) com-
puting a solution to a system of linear inequalities may be an easy task to
accomplish, the complexity of the real world is not limited to thousands or
even tens of thousands of variables and constraints. [4]

The process of finding optimal solutions to such problems is often called
Linear optimization or Linear programming. The linear programming prob-
lems are often solved for example by Fourier-Motzkin elimination. However,
Fourier-Motzkin elimination does not solve systems of linear interval very ef-
fectively. The authors of Conflict resolution algorithm compared both their
algorithm and Fourier-Motzkin elimination and discovered that the former
outperforms the latter in some cases by orders of magnitude. [2]

The computers today are faster than in the past due to a vast technology
development. A programmer may take advantage of multi-core processors and
parallel computation to speedup the execution times of many algorithms.

12



1.3. Real world applications

The objective of this thesis is to implement an effective parallel version
of Conflict resolution algorithm and compare it to a sequential version of the
implementation.

The second objective is to compare the performance of the algorithm when
dealing with sparse and dense matrices.

The results of these objectives may help to determine whether this al-
gorithm can be used by companies and businesses on daily basis when dealing
with their problems.
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Chapter 2

Implementation

In this section I provide general details of the implementation. Next, I describe
specific optimization techniques used for the sequential and the parallel solver.
The chapter is finished by the description of sparse representation of matrices.

2.1 Language choice

Both, the sequential and the parallel, versions of the algorithm are written in
C++, because the C++ language is very suitable for numerical computations.
Also the language is quite understandable and offers a reasonable control of
how the code is executed on the low level.

2.2 Basic system representation

I decided to use a vector (from the STL library) of arrays for the imple-
mentation of the systems of linear inequalities for dense matrices. The vector
provides basic operations such as adding new constraints during conflict res-
olution phase8 of the algorithm, while the array in every item of the vector
ensures sufficient speed while accessing coefficients of a constraint.

I use a vector of linked lists to represent sparse matrices.

The data type of the constraints’ coefficients is a number in the single-
precision floating point format (float). I decided not to use any library for
computing in an arbitrary precision, because the objective of this thesis is to
parallelize this algorithm, not to investigate its numerical properties. 9

The special case of the representation of sparse matrices is presented by
the end of this chapter.

8 See the conflict resolution rule 1.2.2.2.
9 However, this approach may in some cases create an issue with the finiteness of the

algorithm.2.4
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2. Implementation

2.3 Problem of a choice

The authors of this algorithm noticed that the algorithm’s execution time and
efficiency is significantly affected not only by the input data but also by the
choice of some parameters of the algorithm.

2.3.1 Assignment update

If the assignment σ does not satisfy the subset S(k), a value is chosen from
the boundary interval I〈S, k,X〉. (1.2.2.1) The authors of the algorithm have
analyzed several possibilities such as choosing the middle point of the interval,
a random point, a maximum/minimum point and a few others. [3] Their fi-
nal decision was influenced by working with a library with arbitrary precision
(GMP), because it was profitable to minimize denominator in rationals used
in the assignment. In this thesis however, my primal objective is to design
a fast implementation. (1.3) Since numbers are stored as floats in my imple-
mentation, I decided to use the following function to determine which value
to use:

v =


(i+j)
2 , if the bounding interval is 〈i, j〉

i+ |i|, if the bounding interval is 〈i,∞)

j − |j|, if the bounding interval is (−∞, j〉
0, if the bounding interval is (−∞,∞),

where i, j ∈ Q.

This assures that even if the interval is open on either side, the selected
value remains within a reasonable range.

2.3.2 Conflicting constraints

If a k-conflict exists in S(k), two constraints are chosen to be resolved. The
authors of the algorithm explored a few possibilities for this problem too.
Firstly, I decided to implement a simple solution using the first conflict which
could be found. However, later I decided to change the implementation and I
used the method choosing the conflict with constraints ci and cj such that:

L(S, k,X) = l(ci, X) and U(S, k,X) = u(cj , X)

I chose this method, because it has performed very well in tests made in [3]
and my test runs also showed a significant performance gain.

Among other options considered by the authors were for example a random
conflict or the first conflict. [3]
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2.4. Floating point arithmetic

2.3.3 Order on variables

The third parameter of the algorithm is the choice of the total order on X.
The authors paid attention to a random order and to a length-based order. [3]
I decided to use the order in which the variables are loaded from the input
file.

2.4 Floating point arithmetic

The algorithm’s finiteness is not guaranteed when using the floating point
arithmetic because of the limited precision provided. [5]

When the k-conflict is detected between two constraints, it must be re-
solved by the conflict resolution rule. The algorithm specifies that new con-
straints are added and the assignment is updated in a way that the two pre-
viously conflicting constraints cannot be in a conflict. But with the usage of
the floating point arithmetic sometimes the assignment cannot be updated in
such way. This results in finding of the same conflict (a conflict among the
two same constraints) over and over again.

My implementation contains a simple detection of this cyclic behavior.
Every time a conflict is resolved, indexes of both constraints are added to
a set. If they were stored in the set previously, the algorithm resolves the
conflict by adjusting the right sides of both conflicting constraints. They are
adjusted by number d from the interval:

Id = 〈 l−u2 ,∞),

where l > u and l, u are lower and upper bounds of conflicting constraints.
The constraints are adjusted as follows:

a1,ix1 + a2,ix2 . . . an,ixn ≥ bi (ci)
a1,jx1 + a2,jx2 . . . an,jxn ≥ bj (cj)

ci ← a1,ix1 + a2,ix2 . . . an,ixn ≥ bi − d
cj ← a1,jx1 + a2,jx2 . . . an,jxn ≥ bj − d

This adjustment assures that the conflict is resolved. The constraints are
changed, though, and the system’s set of possible solutions changed as well.
Nevertheless, this change is tolerated and the algorithm’s finiteness is now
assured.

This specific solution to a problem caused by the floating point arithmetic
was proposed in [5].
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2. Implementation

Algorithm 6 Conflict resolution algorithm CRA with a few upgrades.

Input: A set S of linear constraints
Output: A solution of S or an error message

1: procedure CRA(S)
2: Resolved = {}
3: if ⊥ ∈ S(0) then
4: return ”unsatisfiable”
5: end if
6: S ← NormalizeEveryConstraint(S)
7: k← 1
8: n← maximum level of constraints in S
9: σ ← {x1 7→ 0, x2 7→ 0 . . . xn 7→ 0} . initial assignment

10: while k ≤ n do
11: if not isSatisfied(S, k, σ) then
12: if containsConflict(S, k, σ) then
13: (ci, cj)← getConlict(S, k, σ)
14: if (i, j) ∈ Resolved then
15: (ci, cj)← correct(ci,cj)
16: continue
17: end if
18: Resolved← Resolved ∪ (i, j)
19: cnew ← {normalize(ci) + normalize(cj)}
20: cnew ← normalize(cnew)
21: if size(S) = MAX CONSTRAINTS then
22: return ”limit reached”
23: end if
24: S ← S ∪ cnew . conflict resolution rule
25: k ← getLevel(cnew)
26: if k = 0 then
27: return ”unsatisfiable”
28: end if
29: end if
30: I ← getBoundingInterval(S, k, σ) . See 1.1.13
31: σ ← σvxk

, v ∈ I . assignment refinement rule
32: end if
33: k ← k + 1
34: end while
35: return σ
36: end procedure

18



2.5. Input data

2.5 Input data

I chose two possibilities how to provide input data for my programs. The data
is read from the standard input device in both cases.

1. The input contains a set of systems of linear constraints. Each system
consists of two numbers (n, m) and of m rows and n+ 1 columns, where
n is a maximum level of constraints in the system. The fields in rows are
separated by spaces. On the i-th row, in the j-th column (where j ≤ n)
is a coefficient aj in the i-th constraint in the system. The last column
is dedicated for the b value in the i-th constraint. All the constraints
have their 0 coefficients present in the input file.

2. The input consists of appended files. (The format’s description is avail-
able at [6].) Only coordinate format with real numbers as values is
accepted. This format is particularly useful when dealing with sparse
matrices.

I have tested the programs with random generated data and with real world
test data available at the Matrix Market10.

2.5.1 Normalized constraints

I realized that most constraint in the system are accesses at least once while
being required to be in a normalized form.

If the assignment does not satisfy constraints at level k and no conflicts are
found, the assignment must be updated to a value from the boundary interval
(see the 20th line in Algorithm 1). Finding the boundary interval at the level
k requires all of the constraints from the level k to be normalized. (1.1.13)

If a k-conflict is found, the conflict is resolved with the normalized forms
of conflicting constraints. (1.2.2.2)

Therefore I decided to normalize every constraint in the system at the
beginning of the algorithm. (See the 6th line in Algorithm 6.) Also every time
a new constraint is added, it is added in a normalized form. (See the 20th line
in Algorithm 6.)

2.6 Sequential solver

After a naive implementation of Algorithm 6, which is referred to as naive
CRA throughout the rest of this thesis, I decided to improve the implement-
ation in the following steps:

1. Level of constraints A subset of constraints of the level k is required in
the algorithm very often, it is suitable to split the system of constraints

10 See http://math.nist.gov/MatrixMarket/

19



2. Implementation

into multiple sets of constraints: one set for every level k. The speedup
caused by this enhancement was immense – dense matrices of size 15x15
took about 6 times less to solve and sparse matrices of size 4241x4241
took about 250 times less time to solve.11

2. Conflict detection The naive CRA looks for conflicts and returns the
first one to appear. I changed the behavior and used a different method:
finding maximally overlapping constraints. (2.3.2)

This change sped up the program by another third. (The speedup varied
a lot depending on a particular set of constraints.)

3. Compiler options To gain even better performance, I added the fol-
lowing parameters for g++

• march=native – this parameter selects the CPU to generate code
for at compilation time by determining the processor type of the
compiling machine. The code generated with this parameter may
use every feature of the CPU it was compiled on. [7]

• Ofast – this parameter enables all O3 optimizations as well as oth-
ers, for example ffast-math. This ensures that floating point opera-
tions are simplified and that the loops are vectorized if possible. [8]

• funroll-loops – this parameter enables loop unrolling of the loops
whose number of iterations can be determined at compile time
or upon entry to the loop. Loop unrolling helps predict branch-
jumping in programs and reduces the count of instructions needed
during the execution of a program.

These parameters improved the performance by a factor of two for some
system, for others the difference was much smaller, sometimes a factor
of eight could be noticed.

4. Division – I changed the code of the function normalizing constraints
in a way which favors multiplication over division. The function first
computes divisor, then its inversed value multiplier = 1

divisor . Every
coefficient in a constraint is then multiplied instead of being divided.

This improvement reduced the execution time by roughly 15 %. Most
significant performance gain can be seen when dealing with systems
containing a lot of k-conflicts.

5. Manual loop unroll, loop tiling – I tried to manually apply both
of these techniques on the source code but but I found no way how
to produce a code with a speedup improvement using these techniques.

11 Although I mention comparison with sparse matrices, the representation of the system
was a general one – a vector of simple arrays

20



2.6. Sequential solver

Since the most of the execution time is spent in parts, which try to
find conflicts, calculate boundary interval and check satisfaction of the
system, and I did not succeed to improve these parts by these techniques,
I did not try to apply them on different parts of the code as the speedup
would not be notable even if other loops were apt to to be unrolled or
tiled.

6. Restrict, const – I declared every read-only variable to be const in
order to provide hints for the compiler about how to work with them.
I used restrict type qualifier whenever dealing with pointers to arrays
which are not aliased12 to enable better optimization by the compiler.
This enhancement improved the performance of the solver by another
5 %.

7. Boundary interval – Every time a k-system is not satisfied, the al-
gorithm tries to find a conflict. Because I use a method finding a max-
imal overlap, the conflict finding function also finds lower and upper
bound of the system. After the conflicts are resolved, the assignment is
updated by a value from the boundary interval.

This is the simplified version of CRA:

1 while (k <= n) {

2 if (not isSatisfied(KSystem[k], n, k,

assignment)) {

3 float * constraint1 , * constraint2;

4 int i, j;

5 float lower , upper;

6 while (findConflict(KSystem[k], n, k,

assignment , constraint1 , constraint2 , i,

j, lower , upper)) {

7 // resolve conflict

8 }

9 float L, U;

10 getBoundaryInterval(KSystem[k], n, k,

assignment , L, U);

11 assignment[k - 1] = getUpdateValue(L, U);

12 }

13 k++;

14 }

I noticed that in fact, lines number 9 and 10 can be removed completely
if getUpdateValue is called with lower and upper arguments (declared
on the 5th line).

12 Two pointers are not aliased when they are the only thing used to access the underlying
object in memory.
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This upgrade improved the performance by another third.

2.7 Parallel solver

I chose OpenMP library13 for the parallelization of the algorithm because
it uses a simple and flexible interface, the changes made to the parallelized
code are minimal and the library supports multiple platforms. Therefore the
resulting code is portable, which is a great benefit.

The parallelization of the code is achieved by using a #pragma omp dir-
ective. If the compiler does not support OpenMP’s directive, #pragma omp
should be skipped and the code should still be working.14

A number of threads created by OpenMP can be easily set by omp set num threads
– this functions allows the programmer to keep control of the programs’ exe-
cution speed and the usage of resources.

To parallelize a simple for-loop, one can write the following:

1 #pragma omp parallel

2 {

3 #pragma omp for

4 for (i = 0; i < 100; ++i)

5 a[i] = a[i] + b;

6 }

#pragma omp parallel starts a block of commands which should be executed
by multiple threads. #pragma omp for specifies that the following loop is the
one to be run in parallel.

1. Conflict detection The most of the execution time was spent in the
function for finding the conflicts. This function contains a single for
loop: for every constraint in S(k) it finds it lower and upper bounds. The
function finds a constraint with the highest lower bound and a constraint
with the lowest upper bound. I present the code of this function in
a simplified form which finds only maximum lower bound.

1 int indexI = -1;

2 float maxLBound = -FLT_MAX;

3 int iter_i , iter_ii = KSystem.size();

4 #pragma omp parallel if(k * iter_ii > 50000)

firstprivate(n, k)

5 {

6 int private_indexI = -1;

7 float private_maxLBound = -FLT_MAX;

13https://gcc.gnu.org/projects/gomp/ and https://computing.llnl.gov/tutorials/openMP
14 This is not true for every piece of code but many usages of the OpenMP library allow

the #pragma omp directive to be removed without changing the output of the program.
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2.7. Parallel solver

8 #pragma omp for nowait schedule(static , 256)

9 for (iter_i = 0; iter_i < iter_ii; iter_i ++) {

10 const float * constraint = KSystem[iter_i ];

11 float lbound = lowerBound(c, n);

12 if (private_maxLBound < lbound) {

13 private_maxLBound = lbound;

14 private_indexI = iter_i;

15 }

16 }

17 #pragma omp critical

18 {

19 if (maxLBound < private_maxLBound) {

20 maxLBound = private_maxLBound;

21 indexI = private_indexI;

22 }

23 }

24 }

The 4th line starts a parallel block. The if condition assures that the
code is parallelized only if a certain amount of iterations is expected.
(Note that the function call on the 11th line executes a loop with k
iterations.) The value presented in a for loop was found experimentally
to behave best on the test machine.

Also note that variables on the 6th and 7th lines are local for each thread.

The nowait keyword on the line 8 removes implicit barrier at the end of
the for loop, so the running threads do not wait for each other to finish
the for loop. They join at the end of the parallel block instead.

The schedule(static, 2048) parameter on the same line states that each
tread will do 2048 consequential iterations before executing another part
of the for loop.15 I found this setting to be vital for the speedup of this
loop – the processor can work with its cache memory more efficiently.

The 17th line starts a critical section of the code. The critical section can
be accessed by at most one thread at the time. If two or more threads
accessed the critical section the function might not return expected and
correct values. [9]

Unfortunately, I needed not only to find minimum and maximum bounds
but also to find indexes of these extreme constraints. OpenMP has a
reduction keyword, which simplifies dealing with critical sections:

15 The last executed part does not have to consist of 2048 consequential iterations.
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1 int max_val = -1;

2 #pragma omp parallel for reduction(max:max_val)

3 for (i = 0; i < n; i++)

4 if (a[i] > max_val)

5 max_val = a[i];

Reduction cannot be used in this case, therefore a slightly more complex
code must be written.

2. System satisfaction The function checking whether an assignment sat-
isfies a set of constraints was the second function I parallelized. The par-
allelization was accomplished in a similar manner as in the case above.

The code must have been altered a little: The sequential implementation
returned from the execution of the function as soon as a single unsatisfied
constraint was found, skipping the rest of constraints.

However, this approach is not applicable with OpenMP, because the
parallel block must not contain a return statement. Therefore all con-
straints are checked in parallel and then the final result is found.

Although this approach may realize unnecessary checks, the overall spee-
dup was notable.

2.8 Sparse solver

I implemented the sparse matrix solver’s matrix representation as a linked list.
Each item in the list contains a non-zero value of coefficient and an index of
its column in matrix.

This list is wrapped in a structure containing also the right side of a con-
straint and the level of a constraint.

This representation is very efficient when dealing with sparse matrices but
fails miserably when dealing with general matrices. Also, this representation
cannot benefit from loop vectorization and other similar optimization tech-
niques.

Nevertheless, this representation of matrices is very effective if there are
only few non-zero elements present.
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Chapter 3

Evaluation

I present measured values for different sets of constraints and different levels
of optimization. I run the solvers on Intel Core i7 machine with 2.8 GHz and
with 8 GB of RAM.

3.1 Metrics

I used three types of metrics for the purpose of comparison of different imple-
mentations described in the previous chapter.

1. Memory – I measured the maximum memory allocated when solv-
ing systems of inequalities with different matrix representations. The
memory usage was tracked with GNU time 1.7.

2. MFLOPS – This is an acronym for millions of floating-points operations
executed per second. The MFLOPS performance metric tries to correct
the primary shortcoming of the MIPS metric (millions of instructions
per second) by more precisely defining the unit of ’distance’ traveled by
a computer system when executing a program. [10] I used perf 4.4.59
to measure this metric. However, I noticed this tool does not work very
well with vectorized operations and I had to recalculate counts of floating
point operations by myself.

3. Speedup – When comparing parallel versions I calculated the ratio
of MFLOPS for different counts of running threads relatively to the
MFLOPS of the best sequential version.

3.2 Results

In this section, I will present measured results for different versions of solvers
(see Table 3.1) on different data sets (see Table 3.2).
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Short name Details

optimized optimized code (const, restrict, maximum overlapping conflicts, ...),
compiled with -Ofast

march same as optimized but compiled with -march=native
unroll same as optimized but compiled with -march=native -funroll-loops
sparse sequential version with sparse representation of matrices

1 thread parallel version of unroll with a single thread
2 threads parallel version of unroll with 2 threads
4 threads parallel version of unroll with 4 threads

Table 3.1: Short names of measured solvers

Short name Specification

wide matrices with 25 rows, 2000 columns
density = 0.95

long matrices with 5000 rows, 17 columns
density = 0.95

sparse matrices with different sizes (from 236 x 236 to 17281 x 17281)
sparsity from 0.4 to 0.002

square matrices with 22 rows, 22 columns
density = 0.95

Table 3.2: Short names of data sets and their specifications

3.2.1 Sequential solver

Although I was not able to optimize the solver by manually unrolling or tiling
loops, the speedup gained by march=native and funroll-loops was notable.
(See Figure 3.1.) The largest speedup caused by these parameters can be seen
when processing the wide data set. The probable cause is that the CPU does
not need to branch-jump so often when going through a long array.

The square data set contains small matrices and the CPU spends more
time on jumps. The same applies to the sparse set: Only a small number of
constraints is present in k-systems, which causes more frequent jumps. And
processing of long data set does not benefit much from the funroll-loops, be-
cause the inner loops are too short.

The speedup gained by tiny changes in the algorithm (see 2.6) was the most
significant of all, however. The naive CRA reached only about 250 MFLOPS
and the execution time took about 800 times longer.
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3.2.2 Parallelization

The parallelization process was not as significant as I expected it to be. It
is probably caused by a large overhead of threads – the parallelized loops
in the sequential version were executed quite often but the loops themselves
took very little time to execute. The parallelization by OpenMP also disables
some of the compiler’s optimizations – for example, the vectorization may be
limited.

The presence of the overhead is evident from the results presented in Figure
3.2. The speedup of the version with 1 thread is less than 1 – which means
that the parallel version with 1 thread is actually slower than the sequential
version it is compared to.

The maximum speedup for all data sets was accomplished by running
2 threads. More threads bring more overhead and slow down the solvers.

3.2.3 Sparse matrices

The solver with the sparse representation of matrices was only suitable when
dealing with sparse matrices. The solver was able to solve them really quickly.
However, the dense representation dealt relatively well with both types (with
the exception of the largest sarse matrices, which did not fit into the program’s
memory – resulting in the program not being able to solve them).

Although the dense representation’s MFLOPS metric was greater for every
input data (see Figure 3.3), the overall execution time of the sparse solver was
better then the execution time of the dense solver when dealing with sparse
matrices. (See Table 3.3.) For every other data set, however, the sparse solver
was significantly slower compared to the best version of sequential solver with
dense representation of matrices.

The reason that the MFLOPS are so low for the sparse solver is that the
following of the linked lists representing sparse matrices is costly for the CPU
as it cannot load the whole constraint to its cache.

wide long sparse square

unroll 9.79 33.92 5.60 37.46
sparse 47.93 91.57 2.16 120.77

Table 3.3: Execution times of solvers with different matrix representations (in
seconds)

The differences in the memory usage are presented in Figure 3.4. (Note
that the y-axis uses logarithmic scale.) The dense representation uses more
memory than the sparse representation, because it stores every zero element in
the memory. On the other hand, the sparse representation uses more memory
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for every other case, because every item of the linked list is a structure con-
taining two numbers (a value of a coefficient and an identifier of variable it
belongs to) as well as a pointer to the next item.
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Figure 3.1: MFLOPS for different levels of optimization of the sequential
version

3.3 Comparison to other solver

I decided to compare my implementation of the solver of inequalities with an-
other solver. I chose a python library mystic16 which is built around numpy17

and sympy18 libraries. The main reason why I chose this particular solver is
that it can be set up to produce a single solution to a set of linear inequalities
and my solvers behave in the same way.

Unfortunately, I was only able to compare my solver and the mystic solver
on small matrices (10 rows, 10 columns, density 0.95), because the mystic’s
implementation run into the memory problems with larger matrices.

The Table 3.4 provides comparison of how many matrices each solver
solved in 20 seconds. The results are one-sided as the mystic solver appears
to be very inefficient.

16https://pypi.python.org/pypi/mystic
17http://www.numpy.org
18http://www.sympy.org
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Figure 3.2: Speedup relative to version unroll for 1, 2 and 4 threads

However, it is hard to tell what exactly the mystic solver calculates in back-
ground and whether the single solution returned is the only product created
by it.

solver count of matrices

mystic 11
CRA 120105

Table 3.4: Number of matrices solved in 20 seconds by the mystic solver and
the 2 threads solver
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Figure 3.3: MFLOPS for different representations of matrices

4096

8192

16384

32768

65536

131072

262144

524288

1.04858x106

2.09715x106

wide long sparse square

M
em

or
y

u
se

d
(k

B
)

Data sets

Dense representation
Sparse representation

Figure 3.4: Memory allocated by different representations of matrices

30



Conclusion

I described the conflict resolution algorithm in the first part of this thesis,
then, in the next part, I presented the optimization process of the solver. The
process consisted of the code enhancements, of setting up the compiler’s para-
meters and of the parallelization. I also designed and implemented a version
of the solver using the sparse representation of matrices.

Although the results of the parallelization are not very convincing, the
preceding steps showed that it is possible to improve the overall performance
of this algorithm by changing implementation details.

Furthermore, the algorithm is able to solve both dense and sparse systems
efficiently, as I showed in the evaluation part of the thesis, and may therefore
be eligible for solving real world problems.
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Appendix A

User Guide

A.0.1 Makefile

The CD contains Makefile to make it easier to compile this project. It would
not help to include the binaries, because they are compiled with march flag and
are compatible only with the machine they were compiled on. The following
commands are supported:

• clean – Deletes all object (*.o) files and binaries.

• build normal – Build naive version (but with -OFast flag).

• build optimized – Build the best sequential version with a dense rep-
resentation of matrices.

• build parallel – Build the parallel version.

• build sparse – Build the version with a sparse representation of matrices.

• build/all – Build all.

• doc – Create a documentation for source files.

A.0.2 Running solvers

When the build is finished, the four binaries should be created:

• cra

• cra optimized

• cra prallel

• cra sparse
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A. User Guide

All of these solvers read input data from the standard input device. If
the mtx argument is passed to the solver, it reads the input in MTX format.
Otherwise it expects two integers (columns and rows) and then rows·columns
values.

Multiple files can be passed via the standard input device one after another,
the solvers will solve them all. After the last input, the execution time is
printed.

If the solver fails to load an input matrix due to a memory limit, the matrix
is skipped and the following matrix is loaded.
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Appendix B

Contents of enclosed CD

readme............................the file with CD contents description
sources.................................. the directory of source codes

cra.........................................implementation sources
thesis..............the directory of LATEX source codes of the thesis

systems.......................................the thesis text directory
test................................................basic test data
dense...............................................dense matrices
sparse.............................................sparse matrices

text..........................................the thesis text directory
doc.......................Doxygen documentation of the source files
Thesis CRA 2017 Jan Legner.pdf..... the thesis text in PDF format
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