
doc. Ing. Jan Janoušek, Ph.D.
Head of Department

prof. Ing. Pavel Tvrdík, CSc.
Dean

Prague February 8, 2017

CZECH TECHNICAL UNIVERSITY IN PRAGUE

FACULTY OF INFORMATION TECHNOLOGY

ASSIGNMENT OF BACHELOR’S THESIS

 Title: Triangulation of planar objects and its implementation into the AToM package

 Student: Martin Štrambach

 Supervisor: Ing. Miloslav Čapek, Ph.D.

 Study Programme: Informatics

 Study Branch: Computer Science

 Department: Department of Theoretical Computer Science

 Validity: Until the end of summer semester 2017/18

Instructions

Study the problem of planar triangulation, summarize available tools, their pros and cons and select an
algorithm based on your study for implementation in the frame of the AToM project. Describe all important
parameters influencing quality of the resulting grid, rate of the algorithm's convergence and specify proper
termination criteria. Discuss how these parameters can be improved by selecting some advanced meshing
strategy, focus on the speed of the algorithm and its robustness. Final implementation should support
features like user-defined density function, mesh junctions and controllability of mesh density. As the
second topic, propose and isolate (at least in naive version) algorithm for finding all “loops” and “dipoles”
for a given mesh grid that will be later utilized for topological and structural optimization of planar antennas.
Project should be accompanied with documentation and basic examples. The algorithm will be tested on
canonical examples (polygons).

References

Will be provided by the supervisor.

Czech Technical University in Prague

Faculty of Information Technology

Department of Computer science

Bachelor’s thesis

Triangulation of Planar Objects and Its
Implementation into AToM Package

Martin Štrambach

Supervisor: doc. Ing. Miloslav Čapek, Ph.D.

15th May 2017

Acknowledgements

I am grateful to many within the Department of Electromagnetic Field for sug-
gestions and contributions made throughout. Foremost, I would like to thank
my supervisor, Miloslav Čapek, for the continuous support of my bachelor
study, for his patience, motivation, immense knowledge, and encouragement
necessary to pursue such work from the outset. To the many friends, family
and grandmother Věra, who have both cheerfully supported and ultimately
tolerated my studies – I couldn’t have done it without you.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. I
further declare that I have concluded an agreement with the Czech Technical
University in Prague, on the basis of which the Czech Technical University in
Prague has waived its right to conclude a license agreement on the utilization
of this thesis as school work under the provisions of Article 60(1) of the Act.
This fact shall not affect the provisions of Article 47b of the Act No. 111/1998
Coll., the Higher Education Act, as amended.

In Prague on 15th May 2017 .

Czech Technical University in Prague
Faculty of Information Technology
© 2017 Martin Štrambach. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Štrambach, Martin. Triangulation of Planar Objects and Its Implementation
into AToM Package. Bachelor’s thesis. Czech Technical University in Prague,
Faculty of Information Technology, 2017.

Abstrakt

Tato práce je zaměřena na tvorbu trojúhelńıkových śıt́ı planárńıch objekt̊u
ve dvou- a tř́ırozměrných prostorech. Takovéto struktury a jejich efektivńı
tvorba jsou obzvláště d̊uležité pro numerické výpočty. Jsou shrnuty nejběžněǰśı
techniky generováńı trojúhelńıkových śıt́ı jako je Delaunyho triangulace. V dal-
š́ıch sekćıch jsou popsány algoritmy, které vytvářej́ı trojúhelńıkové śıtě v rovině.
Zd̊urazněna je problematika implementace vybraného algoritmu do anténńıho
toolboxu AToM vyv́ıjeného v prostřed́ı MATLAB. Společně s algoritmem pro
tvorbu trojúhelńıkových śıt́ı jsou představeny utility pracuj́ıćı nad vytvořenou
śıt́ı pro optimizaci topologie antén.

Kĺıčová slova trojúhelńıkové śıtě, Delaunayho triangulace, implementace,
AToM toolbox, fyzika, antény, MATLAB

ix

Abstract

This thesis focuses on triangular mesh generation of planar objects in two- and
three-dimensional spaces. It is especially important to create such structures
for numerical computations effectively. Triangular mesh generation techniques
like Delaunay triangulation are summarized together with selected algorithms
for effective mesh generation. We emphasize problems which arose during
implementation of the selected algorithm into antenna toolbox AToM which is
entirely develeped in MATLAB. In the last chapter, we discuss implementation
of numerous utilities which are used for mesh topology optimization.

Keywords triangulation, Delaunay triangulation, implementation, AToM
toolbox, physics, antennas, MATLAB

xi

Contents

Introduction 1
Goals of the Thesis . 2

1 State of the Art 3

2 Triangulation 7
2.1 Voronoi Diagram . 8
2.2 Delaunay Triangulation . 9
2.3 Constrained Delaunay Triangulation 11
2.4 Triangulation Terminology . 12
2.5 Description of Basic Algorithms 15

3 MATLAB Implementation 23
3.1 AToM and Models Connection 23
3.2 Mesh Model . 26
3.3 Mesh Utilities . 29
3.4 Finding Longest “Loops” and “Dipoles” 33

Conclusion 37
Future Work . 37

Bibliography 41

A Content of the Enclosed CD 45

xiii

List of Figures

1.1 The difference between structured and unstructured meshes. . . . 4
1.2 Triangulation type based on the inter-element connectivity. 5
1.3 A discretized structure in the simulation suite for computational

electromagnetics CEM One. 6
1.4 Detail of computed electrical current above the discretized structure. 6

2.1 Example of 2D and 3D meshes. 8
2.2 Voronoi diagram. 9
2.3 Delaunay triangulation created from Voronoi diagram. 9
2.4 Voronoi vertex positions in a plane. 10
2.5 Illustration of circumcircle property. 11
2.6 Example of a graph G and resulting CDT K. 12
2.7 Example of fix edge constraint. 12
2.8 A polygonal region with holes. 13
2.9 Example of density function from the Listing 2.2 and its impact on

the mesh generation. 14
2.10 Triangles with poor quality. 14
2.11 Example of the new node position using Voronoi-segment insertion 18
2.12 Example of a triplot plot. 21
2.13 Example of a trimesh plot. 22
2.14 Example of a trisurf plot. 22

3.1 Class diagram of mesh and geometry. 24
3.2 Class diagram of 1D curves. 25
3.3 Class diagram of 2D objects. 25
3.4 A discretized square. 31
3.5 Antenna optimization with deterministic method using uniform

triangulation. 32
3.6 A path of the length 10 on a discretized dipole. 34
3.7 A cycle of the length 10 on a discretized dipole. 34

xv

3.8 Geometry design in AToM. 38
3.9 Mesh parameters set-up in AToM. 38
3.10 Generated mesh in AToM. 39

xvi

List of Tables

3.1 Comparison of mesh generation algorithms run in MATLAB R2015b.
Benchmark mesh was a circle with approx. 2,000 triangles. 28

xvii

List of Abbreviations

AToM Antenna Toolbox for Matlab
BEM Boundary Element Method
CDT Constrained Delaunay Triangulation
MATLAB Matrix Laboratory
MoM Method of Moments
NSGA Nondominated Sorting Genetic Algorithm
RFID Radio-Frequency Identification

xix

Introduction

Small antennas are ubiquitous, from computers to wearable electronics like
smart watches, RFID chips and so on. It is necessary to make them as electric-
ally efficient as possible usually with the desired shape. It puts high demands
on the design of such antennas.

Antenna design, like other fields (e.g., design of cars, fluid dynamics) of
human work, underwent information revolution and people started using vir-
tual prototyping in computer simulators to find the best possible shapes and
ways how to power all kinds of them. This led to, for many, surprising results
which made this technique state of the art. Many new numerical simulations
of physical and mathematical phenomena were discovered over the years, but
it is either impossible or infeasible to solve these problems analytically in ac-
ceptable time, thus none of them is applicable without a proper discretization
of the antenna surface, in which geometry is tessellated into meshes of given
type of elements.

Antenna toolbox for MATLAB – AToM [1] is software developed primarily
for antenna design and optimization. Its core functionality contains the design
of antenna geometry together with discretization. This model is then passed
into electromagnetic solvers, namely, method of moments [2] and character-
istic mode decomposition [3]. These algorithms solve the problem of radiation
reformulated into its weak-form [4]. This cannot be done without a proper
discretization of the radiating bodies, which establishes important, complic-
ated and numerically challenging task, thus motivating the beginning of this
work.

Tessellations must conform to a number of requirements like underlying
geometry conformity, optimal element geometry and high resolution in areas
of interest. Generation of optimal mesh is, as other covering and partitioning
tasks, NP-hard optimization problem [5]. Because of the problem complexity,
it is convenient to focus optimization only on areas of interest (e.g., areas
around feeding ports). Nowadays, the standard for generation of triangular
meshes is Delaunay Triangulation [6], which can be used for other purposes

1

Introduction

with its dual Voronoi diagram (both discussed in detail in Chapter 2).
AToM is being developed in collaboration with Department of Electromag-

netic Field at Czech Technical University, Department of Radio Electronics at
Brno University of Technology and industry partner ESI Group [7], which is
one of the leading innovators in virtual prototyping industry.

MATLAB was chosen as the main tool for the AToM development. It
offers many useful methods which are already implemented in the software.
MATLAB was mainly known for its capability of fast code prototyping, but
the language is being constantly developed and over the years, it has be-
come speed-wise comparable with compiled low-level languages like C and
Fortran [8]. A set of built-in functions comes with the support of implicit
parallelization, which allows us to write high-performance programs using a
high-level language.

Goals of the Thesis

The thesis is mainly focused on theoretical development of triangular mesh
generation techniques, finding a suitable method for antenna discretization in
MATLAB and its implementation into AToM. For the successful conclusion
of the thesis, it is necessary to fulfil the following points:

• Summarize available mesh generation tools (see Chapters 1 and 2).
• Review important parameters for mesh generation (see Section 2.4).
• Describe existing algorithms and choose a robust and fast technique for

the implementation into AToM (see Section 2.5).
• Implement selected algorithm into AToM (see Sections 3.1 and 3.2).
• Add support for user-defined density functions, mesh junctions, control-

lability of mesh density (see Section 3.2).
• Propose algorithm for antenna optimization above an arbitrary mesh

by finding “loops”, “dipoles” and implement other mesh utilities (see
Section 3.4).

• Create examples of basic functionality in AToM.

2

Chapter 1
State of the Art

Physical solvers use domain discretization for numerical computations. Mesh
is a collection of simple elements which connect points in Euclidean space.
Even though we can think of many element shapes (e.g., squares) which would
be suitable for discretization, triangular meshes are mostly used for planar
objects, since they are conformal with respect to the radiator bodies. This
technique uses Delaunay triangulation (introduced in Section 2.2) in order to
construct meshes which consist of elements, that are as similar as possible. In
the case of Delaunay triangulation, it is an equilateral triangle.

Why do we need equilateral triangles? One would say it is enough to
create arbitrary triangulation and then use mathematical solvers. Discretiza-
tion of underlying integro-differential operators are encumbered with several
approximations. The numerical errors coming from this approximation are
minimized in case that the triangles are small enough and equilateral [10].
This requirement is in contradiction with the speed of the solver as its numer-
ical complexity is O(n3), in which n is a number of unknowns. It is, therefore,
obvious that there is some optimal ratio between a number of triangles, their
size and quality.

Implemented mesh generation technique must have following properties
which are necessary for use in optimization tasks:

• Speed – mesh is generated in a feasible time. For use in AToM, it is ne-
cessary to generate triangular meshes which consist of up to 10,000 tri-
angles. Larger meshes would be infeasible for numerical solvers.

• Robustness – it is possible to generate meshes above arbitrary planar
objects with good results, which means mesh is generated with good
quality of triangles and all constraints are kept.

• Scalability – mesh size can be controlled through numerous parameters.
It is also possible to control element density in areas of interest.

• Domain conformity – mesh must capture underlying geometry in the
best possible way.

3

1. State of the Art

(a) Structured mesh. (b) Unstructured mesh.

Figure 1.1: The difference between structured and unstructured meshes.

Meshes can be also divided into two types [9] according to the system of
connections between points:

• Structured mesh – mesh nodes are numbered in a way that triangle
connections can be determined by simple arithmetic.

• Unstructured mesh – mesh connections do not follow any mathematical
pattern and must be stored in a separate matrix. This implies algorithms
using unstructured meshes are more computationally expensive, but also
offer greater geometrical flexibility. This type of meshes is discussed in
the following text.

Another type of division is by inter-element connectivity:

• Conforming – elements connect along common edge or face.
• Non-conforming – elements can only partially intersect along common

edge or face. This offers flexibility in mesh creation, but it is at the same
time computationally expensive.

As stated in [11] three types of mesh generation algorithms dominate
nowadays.

• Grid/quadtree/octree overlay – algorithms based on an underlying struc-
tured mesh. For planar meshes quadtree (recursive decomposition of a
plane into square regions) is composed as recursive decomposition of
the bounding box into rectangular elements. It is simple and efficient
to construct initial mesh using this method. The main disadvantage is
that lower quality elements are introduced near geometrical constraints.
This is very dependent on alignment with underlying mesh.

• Advancing front methods – elements are created one-by-one starting from
the boundary. The algorithm continues filling the domain towards the
centre. Well shaped elements are created near the boundary, on the

4

(a) Conforming triangulation. (b) Non-conforming triangulation.

Figure 1.2: Triangulation type based on the inter-element connectivity.

other side elements with poor quality are created in areas where multiple
fronts meet.

• Delaunay refinement – method starts with initial Delaunay triangulation
satisfying all constraints. Mesh is then iteratively refined by removing
the worst element. The new point is inserted and the whole mesh is
updated. The algorithm terminates when all quality criteria for resulting
mesh are met.

Multiple hybridizations of above-mentioned classes of algorithms were cre-
ated over the years, e.g., Frontal-Delaunay schemes which add new points in
a manner of the advancing front methods, but the constraints are maintained
with Delaunay triangulation.

AToM is targeted on users which work in other antenna simulation suites
like FEKO [12] and CEM One [13]. These programs are usually very expensive
and not always very easy to use. AToM offers solvers (e.g., MoM) which are
not fully implemented in MATLAB toolboxes and commercial software. In
addition, it offers in-house mesh generation with options which are usually
hidden from users. This will be utilized in symmetries, optimization, antenna
arrays, etc.

5

1. State of the Art

Figure 1.3: A discretized structure in the simulation suite for computational
electromagnetics CEM One.

Figure 1.4: Detail of computed electrical current above the discretized struc-
ture.

6

Chapter 2
Triangulation

In general, we can subdivide space into k-dimensional simplices (k-simplex),
the simplest convex full-dimensional polyhedron constructed from a minimal
set of points in Rd. It can be seen that the boundary of general k-simplex can
be decomposed into lower dimensional simplexes.

Most common shapes used for mesh generation are triangles for planar ob-
jects and tetrahedrons (“pyramids”) for spatial objects. This thesis is entirely
focusing on triangular (2-simplex) meshes of planar objects in R2 and R3.

The term triangulation is generally understood as a subdivision of a planar
polygon into a planar graph consisting only of triangles (triangular mesh). In a
basic form, we just create triangles by connecting points from a given set. The
only valid kind of triangulation for us is when each triangle follows rules that
neighbouring triangles only meet node-to-node and edge-to-edge (conforming
triangulation, see Chapter 1).

The state of the art technique is Delaunay triangulation, which stands
among other triangulations, due to some nice properties, which will be dis-
cussed later. Delaunay triangulation can also be extended into more dimen-
sions, e.g., to connect tetrahedrons into Delaunay tetrahedrization. We can
go even further into higher dimensions, but such triangulations do not have
practical use in industry and especially in the antenna theory. For more in-
formation and practical, examples you can visit documentation of MATLAB
function delaunayn [14].

The more advanced problem is when one has an arbitrary polygon defined
as a set of edges (set of points and connections between them). It is impossible
to subdivide majority of shapes into a triangulation formed entirely of equilat-
eral triangles, which we consider as an ideal triangulation. We need to utilize
some kind of technique which finds the best position for newly inserted in-
ternal points of the polygon. These points are then connected using Delaunay
triangulation respecting existing connectivity constraints. Some of the basic
algorithms for polygon discretization are described in Section 2.5.

For better understanding of what Delaunay triangulation is and which

7

2. Triangulation

(a) Triangulation. (b) Tetrahedrization.

Figure 2.1: Example of 2D and 3D meshes.

properties it has, we first need to introduce two terms: Voronoi diagram and
Voronoi region.

2.1 Voronoi Diagram

Having an arbitrary set of points S ⊂ R2, we can subdivide space into regions
of their influence, called Voronoi regions, which together form Voronoi diagram
(sometimes called Dirichlet tessellation). See Figure 2.2.

Voronoi region of a point P ∈ S is a convex polygon of a set of points
X ∈ R2, which have distance from all other points Q ∈ S smaller or equal to
distance to P.

VP = {X ∈ R2 : ‖X−P‖ ≤ ‖X−Q‖, ∀Q ∈ S} . (2.1)

Let us consider half plane of points which are at least as close to P as to Q.

HPQ = {X ∈ R2 : ‖X−P‖ ≤ ‖X−Q‖} . (2.2)

Then Voronoi region of P is an intersection of half planes HPQ, ∀Q ∈ S \ {P}.

8

2.2. Delaunay Triangulation

Figure 2.2: Voronoi diagram.

2.2 Delaunay Triangulation

Delaunay triangulation was first introduced in 1934 [6]. It is dual to Voronoi
diagram. Delaunay edge exists between two points P1,P2 ∈ S if and only if
two Voronoi regions intersect along the common edge. Proof of this claim can
be found in [5].

Figure 2.3: Delaunay triangulation created from Voronoi diagram.

9

2. Triangulation

P1

P2P3

(a) General position.

P2P1

P4 P3

(b) Degenerate position.

Figure 2.4: Voronoi vertex positions in a plane.

The general position of Voronoi regions is when three of them meet at
the same point. On the other hand, some degenerate cases may occur when
four or more Voronoi regions meet at the same point – Voronoi vertex. This
implies those four points would connect into a quadrilateral. If we consider
this case deeply it would mean four points lie on the same circle, which is
very unlikely, because even a small perturbation in the point position would
result in the general case. If no four points of S lie on the same circle, then
Delaunay triangulation is unique [15].

Circumcircle claim. Let P1,P2,P3 ∈ S, then triangle T1 = {P1,P2,P3}
is a triangle of Delaunay triangulation if and only if its circumcircle does not
contain any other point Pi ∈ S. We can use the previous property to define
locally Delaunay edges. Edge P1P2 is locally Delaunay edge of a triangula-
tion K, when it fulfils one of the following criteria:

1. Edge P1P2 is shared only by one triangle, thus it is a boundary edge of
the triangulation.

2. Edge P1P2 is shared by triangles T1 and T2 = {P1,P2,P4}. When we
construct circumcircle of T1, then P4 lies outside of the circle.

Delaunay lemma. When every edge of a triangulation is locally Delaunay,
then we call it Delaunay triangulation.

10

2.3. Constrained Delaunay Triangulation

Figure 2.5: Illustration of circumcircle property.

It has been proven in [16] that every Delaunay triangulation maximizes
minimal angle in the triangulation, which enables us to construct triangula-
tions with triangles as close to equilateral as possible.

We must also note that every set of points in a plane can be triangulated
using Delaunay triangulation [5].

2.3 Constrained Delaunay Triangulation

Constrained Delaunay triangulation [15], [5] (CDT) is a triangulation with
following properties:

1. Specified edges are included in the triangulation.
2. It is as close as possible to Delaunay triangulation.

Let the G be a planar graph which contains fix edges e of a triangulation K.
Two points P1,P2 ∈ R2 are visible from each other when P1P2 ∩Q = ∅,
∀Q ∈ K ∧ P1P2 ∩ e = ∅, ∀e ∈ G.

Then the triangulation K is called constrained Delaunay triangulation,
when each edge of G is an edge of K and for all remaining edges e ∈ K with
endpoints P1P2 there exists circle c with the following properties:

1. Points P1,P2 ∈ S lie on c.
2. P1 and P2 are visible from each other and every other point Q ∈ G in

the interior of c is invisible from all interior points X ∈ (P1,P2).

When we takeG without edges, we get the definition of unconstrained Delaunay
triangulation.

11

2. Triangulation

(a) Graph G. (b) CDT constructed from G.

Figure 2.6: Example of a graph G and resulting CDT K.

2.4 Triangulation Terminology

Fix Point

Some points on the domain need to be fixed. It means that they can not be
shifted during the triangulation process. Typically boundary nodes must not
be moved otherwise, shape of the polygon would change.

Fix Edge

Definition of fix points can be extended into fix edges. A fix edge is a mesh
constraint defined as a connection by a straight line between two fix points in
the resulting mesh. This does not necessarily mean no other points can lie on
the edge. The edge is usually divided into more smaller elements according
to density function which preserves the geometrical property of the original
edge.

(a) Unsatisfied fix edge constraint. (b) Satisfied fix edge constraint.

Figure 2.7: Example of fix edge constraint.

12

2.4. Triangulation Terminology

Holes

A hole is a closed polygonal region inside our meshed domain, which does
not contain any nodes, therefore, no triangles in its interior. Its boundary is
defined in the same way as the boundary of the polygonal region itself. Some
algorithms require the definition of the polygon boundary in clockwise order
and hole regions counter-clockwise.

Figure 2.8: A polygonal region with holes.

Density Function

It is desired to control element size over the whole polygonal domain. Function
h(x, y) in two-dimensional space returning the size of the elements on the given
position is used for this purpose. Most commonly used is a uniform function
which returns elements of the same size for all points in the domain.

Listing 2.1: Example of an uniform density function in MATLAB.
1 h = @(x, y) 1*ones(size(x, 1),1)

Listing 2.2: Example of a non-uniform density function in MATLAB.
1 h = @(x, y) max(0.3*sqrt(x.*x + y.*y), 0.05)

13

2. Triangulation

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

(a) Function heat map. (b) Mesh with 1015 triangles.

Figure 2.9: Example of density function from the Listing 2.2 and its impact
on the mesh generation.

Triangle Quality

Only very small set of problems can be discretized using perfectly equilateral
triangles. In real world applications, domains have various dimensions and
multiple geometrical constraints. Triangles usually differ by edge size and
inner angle size. It is, therefore, necessary to measure the quality of individual
elements.

In order to quantify the quality of elements, it is necessary to assign score
q to every triangle in a triangulation based on its geometrical configuration
which is scale-invariant. It is important to take in consideration that un-
desirable properties are overly small and large angles, therefore, skewed and
distorted triangles.

(a) A needle with q = 0.1419. (b) A cap with q = 0.1050.

Figure 2.10: Triangles with poor quality.

While many strategies were developed to get quality score for triangles [17],
many of them are impractical due to high computational cost. Our selected
measure for triangle quality was introduced in [18]

q = 4
√

3a
h2

1 + h2
2 + h2

3
, (2.3)

where a is triangle area and hi is edge length. We get values q ∈ [0, 1], where
value 0 is equal to three points on the same line and 1 is an equilateral triangle.

14

2.5. Description of Basic Algorithms

2.5 Description of Basic Algorithms

2.5.1 DistMesh

DistMesh [19] is a simple refinement algorithm for creating high quality un-
structured meshes in 2D. It is iteratively changing point positions to find tri-
angulation force equilibria as an analogy to physical truss structure or equi-
valently a structure of springs. Nodes are then connected using Delaunay
triangulation. Authors emphasized code readability and simplicity, which led
to simple MATLAB code that can be used as a foundation for more robust
solutions.

To compute force equilibrium for a set of points p: (Nx2), in which N is
number of points, we are looking for the solution with force vector F(p) = 0
of the following equation

F(p) = [Fint,x(p),Fint,y(p)] + [Fext,x(p),Fext,y(p)] , (2.4)

where Fint are internal forces transferred through edges and Fext are forces
pushing to the domain boundary, which are equal to force coming from inside.
This secures the fixed position of boundary nodes. Force F(p) is in each itera-
tion dependent on mesh topology which is created by Delaunay triangulation.
Since points move in each iteration of the algorithm, every node can have new
neighbours, which means F(p) is a discontinuous function.

The system can be solved using forward Euler method where at discretized
time tn the solution is pn ≈ p(tn). Points are then updated by

pn+1 = pn +4tF(pn) . (2.5)

DistMesh supports user defined element size function h(x, y), which de-
termines the relative distribution, not the actual size of the elements, due to
the artificial repulsive force which is applied to the most of the edges. Good
value of this repulsive force was set by authors to Fscale = 1.2.

The algorithm takes as input a set of points already placed inside the
polygonal domain. This is significant part of more complex algorithms, which
find initial position of internal nodes. We can start with random distribution of
points. It is recommended to use points placed on equidistant grid for uniform
distribution h(x, y) or for non-uniform distribution h(x, y) create initial points
distribution weighted by probabilities proportional to 1/h(x, y)2.

Performance of this algorithm is very dependent on the initial distribution
of points. Custom mesh generator was implemented in AToM, but it had slow
converge (see 3.2).

15

2. Triangulation

2.5.2 Point Insertion Using Bowyer-Watson Algorithm

Bowyer-Watson Algorithm [21]

This method is based on Circumcircle property (Section 2.2) that no point
of Delaunay triangulation can lie within circumscribed circle of any triangle.
It removes all triangles which violate previous property and reconnects newly
inserted point with the rest of the triangulation. It can be shown [20] that
such set of triangles is contiguous polygon forming a cavity. When connecting
boundary nodes with the newly inserted point we always get valid Delaunay
triangulation.

Algorithm 1 Bowyer-Watson pseudocode above given triangulation
Add the new point P to the set of points
Create a set badTriangles of triangles whose circumcircles contain
point P
Find all edges (boundaryEdges) from badTriangles which are refer-
ence exactly one triangle
Remove all badTriangles from the triangulation
Connect every edge from boundaryEdges with P
Add all new triangles to the triangulation

Since all triangles removed in each iteration are contiguous, we can store
triangles in a way that we have information about neighbours of each triangle
and simple tree search algorithm can be used to find a triangle to be deleted,
thus insertion of a new point in the existing triangulation with n points can
be done in O(logn) operations. Then Delaunay triangulation of n points
has complexity O(n logn). However when all triangles must be removed the
algorithm degrades to O(n2) operations.

Initial Boundary Triangulation

Following two methods use Bowyer-Watson algorithm as reconnection method
of already existing triangulation, therefore we need to provide an initial trian-
gulation, which is at the same time body conforming, e.g., initial triangulation
can be constructed as CDT of a bounding box or CDT of the convex hull, with
marked internal and external triangles.

Voronoi-vertex Insertion

The algorithm is a representative of Delaunay refinement algorithms. The first
position for the point insertion is the centre of circumscribed circle [22], where
the mesh is by the means of circumcircle property coarsest. Triangles with
poor quality must be chosen for elimination. Usually, such triangles have large

16

2.5. Description of Basic Algorithms

areas or bad aspect ratios. In this way, bad triangles are eliminated and the
resulting mesh tends to cause clustering according to boundary discretization.

Let us define function f(X) of a characteristic property (e.g., radii of
circumcircle or ratio between inscribed and circumscribed circle) of a triangle
as a function of its position based on coordinates X of its circumcircle. We
can then describe all triangles by ratio

αk = ρk

f(Xk) , (2.6)

where ρk is the actual value of a characteristic property and Xk is the centre
of the circumcircle. Then we continue inserting new points unless αk < 1,
∀k ∈ [1, n], where n is a number of triangles in the triangulation K.

Algorithm 2 Voronoi-vertex insertion pseudocode
Create body conforming initial triangulation
while maximal ratio α ≥ 1 do

Find the worst triangle with the maximum ratio α
Insert the new point at the circumcircle centre of the worst triangle
Reconnect the triangulation by the means of Bowyer-Watson algorithm
Add new triangles to the existing triangulation
Compute α for newly created triangles

end while

One special case must be handled when inserting new points. Voronoi
vertex can be outside of the bounded domain, which means we must either
skip this insertion or introduce some refinement technique.

Voronoi-segment Insertion

The second method inserts the new point into Voronoi region, rather than on
Voronoi vertex. In addition it does not eliminate the worst triangle, but uses
triangle type division, which allows to create ideal triangles according to the
density function.

Like the previous method, it uses initial triangulation along with external
and internal triangles. Internal triangles are then subdivided into accepted,
active and waiting. Most of the triangles in the initial triangulation are non-
accepted. Active triangles are neighbours with at least one accepted or one
external triangle. The rest of non-accepted triangles is considered waiting.

Let us assume an active triangle neighbouring with an arbitrary accep-
ted/external triangle. Figure 2.11 depicts this situation with an active triangle
on the right and an accepted/external triangle on the left. These two triangles
share an edge PQ. New point X is placed on the line connecting point CA,
which is active triangle circumcentre, and M which is the midpoint of PQ.

17

2. Triangulation

Prescribed local feature size for the point M is
ρM = f(M) . (2.7)

We would like to have the new point inserted on the intersection of MCA with
the circle passing through PQ with radius ρM.

It might happen that desired value of ρM is smaller than p = ‖P−Q‖/2
which is the smallest radius of the circle passing through PQ. Radius ρM has
also an upper boundary. It is limited by the size of the circle passing through
points P,Q and CA

ρ = p2 + q2

2q , (2.8)

where q = ‖CA −M‖. Limited value of ρM is then defined as
ρ̂M = min{max{ρM, p}, ρ} . (2.9)

Position of point X is defined as
X = M + dê , (2.10)

where d = ‖X−M‖ and unit vector e are

d = ρ̂M +
√
ρ̂2

M − p2 , (2.11)

ê = CA −M
‖CA −M‖ . (2.12)

When ‖P−Q‖ is too short with respect to q, then the new point is inserted at
the Voronoi vertex of the active triangle which is exactly what Voronoi vertex
insertion method does (It is a special case of Voronoi-segment insertion.).

X CAM

P

Q

Figure 2.11: Example of the new node position using Voronoi-segment inser-
tion

18

2.5. Description of Basic Algorithms

New triangles need to be reassigned with types described above. The
algorithm is moving from the boundary to the centre of the domain similar
to advancing front methods, but at the same uses Delaunay triangulation to
maintain constraints, therefore it is Frontal-Delaunay hybrid (see Chapter 1).
All new triangles are always internal since no external one can be removed.
Midpoint Mi of every new triangle is considered accepted when

ρMi

ρi
< δ , (2.13)

where ρMi = f(Mi), ρi is circumcircle radii and δ is empirical value which can
be, e.g., δ = 1.5. Triangles adjacent to the new ones must be subdivided into
active and waiting. The algorithm stops when there are no active triangles
left.

Algorithm 3 Voronoi-segment insertion pseudocode
Create body conforming initial triangulation
Divide triangles into internal and external
Divide internal triangles into accepted, active and waiting.
Order triangles by their circumcircle radii
while numberOfActive > 0 do

Take the triangle with the biggest circumcircle radii
Insert the new point according to the Voronoi Segment criterion
Reconnect the triangulation by the means of Bowyer-Watson algorithm
Add new triangles to the existing triangulation
Divide triangles next to the new ones into active and waiting

end while

2.5.3 Mesh2D

Mesh2D [23] is an algorithm for creating planar triangular meshes of arbitrary
polygons in R2. Its core functionality is based on the quadtree decompos-
ition algorithm together with CDT, Laplacian-like smoothing based on the
DistMesh algorithm and elimination of bad triangles in a manner of Frontal-
Delaunay algorithms. The whole algorithm was re-worked in the beginning
of 2017 [24] and the latest released version is 3.0.0. The following description
is for functionality present in the version 2.4, which was the newest version
at the time when the work on the new mesh generation core for AToM began
and first changes were deployed.

The algorithm offers an interface for single polygonal faces and multiple
connected faces. For connected faces, it is assured that points on the boundary
will be unique and element size will smoothly transition between them.

Input for the algorithm is a set of points in R2 together with a list of
connections (connections can be omitted when points are sorted clockwise).
Other options for mesh quality are maximal length of edges and a user defined

19

2. Triangulation

density function in the form f(x, y). Therefore special treatment must be
performed to use for 3D planar objects, described in detail in Chapter 3.
Firstly set of nodes is checked for duplicate nodes, edges and non-referenced
nodes which are eventually removed. To assure the same mesh for the same
polygons only differently rotated in the plane XY , the domain is rotated that
longer edge of the bounding box is parallel to axis y. Then the whole domain
is decomposed according to density function and maximal edge length into an
unbalanced quadtree (internal nodes have different depth of decomposition).
Boxes of the quadtree decomposition are split diagonally to form an initial
triangulation. At the end, the whole mesh is rotated back with respect to the
initial rotation.

When the domain is decomposed all boundary edges are split to respect
constraints given by density function, maximal edge length and values inter-
polated from the background mesh.

The main optimisation routine is based on the spring smoothing using
force equilibria introduced in DistMesh. The initial set of points is a set of
boundary points combined with points from the quadtree which are inside the
polygonal domain. The mesh is being iteratively smoothed until the maximum
edge length change between two iterations is less than given value (implicit
value is 2 %). Mesh is repaired in each iteration (no duplicate edges and
nodes). New nodes are inserted to the circumcircle of bad triangles with small
angles or very long edges (Voronoi-vertex insertion).

Before the algorithm terminates the mesh is again fixed and nodes in all
triangles are reordered counter-clockwise.

2.5.4 Matlab Triangulations

triangulation class [25]

triangulation class is an in-memory representation of 2D and 3D data.
This means triangulation is constructed using existing set of nodes and con-
nectivityList. This class offers a group of methods on top of the triangulation.
Following are important for computations in AToM:

circumcenter centre of triangle circumcircle,
edgeAttachments neighbouring triangles connected to a given edge,
freeBoundary edges referenced by one triangle in the triangulation,
incenter incenter of a triangle,
neighbors neighbours to a given triangle,
vertexAttachments triangles attached to a given vertex.

delaunayTriangulation class [26]

delaunayTriangulation is a subclass of the triangulation class. It
constructs valid Delaunay triangulation from a set of points in 2D or 3D. Such

20

2.5. Description of Basic Algorithms

triangulation is created over the polygonal domain of the convex hull. 2D
triangulation can take advantage of constraints, which allow adding a fix edge
between two points, thus creating CDT. It has all above-mentioned methods
from triangulation class and adds three more:

convexHull convex hull of a set of nodes,
isInterior checks whether a triangle is inside of the CDT,
voronoiDiagram returns Voronoi vertices and regions from a set of nodes.

Visualization

• triplot [27] – triangular 2D mesh plot, takes as input a triangulation
or set of nodes and connectivity list,

0 100 200 300 400 500 600 700 800 900 1,000
0

100

200

300

400

500

600

X

Y

Figure 2.12: Example of a triplot plot.

• trimesh [28] – triangular mesh plot, displays 2D and 3D triangulations,
enables setting of colour proportional to the surface height,

• trisurf [29] – triangular 3D surface mesh plot, only 3D triangulation
can be displayed using this function with surface colour proportional to
the surface height.

21

2. Triangulation

0
5

10
15

0
2

4
6

8
10
0

2

4

6

8

10

Figure 2.13: Example of a trimesh plot.

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1

−0.4

−0.2

0

0.2

0.4

0.6

Figure 2.14: Example of a trisurf plot.

22

Chapter 3
MATLAB Implementation

3.1 AToM and Models Connection

Geometry Representation

Geometry model (Geom) represents different geometrical objects and defines
their methods. Each 2D object is composed of simple primitives – Line,
EllipseArc and EquationCurve. Following 2D objects can be represented
in Geom:

Ellipse object from ellipse arcs.
Parallelogram object from four parallel lines.
Polygon arbitrary shape constructed from lines.
PolyLoop arbitrary closed object composed of lines, ellipse arcs and

equation curves.

Mesh Representation

All discretized curves and planes are represented by MeshObject, which
saves data of a given object – nodes, connectivity and local metadata. Mesh
exists only in one instance per project and collects data from all MeshObject
objects – nodes, elements, which are split into 1D edges for curves and 2D
edges and connectivity for planar objects.

Metadata for the Mesh object are maximal element size, user defined
density function and mesh density, which defines the number of elements
per wavelength (described in Section 3.2). Element size itself is dependent
property 1based on the value of mesh density. Other properties, even though
it is possible to represent them in matrix form, are dependent because it is
much easier to compute them dynamically then ensure data validity after each
modification of the mesh.

1A special type of property in MATLAB, whose value depends on other values and
properties and it is computed when the property is queried.

23

3. MATLAB Implementation

1

0..* 1

1..*

1

1

1
1

Mesh

-geom: Geom [1x1]
-nodes: double [Nx3]
-elements1D: struct with edges [Nx2]
-elements2D: struct with edges [Nx2],

conectivityList [Nx3]
-objects: MeshObject [1xN]
-lastMaxFrequency: double [1x1]
-densityFunction: function handle [1x1]
-meshDensity: double [1x1]

MeshObject

#geomObject: GeomObject [1x1]
+elements: double [Nx1]
+reMesh: logical [1x1]
+isMeshed: logical [1x1]
+useLocalMeshSize: logical [1x1]
+maxElem: double [1x1]
+densityFunction: function handle [1x1]
+meshDensity: double [1x1]

Geom

-mesh: Mesh [1x1]
-line: Line [1xN]
-ellipsearc: EllipseArc [1xN]
-equationcurve: EquationCurve [1xN]
-parallelogram: Parallelogram [1xN]
-ellipse: Ellipse [1xN]
-polyloop: PolyLoop [1xN]
-polygon: Polygon [1xN]
-nPointsOnCurve: double [1x1]

GeomObject

+name: char [1xN]
#geom: Geom [1x1]
#meshObject: MeshObject [1x1]
#curve: Curve [1xN]

Figure 3.1: Class diagram of mesh and geometry.

Solver

Method of moments solver takes generated mesh as an input along with various
metadata, which is important to construct proper basis functions [30]. It is
necessary to pass following information:

Nodes – [Nx3] coordinates in R3.
ConnectivityList – [Nx3] indices into nodes.
Edges – [Nx2] start and end nodes.
EdgeCentroids – [Nx1] centre nodes of each edge.
EdgeLength – [Nx1] edge lengths.
TriangleArea – [Nx1] area of each triangle.
TriangleCentroids – [Nx1] triangles incenters.
TriangleEdges – [Nx3] indices to edges for each triangle.

Together with the metadata about the mesh it is a must to pass data about
the geometry, e.g., the geometry of feeding ports. This is the main reason why
we need to preserve geometrical constraints in the mesh. AToM allows port
definition above existing geometry using endpoints, therefore this constraint
must be kept in the generated mesh using CDT.

24

3.1. AToM and Models Connection

GeomObject

+name: char [1xN]
#geom: Geom [1x1]
#meshObject: MeshObject [1x1]
#curve: Curve [1xN]

Curve

+isCurveClosed: logical [1x1]
#length: double [1x1]

Line

#points: double [2x3]
#center: double [1x3]
#length: double [1x1]

EquationCurve

EllipseArc

#center: double [1x3]
#majorVertex: double [1x3]
#minorVertex: double [1x3]
#startAngle: double [1x1]
#angle: double [1x1]

Figure 3.2: Class diagram of 1D curves.

GeomObject

+name: char [1xN]
#geom: Geom [1x1]
#meshObject: MeshObject [1x1]
#curve: Curve [1xN]

Polygon

#points: double [Nx3]
Ellipse PolyLoop Paralelogram

Shape

#area: cell [1xN]
#circumference: cell [1xN]

Figure 3.3: Class diagram of 2D objects.

25

3. MATLAB Implementation

3.2 Mesh Model

Global and Local Coordinate Systems

Before we can start algorithm for mesh generation in 2D, we need to trans-
form 1D mesh coordinates into two-dimensional space. This means we need to
introduce a local coordinate system for geometrical objects (every geometrical
object in AToM is a planar object but in the three-dimensional space). This
transformation changes all points coordinates to z = 0 for all points but keeps
object proportions.

It is necessary to find point O which is the origin of our local coordinate
system and perpendicular vectors x̂′, ŷ′ and ẑ′ which will form the orthonormal
basis of the local coordinate system.

For polygons, we take arbitrary point as the origin O. Then two vec-
tors x̂, ŷ pointing from O that x̂′ × ŷ′ 6= 0. When x̂′ · ŷ′ 6= 0 vectors x̂′ and ŷ′
must be forced to be orthonormal. Vector x̂′ is kept in the position and ŷ′ is
rotated by angle

α = π

2 − acos
(
x̂′ · ŷ′

)
(3.1)

around axis ẑ′ = x̂′ × ŷ′. This operation is well-defined for some geometrical
objects, e.g., ellipse – O is the centre of the ellipse, x̂′ is the major axis, ŷ′ is
the minor axis.

When we have axes of the local coordinate system, each node Ni of K is
transformed to the local coordinates as following

α = atan(ẑ′x, ẑ′z) , (3.2)

β = asin
(
ẑ′y
)
, (3.3)

A = Ry(−α)
[
ẑ′
x̂′

]
, (3.4)

B = Rx(β)A , (3.5)
γ = atan(B22,B21) , (3.6)

N′i = Rz(−γ)Rx(β)Ry(−α)(Ni −O) . (3.7)

Note that Rx,Ry and Rz are elemental rotation matrices (for more informa-
tion see [31]) about axes x,y and z respectively.

After the transformation all points satisfy condition z′ = 0. At this point
algorithms for 2D triangular mesh generation can be applied. When a triangu-
lar mesh is computed, all nodes are transformed back to the global coordinate
system

Ni = Ry(α)Rx(−β)Rz(γ)N′i −O . (3.8)

26

3.2. Mesh Model

1D Mesh

It is necessary to create a 1D mesh of the domain boundary. This 1D mesh
must also respect density function. It would be very computationally ineffi-
cient to divide curves into elements from their analytical prescription, there-
fore, the 1D mesh is created numerically.

Because every geometrical curve in AToM can by described by parame-
ter t ∈ [0, 1], it is reasonable to divide it into equidistant parts, which are
later connected to elements of the desired size. This interval is subdivided
into small pieces using function linspace.

First of all element size ρ from the density function is computed at the
initial point P1 of the 1D element (this is a simplification of our problem,
because it would be much more precise to compute size at the element centre,
but this centre is unknown before we have actual 1D element). Then we
continue adding up parameter t until our element length is ‖P1 −P2‖ < ρ,
where P2 is a point on the curve with the parameter t.

Algorithm 4 Algorithm for line discretization
Discretize parameter t into selected number of equidistant parts
Compute length of the line (remainingLength)
Set initial parameter t0 to 0
Compute local element size (localMeshSize) at t0
while remainingLength > localMeshSize do

Find part of t that length of segment ti−1ti is equal to localMeshSize
remainingLength = remainingLength − localMeshSize
Compute new localMeshSize at ti
if remainingLength < localMeshSize then

Distribute remaining part of the line evenly between all edges
end if
Add new point to the set of points

end while

It is necessary to do smoothing of the line which is performed in the if
statement, otherwise triangle patches are very likely to be created at the end
of the curves. For dense meshes (A mesh with 10 and more elements on the
boundary curve can be already considered as a dense because error created
with this method is less than ten percent.) the deviation from ideal local
element size is negligible.

2D Mesh

We started with a summary of necessary features for mesh generation in
AToM. Since antenna can have an arbitrary shape, which it must take in note
other constraints introduced in geometry, following list is a comprehensive

27

3. MATLAB Implementation

overview of all features which must be supported by the new mesh generation
core:

• Create mesh above an arbitrary polygon in 2D.
• Support holes in polygons.
• Provide an interface for custom element size.
• Controllable mesh density with a user defined density function.
• Enable definition of fix nodes and fix edges for 1D and 2D feeding ports.
• Control correct distribution of elements on the intersection of connected

planes.

Before mesh generator was reimplemented, it was using custom solution
based on the DistMesh algorithm (Section 2.5.1). It was already using ele-
ments size but without density functions. It supported insertion of fix edges
and fix points. Its main disadvantage was very slow convergence for larger
meshes together with poor quality triangles.

We started with implementation of our own solution based on point in-
sertion algorithms (Section 2.5.2). Insertion algorithms are able to generate
meshes with exceptional quality [22] and adaptability. Unfortunately, it uses
multiple tree structures which are very hard to implement efficiently in MAT-
LAB. Since everything is represented as matrix in MATLAB, it is much more
beneficial to use vectorization which is implicit parallelization of matrix oper-
ations.

We decided to use a modified Mesh2D algorithm (Section 2.5.3). This
algorithm can generate meshes with user defined density functions together
with arbitrary element size. It also supports connected polygons that triangles
on the borderline are always conforming. It does not support fix edges and
fix nodes. This functionality was necessary to add.

Time (s) qavg qmin
Original AToM solution 4.4063 0.8892 0.5551
Voronoi-vertex insertion 4,0839 0.9157 0.6523
Mesh2D 0.8906 0.9660 0.7569

Table 3.1: Comparison of mesh generation algorithms run in
MATLAB R2015b. Benchmark mesh was a circle with approx. 2,000 tri-
angles.

Element size for antenna discretization is directly connected with max-
imal frequency for numerical computation. Minimal number of triangles per
wavelength is eight [32]. Therefore, it is possible to set number of elements
per wavelength in AToM and element size is then computed according to the

28

3.3. Mesh Utilities

following expression

ρ = n
c0
fmax

, (3.9)

where n is a number of elements per wavelength, fmax is the maximal frequency
for physical computation and c0 is the speed of light.

After changing the frequency or density function, mesh must be invalidated
and recomputed starting from the geometry discretization.

3.3 Mesh Utilities

It is assumed that not every user will be willing to use mesh generation core
from AToM, yet he might want to use some basic computations above imported
meshes. Such utilities are described in this section altogether with MATLAB
code snippets.

3.3.1 Mesh Transformations

Not only we want to create mesh itself, but we want to use other geometrical
transformations above existing mesh. Transformations are especially useful for
generation of antenna arrays, i.e., repetition of the same elements. It is com-
putationally more efficient to copy antennas rather than run mesh generation
process on the same geometry.

All following transformation are done in R3 since input for mesh generator
in AToM are planar objects in three-dimensional space.

Translation

The first transformation is translation, which shifts every node N of a trian-
gulation K by vector t.

Nnew = N + t . (3.10)

1 %% translate nodes
2 newNodes = bsxfun(@plus, nodes, shift);

Rotation

Another basic transformation is a rotation. It rotates mesh along standard
basis vectors x,y and z in the right-handed Cartesian coordinate system.
Rotation matrices are constructed and applied to coordinates of each node N.

Nnew = Rz(γ)Ry(β)Rx(α)N . (3.11)

29

3. MATLAB Implementation

1 %% create rotation matrix
2 rotationMat = makehgtform('zrotate', zAngle) ...
3 * makehgtform('yrotate', yAngle) * ...

makehgtform('xrotate', xAngle);
4
5 rotationMat = rotationMat(1:3, 1:3); % homegenous ...

coordinates are redundant
6 %% rotate every point
7 newNodes = nodes * rotationMat';

Scaling

Ratios and dimension of an object can be changed by an operation called
scaling. It is done by three scalars s1, s2 and s3 in directions of axes x,y
and z. Special case when s1 = s2 = s3 is called uniform scaling. Each node N
is transformed as following

Nnew =

s1 0 0
0 s2 0
0 0 s3

N . (3.12)

1 %% create scale matrix
2 scaleMat = makehgtform('scale', ratio);
3
4 scaleMat = scaleMat(1:3, 1:3); % homegenous coordinates are ...

redundant
5 %% scale every point
6 newNodes = nodes * scaleMat';

Reflection

Reflection is the only transformation which is not done as sum of vectors or
by matrix multiplication. Input for this function is a triangulation (a set of
nodes and connectivityList) altogether with the trinity of points defining a
plane. All nodes are then replicated using the following transformation.

n̂ = (P2 −P1)× (P3 −P1)
‖(P2 −P1)× (P3 −P1)‖ , (3.13)

h = n̂ · (N−P1) , (3.14)
Nref = −2hn̂ + N , (3.15)

where n̂ is a normal of the plane passing through points P1,P2 and P3. N is a
node and h is a distance of N to the reflection plane. The previous algorithm
can be transformed to MATLAB code as following:

30

3.3. Mesh Utilities

1 %% compute new point positions
2 u = points(2,:) - points(1,:);
3 v = points(3,:) - points(1,:);
4 normal = cross(u, v); % normal to plane given by vectors
5 normal = normal/norm(normal,2); % normalize normal
6 dist = normal*(bsxfun(@minus, nodes, points(1,:)))'; ...

%distance to plane
7 newNodes = -2.*bsxfun(@times, dist', normal) + nodes; % shift ...

points by -2*dist using normal vector

We have nodes with new positions but we are still missing connectivity
for the new nodes and in addition we need to deal with a case when reflected
nodes lie in the reflection plane. Since duplicate nodes (points which lie in the
reflection plane) do not form valid triangulation, we firstly take those which
are unique using the function uniquetol, which handles possible rounding
errors, and then shift original connectivity by the number of nodes before the
reflection and substitute positions of removed nodes with pointers into the
original node set.

1 %% compute mesh connectivity
2 [newNodes, ~, ic] = uniquetol([nodes; newNodes], eps, ...

'ByRows', true);
3 newConnectivityList = [connectivityList; ...

connectivityList+length(nodes)];
4 newConnectivityList = ic(newConnectivityList);

3.3.2 Regular Uniform Triangulation

(a) A non-uniform mesh with
qavg = 0.9373.

(b) A uniform mesh from equilat-
eral triangles and qavg = 1.

Figure 3.4: A discretized square.

Some applications require meshes of the same size constructed from regular
elements laid in a chosen pattern. This means boundary conformity is sacri-

31

3. MATLAB Implementation

ficed for purposes of an optimisation task (Figure 3.4b). The structure is then
optimized using either deterministic method, where the result is relatively reg-
ular, or heuristic algorithms like genetic algorithm NSGA-II [33], which uses
flood filling to speed up computation.

(a) A structure with removed edges after optimization.

(b) Current flow in the optimized structure.

Figure 3.5: Antenna optimization with deterministic method using uniform
triangulation.

These tasks are usually run above meshes consist of equilateral or rectan-
gular triangles of the same size.

For general polygons, domain conformity is not usually kept. The regular
underlying mesh is constructed from selected type of elements. Only those
triangles which have all three vertices inside the domain are kept in the final
triangulation.

32

3.4. Finding Longest “Loops” and “Dipoles”

3.4 Finding Longest “Loops” and “Dipoles”

Antenna theory distinguishes among many types of antennas. Two of them
are dipole and loop antennas. While a dipole effectively separates electrical
charge [34], it is topologically a path, a loop is capable of forming loop current,
it is topologically a solenoid.

It is necessary for antenna optimisation to find such structures in triangular
meshes because every discretized antenna can be decomposed into dipoles and
loops. An undirected graph of RWG basis functions can be constructed above
an existing mesh in order to find the optimal current in the structure [35]. This
graph is created by connecting incenters of two neighbouring triangles. It is
then possible to formalize loops and dipoles into fundamental graph structures
- a simple path and a simple cycle.

Definition 1. A path of length k from a vertex u to a vertex u′ in an undir-
ected graph G = (V,E) is a sequence {v0, v1, v2, . . . , vk} of vertices such that
u = v0, u′ = vk, and (vi−1, vi) ∈ E, ∀i, i ∈ {1, 2, . . . , k}. The length of a path
is a number of edges in the path. A path is simple if all vertices in the path
are distinct.

Definition 2. A path {v0, v1, v2, . . . , vk} forms a simple cycle if k ≥ 3,
v0 = vk and v0, v1, v2, . . . , vk are distinct.

The main goal is to find all paths and cycles in a given graph and then
find a structure with the best physical properties. This task is unfortunately
computationally infeasible because it was proven that counting paths and
cycles is #P-hard problem [36].

Instead of counting all paths by enumeration, a number of s-t paths (paths
leading from the node s to the node t) can be estimated. This was experi-
mentally tested with good results in [37]. This experiment also shows that
number of s-t paths is extremely high even for very small sets of nodes. From
the physical point of view only the longest (or a bit shorter than the longest)
paths and cycles are interesting. It has been proven that finding the longest
path in a graph is NP-hard problem [38].

Definition 3. A hamiltonian cycle of an undirected graph G = (V,E) is
a simple cycle that contains each vertex in V .

The longest simple cycle problem NP-completeness can be shown using
Hamiltonian cycle for reduction.

Proof. Hamiltonian cycle problem is a special case of the longest simple cycle
problem and it is NP-complete [38]. If and only if the longest simple cycle of
the graph is as large as the number of nodes of the graph, then the graph has
a Hamiltonian cycle.

33

3. MATLAB Implementation

1

2

3

4

5

6

7

8

9

10

11

12

Figure 3.6: A path of the length 10 on a discretized dipole.

1

2

3

4

5

6

7

8

9

10

11

12

Figure 3.7: A cycle of the length 10 on a discretized dipole.

Since we cannot find path and cycles in a feasible time, we wrote our own
naive algorithm for finding all paths and cycles in a graph G which can be
used as proof of concept for physical methods.

34

3.4. Finding Longest “Loops” and “Dipoles”

Algorithm 5 Naive algorithm pseudocode for finding all paths and cycles
function findPathsAndCycles(G)

while numEdges in G > 0 do
Find arbitrary edge e
Add e to path P
Save P
Remove e from G
extendPath(v0, vk, P)
Remove e from P

end while
end function

function extendPath(v0, vk, P)
Find all neighbouring nodes N of v0
for i = 1 to size(N) do

if (v0, N(i)) ∈ P then
continue

end if
Add (v0, N(i)) to P
if isValid(P) then

if isCycle(P) then
Save P as cycle

else if isPath(P) then
Save P as path
extendPath(N(i), vk, P)

end if
end if
Remove (v0, N(i)) from P

end for
end function

35

Conclusion

In this thesis, we summarized principles and basic algorithms for unstructured
triangular mesh generation in two-dimensional spaces, which is typically en-
countered in numerical simulations and physical optimizations.

After thorough summary of mesh generation techniques like Delaunay tri-
angulation and its constrained version, we focused on available algorithms.
Firstly, we started with the implementation of our own solution, but it was
soon clear that robust solution is not easy to implement from scratch.

The main goal of the thesis was to replace the mesh generation core in
AToM to enhance performance and quality of generated meshes. We decided
to use an existing solution called Mesh2D which, as stated in Chapter 3,
outperforms our own and old mesh generation core in AToM by speed and
overall triangle quality. It was necessary to consider all physical constraints
like mesh size based on maximal frequency, boolean operations, the existence
of symmetry planes, feeding positions, etc.

Implemented solution is able to discretize an arbitrary planar polygon in
three-dimensional spaces, which can have any number of empty regions – holes.
The user can set up his own density functions and change mesh size. It is also
possible to generate symmetric meshes along planes created from standard
basis vectors.

In addition to the changed mesh generation core, multiple mesh utilit-
ies, like the problem of finding the longest path and cycle in a graph were
theoretically described and implemented.

Future Work

Development of the project AToM will continue until the end of 2017. It will be
released into alpha and distributed to partners at the beginning of July 2017.
It is expected that many bugs, which accompany this kind of big projects, will
be discovered. It is also necessary to tweak communication between AToM
GUI and themesh generator. An ordinary user will be presumably controlling

37

Conclusion

Figure 3.8: Geometry design in AToM.

Figure 3.9: Mesh parameters set-up in AToM.

38

Future Work

Figure 3.10: Generated mesh in AToM.

AToM through GUI, therefore it will be necessary to test dozens of use cases
which can arise during the use of AToM. Other parts of AToM like Geom,
GUI and MoM are also undergoing intensive development towards this date.

There are multiple things which remain to be done in mesh generator
itself. A major feature which must be developed until the alpha release is an
intersection of planes. Information about intersections must be delivered from
Geom (this part is not ready yet) and then processed by mesh generator using
Mesh2D functionality for connected planes and fix edges.

Another part which remains to be done is a connection with BEM module.
It is necessary to provide a mesh together with metadata about types of edges
(inner, outer), positions and dimensions of feeding ports, etc.

The last point is a feature called local density refinement. The main idea
is that density function together with mesh size does not provide enough fine
mesh in the areas of interest (e.g., very small area around feeding ports). It
is desired to change density locally in the selected area. It can be done using
Voronoi insertion along with refining function provided in Mesh2D. The tricky
part is to respect all existing constraints in the selected area. This must be
implemented on GUI side (currently it is not possible to use drag-select to pick
triangles) and in the mesh generator (insertion of new points and refinement).

39

Bibliography

[1] Czech Technical University in Prague, Department of Electromagnetic
Field. AToM - Antenna Toolbox for MATLAB [online]. [cit. 2017-04-18].
Available from: http://www.antennatoolbox.com/

[2] Harrington, R. F. Field Computation by Moment Methods. Wiley – IEEE
Press, 1993.

[3] Harrington, R. F.; Mautz, J. R. Theory of Characteristic Modes for
Conducting Bodies. IEEE Trans. Antennas Propag., volume 19, no. 5,
September 1971: pp. 622–628, doi:10.1109/TAP.1971.1139999.

[4] Morse, P. M.; Feshbach, H. Methods of Theoretical Physics. McGraw-Hill,
1953.

[5] Edelsbrunner, H. Geometry and Topology for Mesh Generation. Cam-
bridge University Press, 2001, ISBN 978-0-521-68207-7.

[6] Delaunay, B. Sur la sphère vide. A la mémoire de Georges Voronoı.
Bulletin de l’Académie des Sciences de l’URSS. Classe des sciences
mathématiques et na, volume 6, 1934.

[7] ESI Group. ESI [online]. [cit. 2017-04-24]. Available from: https://
www.esi-group.com/

[8] Aruoba, S. B.; Fernández-Villaverde, J. A Comparison of Programming
Languages in Economics. The National Bureau of Economic Research,
June 2014.

[9] Engwirda, D. Locally Optimal Delaunay-refinement and Optimisation-
based Mesh Generation. Dissertation thesis, The University of Sydney,
September 2014.

41

http://www.antennatoolbox.com/
https://www.esi-group.com/
https://www.esi-group.com/

Bibliography

[10] Eichler, J.; Hazdra, P.; et al. Aspects of Mesh Generation
for Characteristic-Mode Analysis. IEEE Antennas and Propagation
Magazine, June 2014.

[11] Shewchuk, J. R. Lecture Notes on Delaunay Mesh Generation. [online],
2012. Available from: https://people.eecs.berkeley.edu/˜jrs/
meshpapers/delnotes.pdf

[12] HyperWorks. FEKO [online]. [cit. 2017-05-06]. Available from: https:
//www.feko.info/

[13] ESI Group. CEM One [online]. [cit. 2017-05-06]. Available from:
https://www.esi-group.com/software-solutions/virtual-
environment/electromagnetics/cem-one-solution

[14] MathWorks. N-D Delaunay triangulation [online]. [cit. 2017-04-18].
Available from: https://www.mathworks.com/help/matlab/ref/
delaunayn.html

[15] Chew, L. P. Constrained Delaunay Triangulations. Algorithmica,
volume 4, June 1989.

[16] Sibson, R. Locally equiangular triangulations. The Computer Journal,
volume 21, 1978.

[17] Shewchuk, J. R. What Is a Good Linear Finite Element? - Interpolation,
Conditioning, Anisotropy, and Quality Measures. Technical report, In
Proc. of the 11th International Meshing Roundtable, 2002.

[18] Bhatia, R. P.; Lawrence, K. L. Two-Dimensional Finite Element Mesh
Generation Based on Stripwise Automatic Triangulation. Computers and
Structures, volume 36, 1990.

[19] Persson, P.-O.; Strang, G. A Simple Mesh Generator in MATLAB. SIAM
Review, volume 46, June 2004.

[20] Barker, T. J. Three dimensional mesh generation by triangulation of ar-
bitary point sets. Technical report, 8th Computational Fluid Dynamics
Conference, 1987.

[21] Bowyer, A. Computing Dirichlet Tessellations. The Computer Journal,
volume 24, February 1981.

[22] Rebay, S. Efficient Unstructured Mesh Generation by Means of Delaunay
Triangulation and Bowyer-Watson Algorithm. Journal of Computational
Physics, volume 106, 1993.

42

https://people.eecs.berkeley.edu/~jrs/meshpapers/delnotes.pdf
https://people.eecs.berkeley.edu/~jrs/meshpapers/delnotes.pdf
https://www.feko.info/
https://www.feko.info/
https://www.esi-group.com/software-solutions/virtual-environment/electromagnetics/cem-one-solution
https://www.esi-group.com/software-solutions/virtual-environment/electromagnetics/cem-one-solution
https://www.mathworks.com/help/matlab/ref/delaunayn.html
https://www.mathworks.com/help/matlab/ref/delaunayn.html

Bibliography

[23] Darren Engwirda. MESH2D [online]. [cit. 2017-04-29]. Available from:
https://www.mathworks.com/matlabcentral/fileexchange/
25555-mesh2d-delaunay-based-unstructured-mesh-
generation

[24] Engwirda, D. MESH2D 3.0.0 [online]. [cit. 2017-05-02]. Available from:
https://github.com/dengwirda/mesh2d

[25] MathWorks. Triangulation in 2-D or 3-D [online]. [cit. 2017-04-18].
Available from: https://www.mathworks.com/help/matlab/ref/
triangulation-class.html

[26] MathWorks. Delaunay triangulation in 2-D and 3-D [online]. [cit.
2017-04-18]. Available from: https://www.mathworks.com/help/
matlab/ref/delaunaytriangulation-class.html

[27] MathWorks. 2-D triangular plot [online]. [cit. 2017-04-18]. Available from:
https://www.mathworks.com/help/matlab/ref/triplot.html

[28] MathWorks. Triangular mesh plot [online]. [cit. 2017-04-18]. Avail-
able from: https://www.mathworks.com/help/matlab/ref/
trimesh.html

[29] MathWorks. Triangular surface plot [online]. [cit. 2017-04-18]. Avail-
able from: https://www.mathworks.com/help/matlab/ref/
trisurf.html

[30] Rao, S. M.; Wilton, D. R.; et al. Electromagnetic Scattering by Surfaces
of Arbitrary Shape. IEEE Trans. Antennas Propag., volume 30, no. 3,
May 1982: pp. 409–418, doi:10.1109/TAP.1982.1142818.

[31] Lay, D. C. Linear Algebra and Its Applications 4th ed. Addison-Wesley,
2012.

[32] Peterson, A. F.; Ray, S. L.; et al. Computational Methods for Electromag-
netics. Wiley – IEEE Press, 1998.

[33] Deb, K. Multi-Objective Optimization using Evolutionary Algorithms.
Wiley, 2001.

[34] Balanis, C. A. Antenna Theory Analysis and Design. Wiley, third edition,
2005.

[35] Capek, M.; Jelinek, L.; Kadlec, P.; Strambach M. Excitation of Optimal
and Suboptimal Currents. EuCAP 2017, Paris, France, 2017.

[36] Yamamoto, M. Approximately counting paths and cycles in a graph.
Discrete Applied Mathematics, volume 217, 2017.

43

https://www.mathworks.com/matlabcentral/fileexchange/25555-mesh2d-delaunay-based-unstructured-mesh-generation
https://www.mathworks.com/matlabcentral/fileexchange/25555-mesh2d-delaunay-based-unstructured-mesh-generation
https://www.mathworks.com/matlabcentral/fileexchange/25555-mesh2d-delaunay-based-unstructured-mesh-generation
https://github.com/dengwirda/mesh2d
https://www.mathworks.com/help/matlab/ref/triangulation-class.html
https://www.mathworks.com/help/matlab/ref/triangulation-class.html
https://www.mathworks.com/help/matlab/ref/delaunaytriangulation-class.html
https://www.mathworks.com/help/matlab/ref/delaunaytriangulation-class.html
https://www.mathworks.com/help/matlab/ref/triplot.html
https://www.mathworks.com/help/matlab/ref/trimesh.html
https://www.mathworks.com/help/matlab/ref/trimesh.html
https://www.mathworks.com/help/matlab/ref/trisurf.html
https://www.mathworks.com/help/matlab/ref/trisurf.html

Bibliography

[37] Roberts, B.; Kroese, D. P. Estimating the Number of s-t Paths in a
Graph. Journal of Graph Algorithms and Applications, volume 11, 2007.

[38] Schrijver, A. Combinatorial Optimization: Polyhedra and Efficiency.
Springer-Verlag Berlin Heidelberg New York, 2003, ISBN 3-540-44389-4.

44

Appendix A
Content of the Enclosed CD

README.pdf.....................................CD content description
AToM.....................................directory with implementation

+models
+mesh

@Mesh..............................class Mesh implementation
@Mesh 2D.......................class Mesh2D implementation
@MeshObject.............class MeshObject implementation

+utilities
+meshPublic....................mesh utility implementation

examples
mesh...............................directory with mesh examples

topology..................... implementation of topology optimization
insertionAlgorithms.. implementation of point insertion algorithms
text

BP Strambach Martin 2017.pdf........text of the thesis in PDF
thesis..................................GIT repository of the thesis

45

	Introduction
	Goals of the Thesis

	State of the Art
	Triangulation
	Voronoi Diagram
	Delaunay Triangulation
	Constrained Delaunay Triangulation
	Triangulation Terminology
	Description of Basic Algorithms

	MATLAB Implementation
	AToM and Models Connection
	Mesh Model
	Mesh Utilities
	Finding Longest ``Loops" and ``Dipoles"

	Conclusion
	Future Work

	Bibliography
	Content of the Enclosed CD

