CzECH TECHNICAL UNIVERSITY IN PRAGUE
FACULTY OF INFORMATION TECHNOLOGY

ASSIGNMENT OF BACHELOR’S THESIS

Title: RPG game with augmented reality features - client part
Student: Toma$ Zahélka

Supervisor: Ing. Miroslav Balik, Ph.D.

Study Programme: Informatics

Study Branch: Software Engineering

Department: Department of Software Engineering

Validity: Until the end of winter semester 2018/19

Instructions

The aim of the thesis is to specify, design, and implement a functional prototype of the client part of a RPG
game with features of augmented reality (AR).
1. Create a story line and rules for the game. Consider intensive usage of geolocation and AR features.
2. Review existing solutions. 3. Formalize the following requirements for the implementation of the client
part:
- use of location sensors to determine the player's real world location,
- use microtransactions for purchasing items in the game,
4. Design the client part of the game, consider the following requirements.
5. Implement the functional prototype in the Unity engine, use OS Android as the target platform.
6. Document the prototype and perform suitable testing.
7. Tightly cooperate with Jakub Cech who works on the server part.

References

Will be provided by the supervisor.

Ing. Michal Valenta, Ph.D. prof. Ing. Pavel Tvrdik, CSc.
Head of Department Dean

Prague March 6, 2017

CZzECH TECHNICAL UNIVERSITY IN PRAGUE

FacurLTy OF INFORMATION TECHNOLOGY

DEPARTMENT OF SOFTWARE ENGINEERING

Bachelor’s thesis

RPG game with augmented reality
features - client part

Tomds Zahdlka

Supervisor: Ing. Miroslav Balik, Ph.D.

May 15, 2017

f

Acknowledgements

I would like to thank my supervisor Ing. Miroslav Balik, Ph.D. for a great
help with writing this thesis. Thanks go to my family and friends for support
and to my colleague Jakub Cech working on the server part for an excellent
cooperation.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on May 15, 2017 .

Czech Technical University in Prague

Faculty of Information Technology

(© 2017 Tomas Zahalka. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Zahalka, Tomas. RPG game with augmented reality features - client part.
Bachelor’s thesis. Czech Technical University in Prague, Faculty of Informa-
tion Technology, 2017.

Abstrakt

Tato bakalaiska prace se zabyva navrhem a vytvorenim prototypu mobilni
hry na hrdiny s prvky rozsitené reality. Hra se sklada ze dvou c¢asti, klientské
a serverové. Tato prace se zabyva klientskou ¢asti. Mezi prvky rozsirené re-
ality se radi vykreslovani herni mapy s generovanymi hernimi objekty na ni
zobrazovanymi, se kterymi lze interagovat. Prindsi inovativni feseni pro zobra-
zovani mapy herniho svéta, kterd je dlazdicova a pouziva skutecnd vektorova
data. Prace popisuje a implementuje nékteré bézné prvky her na hrdiny,
jako je sbirani pfedmétii z hernich objektii. Pro vyvoj je pouzit Unity engine
a operac¢ni systém Android je cilovou platformou. Prototyp predstavuje dobry
zéklad pro vyvoj plnohodnotné hry.

Klicova slova funkéni prototyp, rozsifena realita, hra na hrdiny, mapa
svéta, vektorova data, vyuzivajici lokaci, mikrotransakce, ndkupy v aplikaci,
Unity, Android

Abstract

This Bachelor’s thesis deals with designing and creating a prototype of a mo-
bile role-playing game with augmented reality features. The game consists of
two parts, the client part and the server part. This thesis deals with the client

ix

part. The augmented reality features include displaying the game world map
with generated game objects on top of it that can be interacted with. It brings
an innovative solution for displaying the game world map, which is tile-based
and uses real vector data. The thesis describes and implements some com-
mon role-playing game features, like collecting items from the game objects.
The Unity engine is used for development, and the Android operating system
is the target platform. The prototype presents a solid base for developing
a fully-fledged game.

Keywords functional prototype, augmented reality, role-playing game, world
map, vector data, location-based, microtransactions, in-app purchases, Unity,
Android

Contents

Introduction 1
I Goal of the thesis 3
2 Game description| 5
3 Existing games| 7
3.1 Parallel Kingdom| 7
3.2 Ingress|. 7
B3 Pokémon GOl o 8
[3.4 Personal projects| oL 9
4 Analysis 11
4.1 Requirements| 11
H2 Usecased oo i 15
4.3 Worldmap| 16
4.4 Microtransactions.o L 21
4.5 Userinterfacel o 21
5 Design 23
BEI _Actiond 23
5.2 Game object types|o 26
B3 AP 27
b4 Worldmap| o 29
5.5 Unity] 31
.6 Classdesign|. 33
6 Implementation| 37
6.1 Assets and pluging| oL 37
6.2 Game scripts| 38

xi

6.3 Unity-specific setup|. L.

esting

iConclusion|

|Bibliography|

|A Acronyms|

B_API

B.1 GET /login|
|B.2 POST /login/register].

B3 GET Juser]
B.4 PUT Juser/did

B.5 GET Juser/inventory|.

|B 6 POST /purchasel

B.7 GET /location]
B8 POST Jaction/buy]
B.9 POST Jaction/collect]

[B.10 PUT /action/equip|.
[B.11 POST Jaction/killl

|C Class diagrams|

ID Contents of enclosed SD Card|

xii

49
49
49

51

53

57

59
99
59
60
60
60
61
61
62
62
63
63

65

83

List of Figures

2.1 A screenshot of the game| 6
[3.1 Parallel Kingdom - screenshot [If| 8
4.1 Functional requirements| L. 12
4.2 Non-tunctional requirements|. 15
HE3 Userd o 16
4.4 Authentication use casel 17
4.5 Game object actions|o 18
4.6 Player actions|. oo 19
4.7 The monster’s inventory window| 22
[5.1 Authentication activity diagram| 24
b.2 The game world map|. 30
5.3 API package class diagram| 34
5.4 Player part of the Game package class diagram| 35
5.5 Part of the Game package class diagram| 36
|C.1 API package class diagram| 66
|C.2 Auth package class diagram| 67
|C.3 Camera package class diagram| 67
|C.4 Common package class diagram|. 68
|C.5 Part of the Game package class diagram| 69
|C.6 Part of the Game package class diagram| 70
|C.7 Part of the Game package class diagram| 71
[C.8 Part of the Game package class diagram| 72
|C.9 JSON package class diagram| 73
|C.10 Part of the Map package class diagram|. 74
|C.11 Part of the Map package class diagram|. 75
|C.12 Part of the Map package class diagram|. 76
|C.13 Part of the Map package class diagram|. 77

xiii

|C.14 Part of the Map package class diagram|. 78

|C.15 Network package class diagram| 78
|C.16 Purchasing package class diagram| 79
|C.17 Part of the Ul package class diagram|. 80
|C.18 Part of the Ul package class diagram|. 81
|C.19 Part of the Ul package class diagram|. 81
|C.20 Part of the Ul package class diagram|. 82
|C.21 Part of the Ul package class diagram|. 82

Xiv

List of Tables

(4.1 Summary of map providers| 20

XV

Introduction

Location sensors in today’s mobile devices present a very powerful feature.
They enable creating a whole new gaming experience like never before. Nowa-
days virtually every smartphone has the means to determine the user’s loca-
tion.

This presents a potentially large user base, but surprisingly there is not
a lot of games around taking advantage of this technology. There have been
some reasonably successful attempts to fill this market gap. But while they
attracted a large number of users in the beginning, some of them struggled
to maintain these users in a longer term. I am going to look at some of these
existing solutions.

The game is divided into two parts, a client part and a server part. In
cooperation with my colleague Jakub Cech (who works on the server part), I
am going to design a functional prototype of the client part of a role-playing
game with features of augmented reality (AR). As part of these augmented
reality features, I am going to create an innovative solution for displaying
the world map. I am going to implement the prototype, perform suitable
testing and release it.

CHAPTER 1

Goal of the thesis

The goal of the research part of the thesis is to analyze similar games on
the market, to further understand the Unity engine and to research different
map providers.

The goal of the practical part is to specify the features of the prototype, to
look into options for displaying the world map, to gain knowledge about sup-
porting microtransactions in a Unity-based game and to design the structure
and components of the prototype. In the implementation phase, the goal is to
add functionality for displaying the world map, obtaining the device’s location,
supporting microtransactions, to implement communication with the server,
user authentication, parsing of the responses, displaying the game objects on
the map and to add the required functionality for the game objects. Also,
to create the user interface, test it and release it for the Android operating
System.

CHAPTER 2

Game description

This chapter explains the game in more detail and describes some of the main
features. Since this is a prototype of a mobile role-playing game, the player
assumes the role of a character moving around a world with fictional elements.
The augmented reality part of it lays in displaying a 2D map of the game
world, but a one that is based on a real-world map. There are generated game
objects being displayed on top of the map. The player is shown on the map
along with the game objects, since the game obtains a location of the mobile
device, and can interact with those game objects around him. The two types
of objects in this prototype are a monster and a shop. There are multiple
features available to the player, like buying items from a shop and equipping
these items later. These features are detailed in the (Requirements) and
(Actions) sections. The player has some basic attributes such as gold used
for buying items. To make the game easier, the player can decide to buy
products for real money, for example gold utilizing microtransactions (in-app
purchases).

2. (GAME DESCRIPTION

Froduces

Inuencory

Equipment

Figure 2.1: A screenshot of the game

CHAPTER 3

Existing games

3.1 Parallel Kingdom

This game is probably the most similar to our prototype. It was released in
October 2008 and closed on November 1, 2016. Parallel Kingdom was quite
successful in the beginning, reaching one million players in 2012. It also had
its Facebook version [2].

“Parallel Kingdom is a mobile location based massively multiplayer game
that uses your GPS location to place you in a virtual world on top of the real
world.” [3]

Based on their real-life location, players could claim territory anywhere on
the map. They could discover different kinds of monsters, gather resources
and build a city. They could choose from a variety of skills, weapons and
armor. It included several types of resources used for building and trading.
Since it was a massively-multiplayer game, players could interact with each
other [4].

3.2 Ingress

The game was released in December 2013 for Android at first, the version
for iOS came in July 2014. At the start of the game, the player chooses
one of two factions. These factions compete against each other. The game
presents the players with a real-world map. The map contains portals and
their locations are based on real-life art places, such as statues and historic
buildings.

“Move through the real world using your Android device and the Ingress
app to discover and tap sources of this mysterious energy. Acquire objects to
aid in your quest, deploy tech to capture territory, and ally with other players
to advance the cause of the Enlightened or the Resistance.”[5]

7

3. EXISTING GAMES

S
MNenu

o 2
FSPEEEE 300/1000 1155/32.0 kg

Figure 3.1: Parallel Kingdom - screenshot [I]

3.3 Pokémon GO

Just like Ingress, this game was developed by Niantic for Android and iOS.
It was released in July 2016. Like the other mentioned games, it displays
a map with the surrounding area. By using the location sensors, players
move around the map, capture creatures, train them and battle with others.
The map also features PokéStops, which provide players with different items,
and gyms, which are battle locations. The game faced many technical issues
at the time of the launch. Despite that, it has seen a huge success, and has
been downloaded more than 500 million times [6].

8

3.4. Personal projects

3.4 Personal projects

I have attempted to create my own role-playing games utilizing location sen-
sors in the past as well. The first idea was to simply use a mobile phone to
walk around and interact with game objects on a real map.

For the first project, I decided to create a server for generating the game
objects. I divided the map of the Czech Republic into rectangles of a small
size (a few kilometers). Once a user wanted to obtain game objects from
the server in a certain area, the server chose the corresponding rectangle
based on the player’s location and returned the containing objects. The game
supported basic RPG features, such as killing monsters, purchasing items in
shops, opening chests, repairing weapons and improving skills.

For the second project, I tried to create a completely offline game that
would not require the players to have a data plan. The game objects gen-
eration worked in a similar way to the first project - by having rectangles
and generating game objects for each of them separately. It also had similar
features to the ones found in the first game, but added a few more, such as
dialogues with people. A big improvement was the addition of dynamic game
objects where people would move on the map and monsters would attack
the players once they got too close. This game never got out of an alpha ver-
sion. I created a Google+ Community page where I gained around 30 active
users with some of them leaving feedback which led to adding more features
7.

Both games were built using the Android SDK [8]. For displaying
the map, I used Google Maps available for Android with the Google Maps
Android API v2 [9].

CHAPTER 4

Analysis

The analysis part of the thesis lists the requirements of the game first and
describes the use cases. Then it considers possible solutions for displaying
the world map and looks into different map providers. It also chooses a tech-
nology for integrating in-app purchases in the game. The last part deals with
proposing a look and a structure of the user interface.

4.1 Requirements

For this prototype, I agreed on several basic requirements in discussions with
my colleague. These requirements are shown in figure

4.1.1 Functional requirements

These requirements define the functionality that is provided to the user.

4.1.1.1 User registration

The game allows a user to register for the game with a chosen username.

4.1.1.2 Player authentication

The registered user (referred to as a player) must sign into the game.

4.1.1.3 Player’s attributes

Each player has a set of basic attributes that are presented to the them along
with the username. These are:

e health,

e experience,

11

4. ANALYSIS

req Functional ~

The player can sign into
the game

The game contains game
objects

The player can kill a
monster

An user can register for
the game

A game object has
attributes

The player can be killed
by a monster

The player has attributes

A game object has a type

The player can collect
items from a killed
monster

The player has an
inventory

The player can interact
with game objects on the
map

The player can equip an
item

A world map is displayed

A game object on the
map can contain other

The player can purchase
an in-app product

game objects

A location is obtained Thepiayereao

item

Figure 4.1: Functional requirements

e level,
e gold,

e gems.

4.1.1.4 Player’s inventory

Each player has an inventory that can contain any game object.

4.1.1.5 World map

The game displays a world map of some form based on the real world.

4.1.1.6 Location

The device’s location is obtained periodically.

4.1.1.7 Player on the map

The player is shown on top of the world map based on the obtained location.

12

4.1. Requirements

4.1.1.8 Game objects

There are game objects in the game. They are generated on the server and
requested by the client based on the player’s location. Each game object can
be displayed on top of the world map.

4.1.1.9 Game object attributes

A game object has several attributes, a type and optionally a name and a de-
scription. Each of those 2 optional attributes are used over the name and
description attributes in the game object type, if set.

4.1.1.10 Game object type

A game object type contains attributes common to game objects of the same
type. Each game object type can have an arbitrary number of attributes.
It contains an icon for displaying the game object. It also has a name and
a description in a case the game object does not specify them. There are five
different types of game objects in the prototype:

e Skeleton,

e Goblin,

Health Potion,

Shop,

Sword.

4.1.1.11 Interaction with game objects

The player can interact with game objects on the map, but only to a certain
distance defined for each game object type. Each type of game object can
have a different behavior and can display its details.

4.1.1.12 Game object’s inventory

Each top-level game object (a one that is shown on the map) can contain other
game objects.

4.1.1.13 Buying an item

The game allows the player to buy items in a shop. By doing so, the player
loses some gold based on the item’s price (a game object’s attribute). The item
is added to the player’s inventory.

13

4. ANALYSIS

4.1.1.14 Killing a monster

The player can kill a monster. This action lowers the player’s health based on
the received damage (a monster’s attribute). It adds experience and gold for
the player based on the monster’s attributes.

4.1.1.15 Killing the player

The player can be killed by a monster (die). This affects the player’s at-
tributes.

4.1.1.16 Collecting items

Items from a killed monster can be collected by the player. The monster is
then removed from the game, and the items are added to the player’s inventory.
4.1.1.17 Equipping an item

The player can equip items to different slots. Any game object can be equipped
to a certain slot if a specific attribute is defined. The prototype has one
available slot, the right hand.

4.1.1.18 Purchasing an in-app product

The player can purchase a product for real money that is consumed in the game
in some form. In the case of this prototype, the player can purchase gold, which
is added to the player’s attributes.

4.1.2 Non-functional requirements
These requirements specify the criteria the prototype must meet. They are
shown in figure 4.2

4.1.2.1 Android support

The prototype runs on the Android operating system version 4.0 (API level
14) or higher. This means the game targets almost all Android users.

The Google Play Games plugin for Unity used in this project also
requires an Android version of 4.0 or higher [10].

4.1.2.2 Display orientation

The game supports a portrait screen orientation.

4.1.2.3 Google Play Games authentication
The player is authenticated using Google Play Games.

14

4.2. Use cases

req Non-functional

Runs on Android 4.0 (API
14) and higher

Supports a portrait display
orientation

Google Play Games is
used for authentication

Figure 4.2: Non-functional requirements

4.2 Use cases

Use cases show specific applications of the requirements by the users.

4.2.1 Users

I define three types of users of the game. An unregistered user, an authen-
ticated player and an unauthenticated player. The word player is only used
for users that are already registered in the game. All user types are shown in

figure

4.2.2 Authentication

Figure [4.4] shows the actions used in the authentication process. An unregis-
tered user can choose to register for the game. He is presented with a prompt
to choose a username. After a successful registration, the unregistered user
becomes a player, the unauthenticated player is then automatically signed in
and becomes an authenticated player.

4.2.3 Game object actions

The actions involving game objects on the map are shown in figure All
actions involve opening a specific window for a game object.

4.2.4 Player actions

Figure shows the actions the player can choose to do without interact-
ing with the game objects on the map. Equipping an item involves showing
the equipment slots, choosing a slot and opening the inventory to choose
an item to assign to that slot.

15

4. ANALYSIS

uc Actors /

User

Registered player Unregistered user

Authenticated player Unauthenticated player

Figure 4.3: Users

4.3 World map

This part analyzes different map providers and chooses a solution for display-
ing the world map in the game.

4.3.1 Map providers

There are many map providers on the market. The biggest and most popular
being the Google Maps [11]. Another provider is Mapbox [12] whose ser-
vices are used by big companies. The OpenStreetMap [13] project provides
free geographic data.

4.3.1.1 Google Maps

One of the APIs provided by Google Maps is the Static Maps API, which
returns portions of the world map as raster images. There are several URL pa-
rameters that can be specified in an HTTPS request to the API. The center pa-

16

4.3. World map

uc Authentication
Client

Register
|
| |

Unregistered user Unauthenticated player Authenticated player
(from (from (from
Actors) Actors) Actors)

Figure 4.4: Authentication use case

rameter determines the location (the center of the image) and the zoom spec-
ifies the magnification level of the map. Then there is the size of the rectangle
of the map image. It is specified in pixels in the format {width}x{height}.
The maximum values for the standard version of the API are 640x640. As
with most APIs, Google requires the developer to obtain a key to be able to
use the Static Maps API. There are several usage limits as well [14].

4.3.1.2 Mapbox

This is one of the newer map providers (founded in 2010) but its services are
already being used by companies like Foursquare [15] and Uber Technologies
[16]. Mapbox offers many interesting APIs as well as a product called Map-
box Studio, which enables the users to design a custom map. The company
offers three different pricing plans, the one called Starter is free with 50,000
map views (or mobile users) per month [I7]. At the time of writing this thesis,
Mapbox had a beta version of the Unity SDK available for download, which
aims to make it easier for Unity developers to access their product [18].

17

4. ANALYSIS

uc Game Object Actions /
|ttt
Client

- \ '/Show monstex

/[

[| . \

\\ Show shop details (\ detalls/,/
«include» /«inciude» dinclude»

/// \\\ /
{ Collect items

[\

. Y

D
) 4

,)
\\\ \ / “include»
<~ — —

Buy an item [Kill a monster e
///

N A // -
N / <

/ \
Authenticated player

(from
Actors)

Figure 4.5: Game object actions

4.3.1.3 OpenStreetMap

As part of the OpenStreetMap project, there are different providers of raw
geographic data. This also means that there is no guarantee as for the avail-
ability of the data and the quality can vary at different locations. The main
advantage, on the other hand, is that they are free to use. Many servers can be
found that also provide vector geographic data and there is an option of host-
ing a custom map server. “Welcome to OpenStreetMap, the project that creates
and distributes free geographic data for the world. We started it because most
maps you think of as free actually have legal or technical restrictions on their
use, holding back people from using them in creative, productive, or unexpected
ways.”[13]

4.3.2 Mapzen

The Mapzen mapping platform offers several APIs for requesting map data
including vector data. “Mapzen Vector Tiles are powered by several major
open data sets and we owe a tremendous debt of gratitude to the individuals
and communities which produced them.”[19] Mapzen uses data mostly from
OpenStreetMap, but also from a few other data sources. It provides several
layers of worldwide vector map data, these are:

18

4.3.

World map

uc Player Actions

@ product list

Client

Open Inventory Open Equipment

«inc[ude» «invokes» «include»

Purchase in-app
Equip an item

product

g

/\

Authenticated player

(from
Actors)

Figure 4.6: Player actions

e boundaries,

e buildings,

e carth,

e landuse,

e places

)

e pois (Points of Interest),

e roads,

e transit,

e water.

19

4. ANALYSIS

Provider Free requests Vector data | Data quality
Google Maps 25,000 per 24 hours No Great
Mapbox 50,000 per month Yes Great
OpenStreetMap | Differs Yes Differs
Mapzen 50,000 per month Yes Great

Table 4.1: Summary of map providers

4.3.3 Chosen map solution

One of the first ideas was to use Google Maps for displaying the world map.
I have already used it in my previous projects that I have worked on. But
there is no official plugin for Unity for displaying Google Maps such as for
example the Google Maps Android API available for Android. I wanted to
make the game easily deployable on different platforms in the future. For this
reason, creating a Unity plugin for supporting the Maps Android API did not
seem like a good idea. I created a test project for displaying the map using
the Google Static Maps API. As mentioned previously, this API provides static
raster images of map data. The images had to be displayed next to each other.
Google also puts a logo to each tile image that cannot be removed. That of
course did not provide a pleasant user experience. After some research, I found
out that I can easily obtain vector data, so I decided to draw my own map.
Both Mapbox and Mapzen present a good option for achieving this goal. I
decided to choose the Mapzen platform, but the design of the game allows
me to switch to a different provider if needed. The prototype uses four of
the Mapzen’s landuse kinds with a set of different hexagonal tiles for each of
them:

e farmland,
o forest,

e meadow,
e residential.

Table [.1] summarizes the analyzed map providers.

4.3.4 Vector map data
4.3.4.1 Landuse

“Landuse polygons from OpenStreetMap represent parks, forests, residential,
commercial, industrial, university, sports and other areas.”|20] These poly-
gons serve as a base layer for displaying the map. Each landuse contains
a kind attribute, which defines the type of the landuse. This is important to
determine the look of the tiles.

20

4.4. Microtransactions

4.3.4.2 Roads

“More than just roads, this OpenStreetMap and Natural Farth based trans-
portation layer includes highways, major roads, minor roads, paths, railways,
ferries, and ski pistes.”[2]]

4.4 Microtransactions

There is an official support for in-app purchases in Unity. As part of their
Unity Services, they offer the IAP system. “Unity IAP makes it easy to
implement in-app purchases in your application across the most popular App
stores.”[22] Therefore this was the obvious choice for implementing micro-
transactions in the game.

4.5 User interface

The user interface chosen for this prototype had to be simple and clear.
The game has two screens, the authentication screen has a sign-in button,
an optional input field for entering a username during registration and some
text labels with help. The actual game screen displays the world map with
an overlay on top of it. There are some basic player attributes and the user-
name displayed as part of the overlay. The buttons for accessing the in-app
products, the equipment and the player’s inventory are in the bottom-left part
of the screen. There are several types of windows that can be displayed on
top of both screens. They all follow the same design principle; the windows
do not fill up the whole screen and they dim the background when displayed.
Most of them have a top bar with a close button, a header with an icon and
some text, the main content and buttons at the bottom. Figure shows an
example of the monster’s inventory window.

21

4. ANALYSIS

Inuensory

FokEion
Adds heal:zh

Collece all

Inuencory

&l)
Equipment

Figure 4.7: The monster’s inventory window

22

CHAPTER 5

Design

This chapter takes the results from the analysis part, describes the required ac-
tions and game object types in detail, specifies the API and designs the struc-
ture and components of the game prototype.

5.1 Actions

The client is required to confirm each taken action with the server. This means
that before applying the action results, the client needs to wait for a successful
server response. For that purpose, a window informing the user of an ongoing
action is shown each time. If the response from the server is not successful,
the action results are not applied. Following is the list of actions that are
being sent to the server along with their outcomes.

5.1.1 Authentication

Figure [5.1] shows an activity diagram for the authentication process.

5.1.1.1 Access Code

Authorizing the player’s actions on the server is done by receiving an Access
Code from the server during authentication and sending it with every request
since then.

5.1.1.2 User registration

The authentication process starts immediately after opening the game.
The player needs to sign into his Google Play account first. After signing into
Google Play Games, the Google ID token is retrieved and sent to the server.
If there is no player found corresponding to the ID token, it returns an answer
to the client saying that a username must be chosen. The user then chooses

23

5.

DESIGN

24

Games authentication

v/
\/
P

Open the application

—_—
Choose an username Z//

Y
\ [Is the user
4|/ authenticated?]

Authenticate user with
Google Play Games

Ask client for username

Send username

Remember the Access
Code

User authenticated with
the server

act Authentication /
User Client Server
p \
User wants to sign in Check Google Play Check if user is

registered

[Is the user
registered?]
[No]
\ /'
/M
[Yes]
/. Register user

[No]

[Is the username
in use already?]

Check username

\

Create an Access Code

Figure 5.1: Authentication activity diagram

5.1. Actions

a username and the client sends a new request including the username to
the server. The server registers the user and returns the Access Code.

5.1.1.3 Sign-in

If the player is found on the server, the client just receives the Access Code.

5.1.2 Retrieving game objects

The game objects are retrieved based on the player’s location, which is being
sent to the server. The first request is sent right after starting the game.
Further requests are sent after a certain distance is passed by the player.
With each response, all existing game objects are removed from the map and
replaced with new ones.

5.1.3 Buying an item

When the user opens a window with details of a shop, he can choose an item
to buy. The selected item is sent to the server. In a successful response,
the server includes the updated player’s inventory. The current player’s in-
ventory is replaced with the updated one. The price taken from the item’s
type is subtracted from the player’s gold on the client.

5.1.4 Killing a monster

To kill a monster, the user needs to open its window with details. There is
an attack button, which simulates a fight. The player can attack the monster
only if there is a weapon equipped in the right-hand slot, this is checked
first. If there is, the attackDamage of the weapon is found. The monster has
the attackDamage attribute as well. To simulate a hit, a damage is computed
first by taking the attackDamage and multiplying it by a random number
from 0.5 to 1.5. This is the same for both the player’s and the monster’s hits.
The player starts first, the computed damage is subtracted from the monster’s
health. The same thing is then repeated for the monster (its hit damage is
subtracted from the player’s health). Once the monster’s health reaches a value
equal or less than 0, a request to kill the monster with the updated player’s
health is sent to the server. If successful, the client updates the player’s health
with the updated value, adds the value of the xp attribute of the monster to
the player’s experience and adds the value of the gold attribute of the monster
to the player’s gold. The player is then presented with an option to open
the monster’s inventory.

25

5. DESIGN

5.1.5 Killing the player

If the player’s health drops to or below 0 first, a request to kill the player is
sent to the server. In this case, the server returns the complete player’s profile
with updated attributes (restores his health and takes some gold away). These
attributes are then updated for the player.

5.1.6 Collecting items

After killing a monster, the server still expects another request with a list of
items to be collected. After that, the kill action is marked as complete. In
the monster’s inventory window, an option to collect all items is presented to
the player. The player can also just close the window. In both cases, a list of
items (an empty list when the window is closed) is sent to the server. When
successful, the client receives a response with the updated player’s inventory,
which replaces the old one. The killed monster is also removed from the game
on the client.

5.1.7 Equipping an item

To equip an item, the player needs to open the equipment window, then select
a slot which opens the inventory window. There the player chooses an item
to equip. A request is then sent with the selected item. After a successful
response is received, the client assigns the item to the selected slot.

5.1.8 Purchasing an in-app product

To purchase a product, the player needs to open the window with a list of
products. After choosing a product and confirming the purchase, the pur-
chased product is sent to the server for confirmation. Once a confirmation is
received, the client consumes the product in the same way the server does. In
the case of this prototype, the player can buy gold. So, the purchased gold is
added to the current player’s gold at this point.

5.2 Game object types

This section describes the game object types that appear in this prototype
along with their attributes and values.

5.2.1 Skeleton

Skeleton is a monster that can be attacked by the player.

26

5.3. API

Attributes
health 50
Xp 25
gold 20
attackDamage | 6

5.2.2 Goblin
Goblin is a monster that can be attacked by the player.

Attributes
health 75
Xp 35
gold 25
attackDamage | 5

5.2.3 Health Potion
Health Potion is an item that can be bought by the player.

Attributes
addHealth | 100
price 20

5.2.4 Shop

This is a shop with items (selling Health Potions).
Attributes

shop 0

5.2.5 Sword

Sword is a weapon that can be equipped.

Attributes
price 100
attackDamage 10
slot hand

5.3 API

The API for the prototype has been specified in cooperation with my colleague
Jakub Cech. This section describes just some of the supported API actions
(the specification was simplified), the full listing can be found in attachment
The numbers in the response sections are the HT'TP status codes.

27

5. DESIGN

5.3.1 GET /login

The Login endpoint verifies the Google ID token and generates an Access Code
for future requests. When successfully authenticated, the player’s profile and
the Access Code are returned.

5.3.1.1 Parameters

token the Google ID token

5.3.1.2 Response

200 Successfully logged in, player’s profile and the Access Code are returned.
403 Invalid token.

404 User not found, registration needed.

5.3.2 GET /user/inventory

The User Inventory endpoint returns all the items in the player’s inventory
and the information about what is equipped in which slot.

5.3.2.1 Parameters

accessCode the Access Code

5.3.2.2 Response

200 List of items and a map of equipment.
403 Player not logged in.

404 User not found.

5.3.3 POST /action/buy

This action allows to buy items from a shop.
5.3.3.1 Parameters

accessCode the Access Code

shopid the id of the shop

itemlId the id of the item to buy

28

5.4. World map

5.3.3.2 Response

200 Player’s inventory.

400 Invalid data.

403 Invalid Access Code.

404 User not found, registration needed.

500 Unexpected error.

5.4 World map

A key part of the game is the world map. This section describes how the map
is drawn on the screen. Figure [5.2] shows an example of the world map in
the game.

5.4.1 Tiles

The map is divided into tiles. Each tile is an equivalent for a tile provided
by the Mapzen API. The default size of a tile is 256x256 pixels which also
equals to the size of a tile returned by the API. But the displayed tiles are
scaled based on the resolution of the screen of the device, Full HD (1920x1080
pixels) is the reference resolution. Each tile is responsible for downloading
the necessary data and displaying a part of the map. Therefore, a tile holds
several layers of map vector data.

5.4.1.1 Landuse

The landuse layer represents a kind of terrain on the map. It is defined as a set
of polygon points which mark the borders of the landuse. Instead of drawing
simple polygons, I decided to use tiles for displaying it. Simple rectangle tiles
look a little too jagged on the map. So, a better solution is to use hexagonal
tiles.

Each map tile fills its area with hexagonal tiles representing a landuse kind
(a tile can have multiple landuses in it). The landuse tile is randomly chosen
from a set of tiles defined for each landuse kind so it does not look too uniform.

For each hexagonal landuse tile, the map tile needs to decide what landuse
it belongs to. It does that by looking through the landuse polygons and
deciding whether the tile’s coordinates fall into the specific polygon.

5.4.1.2 Roads

Road is defined as a series of line points. These lines are simply drawn on
the map.

29

5. DESIGN

ol ser

1

Froduces

Inuencory

Equipmen:

Figure 5.2: The game world map

30

5.5. Unity

5.5 Unity

This part describes the structure of the Unity project. It is divided into several
folders following a common convention.

5.5.1 Editor

As per the Unity’s recommended practice, the FEditor folder contains
the NUnit tests [23].

5.5.2 Plugins

This folder contains plugins required by the game.

5.5.3 Prefabs

This folder contains the GameObject prefabs. Prefabs in Unity are used for
instantiating GameObjects in the game. There are two subfolders for different
types of prefabs.

5.5.3.1 Game

All the game objects that are used in the game are located here. This includes
the monsters, buildings, items and the player prefab. Also, there are prefabs
used for displaying the map. The LandusePrefab represents a landuse kind
and holds the polygon points. The LanduseTile prefab renders the actual
hexagonal tiles on the map based on the landuse it belongs to.

5.5.3.2 Ul

This folder holds different Ul components that can be easily reused and com-
posed together. All the windows in the game are built from these.

5.5.4 Scenes

The prototype has two main scenes and one test scene.

5.5.4.1 AuthScreen

This scene is the initial scene that is loaded upon the start of the application. It
presents the user with an option to sign into his Google Play Games account.
It also contains an input field that is shown if a username needs to be set
during the registration. It deals with the player’s authentication, initiates
the location updates and loads the MapScreen.

31

5. DESIGN

5.5.4.2 MapScreen

This scene represents the actual game screen with the world map accessible
only after a successful authentication.

5.5.4.3 PrefabsTest

This scene is a part of the integration tests. These Unity-specific tests are
designed to run in a separate scene [24].

5.5.5 Resources

This folder holds the resources used by the game. It includes the Road Material
used for drawing roads on the world map [25].

5.5.6 Scripts

The Scripts folder contains all the written code for the project.

5.5.6.1 API

The API subfolder defines an interface for the API, communicates with the ser-
ver and returns responses.

5.5.6.2 Auth

The Auth subfolder deals with the authentication of the player and provides
functionality for the authentication screen.

5.5.6.3 Camera

This subfolder contains all the necessary functionality for the camera, such as
computing the orthogonal size.

5.5.6.4 Common

The Common subfolder contains common classes for the whole project.

5.5.6.5 Game

This is the main part of the game which connects all the other parts. It also
holds the scripts for the game objects.

5.5.6.6 JSON

The JSON subfolder processes JSON responses and returns appropriate game
entities.

32

5.6. Class design

5.5.6.7 Map

The Map subfolder parses the map tiles, displays the world map and obtains
the device’s location.

5.5.6.8 Network

This subfolder handles the HTTP communication with the server.

5.5.6.9 Purchasing

The Purchasing subfolder deals with in-app purchases in the game.

5.5.6.10 UI

The UI subfolder provides functionality for displaying the user interface and
its elements, such as dialogs.

5.5.7 Sprites

The Sprites folder holds the image resources for the game, Ul elements and
the icon.

5.5.8 Tests

This folder contains the scripts for integration testing.

5.6 Class design

This section shows the design of the main components in the Scripts folder.
A complete listing with diagrams can be found in attachment [C] Some classes
that inherit from MonoBehaviour contain public attributes for them to be
accessible in the Unity editor for an easy configuration [26].

5.6.1 API
Figure shows a class diagram for the API package.

5.6.2 Game

The Game package is split into multiple class diagrams. Figure shows
a class diagram for a part of the Game package with the Player. Figure [C.7]
shows a class diagram for a part of the Game package with the MapGameOb-
ject.

33

5.

DESIGN

class APl /

APIResponse

- Json: JSONObject

* Logi.n(string., APIC_aIIbac - Result: APIResponseResult

+ Register(string, string, API - HttpStatusCode: System.Net.HttpStatusCode

+ GetGameObjects(doubl

+ GetPlayerinventory(APIC «property»

+ KillGameObject(long, long, int + Json(): JSONObject

+ Collectitems(long, List<lon + Result(): APIResponseResult

+ PlayerEquip(string, long, + HttpStatusCode(): System.Net.HttpStatusCode

+ BuyltemShop(long, long.

+ PlayerDie(APICallbackD i

+ PurchaseProduct(string, «enumeration»

APIResponseResult
SUCCESS
ERROR
AbstractAPIManager
+ FillResponse(HttpResponseMessage<string>, APIResponse): APIResponse
APIManager APICallback
«property get» «delegate»
- AccessCode(): string + APICallbackDelegate(APIResponse)

34

Figure 5.3: API package class diagram

5.6. Class design

class Player

PlayerAttributes

- username: string
health: int
experience: int
level: int

gold: int

gems: int

A

Player

+ o+ + 4+ o+

MonoBehaviour

+ attributes: PlayerAttributes
- Inventory: Playerlnventory
textGameObject: GameObject

+ UpdateScreenPosition(GeolLocation)
+ Openlnventory()

- OnOpenEquipmentRightHand()

+ OpenEquipment()

OnlnventoryltemSelectedRightHand(long)
- EquipRightHandImpl(Playerlnventory, Playerinventoryltem)

«property»
+ Inventory(): Playerinventory

\/

Playerinventory

- ltems: List<Playerinventoryltem>
- SlotRightHand: PlayerSlot

+ PlayerInventory(List<Playerlnventoryltem>)

«property get»

+ Items(): List<Playerinventoryltem>
«property»

+ SlotRightHand(): PlayerSlot

Playerinventory::Playerinventoryltem

+ id:long
+ typeld: long

+ GetGameObjectPrefab(): GameObject
+ SetuplnventoryltemLayout(InventoryltemLayout)

7

Playerinventory::PlayerSlot

- Key: string
- Item: Playerinventoryltem

+ PlayerSlot(string)
«property»
+ Item(): Playerinventoryltem

«property get»
+ Key(): string

Figure 5.4: Player part of the Game package class diagram
35

5.

DESIGN

class MapGameObject /

MapGameObject

+ o+ + + +

interactionDistanceMeters: float

typeld: long

icon: Sprite

gameObjectName: string

gameObjectDesc: string

textGameObject: GameObject
PrefabMapGameObject: MapGameObject
Attributes: MapGameObjectAttributes
Inventory: Inventory

typeAttributes: MapGameObjectTypeAttribute[]
typeAttributesDictionary: Dictionary<string, GameObjectTypeAttribute>

+ + + + +

+
+
+

+
+

GetTypeAttribute(string): MapGameObjectTypeAttribute
IsinRange(): boolean

InitPrefab()

UpdatePosition()
SetuplnventoryltemLayout(InventoryltemLayout)

«property get»

Name(): string
Desc(): string
Inventory(): Inventory

«property»

PrefabMapGameObject(): MapGameObject
Attributes(): MapGameObjectAttributes

MapGameODbjectAttributes

) ‘N

+ + + + +

MapGameObijectTypeAttribute

Id: long +
Locationld: long +
Name: string +
Desc: string

key: string
stringValue: string
intValue: int

Location: GeolLocation

+ + + + +

«property» Inventory

Id(): long

Locationld(): long - GameObijects: List<GameObject>

Name(): string
Desc(): string «property»
Location(): GeoLocation + GameObjects(): List<GameObject>

3

6

Figure 5.5: Part of the Game package class diagram

CHAPTER 6

Implementation

The implementation chapter describes the plugins, each component from
the Scripts folder in the Unity project and some Unity-specific details.

6.1 Assets and plugins

The game utilizes several assets and plugins.

6.1.1 Google Play Games plugin for Unity

For retrieving the necessary data for authenticating the player using his Google
Play Games account, I used the Google Play Games plugin for Unity.
It is an open-source project created by Google to support many features of
the Google Play Games API [10]. The server uses the Google Play Games ID
token to authenticate the user with Google servers.

It requires several steps for configuration. The game needs to be cre-
ated in the Google Play Developer Console. By configuring the game in
the Console, a client ID is created. In the case of this project, an Android app
and a Web app had to be created on the Linked apps page. After importing
the plugin in Unity, it is easy to configure it in the UI. The Web app’s client
ID must be pasted into the plugin’s Unity configuration for the server to be
able to access the user’s details and the authentication to work. The same
client ID is used on the server for validation.

6.1.2 Http Client

The Http Client plugin from the Unity Asset Store is used for creating
the HTTP requests [27].

37

6. IMPLEMENTATION

6.1.3 JSON Object

For working with JSON objects, the project contains the JSON Object
scripts from the Unity Asset Store [2]].

6.1.4 Unity IAP

The system for implementing in-app purchases is the Unity IAP. It is a part
of the Unity Services and needs to be enabled in Unity. After enabling,
Unity offers an option for automatically importing the plugin into the project
[29].

6.1.5 Unity Test Tools

The Unity Test Tools package from the Unity Asset Store contains fea-
tures for integration testing of the game [30].

6.2 (ame scripts

This section describes the functionality of all the components in the Scripts
folder in more detail.

6.2.1 TAPIManager

This interface defines all the API actions as single methods. Each method has
several parameters including the APICallback.APICallbackDelegate callback
for notifying the caller of a finished API call.

6.2.2 AbstractAPIManager

This is an abstract class implementing the IA PIManager interface. It holds
an INetworkManager instance. It has the FillResponse method that takes
an HTTP response and a APIResponse as parameters. The APIResponse is
populated with data based on the HT'TP response.

6.2.3 APIManager

The APIManager is a child of the AbstractAPIManager. It implements all
the methods corresponding to the API actions and contains different string
constants for creating the APT calls. It uses the NetworkManager in the parent
to communicate with the server and receives HT'TP responses. After an HT'TP
call is finished, it creates an APIResponse, uses the FillResponse method to
populate the response and invokes the callback delegate.

38

6.2. Game scripts

6.2.4 APIResponse

APIResponse holds a JSON response, an APIResponseResult, which is an
enum describing the result of the response, and the actual HT'TP status code.
This response is passed to the APICallback.APICallbackDelegate.

6.2.5 APICallback
This class contains only the APICallbackDelegate.

6.2.6 PlayGamesAuth

The script used on the Authentication screen is the PlayGamesAuth. First,
it activates the Google Play Games plugin and starts listening for location
updates. Then it checks whether the user is already authenticated with Play
Games. If not, it uses the plugin to prompt the user to sign into their Play
Games profile. Once it is finished, it uses the plugin again to get an ID to-
ken. If there is a token returned and it is not empty, it can finally send it to
the server. The server might return a response saying that the user does not
exist yet. In that case, an InputField is shown to the user along with a prompt
to choose a username. Once the user chooses one and clicks the sign-up but-
ton, a registration request is sent to the server. The server checks whether
the username is already in use. If it is, the user is notified to choose a dif-
ferent username. If the registration succeeds, the server returns a successful
authentication response. It is the same response returned as if the player
already existed on the server. Once the authentication succeeds, the Access
Code and the PlayerAttributes are retrieved from the response. These are set
to the GameManager. After that, the script attempts to start the game. If
the player’s location is not obtained at this point, it shows a window with
a message telling the player that the game is waiting for a location. When
the location is obtained, the MapScreen is loaded.

There are three public fields to be able to specify the minimum and
maximum length of the username as well as a regular expression directly in
the Unity editor.

6.2.7 CameraSize

CameraSize computes the orthographic size of the camera for a correct display-
ing of sprites on all resolutions. The pizelsPerUnit attribute holds the value
corresponding to the Pizels Per Unit attribute of the game sprites.

6.2.8 GenericSingleton

This abstract class provides an implementation of the Singleton pattern. It
also preserves the GameObject it is attached to across multiple scenes. It

39

6. IMPLEMENTATION

uses generics for the children to be able to specify their type as a type for
the Singleton instance.

6.2.9 SimpleSingleton

Just like GenericSingleton, this is an abstract class that implements the Sin-
gleton pattern. Unlike its counterpart, it does not preserve the GameObject
across multiple scenes.

6.2.10 SimpleObjectPool

SimpleObjectPool is an implementation of an object pool that provides in-
stances of a given GameObject. It has a public field holding the prefab that is
being instantiated. There is a stack holding unused instances of the GameOb-
ject prefab. If the stack is empty, a new instance is created. The PooledObject
component is assigned to each object. It holds a reference to the original
object pool that it came from. When an object is returned to the pool, this
component is checked to determine the original pool. If it comes from the same
pool it is being returned to, it is put on the stack. If not, the object is simply
destroyed.

6.2.11 GameManager

GameManager is a subclass of the GenericSingleton class and is the main part
of the game. It contains other managers that are accessed from all parts of
the game. These are the IA PIManager, the IJSONManager, the MapManager
and the TAPManager. Also, the LocationService is part of the GameManager
to obtain the location in any part of the game. The game object prefabs are
contained in an instance of the GameObjectPrefabs class.

It also specifies the server and API paths. There is an Access Code field
for authenticating the user with the server.

It has an event listener that listens for loading of the scenes. After the Map-
Screen is loaded, GameManager calls the Init method. As a part of the ini-
tialization, there are several GameObjects looked up by a tag. These include
the MapManager, the Player, and the GameObjectPrefabs. The player has
the attributes assigned and an API call is made to get the player’s inventory.
If the player’s location is obtained at this point, his position on the map is
updated, and the GameManager starts retrieving the game objects. The game
objects are retrieved periodically only after a specified distance is travelled by
the player. The old game objects are deleted and replaced with the new game
objects from the server.

40

6.2. Game scripts

6.2.12 GameObjectPrefabs

This class holds the game object prefabs and creates a dictionary of them.
First, the game objects are assigned to an array in the Unity editor. The script
then goes through the array. For each game object prefab, it gets a type id
from the MapGameObject component and adds the prefab to the dictionary
using the type id as a key. There is a GetPrefab method taking a type id as
a parameter and returning the corresponding prefab from the dictionary.

6.2.13 GameStates

It holds the current game states. They are represented by boolean properties
with getters and setters. Upon the creation of the object, all the states are
set to false.

6.2.14 Inventory

This class provides functionality for a game object’s inventory.

6.2.15 MapGameObject

This is a common class for game objects that can be displayed on the map. It
is added to all game objects in the game as a component. It holds some basic
attributes of an object, such as a type id, an icon, a name and a description.
The UpdatePosition method puts the object on a position on the map corre-
sponding to its geo location and enables the rendering of the object. It is called
by the GameManager. The object holds its attributes of type MapGameOb-
jectAttributes and the Inventory. There is a dictionary of type attributes, but
these are only populated for the prefabs and not for each instance of the pre-
fab. For accessing the type attributes in each instance of the prefab, there is
a reference to the original prefab.

6.2.16 MapGameObjectAttributes

The MapGameObjectAttributes class represents the basic attributes of a game
object. It contains several properties, the first property is the Id, identifying
the game object. The Locationld property is the id of the Location, which
is a server entity. This id is used for interacting with an object on the spe-
cific location, in the case of this game for killing a monster, and along with
the actual id of a game object fully specifies it. The Name is optional and
can override a game object prefab’s name. The Desc (description) is optional
as well and works the same way. The Location property determines the geo-
graphic location of an object. This property is not used in a case of nested
objects.

41

6. IMPLEMENTATION

6.2.17 MapGameObjectTypeAttribute

This class represents a single type attribute for a game object. It has a key that
identifies the attribute and is used as a key for the type attributes dictionary
of the MapGameObject prefabs. The type attribute can have either an integer
or a string value. The class is serializable to be editable in the Unity editor.

6.2.18 Monster

The Monster script provides functionality for the monster game object type.
It has a reference to the MapGameObject component of the GameObject for
accessing all the necessary attributes. It has several callbacks for interacting
with the UL There are three actions that are performed by this script:

e killing a monster,
e killing the player,

e collecting items.

6.2.19 Player

This class represents the player in the game. It holds the player’s attributes
and inventory. It can update the player’s position on the world map based
on the geographic location. There are methods for opening the inventory and
equipment windows as well as an implementation for equippping an item in
the right-hand slot.

6.2.20 PlayerAttributes

This class represents the basic attributes of the player. It is the username,
health, experience, gold and gems. There is also the player’s level which is
computed dynamically based on the experience. The class is serializable to be
editable in the Unity editor.

6.2.21 PlayerInventory

PlayerInventory provides functionality for the player’s inventory, holds
the items and the right-hand slot (just for this prototype, more slots can
be included in the future). It has two nested classes.

6.2.21.1 PlayerInventoryltem

PlayerInventoryltem represents an item in the player’s inventory. It has
a method for populating an item layout in the inventory.

42

6.2. Game scripts

6.2.21.2 PlayerSlot

PlayerSlot represents a slot for an item from the player’s inventory. It has
a key for identification and a reference to the equipped item.

6.2.22 Shop

The Shop script provides functionality for the shop game object type. It has
a reference to the MapGameObject component of the GameObject for accessing
all the necessary attributes. It can populate an item layout with the name
and the price of an item. It has a callback for choosing an item in the shop
UI and implements the buy item action.

6.2.23 NetworkManager

NetworkManager holds an instance of the HitpClient class from the Http
Client library. Since the HittpClient uses a delegate for a callback after
the request is finished, NetworkManager accepts this delegate as one of its
parameters in the HT'TP methods.

6.2.24 IJSONManager

This interface defines the methods for parsing JSON responses from the server.

6.2.25 JSONManager

This is an implementation of the IJSONManager. FEach method takes
a JSONObject, parses it, and converts it to an appropriate game entity.

6.2.26 JSONConstants

The JSONConstants class holds the constants for parsing JSON responses.

6.2.27 GeoLocation

GeoLocation represents a geographic location with the latitude and longitude
components.

6.2.28 IMapProjection

This interface defines a projection of the map. It has four methods, GetTile-
Size returns the size of a tile, GeoLocationToScreenPosition takes a given geo-
graphic location and converts it to a corresponding screen position.
The ScreenPositionToGeoLocation method does the exact opposite. The Dis-
tance method takes two geographic locations and returns the distance between
them.

43

6. IMPLEMENTATION

6.2.29 Landuse

This class is a polygon representation of a landuse. It contains the lan-
duse polygon points which are assigned to the PolygonCollider2D compo-
nent. The Collides WithWorldPosition method takes a point and checks for
a collision with the polygon collider. It is used by the Mapzen tiles to draw
the hexagonal tiles. The GetRandomTilePrefab gets an object from the tile
pool and sets up the sprite by choosing a random one from the TileSprites
array.

6.2.30 LocationService

This script obtains the device’s location. Getting the location in Unity is
straightforward. Location is a part of the Input interface, which provides all
kinds of inputs, such as keyboard, mouse and acceleration data. It needs
to be started first and once it gets to the Running state, the data can be
accessed (in the case of this game the latitude and longitude components).
There is no support for listeners in the location input, so it needs to be polled
periodically. LocationService keeps a list of listeners that get notified when
the location changes, but only after the specified update distance is passed.
Also, the location is obtained only after a specified time interval is elapsed.

6.2.31 MapManager

This is a base abstract class for displaying the map. I defined no interface
for the map manager to be able to add it to the Unity editor and modify it
since Unity does not support interfaces in the editor. The main parameter
is the zoom, which defines the magnification level for displaying the map.
There is a dictionary of tiles with a screen position as the key. Based on
the camera, the MapManager adds and removes tiles from the view. There
is the abstract CreateMap Tile method, which creates a new tile on the map.
The CreateMapProjection creates a projection for the map. MapManager
also supports moving the camera view to a certain geographic location, which
happens every time a location update is received.

6.2.32 MapTile

This abstract class represents a single tile on the map. It keeps its geographic
location and screen position. The method to be implemented in the subclass
is LoadTileImpl, which loads and displays the tile data.

6.2.33 MapzenVectorMapManager

This is a subclass of the MapManager. There are several parameters defined
that can be modified in the Unity editor for requesting data from Mapzen.

44

6.2. Game scripts

It contains public arrays of Sprites with the hexagonal tiles to be displayed
on the map. There is a dictionary created from those which can be accessed
with a landuse kind as the key. In the implemented CreateMapTile method,
it creates a GameObject with the Mapzen VectorTile component. The created
projection is the Mapzen VectorMapProjection.

6.2.34 MapzenVectorMapProjection

This is an implementation of the IMapProjection for the Mapzen vector map.
Upon creation, it computes the tile size based on the screen resolution (it
accesses the UIManager for that).

6.2.35 MapzenVectorTile

This class is a subclass of the MapTile class and represents a single Mapzen
vector tile. It loads the vector data from Mapzen and contains the function-
ality for drawing hexagonal tiles based on the landuses. The roads are drawn
by the Road script. It also supports caching of the tiles; each tile is saved to
a single file to a persistent directory of the application.

6.2.36 Road

The Road script provides functionality for drawing a road. When the script
starts, it adds the LineRenderer component to the attached GameObject and
assigns the given road points to it. There is also a parameter for setting
the road width.

6.2.37 INetworkManager

This interface defines some basic HT'TP methods used for communication
with the server, these are GET, POST and PUT. It takes an URL for each
method and uses a callback with a string parameter to notify the caller after
the response is received from the server.

6.2.38 NetworkManager

NetworkManager implements the HT'TP methods from the INetworkManager
interface. It holds an instance of the HttpClient from the Hitp Client plu-
gin. The HttpClient has the corresponding methods implemented and accepts
the callback parameter as well.

6.2.39 IAPManager

This class is the manager for purchasing products in the game. It implements
the IStoreListener and follows the Unity-recommended implementation [29].

45

6. IMPLEMENTATION

The BuyProductID method initiates the purchasing process for a given product
id. After the purchase is completed by the user, the ProcessPurchase method
returns the PurchaseProcessingResult. Pending indicating that the product is
not consumed yet. After that, the manager sends the product to the server
for validation and consumption. After a successful response from the server
is received, the product is consumed on the client as well and marked as
Complete. If anything goes wrong before marking the product as Complete,
the ProcessPurchase method is called again automatically when the app is
launched next time (and after the JAPManager is initialized).

6.2.40 Products

The Products class contains a list of products defined as string constants.

6.2.41 BringToFront

BringToFront is a simple script that brings the GameObject (with an Ul
element) it is attached to to the front when enabled.

6.2.42 ChoiceWindow

Choice Window is a window with yes and no buttons that presents a choice.
There is a message that needs to be specified along with optional callbacks for
the buttons.

6.2.43 EquipmentModalWindow

This is the player’s equipment window which displays the right-hand slot,
either empty or with an equipped item. There is callback that can be specified
for clicking the right-hand slot.

6.2.44 HUDManager

HUDManager manages an overlay with the player’s information, such as
a username and health.

6.2.45 InventoryltemLayout

InventoryltemLayout represents the layout for a single item entry in an inven-
tory. It has a listener for click events. The Setup method allows to populate
the item’s layout with an icon, a name and a description.

6.2.46 InventoryList

This Ul script populates and displays an inventory. For opening the inventory
window, an icon and a name are specified to be shown in the header. Also,

46

6.2. Game scripts

the inventory items to be displayed are passed to it along with the necessary
callbacks.

6.2.47 MessagesContainer

This class contains the messages that are being displayed in the UI defined as
string constants.

6.2.48 MonsterInventoryList

MonsterInventoryList populates and displays a monster’s inventory. There
are two callbacks for when the user decides to collect all items or just exits
the inventory.

6.2.49 MonsterModalWindow

This is a window for a monster. The parameters passed to the Open method
are the icon and the name of a monster as well as callbacks for attacking
the monster, opening its inventory and closing the window. The OnMon-
sterKilled method is called when the monster is killed. It accepts a message
to be displayed as its parameter (for displaying the attack result).

6.2.50 OkWindow

OkWindow is a window with a message and an ok button. The callback for
the ok button click can be specified in the Open method.

6.2.51 PlayerInventoryList

The PlayerInventoryList class populates and displays a player’s inventory. For
opening the inventory, the player’s inventory items and a callback for an item
click are passed to it.

6.2.52 ProductLayout

ProductLayout represents the layout for a single in-app product. For the setup,
it requires the id of a product and a callback that is invoked when the product
is clicked.

6.2.53 ProgressModalWindow

This is a window for displaying progress in the form of a message that is
specified in the Open method.

47

6. IMPLEMENTATION

6.2.54 PurchasingUI

PurchasingUI represents the Ul for purchasing in-app products. It populates
a scroll view with the given products. There is also a callback that needs to
be specified for when a product is clicked.

6.2.55 UIManager

This script is the basic component of the Ul. It computes a factor for the cur-
rent resolution based on the specified basic resolution. This factor is accessed
by the map components for displaying the map correctly on all resolutions. It
also monitors the UT elements in the view (windows) by having two methods
for adding and removing an element that are called by different UI scripts.

6.3 Unity-specific setup

This section describes some of the components contained in the Unity editor.

6.3.1 User interface

Each scene in the game contains a Canvas with Ul components in it. “The Can-
vas s the area that all Ul elements should be inside. The Canvas is a Game
Object with a Canvas component on it, and all Ul elements must be children
of such a Canvas.”[31]

6.3.2 HUD

On the MapScreen, there is a GameObject inside the Canvas that contains
the UI elements with player’s information.

6.3.3 Modal windows

The Canvas contains several GameObjects that represent modal windows.
Each of the windows contains a Panel that is stretched on the whole screen
with transparency set to a certain level to slightly dim the objects behind it.
Inside this full screen Panel there is another Panel that contains elements of
the actual modal window and fills only a part of the screen. This Panel has
multiple Panels inside it depending on the specific modal window. A generic
modal window has an Image component, a few Text components, Buttons and
a top Panel with a close button. The inventory windows also have the Scroll
Rect script in them along with other necessary components required for dis-
playing the scroll view.

48

CHAPTER 7

Testing

At the beginning of the development phase, mock responses were used for
simulating communication with the server. The game features have been
user-tested by using both real and mock locations for the device. The game
has been deployed to several Android emulators with different resolutions and
versions to validate the correct Ul behavior. Usability testing has not been
conducted since this is just a prototype of a real game. To showcase the Unity’s
testing capabilities, two types of tests are included.

7.1 Unit tests

These tests are not typically applicable in a large scale for Unity development
since most parts of a game usually involve working with multiple GameQObjects
and components and that is when the types of tests in the next section are
used.

7.1.1 JSONTests

These tests validate the parsing of mock JSON responses.

7.2 Integration tests

The Test folder contains Dynamic Integration Tests for testing larger parts
of the prototype [24].

7.2.1 TestPrefabs

The TestPrefabs script tests the GameObjectPrefabs used on the MapScreen
to ensure it contains all the described five game object types.

49

Conclusion

The goal of the thesis was to create a prototype of the client part of a role-
playing game with features of augmented reality (AR). I analyzed existing
similar games on the market. Then, in cooperation with my colleague Jakub
Cech, I specified the rules and features of the game prototype.

I analyzed and tested a few options for displaying the world map. Based
on that, I chose a solution. I gained knowledge about supporting micro-
transactions in the game. Then I designed the structure and components of
the prototype. I implemented the chosen map solution, added functionality
for obtaining the device’s location, added a microtransaction functionality, im-
plemented communication with the server, user authentication, parsing and
displaying the game objects on the world map and added the required func-
tionality. Finally, I created the user interface, tested all the features and
released the prototype. The final tile-based game world map driven by vector
data satisfied the set condition of creating an innovative solution for displaying
it.

I used the Unity engine with the Microsoft Visual Studio IDE for devel-
opment and GIT as a versioning system. Enterprise Architect has been used
for creating the diagrams. Communication with the server has utilized JSON
content.

There were many features that had to be left out of the prototype because
of the scope of this thesis, for example a quest system or an option for using
items (like consuming a potion to add player’s health), to mention some of
them. Also, the map can be further improved by adding more types of tiles
corresponding to more landuse types. The design should easily allow me to
extend the prototype by including additional features and to create a fully-
fledged game that can be released on the market.

o1

Bibliography

Parallel Kingdom - screenshot. [online], [cit. 2017-05-12]. Available
from: http://www.parallelkingdom.com/img/theme/pages/pk_media/
screenshots_page/pieces/screenshot_android_2_full.png

Parallel Kingdom Reaches One Million Players. ParallelKingdom.com -
Latest Press Releases [online], January 2012, [cit. 2017-04-21]. Avail-
able from: http://www.parallelkingdom.com/Media/PR/PR_013012_
One_Million.pdf

Parallel Kingdom. [online], [cit. 2017-04-21]. Available from: http://
www.parallelkingdom.com/

Parallel Kingdom - Guide - Overview. [online], [cit. 2017-04-21]. Available
from: http://www.parallelkingdom.com/guide/en/pagel.aspx/

Google Play - Ingress. [online], [cit. 2017-04-21]. Available
from: https://play.google.com/store/apps/details?id=
com.nianticproject.ingress/

Pokémon Go. [online], [cit. 2017-05-12]. Available from: http://
www.pokemongo.com/

Google+ Community - Maplord testers. [online], [cit. 2017-05-
11]. Available from: https://plus.google.com/communities/
105545818418311721004

Android Studio and SDK Tools. [online], [cit. 2017-05-13]. Available from:
https://developer.android.com/studio/index.html

Google Maps Android API. [online], [cit. 2017-05-13]. Available from:
https://developers.google.com/maps/documentation/android-api/

93

http://www.parallelkingdom.com/img/theme/pages/pk_media/screenshots_page/pieces/screenshot_android_2_full.png
http://www.parallelkingdom.com/img/theme/pages/pk_media/screenshots_page/pieces/screenshot_android_2_full.png
http://www.parallelkingdom.com/Media/PR/PR_013012_One_Million.pdf
http://www.parallelkingdom.com/Media/PR/PR_013012_One_Million.pdf
http://www.parallelkingdom.com/
http://www.parallelkingdom.com/
http://www.parallelkingdom.com/guide/en/page1.aspx/
https://play.google.com/store/apps/details?id=com.nianticproject.ingress/
https://play.google.com/store/apps/details?id=com.nianticproject.ingress/
http://www.pokemongo.com/
http://www.pokemongo.com/
https://plus.google.com/communities/105545818418311721004
https://plus.google.com/communities/105545818418311721004
https://developer.android.com/studio/index.html
https://developers.google.com/maps/documentation/android-api/

BIBLIOGRAPHY

[10]

[11]

[12]

[14]

[15]

[16]

[17]

o4

GitHub - Google Play Games plugin for Unity. [online], [cit. 2017-05-10].
Available from: https://github.com/playgameservices/play-games-
plugin-for-unity

Google Maps APIs. [online], [cit. 2017-05-12]. Available from: https:
//developers.google.com/maps/

Mapbox. [online], [cit. 2017-05-12]. Available from: https://
www.mapbox.com/

OpenStreetMap Wiki. [online], [cit. 2017-04-22]. Available from: https:
//wiki.openstreetmap.org/wiki/Main_Page

Google Static Maps API. [online|, [cit. 2017-05-12]. Available from:
https://developers.google.com/maps/documentation/static-maps/

Foursquare. [online], [cit. 2017-05-12]. Available from: https://
foursquare.com/

Uber Technologies. [online], [cit. 2017-05-12]. Available from: https://
www.uber.com/

Mapbox - Pricing. [online], [cit. 2017-04-22]. Available from: https://
www.mapbox.com/pricing/

Mapbox - Unity. [online], [cit. 2017-04-22]. Available from: https://
www.mapbox.com/unity/

Data sources in Mapzen Vector Tiles. [online], [cit. 2017-04-20]. Avail-
able from: https://mapzen.com/documentation/vector-tiles/data-
sources/

Layers in Mapzen’s vector tiles - Landuse. [online], [cit. 2017-04-20).
Available from: https://mapzen.com/documentation/vector-tiles/
layers/

Layers in Mapzen’s vector tiles - Roads (Transportation). [online],
[cit. 2017-04-20]. Available from: https://mapzen.com/documentation/
vector-tiles/layers/

Unity Manual - Unity IAP. [online], [cit. 2017-04-20]. Available from:
https://docs.unity3d.com/Manual/UnityIAP.html

Unity - Manual: Editor Test Runner. J[online], [cit. 2017-05-
12]. Available from: https://docs.unity3d.com/Manual/testing-
editortestsrunner.html

https://github.com/playgameservices/play-games-plugin-for-unity
https://github.com/playgameservices/play-games-plugin-for-unity
https://developers.google.com/maps/
https://developers.google.com/maps/
https://www.mapbox.com/
https://www.mapbox.com/
https://wiki.openstreetmap.org/wiki/Main_Page
https://wiki.openstreetmap.org/wiki/Main_Page
https://developers.google.com/maps/documentation/static-maps/
https://foursquare.com/
https://foursquare.com/
https://www.uber.com/
https://www.uber.com/
https://www.mapbox.com/pricing/
https://www.mapbox.com/pricing/
https://www.mapbox.com/unity/
https://www.mapbox.com/unity/
https://mapzen.com/documentation/vector-tiles/data-sources/
https://mapzen.com/documentation/vector-tiles/data-sources/
https://mapzen.com/documentation/vector-tiles/layers/
https://mapzen.com/documentation/vector-tiles/layers/
https://mapzen.com/documentation/vector-tiles/layers/
https://mapzen.com/documentation/vector-tiles/layers/
https://docs.unity3d.com/Manual/UnityIAP.html
https://docs.unity3d.com/Manual/testing-editortestsrunner.html
https://docs.unity3d.com/Manual/testing-editortestsrunner.html

Bibliography

[24]

[27]

28]

[29]

[30]

[31]

Bitbucket - Unity-Technologies / UnityTestTools / wiki / Inte-
grationTestsRunner. [online], [cit. 2017-05-12]. Available from:
https://bitbucket.org/Unity-Technologies/unitytesttools/
wiki/IntegrationTestsRunner

Unity - Manual: Creating and Using Materials. [online], [cit. 2017-05-10].
Available from: https://docs.unity3d.com/Manual/Materials.html

Unity - Scripting API: MonoBehaviour. [online|, [cit. 2017-05-
10]. Available from: https://docs.unity3d.com/ScriptReference/
MonoBehaviour.html

Unity Asset Store - Http Client. [online], [cit. 2017-05-10]. Available from:
https://www.assetstore.unity3d.com/en/#!/content/79343

Unity Asset Store - JSON Object. [online], [cit. 2017-05-10]. Available
from: https://www.assetstore.unity3d.com/en/#!/content/710

Unity Tutorials - Integrating Unity IAP In Your Game. [online], [cit.
2017-05-09]. Available from: https://unity3d.com/learn/tutorials/
topics/ads-analytics/integrating-unity-iap-your-game

Unity Asset Store - Unity Test Tools. [online], [cit. 2017-05-12]. Available
from: https://www.assetstore.unity3d.com/en/#!/content/13802

Unity Manual - Canvas. [online], [cit. 2017-04-20]. Available from: https:
//docs.unity3d.com/Manual/UICanvas.html

95

https://bitbucket.org/Unity-Technologies/unitytesttools/wiki/IntegrationTestsRunner
https://bitbucket.org/Unity-Technologies/unitytesttools/wiki/IntegrationTestsRunner
https://docs.unity3d.com/Manual/Materials.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.html
https://www.assetstore.unity3d.com/en/# !/content/79343
https://www.assetstore.unity3d.com/en/#!/content/710
https://unity3d.com/learn/tutorials/topics/ads-analytics/integrating-unity-iap-your-game
https://unity3d.com/learn/tutorials/topics/ads-analytics/integrating-unity-iap-your-game
https://www.assetstore.unity3d.com/en/#!/content/13802
https://docs.unity3d.com/Manual/UICanvas.html
https://docs.unity3d.com/Manual/UICanvas.html

APPENDIX A

Acronyms

API Application Programming Interface
AR Augmented reality

HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
IDE Integrated Development Environment
JSON JavaScript Object Notation

RPG Role-playing game

o7

APPENDIX B

API

B.1 GET /login

The Login endpoint verifies the Google ID token and generates an Access Code
for future requests. When successfully authenticated, the player’s profile and
the Access Code are returned.

B.1.1 Parameters

token the Google ID token

B.1.2 Response

200 Successfully logged in, player’s profile and the Access Code are returned.
403 Invalid token.

404 User not found, registration needed.

B.2 POST /login/register
The Registration endpoint creates a new player on the server. The profile is

initialized with default values. If the username is taken or if the player already
exists, then an error is returned.

B.2.1 Parameters

username the new player’s username
token Google ID token

29

B. API

B.2.2 Response

200 Successfully registered and logged in, player’s profile and Access Code
returned.

409 Either the username exists or the user is already registered. See error
details.

B.3 GET /user

The User endpoint returns the player’s profile.

B.3.1 Parameters

accessCode the Access Code

B.3.2 Response
200 User profile and Access Code returned.

403 Invalid Access Code.

404 User not found, registration needed.

B.4 PUT /user/die

The User Die endpoint kills the player. After the death, the health is restored
and some amount of gold is removed from the player based on his level.

B.4.1 Parameters

accessCode the Access Code

B.4.2 Response

200 Player’s profile and Access Code returned.
403 Invalid Access Code.

404 User not found, registration needed.

B.5 GET /user/inventory

The User Inventory endpoint returns all the items in the player’s inventory
and the information about what is equipped in which slot.

60

B.6. POST /purchase

B.5.1 Parameters

accessCode the Access Code

B.5.2 Response

200 List of items and a map of equipment.
403 Player not logged in.

404 User not found.

B.6 POST /purchase

The Purchase endpoint offers support for in-app purchases. The purchase is
verified and then assigned to the player. To be accepted, it cannot be cancelled
or consumed.

B.6.1 Parameters

accessCode the Access Code

productld the id of the product to buy

token the purchase token

B.6.2 Response

200 Player’s profile.

400 Invalid data.

403 Invalid Access Code or the purchase is not valid.
404 User not found, registration needed.

500 Unexpected error.

B.7 GET /location

This retrieves all nearby locations in a 200-m radius from the provided coor-
dinates. The locations are returned along with their associated objects.
B.7.1 Parameters

lat the latitude

lon the longitude

accessCode the Access Code

61

B. API

B.7.2 Response

200 List of nearby locations with game objects assigned to them.

500 Unexpected error.

B.8 POST /action/buy

This action allows to buy items from a shop.

B.8.1 Parameters

accessCode the Access Code
shopid the id of the shop

itemlId the id of the item to buy

B.8.2 Response

200 Player’s inventory.

400 Invalid data.

403 Invalid Access Code.

404 User not found, registration needed.

500 Unexpected error.

B.9 POST /action/collect

This action allows collecting items from a monster’s inventory after a kill. It
can be called only once after a Kkill.

B.9.1 Parameters

accessCode the Access Code
killConfirmedCode the kill confirmed code
gameObjects the list of items to be collected

62

B.10. PUT /action/equip

B.9.2 Response

200 Player’s inventory.

400 Invalid data.

403 Invalid Access Code.

404 User not found, registration needed.

500 Unexpected error.

B.10 PUT /action/equip

This action equips an item from the player’s inventory to the specified slot.

B.10.1 Parameters

accessCode the Access Code
itemlId the id of the item to be equipped

slot the slot key

B.10.2 Response

200 Success.

400 Invalid data.

403 Invalid Access Code.

404 User not found, registration needed.

500 Unexpected error.

B.11 POST /action/kill

The kill action is performed on the selected object and location. The location
is temporarily excluded from future requests to /location. The player’s health
is updated, experience and gold are added. It returns a killConfirmedCode
which is needed to perform the collect action.

63

B. API

B.11.1 Parameters

accessCode the Access Code
locationid the id of the location
gameObjectld the id of the game object

health the new player’s health

B.11.2 Response

200 One-time code for kill confirmation.
400 Invalid data.

403 Invalid Access Code.

404 User not found, registration needed.

500 Unexpected error.

64

APPENDIX C

65

Class diagrams

C. CLASS DIAGRAMS

class APl /

PlayerEquip(string, long,
BuyltemShop(long, long
PlayerDie(APICallbackD
PurchaseProduct(string,

A S S s

APIResponse

- Json: JSONObject
- Result: APIResponseResult
- HitpStatusCode: System.Net.HttpStatusCode

«property»
+ Json(): JSONODbject
+ Result(): APIResponseResult
+ HitpStatusCode(): System.Net.HttpStatusCode

«enumeration»
APIResponseResult

SUCCESS
ERROR

AbstractAPIManager

+ FillResponse(HttpResponseMessage<string>, APIResponse): APIResponse

APIManager APICallback
«property get» «delegate»
- AccessCode(): string + APICallbackDelegate(APIResponse)

Figure C.1: API package class diagram

66

class Auth

PlayGamesAuth

Lo+ o+

+ + +

userAuthenticated: boolean
userExists: boolean

idToken: string
usernameMinLength: int
usernameMaxLength: int
usernameRegex: int

regex: Regex

textButtonAuth: Text
panelUsername: GameObject
inputFieldUsername: InputField

StartUserAuth()

OnAuthClick()
FinishAuthentication(APIResponse)
ProcessUserNotFound()
ValidateUsername(): boolean
RegisterUser()
CheckAuthenticationPlayGames(): boolean
AuthenticateUserPlayGames()
AuthenticateUser()

Quit()
OnLocationChanged(Geolocation)
StartGame()

Figure C.2: Auth package class diagram

class Camera

MonoBehaviour MonoBehaviour
CameraSize DragCamera
+ pixelsPerUnit: float + draggingEnabled: boolean
+ panSpeed: float

- oldPos: Vector3
- panOrigin: Vector3

Figure C.3: Camera package class diagram

67

C. CLASS DIAGRAMS

class Common /
' T:Component ‘
| | { T: Component
MonoBe/ivré’\r/iiaL;r’ 777777777777777] o
GenericSingleton SimpleSingiel
- instance: T - Instance: T
«property»
«property»)
+ Instance(): T * Instance(): T
SimpleObjectPool
+ prefab: GameObject
- inactivelnstances: Stack<GameObject>
+ worldPositionStays: boolean
+ GetObject(): GameObject
+ ReturnObject(GameObject)
PooledObiject
+ pool: SimpleObjectPool

68

Figure C.4: Common package class diagram

class Game

GenericSingleton
GameManager

minDamageFactor: float

maxDamageFactor: float
locationUpdateTimeSeconds: int {readOnly}
GAME_OBJECTS_UPDATE_DISTANCE_METERS: float {readOnly}
gameObjectsLastUpdateGeoLocation: GeolLocation
host: string

AccessCode: string

CurrentGameStates: GameStates

GameObjects: List<GameObjects>

Player: Player

PurchasingManager: IAPManager

ApiManager: IAPIManager

JSONManager: IJISONManager

MapManager: MapManager

GameLocationService: LocationService

Prefabs: GameObjectPrefabs

Init()

MapScreenlsActive(): boolean

LoadMap()

InitPurchasing()

GetGameObjects()
ParseGameObjectsFromLocations(JSONODbject)
DeleteGameObijects()

GetPlayerlnventory()
OnLocationChanged(GeoLocation)

/

GameStates MonoBehaviour

GameObjectPrefabs

Figure C.5: Part of the Game package class diagram

69

C. CLASS DIAGRAMS

class Player

PlayerAttributes

- username: string
health: int
experience: int
level: int

gold: int

gems: int

o+ o+ o+ 4+

A

Player

MonoBehaviour

+ attributes: PlayerAttributes
- Inventory: Playerlnventory
- textGameObject: GameObject

UpdateScreenPosition(GeoLocation)

Openlnventory()

- OnOpenEquipmentRightHand()

+ OpenEquipment()

- OnlnventoryltemSelectedRightHand(long)

- EquipRightHandImpl(Playerlnventory, Playerinventoryltem)
«property»

+ Inventory(): Playerinventory

vV

Playerinventory

- ltems: List<Playerlnventoryltem>
- SlotRightHand: PlayerSlot

+ Playerlnventory(List<Playerlnventoryltem>)

«property get»
+ Items(): List<Playerinventoryltem>

«property»
+ SlotRightHand(): PlayerSlot

Playerinventory::Playerinventoryltem

+ id: long
+ typeld: long

+ GetGameObjectPrefab(): GameObject
+ SetuplnventoryltemLayout(InventoryltemLayout)

7

Playerinventory::PlayerSiot

- Key: string
- ltem: Playerlnventoryltem

+ PlayerSlot(string)

«property»
+ ltem(): Playerinventoryltem

«property get»
+ Key(): string

Figure C.6: Part of the Game package class diagram
70

class MapGameObject /

MapGameObject

+ o+ + + +

interactionDistanceMeters: float

typeld: long

icon: Sprite

gameObjectName: string

gameObjectDesc: string

textGameObject: GameObject
PrefabMapGameObject: MapGameObject
Attributes: MapGameObjectAttributes
Inventory: Inventory

typeAttributes: MapGameObjectTypeAttribute[]
typeAttributesDictionary: Dictionary<string, GameObjectTypeAttribute>

+ + + + +

+
+
+

+
+

GetTypeAttribute(string): MapGameObjectTypeAttribute
IsinRange(): boolean

InitPrefab()

UpdatePosition()
SetuplnventoryltemLayout(InventoryltemLayout)

«property get»

Name(): string
Desc(): string
Inventory(): Inventory

«property»

PrefabMapGameObject(): MapGameObject
Attributes(): MapGameObjectAttributes

MapGameODbjectAttributes

) '\

+ + + + +

MapGameObjectTypeAttribute

Id: long +
Locationld: long +
Name: string ¥
Desc: string

key: string
stringValue: string
intValue: int

Location: GeolLocation

+ + + + +

«propeiiygg Inventory

Id(): long

Locationld(): long - GameObjects: List<GameObject>

Name(): string
Desc(): string «property»
Location(): GeoLocation + GameObjects(): List<GameObject>

Figure C.7: Part of the Game package class diagram

71

C. CLASS DIAGRAMS

class GameObjects /

Shop

mapGameObject: MapGameObject
itemldToBuy: long

OnPointerClick(PointerEventData)

SetuplnventoryltemLayout(InventoryltemLayout, MapGameObject)

OnltemClicked(long)

Findltem(): GameObject
Buyltem()
BuyltemlImpl(Playerlnventory, int)

IPointerClickHandler
MonoBehaviour

Monster

mapGameObject: MapGameObject
killConfirmedCode: long
itemsCollected: boolean

OnPointerClick(PointerEventData)
OnOpenlinventory()

OnCollectAll()

OnCollectNone()

OnAttacked()

Attack()

KillMonster(int)

KillPlayer()
Collectltems(List<long>)
KillMonsterlmpl(long, int)
KillPlayerlmpl(PlayerAttributes)
CollectltemsImpl(Playerlnventory)

72

Figure C.8: Part of the Game package class diagram

IPointerClickHandler
MonoBehaviour

class JSON

JSONManager

- CreateGameObject(JSONObject): GameObject
- AddNestedGameObjects(List<GameObject>, GameObject)
- GetPlayerlnventoryltem(JSONObject): Playerlnventoryltem

JSONConstants

Figure C.9: JSON package class diagram

73

C. CLASS DIAGRAMS

class MapManager /

MonoBehaviour
MapManager

zoom: int

mapTilePrefab: GameObject
CenterGeol.ocation: GeolLocation
MapProjection: IMapProjection

tiles: Dictionary<Vector2, GameObject>
prevCameraPosition: Vector2?

L+ o+ o+ o+

DestroyTile(GameObject)
CreateMapTile(Vector2): GameObject
GetCenterGeoLocation(). GeoLocation
CreateMapProjection(). IMapProjection
- FindTile(Vector2): GameObject
AddTile(Vector2): boolean

- CheckTiles()

- OnLocationChanged(GeoLocation)

- UpdateMap()

- FindTile(Vector2): GameObject

- AddTile(Vector2): boolean

- GetScreenPositionCamera(): Vector2

- CheckTiles()

+ MoveToGeolocation(GeoLocation)

+ ToScreenPosition(GeoLocation): Vector2
+ ToWorldPosition(GeoLocation): Vector2

1

MapzenVectorMapManager

H H B H

cacheFileExpirationDays: int
hexTileSize: int

apiKey: string

layers: string

format: string

roadWidth: float

tilePool: SimpleObjectPool
landusePool: SimpleObjectPool
genericTileSprite: Sprite
meadowLanduseTileSprites: Sprite[]
forestLanduseTileSprites: Sprite[]
farmlandLanduseTileSprites: Sprite[]
residentialLanduseTileSprites: Sprite[]
LanduseTileSprites: Dictionary<string, Sprite[]>

+ o+ 4+ + o+ o+ + o+ +

ClearTileCache()
- InitLandusePrefabs()

Figure C.10: Part of the Map package class diagram

74

class MapTile ~

MonoBehaviour
MapTile

+ Location: GeolLocation
+ ScreenPosition: Vector2

+ LoadTile()
LoadTilelmpl()

MapzenVectorTile

- URL_TEMPLATE: string {readOnly}

- GenericTileSprite: Sprite

- tilesHolder: GameObject

- TilePool: SimpleObjectPool

- LandusePool: SimpleObjectPool

- TilePixels: Vector2

- MapzenMapManager: MapzenVectorMapManager
- roads: List<GameObject>

- landuses: List<GameObject>

- landuseTiles: List<GameObject>

+ LoadVectorData(): IEnumerator

- CacheTile(string, string)

- LoadTileFromCache(string)

- LoadRoads(JSONObject)

- LoadLanduses(JSONODbject)

- AddRoad(List<Vector3>)

- AddLanduse(List<Vector2>, string)

+ DestroyTile()

- GetCollisionLanduse(string, Vector3[]): Landuse
- DrawTiles()

- GetGenericTilePrefab(): GameObject

«property»
GenericTileSprite(): Sprite
TilePool(): SimpleObjectPool
LandusePool(): SimpleObjectPool
TilePixels(): Vector2
MapzenMapManager(): MapzenVectorMapManager

+ o+ + + o+

Figure C.11: Part of the Map package class diagram

C. CLASS DIAGRAMS

class MapProjection /

MapzenVectorMapProjection

TILE_SIZE_BASIC_RESOLUTION: int {readOnly}
tileSize: int
tileSizeFactor: float

GeolLocation

Longitude: double
Latitude: double

Geolocation(double, double)

76

Figure C.12: Part of the Map package class diagram

class MapTileObjects /

Landuse

TileSprites: Sprite[]

LandusePoints: List<Vector2>
TilePool: SimpleObjectPool

kind: string

- polygonCollider: PolygonCollider2D

+ o+ + o+

+

Init()
GetRandomTilePrefab(): GameObject
+ CollidesWithWorldPosition(Vector2): boolean

«property»

+

+ LandusePoints(): List<Vector2>
+ TilePool(): SimpleObjectPool
Road
- RoadPoints: Vector3[]
- RoadWidth: float
«property»
+ RoadPoints(): Vector3][]
+ RoadWidth(): float

Figure C.13: Part of the Map package class diagram

C. CLASS DIAGRAMS

78

class LocationService /

LocationService

updateTimeSeconds: int
currentGeolocation: GeoLocation
- timeSincelLastUpdate: float

«eventy
ohLocationChangedEvent: OnLocationChanged

«delegate»
+ OnLocationChanged(GeoLocation)

Figure C.14: Part of the Map package class diagram

class Network

«interface»
INetworkManager

+ Get(string, Action<HttpResponseMessage<string>>)
+ Post(string, string, Action<HttpResponseMessage<string>>)
+ Put(string, string, Action<HttpResponseMessage<string>>)

NetworkManager

- client: HttpClient

Figure C.15: Network package class diagram

class Purchasing /

[|StoreListener

IAPManager

controller: IStoreController

extensions: |IExtensionProvider
ActionOnlnitialized: UnityAction
ActionOnlnitializationFailed: UnityAction
InitializationFailed: boolean

+ o+ + + 4+ o+ o+ o+

+
+

+

GetProducts(): Product[]

Onlnitialized(IStoreController, IExtensionProvider)
InitializePurchasing()

IsInitialized(): boolean

BuyProductID(string)

OnlnitializeFailed(InitializationFailureReason)
ProcessPurchase(PurchaseEventArgs): PurchaseProcessingResult
OnPurchaseFailed(Product, PurchaseFailureReason)
OnPurchaseSuccess(PurchaseEventArgs)
ValidatePurchaseGooglePlay(PurchaseEventArgs): GooglePlayReceipt
FinishPurchase(Product, string)

FinishPurchaselmpl(Product)

ShowErrorPurchasing()

ShowErrorLoadingProducts()

«property»

ActionOnlnitialized(): UnityAction
ActionOnlnitializationFailed(): UnityAction

«property get»

isInitializationFailed(): boolean

«property set»

setlnitializationFailed(boolean): void

Products

+

PRODUCT_100_GOLD: string {readOnly}

Figure C.16: Purchasing package class diagram

79

C. CLASS DIAGRAMS

class Ul

«property»
+ ResolutionSizeFactor(): float

SimpleSingleton SimpleSingleton
UlManager HUDManager
- uiElements: Stack<int> + textUsername: Text
- cam: DragCamera + textLevel: Text
+ BASIC_RESOLUTION_WIDTH: float {readOnly} + textHealth: Text
+ BASIC_RESOLUTION_HEIGHT: float {readOnly} + textGold: Text
- ResolutionSizeFactor: float + buttonProducts: Button
+ AddUIElementToView() - Init()
+ RemoveUIElementFromView() + Refresh()

. MonoBehaviour
MessagesContainer

BringToFront

Figure C.17: Part of the UI package class diagram

80

class Inventory

InventoryList

- imagelcon: Image

- textName: Text

- buttonClose: Button

- contentPanel: Transform

- inventoryPanelObject: GameObject

- itemLayoutObjectPool: SimpleObjectPool

- RemoveltemLayouts()

+ Close()

+ Refresh(List<GameObject>, Action<InventoryltemLayout, MapGameObject>, Action<long>)
- AddltemLayouts(List<GameObject>, Action<InventoryltemLayout, MapGameObject>, Action<long>)

+ Open(Sprite, string, List<GameObject>, Action<InventoryltemLayout, MapGameObject>, Action<long>)

SimpleSingleton

SimpleSingleton
PlayerinventoryList

MonoBehaviour
InventoryltemLayout

buttonClose: Button

contentPanel: Transform
inventoryPanelObject: GameObject
itemLayoutObjectPool: SimpleObjectPool

+ o+ o+ o+

- AddltemLayouts(List<Playerinventory.Playerlnventoryltem>, Action<long>)
RemoveltemLayouts()

+ Open(List<Playerlnventory.Playerlnventoryltem>, Action<long>)

+ Close()

+ o+ o+ o+

+
+

button: Button

imagelcon: Image

textName: Text

textDesc: Text

GameObjectld: long
actionltemClicked: Action<long>

OnltemClicked()
Setup(Sprite, string, string)

«property»

GameObjectld(): long
actionltemClicked(): Action<long>

Figure C.18: Part of the Ul package class diagram

class PurchasingUl ~

SimpleSingleton
PurchasingUlI

SimpleSingleton

ProductLayout

- actionProductClicked: Action<string>

+ buttonClose: Button + button: Button
+ contentPanel: Transform + imagelcon: Image
+ productsPanelObject: GameObject + textName: Text
- productsAdded: boolean + textDesc: Text
" - - productld: string
+ AdditemLayouts(Product[], Action<string>)
+ Open(Product]], Action<string>)
+ Close() - OnProductClicked()

+ Setup(Sprite, string, string, string, Action<string>)

Figure C.19: Part of the Ul package class diagram

81

C. CLASS DIAGRAMS

class ModalWindows /
SimpleSingleton SimpleSingleton
ChoiceWindow ProgressModalWindow
+ textMessage: Text + textProgress: Text
+ buttonYes: Button + modalPanelObject: GameObject
+ buttonNo: Button - Message: string
+ buttonClose: Button ’
+ choicePanel: GameObject *+ Open(string)
+ Close()
+ Open(string, UnityAction, UnityAction, UnityAction) «property get»
+ Close() + getMessage(): string
«property set»
- setMessage(string): void
SimpleSingleton
EquipmentModalWindow SimpleSingleton
OkWindow
- buttonClose: Button
- equipmentPanelObject: GameObject + textMessage: Text
- rightHandltemLayout: InventoryltemLayout + buttonOk: Button
; ; + buttonClose: Button
*+ Open(UnityAction) + modalPanelObject: GameObject
+ Close()
+ Refresh() + Open(string, UnityAction): int
Figure C.20: Part of the Ul package class diagram
class MonsterUl
SimpleSingleton SimpleSingleton
MonsterModalWindow MonsterinventoryList
+ imagelcon: Image + imagelcon: Image
+ textName: Text + buttonClose: Button
+ textResult: Text + buttonCollectAll: Button
+ buttonAttack: Button + contentPanel: Transform
+ buttonlnventory: Button + inventoryPanelObject: GameObject
+ buttonClose: Button + itemLayoutObjectPool: SimpleObjectPool
+ modalPanelObject: GameObject N "
+ Refresh(List<GameObject>)
+ Open(Sprite, string, UnityAction, UnityAction, UnityAction) - AddltemLayouts(List<GameObject>)
+ Close() - RemoveltemLayouts()
+ OnMonsterKilled(string) + Open(Sprite, List<GameObject>, UnityAction, UnityAction)
+ Close()
+ ShowCollectAllButton()
+ HideTakeAllButton()

82

Figure C.21: Part of the UI package class diagram

APPENDIX D

Contents of enclosed SD Card

readme.tXt ...t the file with additional information
BPP e e e e e the directory with the APK file
QOC ettt e the directory with documentation
screenshots..........oovvviii.... the directory with game screenshots
ST af o PPt the directory with source code
thesis..the directory of INTEX source codes of the thesis and the output
=GP the directory with thesis images
_BachelorsThesis.tex........... the BTEX source code of the thesis
_BachelorsThesis.pdf.......... the Bachelor’s thesis in PDF format
mybibliographyfile.bib..........ccoouunnn.... the bibliography file
FITthesSisS.CLlS vttt the IMTEX template

	Introduction
	Goal of the thesis
	Game description
	Existing games
	Parallel Kingdom
	Ingress
	Pokémon GO
	Personal projects

	Analysis
	Requirements
	Use cases
	World map
	Microtransactions
	User interface

	Design
	Actions
	Game object types
	API
	World map
	Unity
	Class design

	Implementation
	Assets and plugins
	Game scripts
	Unity-specific setup

	Testing
	Unit tests
	Integration tests

	Conclusion
	Bibliography
	Acronyms
	API
	GET /login
	POST /login/register
	GET /user
	PUT /user/die
	GET /user/inventory
	POST /purchase
	GET /location
	POST /action/buy
	POST /action/collect
	PUT /action/equip
	POST /action/kill

	Class diagrams
	Contents of enclosed SD Card

