
doc. Ing. Jan Janoušek, Ph.D.
Head of Department

prof. Ing. Pavel Tvrdík, CSc.
Dean

Prague March 17, 2017

CZECH TECHNICAL UNIVERSITY IN PRAGUE

FACULTY OF INFORMATION TECHNOLOGY

ASSIGNMENT OF BACHELOR’S THESIS

 Title: Translation of eye movement into mouse cursor movement

 Student: Jan Škařupa

 Supervisor: Ing. Radomír Polách

 Study Programme: Informatics

 Study Branch: Computer Science

 Department: Department of Theoretical Computer Science

 Validity: Until the end of winter semester 2018/19

Instructions

Study libraries OpenCV [1] and/or SimpleCV [2] and appropriate algorithms for analysis of the eye
movement recorded by camera.
Analyse how to translate eye movement into mouse cursor movement.
Design and implement prototype application for Linux and Windows operating systems in the C++
programming language.
Test implemented applications on several human subjects with regard to reliability and accuracy.

References

[1] OpenCV. Available at: http://opencv.org/
[2] SimpleCV. Available at: http://simplecv.org/

Czech Technical University in Prague

Faculty of Information Technology

Department of Theoretical Computer Science

Bachelor’s thesis

Translation of eye movement into mouse

cursor movement

Jan Škařupa

Supervisor: Ing. Radomı́r Polách

16th May 2017

Acknowledgements

I would like to thank my entire family for supporting me during my studies
and during my work on this bachelor thesis.

Also I would like to thank Ing. Radomı́r Polách for proposing this inter-
esting topic.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on 16th May 2017 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2017 Jan Škařupa. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Škařupa, Jan. Translation of eye movement into mouse cursor movement.
Bachelor’s thesis. Czech Technical University in Prague, Faculty of Informa-
tion Technology, 2017.

Abstrakt

Tato bakalářská práce se zabývá tématem sledováńı pohybu oč́ı, konkrétně de-
tekćı bodu pohledu. Zkoumá současné metody a algoritmy. Dále je modifikuje
pro použit́ı při překladu pohybu oč́ı na pohyb kurzoru. Práce uvažuje pouze
př́ıpady, kdy jsou oči sńımány obyčejnou web kamerou. Upravené algoritmy
testuje a zkoumá jejich použitelnost.

Kĺıčová slova poč́ıtačové viděńı, sledováńı oč́ı, detekce duhovky, detekce
zornice, bod pohledu, pohyb kurzoru

Abstract

This thesis reviews current methods for eye tracking, specifically for point of
gaze detection. It redesigns them for use in application that translates eye
movement into movement of a mouse cursor. It considers only cases when the
eye movement is captured with regular non-expensive web camera. It tests
precision of implemented approach and discuss its usability.

Keywords computer vision, eye tracking, iris detection, pupil detection,
point of gaze, cursor movement

ix

Contents

1 Introduction 1
1.1 Eye tracking and point of gaze 1
1.2 Goals . 3

2 Related work 5
2.1 Face recognition . 5
2.2 Facial Landmarks Detection . 8
2.3 Pupil centre localization . 9

3 Design 17
3.1 Pupil centre detection . 17
3.2 Reference point . 21

4 Implementation details 23
4.1 Libraries . 23

5 Experiments 25
5.1 Precision of IC detection . 25

Conclusion 29

Bibliography 31

A Acronyms 33

B Contents of enclosed CD 35

xi

List of Figures

2.1 Haar-like features [5] . 6
2.2 Histogram of Oriented Gradients 7
2.3 Facial Landmarks Detection points 8
2.4 Stages of Anjith’s eye centre detection 14
2.5 Starburst algorithm example . 16

3.1 Outstretched ellipse as result of Fitzgibbon’s fitting. 21

4.1 Landmark detection error caused by over-sized face region. 24

5.1 Comparison of gaze at left/right screen border. 26
5.2 IC detection test - absolute locations 27
5.3 IC detection test - deviations from mean location 27

xiii

List of Tables

2.1 Comparison of Timm’s detection algorithm on the BioID database. 11
2.2 Comparison of Anjith’s detection algorithm on the BioID database. 14

xv

Chapter 1

Introduction

1.1 Eye tracking and point of gaze

Eye tracking is a process of detecting motion of the eye ball (or more precisely
of the pupil) relative to the head. The earliest mention is from second half of
18. century, when reading process was studied. Naturally eye movement was
observed without any technology. Nowadays various methods for eye tracking
exists, as well as many applications.

Today’s application

Even today the eye tracking is mainly used for research. However it spread
from purely medical research to other areas including commercial one. Here I
present short list [9] of most common research areas:

• Medical Research: Eye tracking in combinations with conventional re-
search methods or other biometric sensors can even be helpful for dia-
gnosing diseases such as Attention Deficit Hyperactivity Disorder (ADHD),
Autism Spectrum Disorder (ASD), Obsessive Compulsive Disorder (OCD),
Schizophrenia, Parkinsons and Alzheimers disease.

• Psychology Research: Useful information about human attention and
others psychological factors can be derived from movement of eyes.

• Market Research: Many leading brands use the eye tracking as a tool
to evaluate their products, designs, advertising or even the shopping
behavior of their customers according to amount of attention given to
subject.

• Usability Research: The classic example is website testing. Using eye
tracking one can evaluate how hard it is to locate important elements of
UI.

1

1. Introduction

• Human factors: By eye monitoring it is possible to estimate condition
of the individual. That could be used for example as security element
in cars.

Future is promising even more applications. With increasing digitalization,
eyes could be used as common interface between human and computer.

Types of eye tracking

Eye tracking techniques can be divided into two main categories based on the
fact whether they use specialized hardware (eye tracker) or not. First category
of techniques is called “intrusive”, the other “non-intrusive”. Examples of
intrusive methods are:

• Optical tracking: This technique uses head-mounted device for eye cap-
turing. Some sort of light source can be added to help detection. Infrared
light is often used.

• Eye-attached tracking: This technique uses hardware attached directly
to the eye. (Commonly some sort of contact lens.)

• Electric potential measurement: based on measuring of electric poten-
tials.

All intrusive methods are naturally quite constraining or uncomfortable for
the user. We will focus on second category. In non-intrusive eye tracking input
is plain image containing observed eyes. We can find location of the eye centre
in the image, but obviously for point of gaze detection previous calibration is
needed. Algorithms for eye localization also falls into several categories:

• Feature based: Set of features (specific patterns) is predefined. Then the
image is probed and every region is tested for presence of every feature.
Specific configuration of features may be evaluated as object detection.

• Model based: This approach tries to fit to predefined templates.

• Hybrid models: These are combination previous methods.

In this work I will try to improve non-intrusive point of gaze detection.

2

1.2. Goals

1.2 Goals

The overall goal of this thesis is to design an algorithm which can translate
eye movements into movement of the cursor. Input images will be captured
by regular integrated web camera. We do not consider cases where extra
hardware, as head-mounted tracking device, is involved. Algorithm should
satisfy following requirements and constrains:

1. Algorithm performs on low quality images.

2. Algorithm is fast enough to work in real time.

3. Algorithm estimates PoG with precision sufficient for controlling cursor.

To meet these requirements, solution for following problems must be designed:

1. Perform face detection in relatively short time.

2. Detect location of the eye centre precisely. Detection must be invariant
to lightning conditions and resistant to noise.

3. Define reference point or other framework to transform eye centre loc-
ation into point of gaze estimation. Such reference should be invariant
to face expression and head motion.

4. If necessary design filtering algorithm for latter two points. Filter must
not cause noticeable delay.

3

Chapter 2

Related work

2.1 Face recognition

The initial step for any kind of eye tracking is to recognize faces in the image.
Face detection is basically special case of object-class detection. The face
detection algorithm must be able to recognize faces despite all their differences.
Its performance should be as invariant to changes of light condition as possible.
Finally we often want to use such algorithms in real time applications therefore
it must be fast.

In context of computer vision we are mostly talking about detecting fea-
tures. A feature is - generally speaking - a pattern which we are looking for
in our complex input. It may be point, edge, difference in pixel intensity, etc.
For complex structures (such as faces) it is impossible to define set of desired
features manually. Therefore some sort of machine learning is used.

2.1.1 Haar Cascade Classifier

One of the algorithm I tested during my work was Haar Cascade Classifier. It
was proposed by Paul Viola and Michael Jones in 2001 in their paper ”Rapid
Object Detection using a Boosted Cascade of Simple Features”. [5] It based
on detection specific features, so called “Haar-like features”. Three example of
Haar-like features are shown in figure 2.1. They can be regarded as convolution
kernels. They consist of shape divided between two regions. For each region
we calculate the sum of pixel’s intensities and then the difference between
those sums. So basically it calculates brightness difference between adjacent
areas.

Shape of Haar-like feature is most often rectangle. For rectangle shaped
features we can convert our input into integral image. By doing this we can
compute sums of our regions with O(1) complexity.

5

2. Related work

Figure 2.1: Haar-like features [5]

Cascade function training

Every cascade classifier must be trained on some dataset of positive images
(those who contain face) and negative images (those who do not). All instances
of kernels are generated (for every size and location). Then they are applied
to every image in training database. Threshold value is decided for every
kernel such that it provides best classification results. After that weights are
assigned to the images based on number of miss-classifications and these steps
are repeated (with regard to weighting) to optimize setting of thresholds. This
procedure is called AdaBoost.

After sufficient result is achieved we choose features with lowest error
rate. One feature with set threshold value is called “weak classifier” as it
provides only slightly better result in face detection then random choosing.
They must be used in group to provide useful results. Therefore final classi-
fier is a weighted sum of these weak classifiers. Number of selected features
is optional. With increasing size of the set the computational complexity will
naturally increase as well. Trained set of OpenCV library contains around
6000 features.

Classification cascade

To detect faces with trained classifier algorithm uses sliding window to explore
all image sections. However in real life applications most sections of the image
does not contain any face at all. It is computationally wasteful to apply all
feature kernel to them. For this reason kernels are split into groups. Groups
are applied gradually and their size increases. If any group decides that win-
dow does not contain image face process is stopped and window moves to
other position. If all the groups agrees then a face is detected.

6

2.1. Face recognition

2.1.2 Classification from Histogram of Oriented Gradients

Another algorithm for face detection that I tested is based on the classic His-
togram of Oriented Gradients [6] feature combined with a linear classifier and
sliding window detection scheme, which was already mentioned above. Tech-
nique based on HOG was very successfully used for detection of pedestrians.

Histogram of Oriented Gradients

Unlike previous method this one works with image gradients. First step is to
calculate vector field of gradients. It is usually done by Sobel operator with
size 1. (i.e. Filtering image with kernels S = [−1 0 1] and ST and calculat-
ing magnitude and direction of resulting vectors.) Gradients are afterwards
clustered into squares of specific size. This size is based on the expected size
of the searched object. It must be fraction of object size.

Histogram with respect to gradient orientation is created afterwards. To
achieve results which will be invariant to uniform illumination changes, histo-
gram is normalized to the 2L norm.

Algorithm then search field of histograms looking for specific pattern.
Technique of sliding window is used again and histograms in windows are
exploit by trained linear classifier.

Figure 2.2: Histogram of Oriented Gradients

(a) Input image. (b) Field of gradients from n×n region collapsed into N-dimensional
vector.

7

2. Related work

2.2 Facial Landmarks Detection

After detecting faces using one of the approach described above we might
want to obtain additional information about the face. Face detectors usually
returns only regions. Based on used detector we can assume rough orienta-
tion (e.g. Was detector trained for frontal faces? Etc.), but details remain
unknown. Faces have common stable characteristic which we can look for.
For example: inner and outer corners of eyes, lips, chin, etc. Different imple-
mentations specify different number (and location) of these points. Figure 2.3
shows example of points defined by Vahid Kazemi and Josephine Sullivan in
their paper “One Millisecond Face Alignment with an Ensemble of Regression
Trees”.

Naturally these points are mostly located on those parts of human face that
creates edges in the image. Therefore similar approach will be used as when
detecting presence of a face itself. Nevertheless one single point would create
only hardly distinguishable feature. Fortunately we have prior knowledge
about human face (e.g. approximate relative locations of the points). Further
we have already acquired the face region. Therefore we can constrain location
of points and try to fit them to a predefined model.

Implementation is often based on regression trees. Xiangxin Zhu for in-
stance states: “Our model is based on a mixtures of trees with a shared pool
of parts; we model every facial landmark as a part and use global mixtures to
capture topological changes due to viewpoint.”

Figure 2.3: Facial Landmarks Detection points

Figure shows 68 points which represents initial model for facial landmarks detection.

8

2.3. Pupil centre localization

2.3 Pupil centre localization

After successful eye region alignment, the next step of PoG detection is to
determine the location of pupils centers. A lot of work has been made in this
area lately.

At first I decided to rehearse approach proposed by Fabian Timm and
Erhardt Barth in 2011 [1] as it achieved good results in their comparative
testing on the BioID database. (see fig. 2.3.1) Moreover algorithm is quite
straightforward and its implementation is not exceedingly demanding. How-
ever several issues arisen when this approach was tested in context of PoG
detection. Namely: low precision in general, insufficient robustness against
image noise, insufficient robustness against occlusions. Due to the character-
istics of testing on BioID database these problems remained hidden. I discuss
them thoroughly later.

Later on I decided to change base of pupil centre localization to George
Anjith’s approach [2]. It uses convolution operators and Starburst algorithm [3]
to detect iris borders. Pupil centre is afterwards derived from iris location.
This technique proved itself to be more convenient for needs of this work. It
is described in section 2.3.2.

2.3.1 Timm’s approach: localization by means of gradient

In the following section I will provide description of Timm’s and Barth’s ap-
proach, including mathematic definition. Discussion on precision and other
problems follows.

Algorithm

Center Localization by Means of Gradient technique works on previously se-
lected eye region. It is based on the assumption, that pupil is the darkest area
in the region. Also that it is surrounded with brighter iris and even brighter
sclera. Therefore in vector field of gradient (calculated from pixels intensities),
vectors will be pointing towards pupil centre.

For every possible pupil centre (which corresponds to every pixel in re-
gion) the algorithm exploits vector field to determine how much gradients fits
assumption stated above. Timm and Barth define this exactly:

Let c be a possible centre and gi the gradient vector at position gi.
Then, the normalized displacement vector di should have the same
orientation (except for the sign) as the gradient gi. If we use the
vector field of (image) gradients, we can exploit this vector field
by computing the dot products between the normalized displace-
ment vectors (related to a fixed centre) and the gradient vectors gi.

9

2. Related work

The optimal centre c∗ of a circular object in an image with pixel
positions xi, i ∈ {1, . . . , N} is then given by

c* = arg max
c

{
1

N

N∑
i=1

(dTi ci)
2

}
, (2.1)

di =
xi − c
||xi − c||2

, ∀i : ||gi||2 = 1. (2.2)

To ensure that the maximum of the objective function will lay in dark area
and thus more likely in pupil region, they add weight wc to each potential
centre. Therefore we get:

c* = arg max
c

{
1

N
wc

N∑
i=1

(dTi ci)
2

}
, (2.3)

where wc = I∗(cx; cy) is the gray value at (cx; cy) of the inverted and smoothed
image. Smoothing is done by applying Gauss filter.

Post processing

Furthermore they discuss false detection caused by other dark elements (e.g.:
eyebrows, glasses, etc.) in eye region. Such elements can have gradient similar
to the eye around themselves. Solution consists of post processing results of
the objective function before finding its maximum. Threshold based on the
maximum value is applied and all regions connected to borders of the eye
region are removed. This solution is very effective but relies hugely on correct
size of the region. During my testing two problematic scenarios occurred.

1. Region too large: If the region is too large, it will contain entire eyebrow
without it touching borders. In that case it is not removed and can cause
false detections.

2. Region too small: If the region is too small, eyelid contours (usually
quite dark) can be touching borders. And because upper part of the eye
is often overshadowed by superciliary ridge these two regions can merge
into one after thresholding. Entire iris will be removed consequently.

Especially second case causes serious problems, therefore if used, eye regions
must be chosen carefully.

10

2.3. Pupil centre localization

Issues in PoG application

Entire stated algorithm base its logic on the fact, that pupil centre is the
darkest point in eye region. However this is only truth to the certain point of
precision. (Note that in context of translation PoG to cursor movement we
require high precision as even delicate movement of the eye might result in
consignable movement of the cursor.) Timm’s algorithm is robust and even on
images with low resolution and quality performs very well in terms of finding
darkest point in pupil region. Here I list conditions under which such point is
usually not the pupil centre.

1. Occlusions: Strong direct illumination causes reflects on cornea. Espe-
cially in night time the computer screen is reflected right in the pupil
region as user usually faces screen directly. This results in pupil centre
being bright.

2. Strong illumination from one specific angle: Even if the source of light
is not as direct and strong as computer screen mentioned above, it often
comes from one direction (from window, etc.). Consequently pupil might
be darkest at the opposite side.

3. Noise: Finally, even if the illumination is uniform, we are facing problem
of camera noise. This causes “trembling” of detected point. Naturally
we can apply some sort of filter either to image itself or directly to
the point location, however every filtering causes delay which might be
inconvenient.

These problems led me to the conclusion, that detecting pupil centre directly
is insufficient and detection of iris itself is needed.

Testing on BioID dataset

Timm and Barth tested their algorithm on BioID dataset. I present most
interesting part of their comparative table.

Method ε ≤ 0.05 ε ≤ 0.1 ε ≤ 0.15 ε ≤ 0.2 ε ≤ 0.25

Asadifard and Shanbezadeh, 2010 47.0% 86.0% 89.0% 93.0% 96.0%
Valenti and Gevers, 2008 84.1% 90.9% (93.8%) (97.0%) 98.5%
Trkan et al., 2007 (18.6%) 73.7% (94.2%) (98.7%) 99.6%
Cristinacce et al., 2004 (57.0%) 96.0% (96.5%) (97.0%) (97.1%)
.....

Timm & Barth 82.5% 93.4% 95.2% 96.4% 98.0%

Table 2.1: Comparison of Timm’s detection algorithm on the BioID database.

Brackets indicate values that have been accurately measured from authors graphs.

11

2. Related work

2.3.2 Anjith’s approach: Convolution operators & Starburst

In the following section I will provide description of G. Anjith’s approach. [2]
As already mentioned, it detects iris borders, from which iris respectively pupil
centre is derived.

Many algorithms - as well as Anjith’s - for iris detection use two-stage
approach. In first stage rough eye centre is detected and the exact position is
then refined in second stage. This separation allows use of different methods.
In first stage we need robust and computationally inexpensive algorithm which
can reliably performs on larger areas. For second stage, the precision is the
priority.

Rough eye centre localization by Circle Hough Transform

For rough eye centre estimation algorithm assume the shape of the iris is
circle. The radius boundaries of the searched circle are calculated from size
of the head. The ratio between head size and iris size is hard-coded. (It is
empirical value.) Also, as well as in Timm’s approach 2.3.1, it is assumed
that surrounding of the iris is brighter therefore vectors gradient field point
outwards.

The iris is searched by performing convolution of the gradient of the image
and class of convolution kernels. Using convolution is similar to using circle
Hough Transform (described in 2.3.3.1). However operating on the gradient
dispose the need to use an edge detector. This is very beneficial since it prob-
lematic to set right parameters for the edge detection without prior knowledge
of the input.

Anjith provides exact mathematic definition for convolution operator:

The convolution operator is designed as a complex operator with
magnitudes as unity. [. . .]

OCOA(m,n) =


1√

m2+n2
(cos θmn + i sin θmn) iffR2

min < m2 + n2 < R2
max

0 otherwise

(2.4)

where,

θmn = arctan(
n

m
) (2.5)

Parameters m and n denote the coordinates of the kernel matrix
with respect to the origin. The operator is scaled for equal contri-
butions of circles in the radius range.

12

2.3. Pupil centre localization

[. . .] An additional weighing factor (β) is included to increase
the contribution of horizontal gradients. Equation for convolution
kernel can be made a real-valued kernel as

CRCC = βRe(OCOA)⊗ Sx +
1

β
Im(OCOA)⊗ Sy (2.6)

where ⊗ denotes the convolution operator; Sx and Sy denote the
3× 3 Schaar kernels in x and y directions respectively.

Here Anjith as well as Timm and Barth (2.3.1) wants to benefit dark areas
of the image. However instead of taking just inversed intensity value of the
evaluated point, he considers also point’s adjacent area. Weight of adjacent
pixels lowers as distance from point increases. This is achieved by weighting
kernel WA.

This is definitely improvement as camera noise cause a lot of intensity
distortions. The average intensity of each point in image is calculated as

W = (255− I)⊗WA (2.7)

Where I and denote the image and WA is defined as

WA(m,n) =


1√

m2+n2
iffm2 + n2 < R2

max

0 otherwise

(2.8)

To obtain final correlation output (CO) Anjith sums the result of convolution
with averaged intensities of pixels. Sum is weighted with scalar λ ∈ [0; 1]. Here
we can see another difference from Timm’s approach as Timm used element-
wise multiplication for weighting. Anjith’s approach is somewhat finer but the
actual effect is questionable. If lambda is large it may lead to false detections
in dark areas (e.g. eyebrow). On contrary a small lambda may not create
enough difference between dark and bright point. Since we are only looking
for approximation of centre point I would prefer multiplication.

CO = λ(I ⊗ CRCC) + (1− λ)W (2.9)

We can search in result of convolution for maximal value to detect rough
eye centre. However the convolution operator itself can produce more (local)
maxim and hence false detection. To increase robustness of the algorithm
Anjith calculates peak to side lobe ratio. Candidate with highest ratio is
selected as approximate eye centre.

13

2. Related work

Figure 2.4: Stages of Anjith’s eye centre detection

(a) Cropped eye region, (b) Correlation surface from the proposed operator, (c) Se-
lected candidate boundary points, (d) Fitted ellipse.

Edge refining and ellipse fitting

After rough eye centre estimation Anjith employs Starburst algorithm (see
2.3.3.2) to detect iris borders. Algorithm searches in radial direction finding
strongest edges with agreeing gradient. Note that edges can be chosen with
sub-pixel precision. The step does not have to be integral, values of partial
derivatives can be obtained as weighted average.

Based on image quality result will contain less or more outliers. However
even in prefect image the outliers will be present as iris is never surrounded by
sclera entirely. Except for cases unnaturally opened eye, iris is always partially
covered with eye lids. Also top part of the eye can be overshadowed. Rays
of Starburst algorithm will likely pass trough these sector and create outliers
afterwards. It is convenient to filter results by their distance from centre. But
since ray origin point (rough centre) can lie anywhere in iris region (or even
outside) average distance will change accordingly to the ray angle. Anjith
therefore creates angle versus distance plot, which can be filtered with median
filter.

After initial filtering RANSAC algorithm (see 2.3.3.3) is used for ellipse
fitting. Anjith does not describe procedure exactly, yet he states, that fitting
in one iteration of RANSAC is done by Fitzgibbon’s Direct Least Squares
Fitting. [4] We may therefore assume, that more than 5 points (smallest
sufficient points to determine rotated ellipse exactly) are selected into one
sample. From fitted ellipse exact iris centre is derived. You can see examples
of each fitting stage in figure 2.4.

Testing on BioID dataset

Table 2.2: Comparison of Anjith’s detection algorithm on the BioID database.

Method ε ≤ 0.05 ε ≤ 0.1 ε ≤ 0.15 ε ≤ 0.2

MIC (cite!) 86.0% 91.6% 94.5% 96.9%
Timm & Barth 82.5% 93.4% 95.2% 96.4%

Anjith 85.0% 94.3% 96.6% 98.1%

14

2.3. Pupil centre localization

2.3.3 Used concepts, techniques and algorithms

In this section I will present brief overview of techniques and algorithms fre-
quently used in eye tracking applications.

2.3.3.1 Circle Hough Transform

Circle Hough Transform (CHT) is specialization of Hough Transform, which
is feature extraction technique commonly used in computer vision and image
analysis. It was proposed by Richard Duda and Peter Hart in 1972. It is
used for finding imperfect instances of given object. Such imperfections can
be result of noise, result of missing data, presence of outliers and others.

Suppose we are looking for presence of objects described by N parameters.
In case of CHT this object would be obviously circle. Since circle in R2

is defined as (x − xc)
2 + (y − yc)

2 = r2 parameter space would be three
dimensional (xc, yc, r). Without loss of generality we can assume case, when
we are looking for circle with fixed radius. As r becomes constant, 3D space
is collapsed into 2D. Here every point from our dataset votes for all centers
(i.e (xc, yc)) which equation of circle for voting point. Afterwards objects are
chosen from parameter space based on number of votes and other constrains
(minimal distance between objects etc).

Voting process can be implemented as gradual addition of the binary ob-
ject masks to the accumulator matrix which implements parameter space.
Choosing candidates is done as finding local maxim.

2.3.3.2 Starburst

Suppose we have want detect pupil borders (circle) in bitmap image. One
option is to use circle Hough Transform however this algorithm operates on
set of discrete points and on bitmap would not produce any useful result. To
overcome this problem various edge detectors has been used. Yet if we already
know approximate pupil centre location using edge detectors such as canny
is computationally wasteful. Another - probably more serious - problem is
the right configuration of edge detector. Especially when nature of images
changes dramatically. D. Li et al. in their work regarding PoG detection
using head-mounted eye tracker proposed algorithm called ‘Starburst’. [3]

Edges are detected with set of rays, which are extended from approximate
centre in radial direction. (As shown in 2.5 a.) As ray proceed in its direction
it looks at gradient of the image. If the gradient vector (respectively its part
parallel to the ray) at certain point exceeds given threshold it is marked as
border point. Usually rays have also specified maximal distance they can
travel.

15

2. Related work

After that second iteration of rays is send from every found border point.
Their directions are limited to 50 degrees around the ray that originally gen-
erated the border point. It is expected that if the border point is inlier its
rays will mostly generate inliers again. If it is outlier the rays are less likely to
generate border point or such point will not be consistent with other points.
Therefore ratio between inliers and outliers is increased.

Figure 2.5: Starburst algorithm example

Example a) shows first iteration of rays with two false detections. One ray reached
border and did not generate border point. Other two figures shows second iteration
from inlier (b) and from outlier (c). [3]

2.3.3.3 Random Sample Consensus

Random Sample Consensus or RANSAC is non-deterministic iterative method
to estimate parameters of a mathematical model from set of points. It is
designed to prevent outliers to affect estimated parameters. It can be used
both as a fitting algorithm or as a outlier detection method.

It is based on assumption that there is more inliers that fit real (searched)
model than outliers which randomly fits model with arbitrary parameters.

RANSAC randomly choose N points from the set, where N is smallest
number sufficient to determine model parameters. Algorithm then counts
how many points fits this particular setting for some maximal error. This is
iteratively repeated. Parameters of model with most inliers are result of the
algorithm. It is consensus of random sample.

In presence of outliers it will most likely produce better results than
method which minimize the error between model and all points in dataset
(e.g. Least Square method).

16

Chapter 3

Design

In the following section I will describe algorithms I modified or designed for
my application. I will try to keep this description as general as possible. In
some cases is design influenced by used libraries (OpenCV, Dlib). To avoid
confusion and uncertainties I will include mathematical definitions.

Algorithms are mostly based on work of G. Anjith [[2]] and D. Li et al. [3]
and they are modified to suit conditions of translation of point of gaze into
cursor movement.

3.1 Pupil centre detection

Here I will describe all stages of eye centre detection. As I already mentioned
when reviewing Timm’s approach 2.3.1, direct centre localizations often end
up being biased from real centre due to lighting condition. Also the detection
is affected by noise. (Noise causes “shaking” of the centre point.) Filtering on
the other hand causes bothersome delays. Therefore in my application I am
detecting iris location.

Context of use is quite beneficial for the algorithm. When considering
person controlling the cursor with its eye, we can expect following conditions:

1. Face will be dominant part of the captured image.

2. Face will be mostly in direct position relative to the screen.

3. Eyes will be usually regularly open.

Furthermore we can set lower and upper bound on size of the iris by defining its
approximate ratio to the head size. This ratio of course vary among different
people but for setting boundaries it is stable enough.

Detection of the eye centre will be executed in following stages:

17

3. Design

1. Rough centre detection by convolution operators.

2. Iris border points detection by Starburst algorithm.

3. Border refining by conic fitting.

4. Extraction of the eye centre as centre of the conic.

3.1.1 Rough centre detection

I am using similar approach as described here subsection 2.3.2.

Regarding third condition mentioned above I expect sclera to be visible
(and brighter than iris) and thus create gradient of high magnitude on bor-
ders with iris. Vectors of gradient will be pointing outwards from the eye. I
will search through matrices of partial derivatives looking for pattern corres-
ponding to the iris borders. (I am dealing with x and y directions separately
to simplify equations as much as possible. Anjith’s use of the complex form
seems redundant to me.)

Let me define the search process formally. First of all I designed an eye
pattern as

Ψx(x, y) =


x

|x|+|y| iff R2
min < x2 + y2 < R2

max

0 otherwise

(3.1)

where Ψy(x, y) is defined in the same way only having y in the numerator.
Accumulators (in sense of Hough Transform filters) are calculated as

ACCx =
∂I

∂x
⊗Ψx where ⊗ denotes convolution, (3.2)

and ACCy respectively for other partial derivative. Also we want to benefit
dark areas over bright ones as others did. We will use inversion of image I
blurred with Gaussian filter.

IINV = (255− I)⊗GB, where GB =

 3 0 −3
10 0 −10
3 0 −3

 (3.3)

Finally we can obtain rough centre as

c∗ = max{(ACCX +ACCY) ◦ IINV } (3.4)

18

3.1. Pupil centre detection

3.1.2 Iris border points detection

From the rough centre Starburst algorithm is launched (as described in 2.3.3.2).
I deploy 40 rays in radial direction. The important modification I made here
from Li’s implementation is that ray do not stop after overcoming specified
threshold T .

Our condition is distinct from Li’s. First of all they designed Starburst
for use with head-mounted infrared tracking device. Such capturing method
naturally provides high quality images thus edges are better defined. Also
they were searching for pupil not the iris. These two factor made setting of
the threshold easier as they could expect much higher values of derivations on
pupil borders.

In my implementation I want to avoid using any kind of thresholds as
decision-making elements. It is complicated to set threshold correctly without
knowing illumination conditions. I do not abandon concept of thresholds
completely, but I use them just as lower (upper) bound constrains.

Therefore rays always travel maximal distance (double of the maximal iris
radius) and select point with greatest gradient magnitude as border point can-
didate. (If any of probed points overcome some lesser threshold.) However
this solution creates problem of pupil stopping the rays. Sometimes the con-
trast is higher between the pupil and iris than between iris and sclera. I apply
two mechanism to deal with this issue:

1. Start the ray probing in certain distance from the rough centre. (In the
implementation it is 1

3 of iris maximal radius.)

2. Until higher distance from the rough centre (23 of iris maximal radius)
is reached gradient magnitude is lowered by constant coefficient.

3.1.3 Conic fitting

After acquiring set of border point candidates we need to fit a conic to them
to obtain simplified information about iris position. There are many ways how
to fit conic and the chosen method affects result a lot.

Lets consider the characteristic of data we acquired first. We know that
it may contain outliers. That is a problem we can reasonably deal with. But
more importantly there will be a lot of missing points - based on how much
was the eye hooded and how close to an eye corner the iris was. We may
obtain only fraction of border points. I will return to this point in following
sections.

19

3. Design

Ellipses versus circles

First choice we have to make is whether we want to try fit an ellipse or a
circle. Due to the movement of an eyeball circular iris may appear elliptical
in the image. Especially in bigger angles. An ellipse therefore promises more
accurate fitting results.

However dealing with ellipses is much more challenging. When using Least
Square method one is often searching for general conic. That means solving
non-linear LS problem with inequality constrain. The constrain has to be
imposed otherwise fit my result in degenerate conic or be a trivial solution.
Methods of iterative refining were used in the past. Today we can use Direct
ellipse-specific fitting proposed by A. Fitzgibbon. [4]

Instead of dealing with inequality Fitzgibbon “incorporates the scaling into
the constraint and impose the equality constraint 4ac − b2 = 1.” and then
solves equation directly using generalized eigenvectors.

The important point here is that such system of equations cannot be eas-
ily extended by another constrain. Therefore we cannot easily set maximal
value for major and minor axes or their ratio. Consequently if we obtain only
fraction of border points it is quite possible that residuals will be better min-
imized by some extremely outstretched ellipse. Example of this case is shown
in figure 3.1.3

This problem occurred regularly during my experiments. The ellipse glitched
to some extreme size and made detection very unstable.

Decomposed RANSAC

To simplify the problem I abandoned fitting of an ellipse and focused on circles
only. Since extreme angles are not expected the error should not increase
significantly. Now I will describe algorithm that provided best results.

I decided to merge the problem of excluding outliers with the problem of
bounding iris radius. In classic RANSAC search for circles 2.3.3.3 we select
3 points to obtain 3 equations which define circle exactly. However I define
radius as constant and run set of RANSAC iterations to find best centre.
I repeat this for range of radii defined by iris maximal and minimal size.

This will obviously ensure that bounding condition will be satisfied but
moreover it will increase ability to detect outliers. With such constrained
model search will likely succeed even if number of outliers exceeds number
of inliers, since it is quite unlikely that outliers will from another circle with
given radius.

20

3.2. Reference point

Figure 3.1: Outstretched ellipse as result of Fitzgibbon’s fitting.

3.2 Reference point

Before point of gaze detection some sort of calibration must be made to define
relationship between eye location in the captured image and real environment.
Some complex approaches containing 3D model of head can be applied but
since my solution did not achieved sufficient precision (mainly due to low
resolution of the webcamera and noise - see chapter 5) I implemented just
simple comparing of the iris centre with eye corners.

Eye corners are obtained from facial landmark detection described in pre-
vious chapter. Translation function is linear.

21

Chapter 4

Implementation details

4.1 Libraries

All algorithms were implemented in C++ with use of following libraries.

OpenCV

For my implementation I used mainly OpenCV [7] (Open Source Computer
Vision) library. This is commonly used library for computer vision. Opencv.org
states that their community has more than 47 thousand members. It can be
regarded as standard in term of CV.

Dlib

Dlib [8] is a modern C++ toolkit containing machine learning algorithms
implemented in C++ and other auxiliary algorithms. It provides solutions for
face detection and feature landmark detection. The latter was used in actual
implementation. For face detection I used OpenCV in the end. (I discuss this
decision in following section.)

4.1.1 Face detection with OpenCV and Dlib

Both OpenCV and Dlib libraries provide algorithm for face detection. The
overview of techniques these libraries are using is in section 2.1. Firstly I
decided to use Dlib since I perform facial landmarks detection on detected
face as well. (OpenCV does not provide any algorithm for that.) However
Dlib’s algorithm was excessively slow.

After compiling Dlib with compiler flag -DUSE AVX INSTRUCTIONS=ON
(to enable vector instructions) performance increased significantly. However
the frame rate only with performing face detection was only about 15 frames
per second.

23

4. Implementation details

I tried to speed up algorithm by minimizing number of detections. I ap-
proximated face region based on result of previous face landmark detections.
However this approach proved to be inapplicable. Landmark model is based
on the size of the face region. Face region is somewhat bigger then bound-
ing box of landmarks points. Scaling the bounding box inaccurately causes
detection fail. Box then gradually shrinks or expand.

Finally I decided to switch to OpenCV’s Haar Cascade Classifier. It was
improvement. I performed testing on BioID database. However combining
OpenCV for face detection and Dlib for facial landmarks detection caused
drop in accuracy of the latter algorithm. The Dlib’s detector is trained for
specific cutout of the face image. When the head is rotated OpenCV returns
larger region and causes Dlib to fail detection on the retrograde side of the
face.

Figure 4.1: Landmark detection error caused by over-sized face region.

24

Chapter 5

Experiments

In this chapter I describe methods of testing of designed algorithms. I mainly
focus on precision of iris centre detection since I did not achieved precision
sufficient for mouse cursor control.

5.1 Precision of IC detection

I performed my own experiment with several subjects. The environment for
the testing was quite standard. Test was conducted indoors, during daytime.
Subjects were seated in front of the screen, mostly facing screen directly. They
were asked to minimize spinning of the head as much as possible.

Distance between camera and subjects was approximately 80 cm. Size of
the screen was 17 inches. Resolution of the screen was 1366 x 768. Camera
captured images in similar resolution. I would consider these conditions as
ideal for algorithm performance.

Eleven dots were rendered on the screen - evenly, side by side in one line -
as target points. Their y position was in 2

3 of the screen height. The gap in x-
direction was 127 pixels. Subjects were asked to lock their sight on the selected
point and when ready, press the dedicated button. After that sequence of 5
images was captured. This took approximately 2 second. Recorded images
were stored and the iris detection was performed later.

Captured faces can be found in the “test” folder on attached media.

25

5. Experiments

Figure 5.1: Comparison of gaze at left/right screen border.

Figure compares the difference in eye positions when looking at left/right screen
borders. Blue square denotes size of 16 pixels.

As you can see in figure 5.3, even when looking at stable point in ideal condi-
tions iris centre experience shaking. The deviation is about 1 to 2 pixels. In
figure 5.1 you can see comparison of two images, captured shortly after each
other. Subject in the images is looking at right (respectively left) screen bor-
der. The face position is aligned. This comparison revealed that difference in
iris movement when looking at borders of 17” screen at approximate distance
80 cm is only 16 pixels.

With resolution 1366 this gives us ratio of 85 screen pixel for 1 pixel of im-
age of captured eyes. With sub-pixel precision (lets say 1

2 of pixel) controlling
the mouse cursor in the x direction would possible. However with regard to
the deviation in the steady state error can scale in “worst case” over 150 pixel,
which make this technique unusable.

Testing of calculation of PoG roughly confirmed previous calculation.

26

5.1. Precision of IC detection

Figure 5.2: IC detection test - absolute locations

0 10 20 30 40 50 60

510

520

530

540

550

560

Captured image

H
or

iz
on

ta
l

x
-l

o
ca

ti
o
n

(p
x
)

Measured IC

Mean IC (by point)

Figure 5.3: IC detection test - deviations from mean location

10 20 30 40 50

−2

0

2

Captured image

D
ev

ia
ti

on
fr

om
av

g
x
-l

o
ca

ti
o
n

(p
x
)

27

Conclusion

This work reviewed some algorithms for eye tracking and pupil centre detec-
tion. It pointed out some shortcomings and hopefully proposed some useful
ideas about PC detection.

However I was not able to achieve sub-pixel accuracy. I showed that this
high accuracy is indeed required for translation of the eye movement into
mouse cursor movement. To solve this problem, further works must aim for
this benchmark. However it is quite possible that only better video input will
make controlling of the cursor by eyes possible.

29

Bibliography

[1] Timm, F.; Barth, E. Accurate eye centre localisation by means of gradients.
Proceedings of the Int. Conference on Computer Theory and Applications
(VISAPP), vol. 1, INSTICC, Algarve, Portugal, pp. 125-130, 2011

[2] Anjith, G.; Aurobinda, R. Fast and Accurate Algorithm for Eye Localisa-
tion for Gaze Tracking in Low-resolution Images. IET Computer Vision
10.7 (2016): 660-69.

[3] Li, D.; Winfield, D.; Parkhurst, D. J. Starburst: A hybrid algorithm
for video-based eye tracking combining feature-based and model-based ap-
proaches. Computer Vision and Pattern Recognition-Workshops, 2005.
CVPR Workshops. IEEE Computer Society Conference on. IEEE, 2005,
pp. 7979.

[4] Fitzgibbon, A.; Pilu, M.; Fisher, R. Direct least squares fitting of ellipses..
Proceedings of 13th International Conference on Pattern Recognition.

[5] Viola, P.; Jones, M. Rapid object detection using a boosted cascade of simple
features.. Proceedings of the 2001 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition. CVPR 2001.

[6] Learn OpenCV. http://www.learnopencv.com/histogram-of-oriented-
gradients/. [Online; accessed 17-March-2017].

[7] OpenCV. http://opencv.org/. [Online; accessed 13-March-2017].

[8] Dlib. http://dlib.net/. [Online; accessed 13-March-2017].

[9] Imotions. https://imotions.com/blog/top-8-applications-eye-tracking-
research/. [Online; accessed 7-March-2017].

31

Appendix A

Acronyms

IC Iris location

PC Pupil location

PoG Point of gaze

RANSAC Random Sample Consensus

33

Appendix B

Contents of enclosed CD

readme.txt the file with CD contents description
exe the directory with executables
src.......................................the directory of source codes

wbdcm implementation sources
thesis..............the directory of LATEX source codes of the thesis

text..the thesis text directory
thesis.pdf...........................the thesis text in PDF format
thesis.ps..............................the thesis text in PS format

test...............................the directory containing test images

35

	Introduction
	Eye tracking and point of gaze
	Goals

	Related work
	Face recognition
	Facial Landmarks Detection
	Pupil centre localization

	Design
	Pupil centre detection
	Reference point

	Implementation details
	Libraries

	Experiments
	Precision of IC detection

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

