
doc. Ing. Jan Janoušek, Ph.D.
Head of Department

prof. Ing. Pavel Tvrdík, CSc.
Dean

Prague December 14, 2016

CZECH TECHNICAL UNIVERSITY IN PRAGUE

FACULTY OF INFORMATION TECHNOLOGY

ASSIGNMENT OF BACHELOR’S THESIS

 Title: Implementation of a repetition searching algorithm in trees

 Student: Aleksandr Shatrovskii

 Supervisor: Ing. Jan Trávníček

 Study Programme: Informatics

 Study Branch: Computer Science

 Department: Department of Theoretical Computer Science

 Validity: Until the end of summer semester 2017/18

Instructions

Analyze the algorithm of computing all subtree repeats in trees [1].
Analyze the internal representation of trees in Automata library [2].
Implement the algorithm of computing all subtree repeats in Automatalibrary.
Test the implementation using appropriate randomly generated andpredefined trees.

References

[1] Christou, M., Crochemore, M., Flouri, T., Iliopoulos, C.S., Janoušek, J., Melichar, B., Pissis, S.P.: Computing all
subtree repeats in ordered trees. Information Processing Letters 112(24), 958–962 (2012)
[2] Plachy Stepan: Automatová knihovna - Stromové automaty a algoritmy nad stromy. Bakalářská práce, České vysoké
učení technické v Praze, Fakulta informačních technologií, Praha, 2015.

Czech Technical University in Prague

Faculty of Information Technology

Department of Theoretical Computer Science

Bachelor’s thesis

Implementation of a Repetition Searching
Algorithm in Trees

Aleksandr Shatrovskii

Supervisor: Ing. Jan Trávńıček

15th May 2017

Acknowledgements

I would like to thank my supervisor, Ing. Jan Trávńıček, for his guidance
and my dear parents for their support and encouragement.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46(6) of the Act, I hereby grant a nonexclusive author-
ization (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity. However,
all persons that makes use of the above license shall be obliged to grant a
license at least in the same scope as defined above with respect to each and
every work that is created (wholly or in part) based on the Work, by modi-
fying the Work, by combining the Work with another work, by including the
Work in a collection of works or by adapting the Work (including translation),
and at the same time make available the source code of such work at least in a
way and scope that are comparable to the way and scope in which the source
code of the Work is made available.

In Prague on 15th May 2017 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2017 Aleksandr Shatrovskii. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Shatrovskii, Aleksandr. Implementation of a Repetition Searching Algorithm
in Trees. Bachelor’s thesis. Czech Technical University in Prague, Faculty of
Information Technology, 2017.

Abstrakt

Předmětem této práce je implementace algoritmu hledáńı repetic v ohodno-
cených označených uspořádaných stromech. V práci je podrobně analyzován
a popsán efektivńı algoritmus, předloženy Michalisem Christou a daľśımi,
je prozkoumaná vnitřńı reprezentace stromových struktur v Automatové
knihovně. Algoritmus a daľśı potřebné podp̊urné struktury jsou začleněny
do Automatové knihovny. Implementace je otestována pomoćı předdefino-
vaných a náhodně generovaných stromů.

Kĺıčová slova ohodnocený označený uspořádaný strom, repetice ve stromu,
knihovna, arbologie

ix

Abstract

This thesis is concerned with implementation of the algorithm which computes
all subtree repeats in a ranked labeled ordered tree. The efficient algorithm
proposed by Michalis Christou et al. is analyzed in detail and is presented
in this thesis. Internal representation of tree structures in the Automata
library is explored. The algorithm and necessary data structures are imple-
mented as part of the Automata library project. The implementation is tested
with both predefined and randomly generated trees.

Keywords ranked labeled ordered tree, subtree repeats, library, arbology

x

Contents

Introduction 1
Goals . 1
Thesis structure . 1

1 Theory 3
1.1 Strings . 3
1.2 Trees . 4
1.3 Postfix notation of a tree . 6
1.4 Properties of trees in postfix notation 7

2 Algorithm 9
2.1 Approach . 9
2.2 Preprocessing phase . 10
2.3 Additional data structures . 10
2.4 Computation phase . 13
2.5 Observations . 17
2.6 Pseudocode . 17

3 Representation of trees in Automata library 21
3.1 Basic trees . 21
3.2 Tree types . 22
3.3 Conversion . 23
3.4 Existing algorithm implementation 23
3.5 Relevant tools . 23

4 Implementation 25
4.1 Postfix ranked tree . 25
4.2 Postfix tree transformation . 25
4.3 Renaming tree nodes . 25
4.4 Extension of a naive algorithm 26

xi

4.5 The new algorithm . 26

5 Tests 27

Conclusion 31

Bibliography 33

A Acronyms 35

B User manual 37
B.1 Requirements . 37
B.2 Installation . 37
B.3 Execution . 38

C Example tree in XML 39

D Contents of enclosed CD 43

xii

List of Figures

1.1 Rooted tree . 5
1.2 Rooted ordered ranked labeled tree 5
1.3 Tree for the illustration of a postfix notation 6
1.4 Tree with highlighted subtree repeats 7

2.1 Demonstration tree . 9
2.2 Small tree with three subtree repeats 13
2.3 Possible output of the algorithm 17

3.1 Simplified class diagram for trees 22
3.2 Output of the naive algorithm . 24

xiii

List of Tables

2.1 Auxiliary arrays for the tree in Figure 2.1 12
2.2 T and TL for Tree 2.2 . 13
2.3 Contents of array AΣ at line 31 . 14
2.4 Contents of array LA after the first call to Assign-Level 15
2.5 Changes in arrays T and TL during the algorithm execution for the tree

in Figure 2.1 . 16
2.6 Changes in array LA during the algorithm execution for the tree

in Figure 2.1 . 17

xv

List of Algorithms

1.3.1 Tree-To-Postfix . 6
2.2.1 Node-Parents-Array . 11
2.2.2 Subtree-Height-Array . 11
2.2.3 First-Child-Array . 11
2.6.1 Assign-Level . 18
2.6.2 Subtree-Repeats . 19
2.6.3 Partition . 20

xvii

Introduction

Tree is a common data structure in Computer science. It has a wide range
of applications from data organization to computational biology. Arbology is
an algorithmic discipline that focuses on algorithms on trees [1]. Detecting
subtree repeats in trees is one of the problems this discipline is concerned
with. Systems that heavily rely on trees, such as compilers and the process
of code optimization, can benefit from new findings in this field of study.

My thesis focuses on one of such algorithms. It is used to find all subtree
repeats in ranked labeled ordered trees in linear time and space and was
proposed by M. Christou et al. [2].

Goals

The main goal of this thesis is to implement the aforementioned efficient al-
gorithm as part of the Automata library. To accomplish it I will have to ana-
lyze the algorithm, analyze the existing implementation of tree structures
in the Automata library and test the implementation afterwards, using both
predefined and randomly generated trees.

Thesis structure

Chapter 1 covers theory, basic definitions and properties of trees that are
required for understanding of the inner workings of the algorithm. The al-
gorithm is then presented and discussed in Chapter 2. In the following
Chapter 3 I describe the Automata library project and analyze the existing im-
plementation of tree structures in the library. Chapter 4 focuses on my own
implementation of the new algorithm, design choices, additional structures
and modifications that I had to make in order to accommodate the new func-
tionality. Finally, in Chapter 5 I describe how the implementation has been
tested. Conclusion is the closing chapter of this work.

1

Chapter 1
Theory

1.1 Strings

Definition 1.1.1. Alphabet (Σ) is a finite and non-empty set of elements.

Definition 1.1.2. The elements of the alphabet are called symbols.

In this thesis curly braces will be used to denote sets and round braces
will be used to denote collections where order is significant.
Example 1.1.3. Set {a} is a minimal alphabet made up of a single element a.

Definition 1.1.4. Concatenation of two given symbols x and y is denoted
by the two symbols joined: xy.

Definition 1.1.5. String x is a possibly empty, finite sequence of symbols
(x1, x2, . . . , xn), where n ≥ 1 and xi ∈ Σ, 1 ≤ i ≤ n.

Example 1.1.6. A letter “č”, a word “computer” or a fragment of program-
ming code are all considered to be strings according to Definition 1.1.5.

Definition 1.1.7. Length is a property of a string, that corresponds to the num-
ber of elements that make up the string. For a given string x it is de-
noted by |x|.

Example 1.1.8. Let x be a string with the value tree, where each character is
a symbol. The length of x = |x| = |(t, e, x, t)| equals to 4.

Definition 1.1.9. Empty string is a zero-length string. In writing it is de-
noted by the symbol ε.

Definition 1.1.10. Concatenation of two given strings x = (x1, x2, . . . , xn)
and y = (y1, y2, . . . , yn) results in a string xy = (x1, x2, . . . , xn, y1, y2, . . . , yn).

3

1. Theory

Definition 1.1.11. Factor (or a substring) w of a string x is a range x[i..j],
1 ≤ i ≤ j ≤ |x| of symbols in a string x, that will form the initial string x
when concatenated with two other possibly empty strings y = (x1, . . . , xi−1)
and z = (xj+1, . . . , x|x|).

Example 1.1.12. The word knowledge contains two words in itself: know and
ledge. Both of them are factors of the original string.

Definition 1.1.13. Ranked alphabet A is a couple (Σ, ϕ), where Σ is the al-
phabet as introduced in Definition 1.1.1 and ϕ is a mapping from a finite set
of symbols to a set of natural numbers (including zero) ϕ : Σ→ N [3].

Definition 1.1.14. Arity or rank of a symbol is denoted as ϕ(a), where a ∈ Σ.
It reflects the number of children of a node that has a as its symbol.

Example 1.1.15. The mapping ϕ : Σ→ N means that every symbol of the al-
phabet gets an integer value assigned to it. If some hypothetical alphabet
comprises the names of functions that exist in the scope of a given program
file, then the rank of each symbol of such alphabet could represent the number
of parameters that can be passed to the function: {(multiply two numbers, 2),
(fibonacci, 1)}.

Definition 1.1.16. Each couple of the ranked alphabet can be enumerated
with a mapping µ : Σ× N→ N.

Example 1.1.17. Mapping µ essentially assigns a unique number to every
couple (α,ϕ(α)) of the ranked alphabet A. Possible enumeration of a ranked
alphabet consisting of selected logical operators may be represented as follows:

• (not, 1) 7−→ 1

• (or, 2) 7−→ 2

• (and, 2) 7−→ 3

1.2 Trees

Definition 1.2.1. In-degree of a node is the number of edges that are directed
to the given node. Accordingly, out-degree of a node is the number of edges
directed away from the given node.

Definition 1.2.2. Rooted ordered tree is a data structure made up of nodes
connected by directed edges that does not contain cycles, where root node
(exactly one) is the node which has in-degree 0 while all other nodes have
in-degree 1 and leaf node is the node (one or more) that has out-degree 0.

4

1.2. Trees

o

o

o

o

o o

o

Figure 1.1: Rooted tree

Example 1.2.3. As can be seen in Figure 1.1, a rooted ordered tree has ex-
actly one node with in-degree of 0 — that is the root node. Ordering means,
that the order of subtrees of each node is significant and predefined. Changing
the order of children of some node will produce a different tree.

Note, that in this and all subsequent tree representations in this thesis dir-
ected edges are represented by lines, where the node below the line is the des-
tination node.

Definition 1.2.4. Labeled tree is a tree in which every node has a symbol
from an alphabet assigned to it.

Definition 1.2.5. Rank is the characteristic of a tree that signifies that
for every node out-degree, that reflects the arity of the symbol associated
with the node, is given.

if3

condition1

≤2

a0 b0

then1

return1

a0

else1

return1

b0

Figure 1.2: Rooted ordered ranked labeled tree

Example 1.2.6. Figure 1.2 serves as illustration of a rooted ordered ranked
labeled tree. It is a pseudo-representation of the abstract syntax tree that
holds “if ” statement that returns the smaller of two values. Rank of each node
is written after the respective symbol in subscript.

Definition 1.2.7. The number of nodes in a tree t is denoted by |t|.

Example 1.2.8. The number of nodes in a tree in Figure 1.2 is 11.

Definition 1.2.9. Height of a tree t is the maximal length of a path from
its root to a leaf expressed in the number of edges.

5

1. Theory

Example 1.2.10. The height of a tree in Figure 1.1 is 2, while the height
of a tree in Figure 1.2 is 3.

1.3 Postfix notation of a tree

Definition 1.3.1. Postfix notation of a tree t is a linear representation post(t)
of a tree t that can be obtained by applying the recursive Algorithm 1.3.1
to the root node.

Algorithm 1.3.1 Tree-To-Postfix
Input: Triplet (S, `, ac)

1: function postfix(node)
2: for each child in node.children do . In order of appearance
3: postfix(child)
4: output(node) . printf(), for example

H

B

A

F

C E

D

G

Figure 1.3: Tree for the illustration of a postfix notation

Example 1.3.2. Nodes of the tree in Figure 1.3 will be listed in the alphabetical
order after the application of the Algorithm 1.3.1 to the root node H.

Definition 1.3.3. Trees are equal if and only if their postfix notations form
the same strings and these strings are constructed from the same ranked al-
phabet.

Definition 1.3.4. Let t be a tree, let x be its representation in postfix
notation post(t), let p be a subtree of the tree t, let w be the representa-
tion of p in postfix notation post(p), then a subtree repeat p in a tree t is
a tuple Mx,w = ({i1, i2, . . . , ir}; |p|), where r ≥ 2, i1 < i2 < . . . < ir, and
w = x[i1..i1 + |p|−1] = x[i2..i2 + |p|−1] = . . . = x[ir..ir + |p|−1] = post(p) [2].

Definition 1.3.5. Complete subtree repeat Mx,w is a tuple Mx,w that includes
every occurrence of w in x.

6

1.4. Properties of trees in postfix notation

t

p

x y

z v

z p

x y

Figure 1.4: Tree with highlighted subtree repeats

Example 1.3.6. It is possible to demonstrate Definition 1.3.4 on the tree in Fig-
ure 1.4. In this case, post(t) = (x, y, p, z, z, x, y, p, v, t) and post(p) = (x, y, p),
tuple of subtree repeat is Mx,w = ({1, 6}; 3). In this case, it is also complete.

1.4 Properties of trees in postfix notation

Tree structures when represented by their postfix notation have some unique
properties that the algorithm for computing all subtree repeats is based upon.

Lemma 1.4.1. The postfix notations of all subtrees of a tree t over a ranked
alphabet A = (Σ, ϕ) are factors of the postfix notation post(t) of t.

Example 1.4.2. Subtree repeats have been demonstrated in the previous Ex-
ample 1.3.6. Notice, that the postfix notation of a subtree p, post(p) = (x, y, p)
appears twice in the postfix notation of the original tree and that it is always
a substring of the post(t) = (x,y,p, z, z,x,y,p, v, t).

Definition 1.4.3. Let w[1..m],m ≥ 1 be a string over a ranked alphabet
A = (Σ, ϕ). Then, the arity checksum ac(w) = ϕ(a1)+ϕ(a2)+ . . .+ϕ(am)−
m+ 1 =

∑m
i=1 ϕ(ai)−m+ 1.

Example 1.4.4. In other words, to compute this property, one has to find
the sum of out-degrees of all the nodes involved, subtract the number of those
nodes and add 1. For the tree t in Figure 1.4, x = post(t), ac(x) = 0.

Every valid tree structure will always produce zero checksum. The arity
checksum of a graph that contains disconnected valid tree structures will be
negative. The arity checksum of a graph that does not contain some subtree
of otherwise valid tree structure will be positive.

Lemma 1.4.5. Let post(t) be a tree t in postfix notation and let w be a factor
of post(t) over a ranked alphabet A = (Σ, ϕ). Then w is the postfix notation
of a subtree of t if and only if all of the following conditions are met:

• ac(w) = 0

• ϕ(w[1]) = 0

7

1. Theory

• no subtree rooted at w[l], where 1 ≤ l ≤ |w|, has leftmost node that
appears before w[1] in post(t)

Example 1.4.6. I will refer to the tree in Figure 1.4 again. The arity checksum
of w is (2 + 0 + 0) − 3 + 1 = 0, which means that the first condition is met
for t. The second condition is also not violated: w[0] = (x), x is a leaf of p
and t in both cases. The tree conforms to the third condition as well, because
postfix representations of all three simple subtrees are contained within w and
are factors of it.

8

Chapter 2
Algorithm

The algorithm [2][4] that is analyzed and implemented in this thesis consists
of two phases. In the first one all the necessary auxiliary arrays are computed.
It is known as the preprocessing phase. Results obtained in this phase will then
be used throughout the second computation phase, where the subtree repeats
will be calculated.

The problem that it aims to solve is “computing all complete subtree
repeats of a rooted ordered labeled ranked tree t consisting of n nodes” [2].

For demonstration purposes in this chapter letA = (Σ, ϕ(Σ)) be the ranked
alphabet, where Σ = {a, b, c, d, e,m} and ϕ(Σ) = {0, 0, 2, 2, 2, 2}. Let t be
a tree, where each node is labeled by a symbol from A. Figure 2.1 depicts
such a tree. Arity of each node is written in subscript.

m2

c2

a0 b0

d2

e0 c2

a0 b0

Figure 2.1: Demonstration tree

In this chapter for illustrative purposes contents of queues will be written
inside parentheses with the element in front of the queue (first to be popped)
being the leftmost.

2.1 Approach

The algorithm utilizes a bottom-up approach. It traverses the tree from
its leaves to the root node. This traversal resembles postfix representation
x = post(t) of a tree t, which is why postfix representation is used.

9

2. Algorithm

The foundation of all subtree repeats that may be discovered in a tree are
leaves. Complying with the bottom-up approach, leaves are the first nodes
that need to be grouped into sets by the labels assigned to them according
to mapping µ. The number of sets by labels that will be computed at this stage
is the maximum number of tree repeats that will be found at any other level
of the tree, because all other subtrees will be defined in the algorithm by their
leftmost node and the leftmost node of any subtree is a leaf (Lemma 1.4.5).

This algorithm runs in linear time and space — it takes the number of iter-
ations equal to the height of a tree to finish, because at each step i all subtree
repeats of height i− 1 will have already been computed.

It follows the principles of dynamic programming by breaking the problem
down into smaller subproblems, solving them and then reusing the results.
The smallest possible subproblem in this case is a leaf node.

2.2 Preprocessing phase

To improve efficiency of calculation, an input tree has to be preprocessed.
As a result, the following auxiliary arrays will be produced:

• Integer parent array P will store index of the parent node for each node
of t except for the root node, as it has an in-degree of 0 (Definition 1.2.2).

• Integer height array H will store the height of each subtree of t. For every
subtree p there will be an integer value stored in H[i], if the root node
of p appears at post(t)[i]. As the first node that appears in the postfix
representation of a tree is always a leaf, array H will always have 0
at the first index (H[0] = 0), as well as at every other index of post(t)
that corresponds to a position of a leaf.

• Binary array FC will indicate whether a node is the leftmost child
of its parent with a positive value (1 or “true”) at a respective index
in the array or a negative (0 or “false”) if the condition does not hold.
It does not include the root node since it does not have a parent node.

These arrays can be computed in linear time and space. Algorithms 2.2.1,
2.2.2 and 2.2.3 produce arrays P , H and FC respectively [5, p. 47-48, 127].

Table 2.1 is an example of the contents of the arrays after they have been
constructed for the tree t in Figure 2.1. Note that numbering starts from 0
in this example, just as it will in real implementation.

All the other arrays and variables are initialized to zero.

2.3 Additional data structures

Apart from the variables described in the previous section, there are other tem-
porary data structures which the algorithm uses in calculation. Their types

10

2.3. Additional data structures

Algorithm 2.2.1 Node-Parents-Array
Input: post(t) = x[1..n]
Output: Array P where element i denotes the parent of x[i]

1: R← New-Stack
2: for i← 1 to n do
3: for j ← 1 to ϕ(x[i]) do
4: r ← Pop(R)
5: P [r]← i

6: Push(R, i)

Algorithm 2.2.2 Subtree-Height-Array
Input: post(t) = x[1..n]
Output: Array H where element i is the height of subtree rooted at x[i]

1: R← New-Stack
2: for i← 1 to n do
3: if ϕ[xi] = 0 then
4: Push(R, 0)
5: H[i] ← 0
6: else
7: r ← 0
8: for j ← 1 to ϕ(x[i]) do
9: r ← max(r,Pop(R))

10: H[i]← r + 1
11: Push(R, r + 1)

Algorithm 2.2.3 First-Child-Array
Input: post(t) = x[1..n]
Output: Binary array F such that F [i] = 1 if x[i] is a first child

1: R← New-Stack
2: for i← 1 to n do
3: if ϕ[xi] = 0 then
4: Push(R, i)
5: else
6: for j ← 1 to ϕ(x[i])− 1 do
7: r ← Pop(R)
8: F [r]← 0
9: r ← Pop(R)

10: F [r]← 1
11: Push(R, i)

11

2. Algorithm

Index 0 1 2 3 4 5 6 7 8
x a b c e a b c d m

ϕ(x) 0 0 2 0 0 0 2 2 2
µ(x, ϕ(x)) 0 1 2 3 0 1 2 4 5

P 2 2 8 7 6 6 7 8 -
H 0 0 1 0 0 0 1 2 3
FC 1 0 1 1 1 0 0 0 -

Table 2.1: Auxiliary arrays for the tree in Figure 2.1

vary from simple integer variables, arrays and queues to arrays of queues.
They are presented below:

• Array µ stores a unique number from a sequence ranging from 1 to n = |t|
for each couple (Σ, ϕ(Σ)) of the alphabet thus making identification
of each symbol and subsequently the subtree it defines easier, because
the type of the alphabet elements must not necessarily be enumerable.
What’s more, different nodes in a tree with different number of children
can share the same label. Mapping helps to solve this issue by dividing
this nodes into separate sets.

• Integer variable sc is used to identify and also count every subtree repeat
that has been found so far. By the end of execution of the algorithm it
will be set to the number of total subtree repeat tuples that have been
discovered in a particular tree.

• Array T stores identifier sc of a found subtree repeat at index i, where
i is the first position in the postfix representation of the corresponding
subtree.

• Array TL is used in conjunction with the array T . If the subtree iden-
tifier is saved in T at index i, the length of the corresponding subtree is
stored at TL[i].

• Triplets (S, `, ac) are used to denote all the occurrences of some factor w
of x = post(t). S is a set of starting positions of w inside x. ` is the length
of w and ac is the arity checksum that conforms to Definition 1.4.3.
Every subtree can be defined with a triplet.

• Level array LA is an array of queues of triplets. Triplets will be placed
into queue i of LA inside of function Assign-Level if they define a sub-
tree that is a child of a node of height i or, alternatively, if the height
of their tallest sibling is i− 1. This behavior makes LA act as a tempor-
ary storage for results of calculation of smaller subproblems.

12

2.4. Computation phase

Example 2.3.1. Let t be the tree in Figure 2.2. Its postfix representation is
(b, c, a). Subtrees that will be found during the run of the algorithm are (b),
(c) and (b, c, a) with the identifier sc incremented and set for each subtree
repeat in order of their appearance. Contents of the arrays T and TL for tree
t are presented in Table 2.2.

Figure 2.2: Small tree with three subtree repeats

a

b c

Table 2.2: T and TL for Tree 2.2

Index 0 1 2

h = 0 T 1 2 0
TL 1 1 0

h = 1 T 3 2 0
TL 3 1 0

Example 2.3.2. The subtree rooted at node b in Figure 2.2 can be described
with the triplet ({0}, 1, 0). The original tree itself rooted at c can be described
with the triplet ({0}, 3, 0). Note, that the only thing that differs between
them is the length of w. This is the reason why T [0] has been overwritten in
Table 2.2.

Example 2.3.2 illustrates how just by changing the length parameter a
taller subtree can be obtained, but for it to be valid, it must adhere to re-
quirements of Lemma 1.4.5.

2.4 Computation phase

The computation phase of the proposed algorithm consists of three functions:
Subtree-Repeats, Assign-Level and Partition. Each function is listed
in Algorithms 2.6.2, 2.6.1 and 2.6.3 respectively in a dedicated Section 2.6.

The starting point of execution is function Subtree-Repeats. It gets
the postfix representation of a tree over a ranked alphabet as input x.

Its first part between lines 2 and 14 is devoted to allocating the auxiliary
arrays described in Section 2.2 and initialization of other simple data struc-
tures that will be used throughout this function. Variables that have not been
previously mentioned are initialized with zero values.

Line 16 is where the process of grouping leaves into sets by their labels
starts. The for loop traverses through each node of a tree in its postfix rep-
resentation. All the inner nodes are skipped, because they can not be used

13

2. Algorithm

in a triplet (S, `, ac) to describe a subtree as that would violate the require-
ments of Lemma 1.4.5 (nodes inside S must be leaves). The indices inside
post(t) that correspond to positions of leaves with the same identifier are
placed into a set AΣ[k] where k is an integer value assigned to a symbol by
mapping µ.

Apart from the array of queues AΣ, other structures involved in the com-
putation are as follows:

• Variable k is used to store the integer assigned to the node being pro-
cessed by mapping µ.

• Queue Q5 holds the types of nodes (µ) that have been encountered
among leaves in order of their appearance.

• Boolean array BΣ tracks the type of nodes that have been added to Q5
to avoid duplicates.

• Integer array CΣ stores a sequentially incremented number for each node
type in Q5 that will later be used to identify a subtree repeat starting
at this node.

Example 2.4.1. Contents of the array AΣ for Tree 2.1 after the loop ends are
presented in Table 2.3. The contents of queue Q5 are (0, 1, 3). Ascending order
here is purely coincidental because the leaves were processed in the same order
in which mapping µ was assigned to their labels.

Table 2.3: Contents of array AΣ at line 31

i 0 1 2 3 4 5 6 7 8

AΣ[i] Queue front 0 1 3
Queue back 4 5

At this point all leaves have been processed and placed into a set accord-
ing to their labels. Complete subtree repeats of height 0 have been found and
ready to be output or saved for later processing depending on the implement-
ation. This is done inside a while loop that starts at line 31 by popping every
element of Q5 and using it as an index in AΣ to retrieve appropriate subtree
repeats indices. In the same loop, these sets are being encapsulated in set S
which is a part of triplet (S, `, ac). ` is set to one (size of a one-node tree) and
the arity checksum is set to 0, because every leaf is a valid subtree of a tree,
therefore it can be repeated.

The triplet is then sent to function Assign-Level that will check if
the root of a subtree, represented by each element of S together with length `,
is the first child of its parent. If that is true, then the subtree can be
joined with its siblings and a parent node to form a taller subtree (Sec-
tion 2.1). Formally, this process can be summed up with an expression

14

2.4. Computation phase

An[k] = {i|i ∈ S ∧ FC[i+ `− 1] = 1 ∧H[P [i+ `− 1]] = k}. Afterwards, trip-
lets from An get pushed into a queue h of the level array LA where h is
the height of the parent node of a given subtree.

Other structures involved are described below:

• root is the position of the root node of a subtree in x that is calculated
from the factor length |w| = ` and position of w[0] inside x.

• Queue Q4 is used to track the heights of the parent nodes of the subtrees.

• Array Bn aides avoidance of duplicates in Q4.

Example 2.4.2. The contents of the level array LA after the function call ends
are presented in Table 2.4.

Table 2.4: Contents of array LA after the first call to Assign-Level

i 0 1 2 3
LA ((0, 4), 1, 0) ((3), 1, 0)

Indices 1 and 5 have not been included in any set because they can not
define a subtree with their height being greater than 0. One of the triplets have
been assigned to the second queue in LA, because it has a sibling of height
2− 1 = 1.

After the level assignment has finished, Subtree-Repeats can proceed.
At line 36 the for loop starts. It iteratively progresses through array LA,
retrieves a triplet assigned to the height being processed at a given cycle and
sends it to function Partition as an argument.

The purpose of the recursive function Partition is to partition set S into
smaller sets and at the same time expand the structure defined by the triplet
that it gets as an argument until that triplet represents a valid tree.

Inside the loop at line 2 the algorithm iteratively dequeues a node from set S
and calculates the index of the next node r that will immediately follow
this subtree in the postfix notation x. Condition inside the if statement
at line 5 checks if any other subtree has been previously discovered at x[r].
It would mean that node r has already been used inside some set S to define
some subtree of t. If that is true, new triplet needs to be formed to define
those two neighboring subtrees. In this case, ` will predictably be increased
by the size of the subtree at x[r] (stored in TL[r]) and the arity checksum
will be decreased by 1. To make ac 0 again and consequently validate the tree
structure a node needs to be discovered later that will act as a parent node
for the subtrees x[i..r − 1] and x[r..r + TL[r]− 1].

If the subtree at x[r] has not been processed yet, that means that node r
is a root node of subtree x[i..i + l]. The newly constructed triplet will have

15

2. Algorithm

its length ` increased by 1 and ac set to 0, which means that the structure
described by it has become a valid subtree again.

The pseudocode between lines 20 and 29 allows for handling of two afore-
mentioned cases. It moves the triplets from queues Q1 and Q2 into a universal
triplet queue Q3.

Inside the final while loop at line 30 arity checksum of each triplet stored
in Q3 is checked. If ac = 0, which means that no more processing of this
triplet is required, the algorithm outputs or saves the subtree repeat, updates
values of T [i] and TL[i] for each i inside set S with an incremented value
of the subtree repeat counter and sends the triplet to function Assign-Level
to check, if it can be used again. If ac 6= 0 the triplet will be sent to function
Partition for further expansion.

The rest of the variables used in function Partition are described below:

• Triplet arrays En and EΣ are used to store triplets inside Partition.
They differ in size, because the former is used when the neighboring
node has been processed and has got some value of the subtree counter
sc ussigned to it, unlike the latter that has to be indexable by the range
of values that µ can take.

• Arrays Bn and BΣ compliment arrays En and EΣ by aiding duplicate
avoidance.

Table 2.5 illustrates how the contents of arrays T and TL change through-
out the execution of the algorithm. Table 2.6 serves the same purpose for array
LA. Zero values are omitted to assist readability.

Table 2.5: Changes in arrays T and TL during the algorithm execution
for the tree in Figure 2.1

i 0 1 2 3 4 5 6 7 8

h = 0 T 1 2 3 1 2
TL 1 1 1 1 1

h = 1 T 4 2 3 4 2
TL 3 1 1 3 1

h = 2 T 4 2 5 4 2
TL 3 1 5 3 1

h = 3 T 6 2 5 4 2
TL 9 1 5 3 1

Finally, the algorithm has reached its end. The output format has not
been explicitly specified, but one of the many possible ways to present the
results of computation is presented in Figure 2.3. Each subtree repeat is
output on a separate line with node IDs in curly brackets and the length
of the subtree repeat appearing after the comma.

16

2.5. Observations

Table 2.6: Changes in array LA during the algorithm execution for the tree
in Figure 2.1

i 0 1 2 3
h = 0 LA ((0, 4), 1, 0) ((3), 1, 0)
h = 1 LA ((3), 1, 0) ((0), 3, 0)
h = 2 LA ((0), 3, 0)
h = 3 LA

#1 {0,4}, 1
#2 {1,5}, 1
#3 {3}, 1
#4 {0,4}, 3
#5 {3}, 5
#6 {0}, 9

Figure 2.3: Possible output of the algorithm

2.5 Observations

During the analysis of the article [2] and the algorithm proposed in it, I have
discovered an inconsistency between the definition of a subtree repeat 1.3.4
and the pseudocode of the algorithm, that solves the problem of finding them.
Unlike the definition that appears in the same article and requires at least two
strings corresponding to a subtree to be found at different positions in post(t),
the algorithm will output the starting position and the length of some factor
of post(t) even if the subtree it represents is not repeated anywhere in the same
tree.

I have also discovered a flaw in Function 2.6.3. The call to Function 2.6.1
at line 38 is inside the for loop that iterates through the contents of set S,
but set S itself does not change between the calls, yet the function gets called
with the same argument S multiple times. This causes array LA to get filled
with duplicates. The problem can be solved by moving the function call out
of the loop. A simple typographic mistake is the apparent cause of this issue.
My suspicion was confirmed by another earlier article [4] describing the same
algorithm that does not have this flaw in it. I have corrected this mistake
in the pseudocode in Section 2.6.

2.6 Pseudocode

The algorithm proposed by M. Christou et al. [2] is split into three functions.
Pseudocode for each one of them is presented in this section.

17

2. Algorithm

Algorithm 2.6.1 Assign-Level
Input: Triplet (S, `, ac)

1: Q4 ← New-Queue
2: while not empty S do
3: i← Dequeue(S)
4: root← i+ `− 1
5: if FC[root] = 1 then
6: k ← H[P [root]]
7: Enqueue(An[k], i)
8: if Bn[k] = 0 then
9: Bn[k]← 1

10: Enqueue(Q4, k)
11: while not empty Q4 do
12: k ← Dequeue(Q4)
13: Enqueue(LA[k], (An[k], `, 0))
14: Bn[k]← 0
15: An[k]← Clear-List

18

2.6. Pseudocode

Algorithm 2.6.2 Subtree-Repeats
Input: x[1..n] = post(t) over ranked alphabet A = (Σ, ϕ)
Output: Sets of starting positions of factors of post(t) and their lengths,

representing subtrees from t

1: . Initialize global variables
2: sc← 0
3: AΣ[1..|Σ|]← New-Queue-Array
4: An[1..n]← New-Queue-Array
5: BΣ[1..|Σ|]← New-Bit-Array
6: Bn[1..n]← New-Bit-Array
7: CΣ[1..|Σ|]← New-Integer-Array
8: EΣ[1..|Σ|]← New-Triplet-Array
9: En[1..n]← New-Triplet-Array

10: Q5 ← New-Queue
11: LA[1..h(t)]← New-Queue-Array
12: FC[1..n]← Compute-First-Child-Array
13: H[1..n]← Compute-Node-Height-Array
14: P [1..n]← Compute-Node-Parents-Array
15: . Start of the algorithm
16: for i← 1 to n do
17: if ϕ(x[i]) = 0 then
18: k ← µ(x[i], ϕ(x[i]))
19: if BΣ[k] = 0 then
20: BΣ[k]← 1
21: Enqueue(Q5, k)
22: Enqueue(AΣ[k], i)
23: if CΣ[k] = 0 then
24: sc← sc+ 1
25: CΣ[k]← sc

26: T [i]← CΣ[k]
27: TL[i]← 1
28: else
29: T [i]← 0
30: TL[i]← 0
31: while not empty Q5 do
32: k ← Dequeue(Q5)
33: BΣ[k]← 0
34: Output(AΣ[k], 1)
35: Assign-Level((AΣ[k], 1, 0))
36: for i← 1 to H[n] do
37: while not empty LA[i] do
38: Partition(Dequeue(LA[i]), x)

19

2. Algorithm

Algorithm 2.6.3 Partition
Input: Triplet (S, `, ac), x[1..n] = post(t)

1: Q1, Q2, Q3 ← New-Queue
2: while not empty S do
3: i← Dequeue(S)
4: r ← i+ `
5: if T [r] 6= 0 then
6: Enqueue(En[T [r]].S, i)
7: if Bn[T [r]] = 0 then
8: Bn[T [r]]← 1
9: En[T [r]].`← `+ TL[r]

10: En[T [r]].ac← ac− 1
11: Enqueue(Q1, T [r])
12: else
13: v ← µ(x[r], ϕ(x[r]))
14: Enqueue(EΣ[v].S, i)
15: if BΣ[v] = 0 then
16: BΣ[v]← 1
17: EΣ[v].`← `+ 1
18: EΣ[v].ac← ac+ ϕ(x[r])− 1
19: Enqueue(Q2, v)
20: while not empty Q1 do
21: k ← Dequeue(Q1)
22: Enqueue(Q3, En[k])
23: En[k]← Clear-Triplet
24: Bn[k]← 0
25: while not empty Q2 do
26: k ← Dequeue(Q2)
27: Enqueue(Q3, EΣ[k])
28: EΣ[k]← Clear-Triplet
29: BΣ[k]← 0
30: while not empty Q3 do
31: (S, `, ac)← Dequeue(Q3)
32: if ac = 0 then
33: Output(S, `)
34: sc← sc+ 1
35: for each j ∈ S do
36: T [j]← sc
37: TL[j]← `

38: Assign-Level((S, `, ac))
39: else
40: Partition((S, `, ac), x)

20

Chapter 3
Representation of trees in

Automata library

Automata library is a large project, whose development is lead by Ing. Jan
Trávńıček. Contributions are made by students of Czech Technical University
in Prague as part of their theses’. It includes implementations of different
data structures, related to but not limited by trees, regular expressions, auto-
mata and grammars [6]. Most importantly, it includes algorithms that can
be applied to those structures.

The library is written in C++11 and consists of executable applications
and dynamic libraries. It follows Unix philosophy and employs principles
of modularity and reusability. Each application is designed to do a single
task well. Multiple binaries can be chained using Unix pipes to solve a more
complex task. Applications of the project utilize XML (Extensible Markup
Language) format implemented by Martin Žák [7] for communication.

This thesis is in particular concerned with ranked labeled ordered trees that
were implemented by Štěpán Plachý in the scope of his bachelor’s thesis[8].

In the following sections I will analyze the internal representation of trees
in Automata library.

3.1 Basic trees

Trees in general are implemented as an extension to the std namespace.
The source code of the implementation is stored in file tree.hpp in alib2std/
src/extensions directory, along with other extensions that are irrelevant
to this thesis but nevertheless make development process more convenient.
It is a part of the libalib2std.so dynamic library.

std::tree is a template class. It is up to a programmer to chose the data-
type of the contents m data of tree nodes. Every std::tree also holds
a pointer m parent to its parent node that can be NULL in case of a root

21

3. Representation of trees in Automata library

node. Children, which are objects of the std::tree class as well, are stored
inside a simple vector, which is a part of STL (Standard Template Library).

Class std::tree provides postfix, prefix and infix iterators for traversing
the structure in different orders.

std::tree is not designed to be used in the algorithms directly, instead
there are other tree classes that use std::tree to hold their inner structure.

3.2 Tree types

Implementations of different tree types that are used in the algorithm are built
on top of the std::tree::TreeBase class located in the alib2data/src/tree
and are part of the libalib2data.so dynamic library. Trees in the project
are split into two groups : ranked and unranked. The difference was explained
in Chapter 1. Every class in each group is a subclass that inherits from either
std::tree::RankedTreeBase or std::tree::UnrankedTreeBase, which
in turn are subclasses of the aforementioned std::tree::TreeBase.

A simplified class diagram shown in Figure 3.1 gives a straightforward
representation of the class hierarchy.

Figure 3.1: Simplified class diagram for trees

These classes introduce their own member variables to hold their structure.
Hierarchical trees hold their inner structure inside std::tree, while prefix
trees use vectors, because prefix trees have linear structure.

22

3.3. Conversion

Each class offers methods for their basic structure manipulation and val-
idation.

Postfix trees are not yet implemented in the library, because other al-
gorithms rely on different notations. tree::PostfixRankedTree class will be
required for the algorithm discussed in Chapter 2 to function.

3.3 Conversion

Class tree::TreeAuxiliary, which is located in directory alib2data/src/
tree/common, provides methods for conversion of trees in cases that were not
covered by std::trees. For example, as I previously mentioned in Section 3.1,
std::trees provides iterators that traverse a given tree in post-order, pre-
order and in-order. Other conversions, such as a cast from an unranked tree
to a ranked one, are implemented in class tree::TreeAuxiliary.

3.4 Existing algorithm implementation

The library already contains a naive recursive implementation of a subtree
repeat searching algorithm. It works by building a vector of nodes in the sub-
tree of every node. Whenever it encounters a node that has not been assigned
a subtree repeat number yet, it tries to look it up in a structure that holds
each ranked symbol together with a vector of its subtree nodes.

This approach is inefficient, because a collection of subtree nodes need
to be built for every node and whenever the algorithm needs to decide whether
the subtree in question is a repeat subtree or not, it needs to compare these col-
lections.

3.5 Relevant tools

Automata library offers multiple applications for interacting with tree al-
gorithms. Some of them are:

• aarbology2 — applies algorithms on trees.

• arand2 — generates random trees.

• acast2 — converts a tree from one type to another.

Combined they can be used to test the future implementation and compare
obtained results to the output of a preexisting naive recursive algorithm that
has already been extensively tested, according to my supervisor.

However, the output of aarbology2 when it is used to find the subtree
repeats in a tree differs from what I initially expected from the algorithm.
It does not output distinct subtree repeats in plain text line by line, instead

23

3. Representation of trees in Automata library

it renames the nodes of the tree — same symbols are assigned to the root
nodes of subtrees, only if those subtrees belong to the same subtree repeat.
This approach makes further processing of a tree possible.

Figure 3.2 demonstrates how the naive algorithm maps subtree repeats’
numbers onto the tree nodes.

62

32

10 20

52

40 32

10 20

Figure 3.2: Output of the naive algorithm

24

Chapter 4
Implementation

My goal was to implement the algorithm described in Chapter 2. It had
to be integrated into Automata library, that is why the analysis of the library
and internal representations of tree structures (Chapter 3) was a crucial part
of this undertaking.

4.1 Postfix ranked tree

The first issue that I had to solve was the incompatibility of existing tree types
with the algorithm. It requires a tree in postfix notation to operate.

A new class PostfixRankedTree had to be created to hold a linear post-
fix representation of a tree. It belongs to the tree namespace and offers
functionality similar to the existing class tree::PrefixRankedTree. I used
postfix iterators offered by the std::tree class to implement the constructor
of postfix ranked tree class.

4.2 Postfix tree transformation

The algorithm does not change the type and structure of the tree, it outputs
its postfix representation, which was not supported by the library before and
can not be processed further. To make the algorithm useful to the users of the
library, conversion mechanism for tree::PostfixRankedTrees to be trans-
formed back into tree::OrderedRankedTree have been provided. Finally,
class named tree::TreeAuxiliary has been modified to include the appro-
priate method.

4.3 Renaming tree nodes

Different algorithms for computing subtree repeats may assign different IDs
to otherwise exact same subtree repeats. To alleviate this problem I have

25

4. Implementation

implemented a method that simply renames the nodes of the tree according
to a map that it constructs in the process. It preserves subtree repeats and
makes comparison of trees produced by different repeat searching algorithms
possible. I have placed it into a separate tree::NormalizeTreeLabels class.

4.4 Extension of a naive algorithm

I have extended the list of representations supported by the naive algorithm
to include PostfixOrderedTree, by implementing a method inside tree::
properties::ExactSubtreeRepeatsNaive class. It functions like its prefix
counterpart with changes accounting for obvious differences in tree represent-
ations.

4.5 The new algorithm

The most important part of the implementation process, this algorithm has
been added to the tree::properties namespace, put into a new class tree::
properties::ExactSubtreeRepeats and has been made available as one of
numerous options in the aarbology2 tool. It is named exactSubtreeRepeats.

automata-library/bin-release$./aarbology2 \
-s $INPUTPATH -a exactSubtreeRepeats

Due to the fact that the algorithm takes postfix representation of a tree
as its argument, other representations are not supported and need to be con-
verted by the acast2 application before being passed to aarbology2.

A nested class ExactSubtreeRepeatsAux that holds auxiliary structures
have been created inside ExactSubtreeRepeats.

The code follows pseudocode (Section 2.6) as closely as possible. Like
other parts of the library it may become a subject of study for other students,
that is why the focus was made on readability and explicitness. STL compon-
ents were used instead of arrays with manually allocated memory for the same
reason, as they are easy and safe to use and debug.

Comments have been added to methods and class members. Code has been
automatically formatted with Uncrustify and clang-format tools using config-
uration files supplied with the library.

26

Chapter 5
Tests

In this chapter I will describe the testing process and bugs that it helped me
to discover and fix in my code.

To test the implementation during the development phase I have reused
the tree in Figure 2.1 from Chapter 2. Unfortunately, the library does not
have a GUI (Graphical User Interface), thus the tree had to be transformed
into XML format [7] manually (Appendix C). Resulting file repeats.test1.xml
has been saved in the directory examples2/tree following the naming con-
vention established by the previous contributors.

As manual editing is the only way to predefine a tree, the command be-
low can be used to check the XML validity and also visually check the tree
structure:

automata-library/bin-release$./atniceprint \
-i ../examples2/tree/repeats.test1.xml

The following predefined test trees have been added to the examples2/
tree folder:

• repeats.test1.xml — the tree I have used to demonstrate the execu-
tion of the algorithm in Chapter 2.

• repeats.test2.xml — a larger tree used in the article [2].

• repeats.test3.xml — a long tree where every node has a different label
and a maximum of 1 child.

• repeats.test4.xml — a wide tree where every node has a different
label and is a leaf except for the root node.

• repeats.test5.xml — a long tree where every node has the same label
and a maximum of 1 child to test mapping µ.

27

5. Tests

• repeats.test6.xml — a wide tree where every node has the same label
and is a leaf except for the root node to test mapping µ.

Example tables and figures in Chapter 2 have been confirmed to be correct
by the tests. Trees 5 and 6 which have the same symbol assigned to every
node have been processed without a mistake.

Based on the assumption that existing code of the library has been tested
and produces correct output, I wrote a Bash shell script for automated testing
of implemented algorithms and placed it into the root directory of the library
source codes. It can be executed by the following command:

automata-library$./tests.repeats.sh release

I chose to write the tests as a script, because this way all parameters of
the tests can be easily changed without recompilation, shortening the time
it takes to make adjustments to the testing process. The library already
contained test files similar to what I have intended to create, so I followed
the established code style and design to maintain consistency of the project.

In every case progress of the testing process is printed on the standard
output. When a test fails, detailed description of the problematic trees is
written to the log file bin_release/log_tests.txt. The tests first supply
the algorithms with predefined trees from the examples2 folder and then
switch to randomly generated trees.

The script checks operations that have been affected by my implementa-
tion. The first one is the conversion of ranked trees to their postfix repres-
entation and back. I compare original RankedTree to the one that has been
converted to PostfixRankedTree and then type-cast back to RankedTree.
This test helped me to discover a flaw in the conversion algorithm I have ori-
ginally used, that have caused the tree to become vertically mirrored. The bug
caused by the children nodes being pushed to the wrong side of the node vector
has been fixed.

The second one is the algorithm analyzed in this thesis together with
the normalization (renaming) of tree node labels. To test this use case I
compare representations of the same tree processed in two different ways that
should yield identical results. The first transformation is done by the naive
algorithm and the second one is done by the studied algorithm. Labels of both
trees are renamed before comparisons to avoid situations when the subtrees
are identified correctly but different IDs are assigned to them by different
algorithms.

Tests of the algorithm by random trees helped me to discover variables
that were named incorrectly because of their similar names that are based
on the original article. The problem was undetectable on predefined trees be-
cause of their small size and simple structure. One of the trees that highlighted
the bug has been added to the examples folder under number 7. The flaw has
been fixed.

28

The final test is similar to the second one and checks the correctness
of the postfix extension of naive algorithm. The same tree is being processed
in its different representations and then compared.

Indentation issue described in Section 2.5 has been confirmed to be a mis-
take.

29

Conclusion

Analysis of the algorithm and tree structures internal representation, imple-
mentation of a repetition searching algorithm as part of Automata library
and its testing were my goals in this thesis. All these goals were successfully
accomplished.

The implementation passes tests by predefined and random trees and
produces expected results. As part of the implementation due to the lack
of necessary conversion mechanisms additional classes were added to the code
of the project apart from the main algorithm. Naive algorithm is left in place
for testing purposes and completeness reasons.

During the implementation I have followed pseudocode from [2] as closely
as possible to make future inspection, comparison and modification of the code
easier. I have respected code conventions of the library to make the process
of integration as smooth as possible.

The library is still being developed. My implementation could be exten-
ded with support for trees in prefix and other notations. Other students are
working right now to make Automata library cover more algorithms and get
a GUI. When it is publicly released, it will be used by students of Algorithms or
Automata and Grammar courses to better understand the theory they cover.

31

Bibliography

[1] Melichar, B.; Janoušek, J.; et al. Arbology: Trees and pushdown automata.
Kybernetika, volume 48, no. 3, 2012: pp. 402–428.

[2] Christou, M.; Crochemore, M.; et al. Computing all subtree repeats in
ordered trees. Information Processing Letters, volume 112, no. 24, 2012:
pp. 958–962.

[3] Madani, K.; Correia, A.; et al. Computational Intelligence: Revised and
Selected Papers of the International Joint Conference, IJCCI 2013, Vil-
amoura, Portugal, September 20-22, 2013. Studies in Computational In-
telligence, Springer International Publishing, 2015, ISBN 9783319233925,
142 pp.

[4] Christou, M.; Crochemore, M.; et al. Computing All Subtree Repeats in
Ordered Ranked Trees. Berlin, Heidelberg: Springer Berlin Heidelberg,
2011, ISBN 978-3-642-24583-1, pp. 338–343, doi:10.1007/978-3-642-24583-
1 33. Available from: http://dx.doi.org/10.1007/978-3-642-24583-1_
33

[5] Flouri, T. Pattern matching in tree structures. Dissertation thesis, Czech
Technical University, Prague, Czech Republic, 9 2012.

[6] Ing. Jan Trávńıček / Automata library · GitLab. https:
//gitlab.fit.cvut.cz/travnja3/automata-library, [Online, Accessed
on 05/04/2017].

[7] Žák, M. Automatová knihovna - vnitřńı a komunikačńı formát. Bacherlor’s
thesis, Czech Technical University in Prague, 2014.

[8] Plachý, Š. Automatová knihovna - Stromové automaty a algoritmy nad
stromy. Bacherlor’s thesis, Czech Technical University in Prague, 2015.

33

http://dx.doi.org/10.1007/978-3-642-24583-1_33
http://dx.doi.org/10.1007/978-3-642-24583-1_33
https://gitlab.fit.cvut.cz/travnja3/automata-library
https://gitlab.fit.cvut.cz/travnja3/automata-library

Appendix A
Acronyms

XML Extensible Markup Language

GUI Graphical User Interface

STL Standard Template Library

35

Appendix B
User manual

B.1 Requirements

The library should support most Linux distributions. Work described in this
thesis has been done in a Lubuntu operating system. Automata library re-
quires the following applications and binaries for successful compilation:

• make (version 3.9 or later)

• g++ (version 4.8 or later) or clang++ (version 3.5 or later)

• libcppunit-dev

• libtclap-dev

• libxml2-dev

doxygen and graphviz are optional and are needed for generation of doc-
umentation.

Please refer to the manual of your package manager for detailed installa-
tion procedures. In most cases, sudo apt-get install with the name of a
respective application will suffice.

B.2 Installation

The code of entire project is compiled by typing the command:

automata-library$ make release

Each application or dynamic library inside the project can be recompiled
separately. For example, to recompile the libalib2algo.so, one would ex-
ecute the command inside alib2algo folder:

37

B. User manual

automata-library/alib2algo$ make release

The next command will gather binaries of each application inside a single
folder bin-release:

automata-library$ make install-release

Now the applications can be executed from folder bin-release.

B.3 Execution

The process of detecting subtree repeats in a tree can be split into multiple
steps.

1. Generate or load a tree from a file.

2. Obtain postfix representation of the tree.

3. Find subtree repeats.

4. (Optional) Transform the tree back to its original form.

5. (Optional) Output the tree in a human readable format.

acast2 is able to combine the first two steps. The goal can be achieved
by chaining the following commands:

automata-library/bin-release$./acast2 -t PostfixRankedTree -i \
../examples2/tree/repeats.test1.xml \
| ./aarbology2 -a exactSubtreeRepeats \
| ./acast2 -t RankedTree \
| ./atniceprint

38

Appendix C
Example tree in XML

Following is the XML representation of a tree used for illustration of the
algorithm in Chapter 2.

<?xml v e r s i on =”1.0”?>
<RankedTree>
<alphabet>
<RankedSymbol>
<Character>a</Character>
<Unsigned>0</Unsigned>

</RankedSymbol>
<RankedSymbol>
<Character>b</Character>
<Unsigned>0</Unsigned>

</RankedSymbol>
<RankedSymbol>
<Character>c</Character>
<Unsigned>2</Unsigned>

</RankedSymbol>
<RankedSymbol>
<Character>d</Character>
<Unsigned>2</Unsigned>

</RankedSymbol>
<RankedSymbol>
<Character>e</Character>
<Unsigned>0</Unsigned>

</RankedSymbol>
<RankedSymbol>
<Character>m</Character>
<Unsigned>2</Unsigned>

</RankedSymbol>
</alphabet>

39

C. Example tree in XML

<content>
<RankedSymbol>
<Character>m</Character>
<Unsigned>2</Unsigned>

</RankedSymbol>
<Children>
<RankedSymbol>
<Character>c</Character>
<Unsigned>2</Unsigned>

</RankedSymbol>
<Children>
<RankedSymbol>
<Character>a</Character>
<Unsigned>0</Unsigned>

</RankedSymbol>
<RankedSymbol>
<Character>b</Character>
<Unsigned>0</Unsigned>

</RankedSymbol>
</Children>
<RankedSymbol>
<Character>d</Character>
<Unsigned>2</Unsigned>

</RankedSymbol>
<Children>
<RankedSymbol>
<Character>e</Character>
<Unsigned>0</Unsigned>

</RankedSymbol>
<RankedSymbol>
<Character>c</Character>
<Unsigned>2</Unsigned>

</RankedSymbol>
<Children>
<RankedSymbol>
<Character>a</Character>
<Unsigned>0</Unsigned>

</RankedSymbol>
<RankedSymbol>
<Character>b</Character>
<Unsigned>0</Unsigned>

</RankedSymbol>
</Children>

</Children>

40

</Children>
</content>

</RankedTree>

41

Appendix D
Contents of enclosed CD

readme.txt a brief description of CD contents
src..source code directory

automata-library...........Automata library source code directory
thesis.....................LATEX source code of the thesis directory

text...compiled text directory
thesis.pdf...............................this thesis in PDF format

43

	Introduction
	Goals
	Thesis structure

	Theory
	Strings
	Trees
	Postfix notation of a tree
	Properties of trees in postfix notation

	Algorithm
	Approach
	Preprocessing phase
	Additional data structures
	Computation phase
	Observations
	Pseudocode

	Representation of trees in Automata library
	Basic trees
	Tree types
	Conversion
	Existing algorithm implementation
	Relevant tools

	Implementation
	Postfix ranked tree
	Postfix tree transformation
	Renaming tree nodes
	Extension of a naive algorithm
	The new algorithm

	Tests
	Conclusion
	Bibliography
	Acronyms
	User manual
	Requirements
	Installation
	Execution

	Example tree in XML
	Contents of enclosed CD

