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Abstrakt

Tato bakalářská práce je součástí větší snahy, a to udělat kód napsaný v R
spolehlivější a lépe udržovatelný. K tomu byl vytvořen nástroj pro automatické
generování testů, Genthat. Jeho cílem je trasovat volání funkcí a z těchto
záznamů následně vytvořit sadu testů. Aby to bylo možné, je nutné, aby
Genthat uměl serializovat libovolný objekt, který může funkce v R přijímat jako
parametr nebo vracet. R je funkcionální jazyk, a proto se v něm často používají
closures. To jsou funkce, které zachytávají kontext, kde byly vytvořeny. Tyto
funkce nebyly dříve v Genthatu podporovány a mým úkolem bylo přidat jejich
podporu. Mimo to jsem vylepšil i ostatní části, konkrétně serializaci výrazů a
čitelnost výsledných testů.

Klíčová slova R, generování testů, funkcionální programování, serializace
dat, Genthat
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Abstract

This thesis is a step towards a greater endeavor: making R code more reliable
and maintainable. To do that, a tool for automatic test generation called
Genthat has been developed. It captures traces of function calls and then
generates test cases from them. To do that is has to be able to serialize
arbitrary object a function may take as an argument or return as a result.
Although R is a functional language and therefore the usage of closures is
abundant, they have not been supported by Genthat. In my work, I have
implemented the serialization of closures and improved other areas, namely
serialization of language expressions and the code clarity of generated tests.

Keywords R, test generation, functional programming, data serialization,
Genthat
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Introduction

R is currently the most popular programming language in the field of data
science and statistics [1]. As these fields are gaining momentum, so is R
[2]. In the beginning, it has been used mostly by researchers1, but nowadays
it is becoming a central part of business intelligence pipelines even at large
companies like Facebook or Microsoft[4] and the demand for reliable and
maintainable R code is ever increasing.

Genthat is an open source project2 which aims to address these demands
by creating tests from observed function calls such as when function f(a, b) is
called with arguments 1 and 2, the following test is produced:

test_that("lapply2", {
expected <- 3L
expect_equal(f(1L, 2L), expected)

})

To do so, Genthat must know how to serialize the argument values so that
they can appear in the tests. Prior to my thesis, Genthat was not able to
serialize functions and therefore functions taking other functions as arguments,
which is a common pattern in R and functional languages in general.

Goal

The goal is to be able to trace any call to a common function like lapply2[5],
which accepts a function and applies it to a list. It is not as easy to do as it
may seem, because functions in R have a scope (environment) they enclose,
their bodies has to be serialized from their ASTs and they may call other
closures found in their search paths.

1The precursor of R language, the S language has been developed at Bell Laboratories [3]
2https://github.com/prl-prg/genthat
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lapply2 <- function(x, f, ...) {
out <- vector("list", length(x))
for (i in seq_along(x)) {

out[[i]] <- f(x[[i]], ...)
}
out

}
values <- list(10L, 20L, 13L, 15L, 18L)
mod <- 13L
lapply2(values, function(x) (x + 5) %% mod)

And generate the following test case:

test_that("lapply2", {
expected <- list(2L, 12L, 5L, 7L, 10L)

values <- list(10L, 20L, 13L, 15L, 18L)
mod <- 13L

expect_equal(lapply2(values, function(x) (x + 5) %% mod),
expected)↪→

})

Thesis organization

Chapter 1 describes all the nuances of the R language which are relevant in
the context of Genthat and this thesis. The most important parts are about
evaluation of expressions in R and how it searches for variables in the search
path. The following chapter 2 is a brief overview of how the Genthat package
works. Chapter 3 describes the work of my colleague which I have build upon
and the following chapters 4 and 5 describe the problems I have solved as a
practical part of my bachelor’s thesis.

Code samples

This thesis includes many short code examples, typically in R. They may be
just pieces of R code without output:

lapply(numbers, function(x) x %% n)

Or they may be written in a form of a snippet from execution of the R repl
(Read-eval-print loop is a shell used for interactive programming which takes
user input line by line, executes it and returns the result. The repl snippets
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Genthat as a way towards an alternative R implementation

are recognizable by > in front of the lines, that represent user input. Lines
that are not prefixed by > represent output from the last executed statement.

> exp <- function(e) pryr::sexp_type(e)
> exp(f)
[1] "CLOSXP"

First two lines are inputs and the third is an output. It is a vector containing
one element "CLOSXP". Because R indexes items from one, the index in the
brackets is one. Pryr package[6] is often used for printing R structures of
properties.

Genthat as a way towards an alternative R
implementation

R’s main advantage over competing products is its vast repository of existing
packages. On the other hand, the main disadvantage of R is its slowness as [7]
states: “In the Shootout benchmark R is on average 501 slower than C and 43
times slower Python. Benchmarks where R performs better, like Shootout’s
regex-dna (only 1.6 slower than C), are usually cases where R delegates most
of its work to C functions.” There have been many attempts to write a faster
interpreter for R.

While the alternative implementations of R like FastR3 or Renjin4 are
indeed faster [8], but they lack the backwards compatibility with all the
existing R code5.

The problem with R is that it does not have a specification6 that would be
compulsory for all the implementations to abide by. The official implementation
of R, the CRAN-R is often called a referential implementation and if full
language specification was ever made, it would describe the behavior of CRAN-
R. We can compare this situation with JavaScript, which is also a dynamic
interpreted language, but has a formal specification called ECMAScript[9].
Even though every browser has its own implementation of JS interpreter, works
with any existing JS code, that is compliant with the ECMAScript specs. In
the JavaScript world, this has enabled competition who would became the
fastest between browser vendors.

Genthat may be used to generate as many test cases for existing R code
as possible, so these tests could be used to verify whether the alternative
implementations of R (like FastR) are going to work correctly with existing

3https://github.com/graalvm/fastr
4https://github.com/bedatadriven/renjin
5Renjin has it’s own package repository at http://packages.renjin.org and it is just a

subset of CRAN repository, with many packages having their tests failing.
6As of writing this thesis there is only a draft of the specification available
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R codebases and most importantly work with existing packages from CRAN
repository7[10].

7https://cran.r-project.org/
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Chapter 1
Introduction to R

This chapter describes all the features of R required to understand the content
of this bachelor’s thesis. It also describes some of the advanced concepts of
R that are useful to understand in order to be able to think in R from a
perspective of a programmer and not just a user.

1.1 Objects

Working with data in R is done using objects, they are specialized data
structures, that abstract the user from working directly with the computer’s
memory. Objects can be used via symbols or variables they are bound to [11].

All the relevant data types for this thesis can be found in table 1.1. The
first column of the table shows the data type as returned by the R’s typeof
function, second column is SEXP type - structure that R uses to represent the
object internally and how it is seen when accessing R objects from C.

1.1.1 Vectors

Vectors represent basic data types in R, they are also called atomic vectors,
because they can contain only items of basic (atomic) types: logical, integer,
double, character, complex and raw8. All items inside a vector must be of the
same type, hence vectors are referred to as monomorphic or homogenous data
types [5]. Every item of a vector can be referred via its index and we can easily
iterate over a vector’s items.

R does not have any “scalar” types. Single values are represented by vectors
of length one.

8Complex and raw types differ from the rest as they cannot exist inside an unevaluated
language expression. They are only mentioned for completeness and are otherwise unimportant
for this thesis.
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1. Introduction to R

Table 1.1: Data types in R

Type SEXP type Description
NULL NILSXP Null value
Symbol SYMSXP Name of a variable or an arbitrary symbol in

a language expression.
Pairlist LISTSXP Structure containing arguments in function

declaration.
Closure CLOSXP Closure
Environment ENVSXP Environment
Promise PROMSXP Language expression with an environment in

which it should evaluate.
Language LANGSXP Language expression
Special SPECIALSXP Internal function that does not force evalu-

ation of its arguments.
Builtin BUILTINSXP Internal function that does force evaluation

of its arguments.
Logical LGLSXP A vector of Boolean values.
Integer INTSXP A vector of integers.
Double DBLSXP A vector of real numbers (doubles).
Character STRSXP A vector of characters, also referred to as a

string.
List VECSXP A list (also called recursive vectors).
Expression EXPRSXP A vector of language expressions.
. . . DOTSXP Triple dots representing arbitrary number of

arguments in function. declaration

To create a vector, we use the c function as shown in the example. c means
concatenate and we can think about the c calls as a concatenation of objects
passed into in. In the following examples, they are all length 1 vectors.

> c(1, 2, 3, 4)
[1] 1 2 3 4

We can use typeof function to see the data type.

> typeof(c(1, 2, 3, 4))
[1] "double"

It may be surprising that R returned double and not integer. This is
because the implicit type of numbers in R is double9 and to get a vector of
integers, we have to suffix the values with L.

9(It is usually an integer in most programming languages.)
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1.1. Objects

> typeof(c(1L, 2L, 3L, 4L))
[1] "integer"

1.1.1.1 Coercion of atomic types

Another aspect of vectors is type coercion. That means that when values of
distinct types are passed to c, R would not show an error because vectors are
monomorphic, but instead it coerces all the passed values into the most flexible
type. For example, if we try combining integers and real numbers, we get a
vector of doubles, because we can take any integer and represent it as a double,
but not the other way around (hence double is more flexible than integer).

> typeof(c(1L, 2, 3, 4))
[1] "double"

We can easily coerce logical values to integers, integer to doubles and
doubles to strings. That means if any of the value passed to c is a string (and
the rest logical, int and doubles), we get a vector of strings.

1.1.2 Lists

Lists are made of items, each of which can be of different R type. That means
lists are heterogenous (also called polymorphic) data structures[5]. Lists can
be used to store data types, which cannot be stored in vectors, like functions
or other lists. Lists are also called recursive vectors, because they can contain
other lists. To create a list, we use the list function.

> list(1, list(2, "3"))
[[1]]
[1] 1

[[2]]
[[2]][[1]]
[1] 2

[[2]][[2]]
[1] "3"

1.1.3 Language expressions

Language objects represent unevaluated parsed R code. Their form is an AST
(abstract syntax tree) which is made of four different node types: calls, names,
constants and pairlists. Although R has a special type called expression (that
behaves like a list of language objects), when the word expression is used, it
refers to the language expression (This follows convention from [5]).

7
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Language objects enable us work with the expressions themselves (the
parsed R code) and not just its result. The distinction should be obvious from
this example:

> y <- 1
> x <- y + 2
> x
[1] 3

Variable x contains the result of an expression y + 2. This expression
is evaluated immediately when it is assigned to x, so x never contains the
expression, only the result.

> y <- 1
> x <- quote(y + 2)
> x
y + 2

Encapsulating the expression in a quote function call, preserves the ex-
pression and does not evaluate it. We can now say that x contains a quoted
expression[5] of y+2 to emphasize that the expression is not evaluated.

Having the expression itself and not just the result enables us to perform
computation on the language itself (also called metaprogramming), as we are
able to modify the expression during runtime of our program or evaluate it in
arbitrary environment.

1.1.4 Function objects

In R, you can work with functions as with any other objects, they can be
assigned to variables or passed and returned from other functions. A function
in R has three basic parts: formals, body and environment.

Formals is a list of argument names and their default value. Ellipsis (. . . )
used as an argument name have a special semantics as they represent ability
to accept arbitrary number of arguments.

Environment is a reference to the environment where the function should
look for values of symbols that are not arguments or local variables. It is also
called an enclosing environment or a captured environment. Function with a
captured scope (environment) is a closure, so in R every function except for
special and builtin functions is a closure.

In it is R possible to read and modify all three parts of a function.

1.1.4.1 Builtin and special functions

Both types represent built-in functions in R, which are core functions of
R implemented in C. They do not have any body, formals or environment

8



1.1. Objects

associated with them, because they do not contain any R code. The difference
between builtin and special is how they evaluate their arguments. Special
functions do not force evaluation of their arguments, builtins do.

For example the already mentioned quote function is a special object,
because it needs to work with the unevaluated expressions.

> typeof(quote)
[1] "special"

The example of builtin function can be a plus operator, that requires its
arguments to be evaluated, because we want to compute the addition of two
numbers and not the symbols that may be contain the values.

> typeof(`+`)
[1] "builtin"
> a <- 1
> b <- 5
> quote(a + b)
a + b
> a + b
[1] 6

1.1.5 Promises

Promise is a special object, that encapsulates an R expression, which gets
lazily evaluated. That means it is not evaluated when assigned to a variable,
but when the variable gets read for the first time, the expression gets evaluates
and then the result is cached. All the subsequent reads of the variable just
return the cached result. The act of evaluating a promise for the first time is
called forced evaluation [11].

Because the contexts when promise is created and when it is called for
the first time may differ, there is also an environment associated with it. The
environment tells the promise object in which environment it should evaluate
the encapsulated expression.

When a function is called its arguments are matched and then each of the
formal arguments is bound to a promise (for functions supporting arbitrary
number of arguments also all of the unmatched names are bound to the
promises). The expression that was given for the specific argument and a
reference to the environment the function was called from are stored in the
promise [11]. The reason behind this behavior is that now a function can decide
whether it will work with the value or the expression passed to it. To extract
the expression of the promise R has the function substitute, which returns a
language expression. Working with arguments by using their expressions and
not values is called a non standard evaluation [5].

9



1. Introduction to R

There is one more way to create a promise except when passing argument to
a function and that is by calling function delayedAssign instead of using assign
or assignment operator <- when binding variable and its value/expression.

Following example shows simple function f, that accepts two parameters
a, b, but only works with b. Therefore a never gets evaluated and even if we
pass unexisting variable for a it does not show an error.

> f <- function(a, b) b
> f(notFound, 10)
[1] 10
> f(10, notFound)
Error in f(10, notFound) : object 'notFound' not found

1.2 Environments

Understanding of environments is a precursor to understanding the more
advanced topics in R and it is essential to grasp their meaning in order to
reason about computing on the language itself and tracing the function calls
that Genthat is all about.

1.2.1 Structure of an environment

As mentioned previously environment is where the promises get evaluated and
where R finds stuff. Environment is a data structure that enables scoping in
R. It is comprised of a symbol-value pairs and a reference to the parent envir-
onment. Sometimes the symbol-value pairs are also called the environment’s
frame. When R looks up a symbol value in an environment it first checks the
symbol-value pairs and if it is not found there, it recursively continues the
search to the parent environment until the symbol is found or the empty envir-
onment is reached. Empty environment represents the end of environments
hierarchy and has no parent.

1.2.2 Parent environment

Every environment contains a reference to a parent environment (also called
an enclosing environment). In the following scenario e1 is the parent of e2
(visualized with the dashed arrow).

10



1.2. Environments

When we try to evaluate the symbol x in e2 we receive the value 20 from
the parent environment. But it doesn’t work the opposite way – e1 does not
know about e2’s existence and therefore we cannot get the value of y from it.
The hierarchy of environments where we look for the symbol is also called the
search path [11].

> eval(quote(x), e1)
[1] 20
> eval(quote(x), e2)
[1] 20
> eval(quote(y), e1)
Error in eval(expr, envir, enclos) : object 'y' not found
> eval(quote(y), e2)
[1] "HI"

1.2.3 Environment hierarchy

The previous example was really simplistic, when R repl starts up or an R
script is executed, the execution begins in the global environment (named
.GlobalEnv), that already has a hierarchy of parent environments. They can
be printed by calling the search function.

> search() # prints current search path
[1] ".GlobalEnv" "package:stats" "package:graphics"
[4] "package:grDevices" "package:utils" "package:datasets"
[7] "package:methods" "Autoloads" "package:base"

This is how the hierarchy looks like (bindings from symbols to values are
omitted for brevity):

11



1. Introduction to R

All the package environments represent loaded packages, which are available
to use for the running R code. Every call to library(packageName) adds a
package:PackageName environment into the search hierarchy just after the
global environment.

Inside the package:stats environment there are symbols lm, sd and in
the package:base there is the left bracket and c function. All of these are R
functions and because they are in the search path from the beginning, they can
be used without manually loading any packages. The emptyenv() represents
empty environment, that has no parent nor any symbols in it.

1.2.4 Binding and enclosing environments

It has been already mentioned that every function has an environment it
encloses and every variable is bound in an environment. To get a better
perspective of it, here is a simple example of a function that is bound in the
global environment and also encloses it.

> x <- 1
> f <- function() x

> environment(f) #prints the enclosing environment of f
<environment: R_GlobalEnv>

1.2.5 Package environments

Values can have more than one binding environment and R uses that for
functions that are exported (made public) from packages. All the exported

12



1.2. Environments

Figure 1.1: Example hierarchy of environments in R

functions are bound in the package:packageName environment. There are an-
other two environments that R creates for each package: package:namespace
environment and imports environment. Namespace environment binds all the
functions of the package (not just the exported ones) and its parent is the
import environment for the package. The import environment binds all the
exported symbols from the dependent packages.

The following example 1.1 shows the environment hierarchy after the
Genthat package has been loaded. Genthat depends on the codetools
package[12], so its exported functions are also bounded in its imports en-
vironment, but the enclosing environment of findGlobals is still the same
– it’s the namespace:coodetool environment. The last unmentioned envir-
onment is namespace:base. Namespace:base contains binds for allexported
functions in the package:base and its parent environment is .GlobalEnv and
all the imports environment encloses it.

1.2.6 Execution environment

When a function is called a new environment is created for its run. At first all
the arguments are copied to it in a form of promises and its parent environment

13



1. Introduction to R

is set to the enclosing environment of the function. Every local variable the
function declares also goes to its execution environment. After the function is
finished, the execution environment goes away unless there is a closure that
captures is and escapes (e.g. by being returned from the function).

1.2.7 Calling environment

R also has a special term for the environment from which the function was called:
the calling environment. The most important thing about this environment
is that arguments (passed in the form of promises) are evaluated in this
environment. They are bound in the newly created execution environment of
the called function, but evaluated in the calling environment.

1.3 Scoping

Scoping tells us how and where R looks for values of different symbols.

1.4 Lexical scoping

When a function needs a value of a symbol that is not an argument or a
local variable, it uses lexical scoping. That means R looks into the enclosing
environment and then its parent environments.

There are two rules that are essential about lexical scoping:
It distinguishes between variables and functions, so assigning a value to symbol
c, does not break the subsequent calls to the function c.

> c <- 10
> c(c)
[1] 10

Second is that the lookup is dynamic, if a function references a symbol
from the enclosing scope and the value of the symbol changes between two
calls of the function, it returns two different results.

> add5 <- function() c + 5
> add5()
[1] 15
> c
[1] 10
> c <- 100
> add5()
[1] 105

14



1.5. Closures

1.4.1 Dynamic scoping

Dynamic scoping means looking up variables in the calling environment instead
of the enclosing environment. Function can get the calling environment by
calling parent.frame() and when it evaluates an expression in it, it is said
it uses dynamic scoping. If the calling and enclosing environments are the
same, we get the same result as if lexical scoping is used. But this is not very
typical. Usually dynamic scoping is used by functions that are exported from
a package (so their enclosing environment is not our calling environment) that
either manipulate or look into the environment from which they were called
from.

1.5 Closures
Although every function that has an environment associated with it is a closure,
the name closure is often used just for functions returned from another function
(and therefore enclosing the execution environment of the parent function)
[5]. It is not considered good practice to reference variables from the global
environment [5], on the other hand capturing the execution environment of
parent function can be beneficial as it enables us to create factory functions
and to manage the mutable state.

1.5.1 Factory functions

Factory functions are functions, that create a function based on the arguments
passed to it. They are useful when regular function would require many
arguments, that would be the same across different calls or when they use
some of the arguments for initialization, that needs to be done only once and
can be expensive in terms of I/O access or CPU time. Following example is
intentionally simplistic only to describe this pattern and does not represent
best practice when it should be used.

Mod adder is a factory function for creating add functions in modular
arithmetic. It returns a new function that takes two operands (a, b) and
adds them in the specified module mod.

> mod_adder <- function(mod) function(a, b) (a + b) %% mod
> add5 <- mod_adder(5)
> add13 <- mod_adder(13)

The bodies of both closures add5 and add13 are the same, but their
environments differ.

> add5
function(a, b) (a + b) %% mod
<environment: 0x000000001d22aeb0>
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1. Introduction to R

> add13
function(a, b) (a + b) %% mod
<environment: 0x000000001d1fb9d0>

The captured execution environments contain the mod argument passed to
the original factory function.

> ls.str(environment(add5))
mod : num 5

1.5.2 Managing the mutable state

In R functions can modify (mutate) variables in their enclosing environment
by calling the scoping assignment operator <<-. When mutating variables in
the enclosing scope (e.g. the global environment) there is a risk that another
function may mutate the variable we are using to store the function’s state and
thus inadvertently affect the execution of our function. Closures solve this by
encapsulating the state in the captured execution environment of the parent
function. Following example shows a simple modular counter.

> mod_ctr <- function(mod) {i = 0; function() {i <<- (i + 1) %%
mod; i}}↪→

> ctr3 <- mod_ctr(3)
> ctr3_2 <- mod_ctr(3)
> ctr3()
[1] 1
> ctr3_2()
[1] 1
> ctr3_2()
[1] 2
> ctr3_2()
[1] 0
> ctr3()
[1] 2

The example shows, that the state of the both counters is isolated and
cannot be inadvertently mutated by another function call.
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Chapter 2
Genthat

2.1 Genthat’s usecase
Genthat may help package creators with the adoption of unit testing inside
their packages. Many packages in the CRAN repository usually have a sample
of their usage in files called vignettes. These vignettes are in the RMarkdown
format and contain code snippets describing how to use the package. We could
use the snippets to generate tests for the package and then the author may
include them with the other unit tests for the package to make sure he has not
broken any of the package’s main functionalities before he submits an updated
version to the repository.

2.2 How Genthat works

2.2.1 Function decoration (instrumentation)

First step in order to generate tests is to decorate the functions we want
to generate the tests for. This is done using the decorate_functions call.
Functions can be decorated individually or in bulk when using the package
argument to decorate all the functions inside a package

1. Decorate a single function.

>decorate_functions("fn1")

2. Decorate all the functions a package exports.

>decorate_functions(package = "somePackage")

3. Decorate all the functions in a package including non-exported ones.

>decorate_functions(package = "somePackage", include_hidden
= TRUE)↪→
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The decorate_functions instruments the functions by creating a new
body containing first the Genthat’s instrumentation code and then the original
body, it also adds a trigger to the on.exit hook, which runs every time
the function execution is finished. The body of the original function is then
replaced by the newly created one.

The code in the functions’ beginning handles the tracing of their arguments
and the on.exit trigger traces the returned value.

2.2.2 Tracing the function calls

After the function has been decorated, every call to it is captured and creates
a trace. When the trace is created all of its content is serialized in a way that
makes it easy to generate tests from it.

2.2.3 Serializing R structures into R code

There are few ways how to serialize objects in R. The first is by calling the
serialize function in R. This supports serialization of any R object, but
the downside is that it serializes it into a binary format. Using this for test
generation is not an option, because we want the tests to be as readable as
possible. Another option is serializing to JSON/XML or any typical data
exchange format. They are suitable for their readability and that people are
familiar with them. The downside is that these serializers do not support
serialization of arbitrary R objects, they support only the basic data types R
uses for working with data (lists, vectors, data.frames. . . ).

Genthat went with custom serialization written in C++, that serializes
R objects into the R code. It is not typical, but it satisfies the condition of
serializing arbitrary R object, making human readable output and generating
tests that would be easily editable.

There are two different methods to serialize R objects: serialize_r and
serialize_r_expr. The second method is used for serializing language expres-
sion objects in R that are in a context where they do not have to be enclosed in
quote function, typically arguments of a function call. Serialize_r is used in
all other cases and it only calls serialize_r_expr when it needs to serialize
a nested language expression or an item in a pairlist.
Serialize_r_expr is also simpler, because some types cannot exist inside a
language expression (e.g. complex numbers) and all the vectors have length 1.

2.2.4 Test generation

After the trace has been serialized, it is in a form from which tests can be
made easily. Function get_tests generates tests into an output directory. It
creates one file per test case and one test case per trace.

gen_tests(output_dir = "./genthat_tests")
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2.2. How Genthat works

The generated tests use package testthat[13], that uses syntax that is
accessible and understandable even for novice users. Each test is wrapped
in a test_that function and for assertion functions with clear names like
expect_identical or expect_equal are used.

For example for function call add13(5L, 10L) of function add13 from the
chapter 1.5.1 Genthat would generate the following test:

test_that("add13", {
expected <- 2L

expect_equal(add13(5L, 10L), expected)
})
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Chapter 3
Serializing arguments as

expressions

This chapter describes work of my colleague Filippo Ghibellini on serializing
arguments as expressions and because I have built my work on top of it, it is
essential to briefly describe it.

Genthat originally serialized only the forced values of arguments. For
function call with one variable in it:

x <- 10
f(x)

Genthat would serialize this as f(10). From the function’s point of view this
is the same, as long as the function is referentially transparent. Referentially
transparent function behaves the same if we replace its arguments by their
values. f(10) must be the same f(x). But referential transparency does not
hold for functions that use non-standard evaluation. Example may be the
hist function. The following call takes 1000 samples from normal distribution
and prints its histogram as figure 3.1 shows.

x <- rnorm(1000)
> hist(x)

As shown in 3.1 R used both the value and the expression x to print this
chart. If we would take the value of x and substitute it directly into the hist
call, the resulting chart is the same, but title and x axes label do not make
sense, as figure 3.2 shows.

This is caused by hist being referentially opaque (opposite of referentially
transparent) and although the values are the same, the expressions that
created them differ and hist accesses both the value and expression for the
first argument and it prints different labels for different expressions.
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3. Serializing arguments as expressions

Figure 3.1: Result of calling hist with expression x

Figure 3.2: Result of calling hist with vector of values instead of expression x
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For correct serialization of functions like this, Filippo devised, that Genthat
would be tracing both the expressions passed as argument and all the values
of variables contained in those expressions.

3.0.1 Capturing arguments in decorated functions

When function is decorated, its code gets instrumented and genthat’s code is
inserted before its original body and into the on.exit handler.

The code inserted in the beginning is responsible for capturing expressions
of arguments. It first gets the whole function call (by calling the sys.call())
function in form of a list. First item of the list is the name of the function,
subsetting the list by -1 removes it. This returns the arguments as unevaluated
expressions. By serializing the call_args variable we are able to recreate the
function call later when generating tests.

call_args <- as.list(sys.call())[-1]

Second to serialize all the values for variables and functions, we must
extract all the symbol names from the expressions.

exprs <- as.character(c(lapply(call_args, all.names), recursive
= TRUE))↪→

Then the symbol names are filtered, because they contain parenthesis,
operators, keywords and other stuff that we do not have to serialize and are
always available in R. Note: This filtering is not sufficient to cover all cases
where we do not have to capture the variable value. For example it does
capture variables from packages, which is not necessary. An improved filtering
of names is development as of finishing this thesis.

filter <- function(x)!(x %in% genthat:::operators || x %in%
genthat:::keywords)↪→

exprs <- unique(Filter(expr_ filter, exprs))

Then we have to get all the values for the filtered names. Genthat uses
dynamic lookup for it, because the expressions are bound in the calling envir-
onment (returned by parent.frame() function).

elem_vals <- lapply(exprs, function(name) get(name,
parent.frame()))↪→

names(elem_vals) <- exprs

The variables call_args and elem_vals are then used to create the trace
of the function call. Later when generate_tests function is called, the trace
is used to create the test case for the function.
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3.0.2 Test generation

For simple example of test generation using the improvements mentioned in
this chapter we are going to use a modified version of function add13 from the
chapter 1.5.1. The modified version prints the expressions a and b passed to
it, followed by the result.

add13p <- function(a, b){
print(paste0(deparse(substitute(a)), " + ",

deparse(substitute(b)), " = ", (a+b) %% 13))↪→

}

Substitute function takes the function argument and replaces it with the
expression passed into the function call. Deparse function takes a language
expression and prints it as a string.

>gentgat::decorate_functions("add13p")
> a <- 5L
> b <- 15L
> add13p(x, y)
[1] "x + y = 7"

Function add13 is decorated, so the call is traced and the trace contains
both the arguments expressions and their values:

[1] "list(call=list(\"x\",\"y\"), vals=list(x=5L,y=15L),
cls=list())"↪→

Calling the Genthat’s function gen_tests transforms it into the following
test case:

test_that("add13", {
expected <- "x + y = 7"

# variables used in arguments
x <- 5
y <- 15

expect_equal(add13p(x, y), expected)
})

As shown above, Genthat is now able to capture calls of functions which
use non standard evaluation, capture both the expressions for arguments and
the values for all variables referenced in them. The resulting test generated is
as close as possible to the original function call and is easily readable.
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Chapter 4
Serialization of language

expressions

4.1 Previous state

Genthat already supported serialization of simple language expressions, but
before we went from forcing the function arguments to not forcing them they
were not the main focus, because they would only be used in two scenarios:
first when quoted language expression and second when formula was passed to
the function.

> f <- function(exp) typeof(exp)
#quoted language expression
> f(quote(a + b))
[1] "language"

#formula
> f(a ~ a + b)
[1] "language"

But when we started to handle all arguments as expressions, the scope of
usage has broadened and some improvements had to be done so we would be
able to serialize as many language expressions as possible.

4.2 Structure of language expression in R

Laguage expression in R is represented by its AST (abstract syntax tree) and
we can use the ast() function from pryr package to print it [5].
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4. Serialization of language expressions

> pryr::ast(a <- f(x) + b)
\- ()

\- `<-
\- `a
\- ()

\- `+
\- ()

\- `f
\- `x

\- `b
The tree consists of four possible node types: constants, names, calls and

pairlists.

4.2.1 Constants

Constants are atomic vectors with length one. They are directly represented by
their values, because R optimizes the AST and does not store the expressions
that creates constants. Types mentioned in table 4.1 are represented as
constants in the AST.

Table 4.1: Constants in language expressions

Type SEXP type Example values
Null value (NILSXP) NULL
Logical values (LGLSXP) TRUE, FALSE, NA
Integers (INTSXP) -1L, 5L, . . . , NA_integer_
Real numbers (REALSXP) 1, 1.1, 5, . . .
Strings (STRSXP) "a", "world", . . .

> pryr::ast(NULL)
\- []
> pryr::ast(TRUE)
\- TRUE
> pryr::ast(1L)
\- 1L
> pryr::ast(1)
\- 1
> pryr::ast("a")
\- "a"

Because constants are represented directly by their values, the quoted
expressions that creates them and their values are identical.

> identical(1, quote(1))
[1] TRUE
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4.2. Structure of language expression in R

> identical("a", quote("a"))
[1] TRUE
> identical(TRUE, quote(TRUE))
[1] TRUE

4.2.1.1 Real constants

When working with real numbers10 this means that we could lose precision
when extracting numbers from the AST, the internal representation of numbers
uses float arithmetic and therefore its precision is limited.

The first example shows number 0.1 (number that does not have terminate
decimal expansion in binary base) first as entered by the user "0.1" and then
how R stores it internally (imprecise after first seventeen decimal places).

> sprintf("%.20f",0.1)
[1] "0.10000000000000000555"

> sprintf("%.40f",3.5)
[1] "3.5000000000000000000000000000000000000000"

To work around the differences in precision for different numbers and
therefore possible loss in accuracy when serializing them, Genthat serializes the
binary values of the numbers and then recreates the numbers from them and
not from their textual representation. Because the binary format is unreadable,
I have added the textual representation in the comment that’s part of the
trace.

The number 0.1 gets serialized as:

> genthat:::serialize_r(0.1)
"readBin(as.raw(c(0x9a,0x99,0x99,0x99,0x99,0x99,0xb9,0x3f)),

n=1, \"double\") #0.1\n"↪→

4.2.2 Names

Names are also called symbols in the AST they represent everything that is not
a constant, call or a pairlist, so function names, keywords, variable identifiers,
operators, etc.. . . are all represented by name nodes.

In the output of the ast function they are prefixed with a backtick.

> pryr::ast(x)
\- `x
> pryr::ast(fx)
\- `fx

10In this thesis the numbers that would get serialized into binary form are for readability
purposes presented in their textual form (e.g. 0.1)
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> pryr::ast(`+`)
\- `+
> pryr::ast(`for`)
\- `for

4.2.3 Calls

Function calls are represented by call nodes. They start with pair of parenthesis
followed by the function name (represented by a name node) and then all the
arguments passed in the call.

> pryr::ast(func(a=1,b))
\- ()

\- `func
\- 1
\- `b

4.2.4 Argument names

As shown in the previous repl output, the argument name a is missing from
the ast printout. Internally argument names are attached to the argument
value using the TAG pointer [11].

> .Internal(inspect(quote(f(a=1, b))))
@0x0000000004ca6a98 06 LANGSXP g0c0 [NAM(2)]

@0x000000001babd318 01 SYMSXP g1c0 [MARK,NAM(2)] "f"
TAG: @0x000000001bac0 a8 01 SYMSXP g1c0 [MARK,NAM(2)] "a"
@0x0000000004c93498 14 REALSXP g0c1 [] (len=1, tl=0) 1
@0x000000001c082d90 01 SYMSXP g1c0 [MARK,NAM(2)] "b"

4.2.5 Pairlists

The only place where pairlists are used are the formals in a function declaration.
They can contain constants, names or calls and ast denotes them with a pair
of brackets.

> pryr::ast(function(x) 1)
\- ()

\- `function
\- []

\ x =`MISSING
\- 1
\- <srcref>
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The MISSING value next to x tells us that x does not have any default value
and the last node called srcref is an attribute that contains structure with
references to the source files of the function.

4.3 Improvements in serialization of language
expressions

Although the serialization of language expressions had already been implemen-
ted before writing this thesis, I made many improvements to it, so the existing
implementation would adapt to the changing requirements of Genthat and
generally expand the possibilities of which function calls Genthat can trace.

4.3.1 Support for tilde operators

Language expression serialization in Genthat supported just a few basic infix
operators (+, -, *. . . ). Serialization of tilde operator (∼) used to end up with
tilde being called as a function. Tilde is a special operator in R, because forcing
an expression with it, does not force its values. Expressions containing tilde
are called formulas.

#formulas – original serialization
> serialize_r (a ~ a + b)
[1] "quote(`~`(a, a + b))"

#formulas – fixed serialization
> serialize_r (a ~ a + b)
[1] "quote(a ~ a + b)"

4.3.2 Optional serialization of values of symbols from
language expressions

For calls like:

f(a + b)

Genthat records separately the language expression ( a + b ) an the values
of a and b. Previously both a and b had to be present in the calling environment
of f, otherwise serialization would end up with error. When function that
works with formulas is called, it usually does not look up the values of the
symbols in the calling environment, but in the dataframe passed along the
formula as in the following example:

> lm(speed ~ dist, cars)

Call:
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lm(formula = speed ~ dist, data = cars)

Coefficients:
(Intercept) dist

8.2839 0.1656

Both symbols speed and dist are found in the cars data frame, so lm
never looks for them anywhere else. And there is no need for Genthat to
serialize them. Another situation arises when some symbols are from the data
frame and others come from the calling environment:

> distance = cars$dist
> lm(speed ~ distance, cars)

Call:
lm(formula = speed ~ distance, data = cars)

Coefficients:
(Intercept) distance

8.2839 0.1656

We cannot generally say whether lm (or any other function) would look for
the symbols in the calling environment, or it would look for them somewhere
else, or not look for them at all. This is a combination of passing arguments
as promises and nonstandard evaluation in R. And because any function can
use these and there is no simple way to determine that, we cannot require
recording of value of every symbol found inside the language expression, but
we can only try to record them when they are found and when we do not find
them, we assume that the function is not going to look them up in the calling
environment and Genthat no longer raises an error when this happens.

4.3.3 Serialization of function declaration

Serialization of function declaration is used when a lambda function is passed
into the decorated function or when quoted language expression contains
function declaration.

Passing a lambda function as an argument:

f(function(a, b) a + b)

Using quoted language expression containing function declaration:

fx <- quote(function(a, b) a + b)
f(fx)
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The abstract syntax tree for both expressions:

> pryr::ast(function(a,b) a+b)
\- ()

\- `function
\- []

\ a =`MISSING
\ b =`MISSING

\- ()
\- `+
\- `a
\- `b

\- <srcref>

As shown above, the function declaration is internally represented as any
other function call, the only difference is that the first symbol is called function
and its first parameter is a pairlist. The second parameter is in this case a call,
but it could be just a name or constant. Previously this AST would serialize
to an invalid function call:

function(pairlist(a, b), a+b)

But this is not a way a function can be constructed in R, I had to improved
it so it would be serialized back to the same form as is the entered expression.
It required adding a conditional branch for handling functions, so its second
argument is not inside the brackets, but behind them and fixing the serialization
of nested pairlist. The result for the mentioned AST is this:

"function(a, b) a+b"

If we parse and evaluate the serialized value we get back the original
function:

> eval(parse(text="function(a,b)a+b"))
function(a, b) a+b

4.3.3.1 Serialization of nested pairlists

Nested pairlist differs from the regular pairlist just by being enclosed inside
a language expression. The only place it can be found in a well-formed AST
is inside a function declaration. The practical distinction is in the serialized
form. The nested pairlist would never be parsed individually, but only inside
a function declaration. The pairlist from the following AST gets serialized
just as x, y, so we can concatenate it with the rest of the serialized function
declaration.
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> pryr::ast(function(x, y) 1L)
\- ()

\- `function
\- []

\ x =`MISSING
\ y =`MISSING

\- 1L
\- <srcref>

4.3.4 Serialization of pairlists

Standalone pairlist has to be serialized as a string containing R expression
that recreates the original pairlist object, so it could directly be assigned to a
function’s formals after it is parsed and evaluated.

To be able to do that, I have implemented serialization that creates a
function call to alist with the original arguments. alist is an abbreviation
of “argument list”. It returns a list, but does not evaluate its arguments and it
is also possible to omit the values that should be assigned to the names. By
doing so it creates a name with a missing value (In the context of function
declaration this represents a function argument with no default value). The
following two expressions are identical:

> a <- alist(a = )
> b <- list(a = quote(expr= )) #quote(expr= )) creates a missing

value↪→

> identical(a, b)
[1] TRUE

Not having to quote the arguments makes alist’s calls much more readable:

> a <- alist(a = b + c, `...` = ) #... represents function takes
any number of arguments↪→

> b <- list(a = quote(b + c), `...` = quote(expr = ))
> identical(a, b)
[1] TRUE

The same pairlist that would get serialized just as a, b as a nested pairlist
gets serialized as a alist call when standalone:

> f <- function(a, b) a + b
> genthat:::serialize_r(formals(f))
> plist <- genthat:::serialize_r(formals(f))
> plist
[1] "\"alist(a = , b = )\""
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When we parse (we have to call it twice, because after the first call we still
get string due to the escape double quotes in the plist variable) and evaluate
it, it can be assigned back to the original function’s formals and we verify, that
it works:

> formals(f) <- eval(parse(text=parse(text=plist)[[1]]))
> f(10, 5)
[1] 15

4.3.5 Serialization of block expression

Block statements are another type of call, that we have to handle it separately
from regular functions. The ast is the same as for any other function call.

That means I had to introduce another branching into the logic of LANGSXP
serialization and for block statements the serializer emits the following output.

> genthat:::serialize_r(quote({x <- 1L; x}))
[1] "{x<-1L;\nx}"

4.3.6 Serialization of nested language expressions

The difference between serialization of a nested language expressions and a
standalone language expression is that a standalone language expression must
be enclosed in quote call, otherwise R would force evaluation on it after it is
deserialized. But this enclosing is required only for the highest level of the
expression’s ATS and not for the nested sub-expressions.

Previously Genthat couldn’t serialize nested call expressions (that includes
nested function declaration, nested blocks. . . ) and because of that handled
only very simple expressions like binary expressions or function calls with only
names and constants inside them.

I’ve taken the logic from the serializer of standalone call expressions,
simplified it and reused it when serializing recursive calls.

In exp variable we have four nested calls and we use pryr::call_tree to
print it (it functions the same as pryr::ast, but does not use nonstandard
evaluation).

> exp <- quote(c ~ b + c(10L, c(20L, 30L)))
> pryr::call_tree(exp)
\- ()

\- `~
\- `c
\- ()

\- `+
\- `b
\- ()
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\- `c
\- 10L
\- ()

\- `c
\- 20L
\- 30L

And after the improvements Genthat serializes that back into the string
with r expression we begun with.

> genthat:::serialize_r(exp)
[1] "quote(c~b+c(10L,c(20L,30L)))"

And it is identical to the language expression in exp:

> identical(exp,
eval(parse(text="quote(c~b+c(10L,c(20L,30L)))")))↪→

4.3.7 Serialization of nested logical and string values

As mentioned before in the chapter 4.2 about node types in language expression,
the constant nodes contain atomic vector of length one. This makes their
serialization easier than serializing arbitrary atomic vectors.

There has already been support for serializing integers and real numbers,
but two types of constant nodes were missing from Genthat: logical and string.
For both the implementation was fairly simple, we take the first item of the
atomic vector,then if it is NA value, we return the right format of NA for
either logical or string and return the corresponding string representation.

case LGLSXP: {
int val = LOGICAL(s)[0];
return (val == NA_LOGICAL) ? "NA" : (val == 0) ? "FALSE" :

"TRUE";↪→

}
case STRSXP: {

SEXP val = STRING_ELT(s, 0);
return (val == NA_STRING) ? "NA_character_" :

to_string_literal(CHAR(val));↪→

}

The code above is a part of serialize_r function in C++ and it shows
that R uses integers for internal representation of logical values. For strings it
calls Genthat’s internal function to_string_literal, that handles escaping
of special characters.
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4.3.8 Serialization of named arguments in function calls

Previously Genthat did not read the TAG property of the symbols which
contains the argument name (as explained in chapter 4.2.4) and supported only
positional arguments. Serialization of a function call with named arguments
used to be treated as a call with just positional arguments and that led to
generating broken tests.

In the following example imagine that f could have many optional argu-
ments and the possibility that x is the second argument is not very big.

> genthat:::serialize_r_expr(quote(f("a", x = 2L)))
[1] "f(\"a\",2L)"

This was just a minor issue and fix was easy – reading the TAG property of
each argument and if it is not null, serialize TAG name and prefix the serialized
argument value with it.

> genthat:::serialize_r_expr(quote(f("a", x = 2L)))
[1] "f(\"a\",x=2L)"

4.3.9 Example

With all these improvements implemented, we can now serialize more complic-
ated function calls. For example this call, which contains a formula, function
declaration, block expression etc. . .

fx(a ~ b | c, function(a, b) { print("a"); b <- cat(b, ";")})

And generate the following test case would be generated from it.

test_that("fx", {
# expected return value
expected <- "a"

# variables used in arguments
c <- 10

expect_equal(fx(a~b|c, function(a, b) {print("a");
b<-cat(b,";")}), expected)↪→

})
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Chapter 5
Serialization of Closures

Closures has been already mentioned many times, it has been shown what
closures are made of, how they are created, their related environments and
the chapter 4.3.3 described how anonymous closures are serialized. Closures
are serialized differently whether they are anonymous or bound to a name
(named closures). This is similar to serializing arguments as forced values or
as language expressions.

#Named closure
fx <- function (x) x + y

#Anonymous function passed as argument
g(function(x) x + y)

#Named function passed as argument
g(fx)

Both have formals, body and their (enclosing) environment and from the
R perspective they contain the same expression and do the same thing. But
without assigning a name to the closure, it is not possible to use replacement
functions to modify its environment, body and formals.

Named functions can have many different binding environments and their
enclosing environment set differently from binding environment just like it is
used in R packages. For anonymous functions the binding environment is the
execution environment of the function they are passed into and the enclosing
environment is caller’s execution environment as shown in the R repl output
below:

> f <- function(fx) list(environment(fx), ls.str(envir
=environment()))↪→

> f(function(y) 1)
[[1]]
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<environment: R_GlobalEnv>

[[2]]
fx : function (y)

Typically, anonymous functions are used only when the computation ex-
pressed by them is simple and terse and not used anywhere else. Named
functions on the other hand are usually used for everything that is going to be
reused, spans multiple lines or requires more than a few parameters.

Another reason behind the distinction of how anonymous functions and
named functions are serialized is to try two ways and see which would perform
better on the packages from CRAN and then decide which way the closure
serialization should follow.

5.1 Passing closures into higher order functions
As mentioned in the chapter 2 about the internals of genthat, when decorated
function is called, we do not force the evaluation of its arguments and we
trace the value of expressions passed into it separately from the expressions
themselves. This causes that anonymous functions and named functions are
not the same from the tracing perspective.

When an anonymous function is passed and evaluation is not forced,
Genthat gets the language expression (LANGSXP) of the whole function de-
claration, but for a named function it gets only the name of the function as
a symbol (SYMSXP). When serializing the expression, it must work with the
already forced value of the function declaration (CLOSEXP). The example below
demonstrates that:

> f <- function(fx) c(substitute(fx),
pryr::sexp_type(substitute(fx)))↪→

> f(f)
[[1]]
f

[[2]]
[1] "SYMSXP"

> f(function(y) 1)
[[1]]
function(y) 1

[[2]]
[1] "LANGSXP"
> exp <- function(e) pryr::sexp_type(e)
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> exp(f)
[1] "CLOSXP"

5.2 How closure serialization works

Because this serialization is used only for serializing named closures, it starts
when names of variables used in function’s arguments are filtered. They are
split into closures and the rest.

is.closure <- function(x) typeof(x) == "closure"
cls_exprs <- Filter(function(x) is.closure(get(x, e)),

elem_exprs)↪→

elem_exprs <- Filter(function(x) !is.closure(get(x, e)),
elem_exprs)↪→

For closures, special serialization is called and they are not serialized the
same way as rest of the variables.

The first thing that is serialized is the enclosing environment of the closure.
Closure would typically enclose an execution environment of its parent, then
the hierarchy could contain 0-n parent execution environments, then global
environments and all of the package environments from loaded packages as
shown on the diagram. The names in angle brackets do not represent names of
the environments, they are just used for making references to these environment
simpler from the text. In R they would be refered to only by the address in
the memory.

5.2.1 Possible ways of serializing the environments

There are two possible ways of serializing environments that differs in the way
they treat symbols, that exist in the enclosing environment, but we cannot
say for sure, whether the function is going to use them. Serializing the whole
hierarchy serializes them, but serializing into a simplified environment does
not.
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5.2.1.1 Serializing the whole hierarchy of environments

The serialization could start in the enclosing environment of function fx
and then continue recursively into the parent environment until it reaches
the environment of the first package and stops there. When serializing an
environment, it would serialize all the variables bound inside it and the result
would be a tree of environments, that when deserialized and evaluated would
recreate the original context of fx. This process would have to check for loops
and ensure each environment gets serialize only once. The advantage of this
approach is that it will serialize all the symbols, that function may theoretically
access, not just symbols that are referenced from its body.

5.2.1.2 Serializing subset of variables into a simplified
environment

Another way is to reuse the idea used for serializing function arguments.
Genthat could extract all the variables used inside the closure, look them up
in the environment hierarchy and then extract them to a new environment
(called simple environment) and serialize it.

The advantage of this method is that variables that are not necessary used
within the closure will not be serialized, so the tests would be both smaller
and more readable as they would not contain unused items.

5.2.2 Chosen solution

For the advantages mentioned in the last paragraph I have chosen to try the
second approach. There are few improvements to it that I have come up
with during implementation: First the variables are only captured when they
came from environment preceding the first named environment or the global
environment. This is done to prevent serialization functions and variables from
packages, which is not necessary. Second is that the first named environment is
captured, because it is going to be used as a parent environment to the simple
environment containing the referenced variables. The goal is for function fx,
which uses (e.g) x2 from <exec. env2> and y from <exec. env1> to create
an environment containing both variables and referencing to .GlobalEnv as
its parent.
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The diagram also contains test execution environment which is the execution
environment of test_that function call.

5.2.2.1 Example

If the body of fx would contain just the symbols x1 and y (just for brevity of
the example) and we would pass it into the function called func the generated
test would look like this:

test_that("fx", {
# expected return value
expected <- TRUE

# closures
fx <- function ()
{

x1
y

}
`__fx_env` <- as.environment(list(x2 = 10L, y = "Hi!"))
parent.env(`__fx_env`) <- .GlobalEnv
environment(fx) <- `__f_env`

expect_equal(func(fx), expected)
})

5.2.3 Serialization

Now we have the simple environment and its parent. Next step is to extract
the formals of the closure and its body. These four parts together make a list,
that contains our deconstructed closure. This list is then assigned to a name
fx inside another list, containing all the closures generated from one trace (in
traces this list is named cls).
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When the serialization happens, Genthat serializes the body as an ex-
pression (so it would not get wrapped in quote) and the rest uses the same
serialization as any other variable value.

5.2.4 Test generation

From the list containing four strings with snippets of R code Genthat has
to generate the closure for the test case. First it assembles back the closure
and parses it. This is done for pretty printing the closure, because the R’s
native deparse function handles the formatting better. We could use only
the deparse function for serializing the closure, but that would lead to loss of
precision when serializing numerical values inside the closure, that is why we
first use our custom serialization and then again serialize it with R’s function.

Second step is to assemble the call to create the simple environment, set
its parent and set simple environment as the enclosing environment for the
closure.

Closure is now recreated and when test case calls fx, everything should
execute as expected.

5.2.4.1 Example

Now when we can combine few of the previous examples and show how test
generation works for them after all the improvements have been implemented.

We are going to use the lapply2 function from the introduction and the
mod_adder from the chapter 1.5.1 about closures.

lapply2 <- function(x, f, ...) {
out <- vector("list", length(x))
for (i in seq_along(x)) {

out[[i]] <- f(x[[i]], ...)
}
out

}
mod_adder <-function(mod)function(a, b) { (a + b) %% mod }
add13 <- mod_adder(13L)
vals <- list(40L, 24L, 4L, 19L)
lapply2(vals, function(x) add13(10L,x))

From the last function call the following test can be generated:

test_that("lapply2", {
# expected return value
expected <- list(11L,21L,14L,16L)

# variables used in arguments
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vals <- list(40L, 24L, 4L, 19L)

# closures
add13 <- function (a, b)
{

(a + b)%%mod
}
`__add13_env` <- as.environment(list(mod = 13L))
parent.env(`__add13_env`) <- .GlobalEnv
environment(add13) <- `__add13_env`

expect_equal(lapply2(vals, function(x) add13(10L,x)),
expected)↪→

})
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Conclusion

This thesis has described many nuances the R language has in the context of
closures and expression evaluation, it explained how Genthat may improve
existing R code and how it works inside. The main goal of this thesis has been
to implement serialization of closures, I believe that it has been reached and
although there may be some rough edges or bugs waiting to be discovered, it
laid a foundation to build upon.

Future work
As of finishing this thesis, Genthat has been undergoing a refactoring to
integrate all the new features and simplify future development. After it is done,
it should be possible to run it on the CRAN repository and use the result to
choose in which areas should the future work take place.

One of the possible improvements may be tracing changes in the enclosing
environments, so Genthat could also generate tests to track side effects of
functions. Or using the binary form only for numbers, that are going to be
affected by the precision loss and not for all real numbers.
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Appendix A
Contents of enclosed CD

readme.txt........................the file with CD contents description
src.......................................the directory of source codes

genthat.............pre-cloned directory with latest Genthat sources
thesis..............the directory of LATEX source codes of the thesis

img .........................diagrams and graphs from the thesis
text..........................................the thesis text directory

BP_Vacha_Michal_2017.pdf...........the thesis text in PDF format
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