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Abstrakt

VO-CLOUD je distribuovaný systém, který poskytuje uživatel̊um prostor a
výkon pro vytvářeńı výpočetně náročných astronomických experiment̊u skrze
rozhrańı webového prostřed́ı. Ćılem této diplomové práce je navrhnout a
implementovat nové komponenty a integrovat tyto komponenty do systému
VO-CLOUD za účelem přidáńı možnost́ı vizualizace soubor̊u astronomicých
spekter, využit́ı technologie Jupyter Notebook, která poskytuje uživatel̊um
prostřed́ı k interaktivńımu experimentováńı, a využ́ıt výpočetńı klastr Hadoop
společně s technologíı Apache Spark.

Kĺıčová slova VO-CLOUD, Virtuálńı Observatoř, Hadoop, Spark, Jupyter,
Docker, Java EE, UWS, astroinformatika

Abstract

The VO-CLOUD is a distributed system capable of providing users with a stor-
age and computability to conduct astronomical experiments in a web based
environment. The aim of this Master’s thesis is to design and implement addi-
tional components and to integrate them to the VO-CLOUD system in order to
add capabilities to visualise astronomical spectra files, to provide users with
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the Jupyter Notebook interactive experimenting environment and to utilize
the Hadoop computational cluster by using the Apache Spark technology.

Keywords VO-CLOUD, Virtual Observatory, Hadoop, Spark, Jupyter, Docker,
Java EE, UWS, astroinformatics
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Introduction

The research of the night sky of nowadays is not only focused on data ac-
quisition using big astronomical telescopes producing regularly big amount of
data. The crucial part of the research is to actually unearth significant infor-
mation inside those data. VO-CLOUD is a distributed system that has been
developed to help astronomers with exactly this part. It allows astronomers to
acquire data from big astronomical archives, execute preprocessing and data
mining jobs on distributed workers and visualize the final results of the spe-
cific data mining method to the user. However, the problem is that currently
there is no way to visualise or explore data that are already stored on the VO-
CLOUD server. The visualization is critical because the astronomers should
be able to review the state of spectra in the every stage of spectra processing.

The aim of this thesis is to analyse a present workflow and deployment of
the VO-CLOUD server and to design a solution that would allow a user to
visualize astronomical spectra inside a web browser application and explore
them easily using an integrated Jupyter web application. Further, presented
thesis examines ways in which the VO-CLOUD server can be extended to al-
low a user to enqueue jobs that use Apache Spark framework for a large-scale
data processing and Hadoop Distributed File System (HDFS) as a storage for
this kind of jobs. Lastly, the possibility of involvement of the Docker con-
tainer platform technology is examined in order to facilitate the deployment
of certain parts of the VO-CLOUD system.
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Chapter 1
Technology overview

VO-CLOUD is complicated system that adopts many concepts and technolo-
gies that reader should understand before reading this Master’s thesis. Also,
the task of the work is to integrate additional technologies to already created
system. This chapter is dedicated to the explanation of these concepts and
technologies that will be used later on in the text.

1.1 Virtual Observatory

The Virtual Observatory (VO) concept is nowadays very popular among as-
tronomy community. Whereas in the past astronomers had to wait even a
couple months to access the telescope, today they can practically instantly
access data they want using the concept of VO. Virtual Observatory addresses
challenges such as data management, analysis, distribution and interoperabil-
ity [1].

”The VO is a system in which the vast astronomical archives and
databases around the world, together with analysis tools and com-
putational services, are linked together into an integrated facil-
ity.” [1]

The VO concept and additional associated technologies and recommenda-
tions have been developed by the International Virtual Observatory Alliance
(IVOA). The IVOA is an organisation with a mission to ”facilitate the in-
ternational coordination and collaboration necessary for the development and
deployment of the tools, systems and organizational structures necessary to
enable the international utilization of astronomical archives as an integrated
and interoperating virtual observatory.” [2]

The VO-CLOUD system is tightly connected with the concept of Virtual
Observatory. It allows user to obtain data from the remote services imple-
menting the VO principles using special VO protocols, store the data in the
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1. Technology overview

provided storage, preprocess them to an appropriate format and apply a spe-
cific data mining method. All of this can be operated easily within a user’s
web browser.

1.2 Java EE

The whole current solution of the VO-CLOUD system is built upon Java EE
Programming Language Platform (Enterprise Edition). The Java EE platform
is an extension of the Java SE platform (Standard Edition) which provides
the core functionality for the Java programming language. The Java EE en-
riches the Java SE platform with additional concepts and technologies that are
mostly used in server multi-tiered environments and makes the development
of Java server applications much easier.

”The aim of the Java EE platform is to provide developers with
a powerful set of APIs while shortening development time, re-
ducing application complexity, and improving application perfor-
mance.” [3]

Unlike the Java SE platform where every built application can be executed
directly on the Java Virtual Machine (JVM) – the environment where every
Java application is running, the Java EE applications are usually deployed into
an environment that supports all Java EE technologies that the application
intents to utilize. This environment is called Java EE server. The Java EE
serves is an application that implements APIs from the Java EE platform and
provides the standard Java EE services [3]. There are many implementations
of the Java EE server. The reference implementation originally started by
Sun Microsystems, nowadays developed by Oracle Corporation is an open-
source server called GlassFish1. There are many more implementations of the
Java EE server, some of them are open-source other are commercial. The one
that is necessary to mention here is an open-source server WildFly2 originally
developed by JBoss, now continuously developed by Red Hat. The WildFly
is the server where the VO-CLOUD system is currently running on.

The Java EE specification contains many technologies that should simplify
development of the server sided applications. Following sections are dedicated
to the explanation of Java EE technologies that are related to the VO-CLOUD
system.

1.2.1 Java Persistence API

The Java Persistence API (JPA) is a technology that considerably simplifies
usability of relational databases inside Java EE applications using a principle

1https://glassfish.java.net/
2http://wildfly.org/
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1.2. Java EE

@Entity
public class UserAccount implements S e r i a l i z a b l e {

private stat ic f ina l long se r ia lVers ionUID = 1L ;
@Id @GeneratedValue ( s t r a t e g y = GenerationType .AUTO)
private Long id ;
@Column( unique = true , n u l l a b l e = fa l se )
@Pattern ( regexp = ” [ a−zA−Z]+( [ a−zA−Z0−9]” +

” [ . − ]?)+[a−zA−Z0−9]” )
private St r ing username ;
@NotNull
private St r ing passwordHash ;

public UserAccount ( ) {}
// g e t t e r s , s e t t e r s , equa l s , hashCode methods

}

Figure 1.1: Fragment of simple user account Entity JPA class

called Object-Relational Mapping (ORM).

”The Java Persistence API (JPA) is a Java standards-based solu-
tion for persistence. Persistence uses an object relational mapping
approach to bridge the gap between an object-oriented model and
a relational database.” [3]

A programmer implementing an application using relational database does
not have to have any knowledge of Standard Query Language (SQL) – a lan-
guage that is used for querying and manipulating data inside relational data-
bases. The JPA framework does everything for him. A programmer simply
implements a Java class (in terms of JPA called Entity class) and annotates
it and its attributes with special Java annotations. The framework creates
mapping between these objects and tables inside a relational database. Fig-
ure 1.1 demonstrates an fragment of a simple Entity class representing a user
account. The class will be mapped to the table useraccount inside relational
database containing exactly 3 columns: id, username, passwordhash. The
JPA frameworks provides special class EntityManager that provides API for
communication with the relational database using above mentioned Entity
classes. If a programmer requires more complicated database queries he can
also use the Java Persistence Query Language (JPQL) – a simple string-based
language similar to SQL used to query entities and their relationships [3].

One great advantage of using the JPA framework is the fact that an ap-
plication does not have to know any information about database itself. The
application only specifies the name of so-called Persistence Unit. The Persis-
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1. Technology overview

tence Unit is configured on the Java EE server and the configuration consists
of items such as database connection URL, login credentials, query timeouts,
connection drivers and many others. The principle of pulling configuration
from application to server ensures portability of the application. In fact, ap-
plication on one server can use for example PostgreSQL3 relational database
and it can also be redeployed without recompilation to the server utilizing
MySQL4 relational database.

1.2.2 Java Servlet Technology

The Java Servlet Technology is very important in the Java EE specification
because many other technologies are built upon it.

”A servlet is a Java programming language class used to extend
the capabilities of servers that host applications accessed by means
of a request-response programming model. Although servlets can
respond to any type of request, they are commonly used to extend
the applications hosted by web servers. For such applications, Java
Servlet technology defines HTTP-specific servlet classes.” [3]

Servlets have very simple lifecycle. The lifecycle is controlled by the web
container of the Java EE server where the servlet has been deployed. When
a request is mapped to a servlet, the container performs following steps on
order to serve a response. [3]

1. If container does not contain an instance of the servlet, the container:

a) loads the servlet class if it has not been done already,
b) creates an instance of the servlet class,
c) calls servlet’s method init to perform servlet initialization.

2. Calls service method of the servlet instance with two method param-
eters representing servlet request object and servlet response object.

Container can also decide that a servlet instance is no longer necessary and
remove it from the container. Before it does so it finalizes servlet by calling
method destroy.

From the implementation point of view the Java Servlet Technology is
implemented in packages javax.servlet and javax.servlet.http. The first
package contains interface Servlet that every servlet class must implement.
The most important methods of this interface are aforementioned methods
init, service and destroy [4]. The first package also contains one of the

3https://www.postgresql.org/
4https://www.mysql.com/
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1.2. Java EE

@WebServlet ( ”/ he l l o−world ” )
public class H e l l o S e r v l e t extends HttpServ l e t {

private stat ic f ina l long se r ia lVers ionUID = 1L ;

public void doGet ( HttpServ letRequest req ,
HttpServletResponse r e s )

throws Serv le tExcept ion , IOException {
r e s . setContentType ( ” text / p l a i n ” ) ;
Pr intWriter out = r e s . getWriter ( ) ;
out . p r i n t l n ( ” Hel lo , world ! ” ) ;
out . c l o s e ( ) ;

}
}

Figure 1.2: Servlet code fragment example

class implementing Servlet interface – GenericServlet. This class can be
used to implement a generic service – protocol independent servlet.

The most important subclass of GenericServlet is HttpServlet from
package javax.servlet.http that provides an abstract implementation of
the HTTP protocol [4]. Method service in implementation of this class
delegates requests to one of the method doXXX where XXX is one of the methods
of HTTP protocol (GET, HEAD, OPTIONS, POST, PUT, TRACE or DELETE). Figure
1.2 demonstrates an example of a simple ”Hello, World!” servlet application.
The application returns string ”Hello, world!” whenever HTTP GET method
is called on the servlet’s endpoint (for example when web browser connect to
the servlet’s endpoint URL).

It is important to understand what the servlet’s endpoint actually is and
how to specify it. As it is possible to see in the example 1.2, the class
HelloServlet is annotated with WebServlet annotation. The value of this
annotation specifies a path relative to the path of deployed Java EE appli-
cation. For instance, if the servlet application is deployed on the URL ad-
dress http://example.org/app, the servlet endpoint from the example 1.2
is http://example.org/app/hello-world. The WebServlet annotation can
be also replaced by utilizing a configuration file web.xml, where deployment
configurations are specified in XML format. An example of such a configura-
tion of HelloServlet from the example 1.2 can be seen in the figure 1.3.

1.2.3 JavaServer Faces

JavaServer Faces (JSF) is an important technology of the Java EE platform
that focuses on simplification of web user interface development. It is built
upon Java Servlet technology. In contrast to Java Servlet technology where
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1. Technology overview

<?xml v e r s i o n =”1.0” encoding=”UTF−8”?>
<web−app v e r s i o n=” 3 .0 ” . . . >
<s e r v l e t>

<s e r v l e t−name>Hel lo S e r v l e t</ s e r v l e t−name>
<s e r v l e t−c l a s s>s e r v l e t . H e l l o S e r v l e t</ s e r v l e t−c l a s s>

</ s e r v l e t>
<s e r v l e t−mapping>

<s e r v l e t−name>Hel lo S e r v l e t</ s e r v l e t−name>
<ur l−pattern>/ he l l o−world</ ur l−pattern>

</ s e r v l e t−mapping>
</web−app>

Figure 1.3: Servlet mapping configuration

servlet class contains implementation of both presentation and behavioral part
of user interface, JavaServer Faces framework splits these parts to different
units.

”One of the greatest advantages of JavaServer Faces technology is
that it offers a clean separation between behaviour and presenta-
tion for web applications.” [3]

The implementation of web user interface of the Java EE application using
JavaServer Faces framework consists of two different types of files: XHTML
files and so-called Managed Beans. XHTML files represent a presentation part
of the user interface – visual side of one page in standardized XML format [3].

There are two different types of XML tags that can be used inside XHTML
format. Standard HTML tags and special JSF tags. Whereas HTML tags
have no special meaning for the JSF framework and they are mostly passed
directly to the client’s web browser, the JSF tags add additional functionality
beyond the static HTML pages. They allow to bind data changes, actions and
events of the page to Java methods specified in Managed Beans using a special
syntax called Expression Language [5]. JSF tags can represent any web view
component from a single text field to complicated data table offering sorting
and filtering functionality. For example following fragment of XHTML code
represents a simple input text field of the HTML input form:

<h : inputText value=”#{f oo . username}” />

The #{...} syntax is in fact the Expression Language that binds value of
this input field to the username field of the Managed Bean named foo. The
binding has two functionalities:

• When a page is being rendered for a client the value of the input field
is set to the value of username field in foo Managed Bean.

8



1.2. Java EE

• When the input form is filled and submitted back to a server by client
the new value of this input field is stored in the Managed Bean.

The set of JSF tags is easily extendable by using additional XML name-
spaces in the root tag of the XHTML document [6]. Using this principle, one
can use additional extended components that are not available in pure JSF
framework. VO-CLOUD system uses one of such popular JSF extensions –
the open source framework named PrimeFaces5.

Managed Bean by definition [3] is a simple Java class that must fulfil
following rules:

• It must have non-parametric constructor in order to be able to instan-
tiate it anytime without parameters.

• It must have defined name that is available for Expression Language.
Managed beans have usually default name inferred from the name of
Java class, however it can be renamed using XML descriptor files or
Java annotations.

• It must define a scope.

Choosing the right scope for every Managed Bean is an important part
of application design. ”Scope defines how application data persists and is
shared.”[3] The two most important scopes are request and session scopes.
Data inside Managed Beans annotated with request scopes survive only for
a single client’s HTTP request, whereas data from session scoped beans are
saved to a session storage of the specific client and they survive multiple HTTP
requests. The drawback of the session scoped approach is the fact that session
storage consumes memory of a server and it complicates scalability of the
application because it requires replication of the session storage to additional
server instances.

1.2.4 Enterprise JavaBeans

Enterprise JavaBeans (EJB) is a powerful technology that is also part of the
Java EE specification. Enterprise bean is a component that runs inside EJB
container, a runtime environment in the Java EE server [3]. It is important
to note that not every Java EE server has implemented the EJB container
and so application written with the EJB functionality cannot be deployed to
such servers. For example Apache Tomcat6 server supports many Java EE
technologies, however it is only servlet-based server and so there is no support
for EJB components. Part of the VO-CLOUD system uses EJB thus it is
necessary to deploy them to EJB enabled server such as earlier mentioned
GlassFish or WildFly server.

5https://www.primefaces.org
6http://tomcat.apache.org
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1. Technology overview

The purpose of EJB components is to encapsulate the business logic of
an application and to make an development of large, distributed application
somewhat easier [3]. The EJB framework pulls responsibilities like security,
concurrency and transaction management from a developer to the EJB con-
tainer itself. It also provides special API, like asynchronous method invocation
and timer service that allows to schedule an operation execution or to execute
periodically in specified time intervals.

1.3 Universal Worker Service

The Universal Worker Service (UWS) pattern is an important concept that
is involved in the VO-CLOUD system. The UWS recommendation has been
developed by IVOA organization and it is extensively used in astroinformatics
in cases where synchronous and stateless services are not an option. First,
let’s explain what these terms actually mean.

The majority of simple web services are synchronous and stateless. Syn-
chronous service is such a service where client waits for the service response
after sending a request. Stateless service means that service does not have to
remember any state of a communication with client. The state is stored on
the client’s side and every client’s request contains all information necessary
for processing a response. This is one of basic principles of so-called RESTful
services where the REST (Representational State Transfer) is an architec-
tural style, developed as an abstract model of the Web architecture to guide
our redesign and definition of the Hypertext Transfer Protocol (HTTP) and
Uniform Resource Identifiers (URI) [7].

There are two reason why synchronous and stateless services are sometimes
not sufficient:

• Processing of response from the passed request can take very long time,
sometimes even days.

• Service parameters or results can take large amount of memory space and
transferring them through a data channel is not achievable in reasonable
time.

It is often necessary to work with big data and long running tasks in astroinfor-
matics. UWS pattern has been developed as a way of solving aforementioned
problems.

The UWS recommendation specifies how to build asynchronous, stateful
and job oriented services [8]. Whereas in synchronous services responses are
expected to be almost instantly processed from requests and passed back to a
client, clients using asynchronous services of UWS pattern only get identifier
of newly created job. Issued jobs are being executed on a server without
necessity of client’s interaction or even a connection. After the execution of a

10



1.3. Universal Worker Service

job is done, results are being linked with the job’s identifier. Clients use job’s
identifier to query phase of execution of the job, to download results and to
manipulate with the job itself. They can for example abort already running
job if its results are no longer relevant.

”A UWS consists logically of a set of objects that may be read and written
to in order to control jobs.”[8] These objects are addressable as a distinct web
resources and each object has its own URI – it uses the same principle of
binding as in RESTful services. Relations between individual UWS objects
can be seen in figure 1.4.

• Job – represents a single executable job

• Job List – top-level resource collection; every job must be inside one of
these collections

• Phase – represents the execution phase of a job

• RunID – a unique identifier of a job inside a job list collection

• Owner – an identifier representing the job’s owner

• Execution Duration – maximal duration of a job execution in seconds;
service provider aborts the job if the duration is exceeded

• Destruction Time – absolute time when the job and its results should
be removed from a job list collection

• Quote – a UWS service prediction when the job is likely to complete

• Error – human-readable message specifying the reason why a job failed

• Parameter List – list of parameters passed to a UWS service

• Result List – list of Result objects

• Results – an object representing one of the results of a job execution

A UWS pattern uses the same guidelines for mapping operations over
resources to the HTTP methods as in a RESTful web services – HTTP GET
method is mapped to operation read, POST to operation create, DELETE to
operation delete and PUT to operation update. The set of operations create,
read, update and delete are often shortened to an abbreviation CRUD. Table
1.1 shows the most important operations over a UWS service API.

It is also important to mention in more detail a UWS object Phase that
specifies the current execution phase of a respective job. ”The job is treated
as a state machine with the Execution Phase naming the state.” [8] Phases’
names are self-explanatory and their state machine diagram can be seen in
the figure 1.5.
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 class UWS objects

JobList

Job

Quote
ExecutionDuration

Error

ResultList

Result

Phase

ParameterList

Parameter
DestructionTime

Owner

runID

0..*

1

1
1

0..1

1

0..*

0..1

0..*

1

1

0..1

Figure 1.4: Relations of UWS objects [5]

Table 1.1: Often used actions in UWS REST binding [5]

Method URI Description
GET /{jobList} listing of all Jobs
GET /{jobList}/{id} summary of specified Job
GET /{jobList}/{id}/phase phase of the specified Job
GET /{jobList}/{id}/results results of the specified Job
POST /{jobList} creates new Job
POST /{jobList}?PHASE=RUN creates new Job and puts it

into execution queue
POST /{jobList}/{id}/phase

?PHASE=RUN
puts already created Job
into execution queue

POST /{jobList}/{id}/phase
?PHASE=ABORT

aborts specified Job

DELETE /{jobList}/{id} deletes specified Job
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Figure 1.5: State machine of UWS job’s execution phase [5]
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Chapter 2
Analysis of the current solution

The understanding of the current solution of VO-CLOUD system is crucial
for the task of the thesis. This chapter is dedicated to a description of VO-
CLOUD system’s responsibilities, explanation of the system’s architecture,
description of the system’s workflow and the current state of deployment on
the servers. First, let’s describe architecture of the VO-CLOUD system.

2.1 Architecture

VO-CLOUD is a distributed system, which means that it is comprised of
hardware or software components located at networked computers that com-
municate and coordinate their actions only by passing messages to achieve
their task [9]. The system consists of three main components:

• Master server – The main component of the distributed system. Web
application that an experimenting user communicates with.

• Universal worker – The computational component. Master server del-
egates the computational tasks conducted by an experimenting user to
these components. Provides web service for communication with the
Master server.

• Specific preprocessing or data mining application – An application that
takes passed data and creates an output requested by the user. This
application is called as a process from the Universal worker.

It is important to fully understand each of these components and there-
fore following sections are dedicated to fully explain their technologies and
responsibilities.
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2.1.1 Master server

Master server is a web application completely written in the Java EE platform.
Responsibilities of the Master server are following:

1. Provide web GUI for communicating with the experimenting user’s web
browser application.

2. Provide storage where users can save their data and use them for further
experiments and provide web interface to manage the storage.

3. Allow users to upload new files to the Master server’s storage directly
from the user’s device.

4. Allow users to download new files to the Master server’s storage from
the passed HTTP or FTP resource URL.

5. Allow users to download new files from spectra archives using special
astronomical protocols SSAP and DataLink.

6. On the user’s request enqueue new computational job to the Universal
worker, await job’s completion, download results back and present them
to the user.

7. Allow user to abort currently running job.

Whole web user interface is written using JavaServer Faces (JSF) tech-
nology. Master server also requires database for persisting multiple pieces
of information, for example user accounts and or executional jobs that have
been created by individual users. VO-CLOUD uses Java Persistence API
(JPA) framework for utilizing the persistence storage. Moreover, for simpli-
fication of transaction and security management VO-CLOUD Master server
utilizes Enterprise JavaBeans technology. This means that the Master server
has to be deployed on a Java EE server containing EJB container and thus
supporting EJB technology.

Users communicate only with the user interface of the Master server. Ev-
ery user that wants to work with VO-CLOUD system must be authenticated
and thus one of the Master server’s additional responsibilities is to offer a reg-
istration form to newcomer users. When user logs in the system, he can do set
of operations depending on his authorization level – user role. VO-CLOUD
distinguishes between three following user roles:

• USER – User with this role has read-only access to the VO-CLOUD’s
storage and can create new jobs from the set of non-restricted job types.

• MANAGER – User with this role has in addition to USER role write
permissions to the system’s storage and he can also create jobs of a
restricted type.
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• ADMIN – User with this role has in addition to MANAGER permissions
to view jobs of all users in the system, to change users’ settings (e.g.
set new password or change user role) and to change configuration of
available Universal workers.

The storage of VO-CLOUD system is directly mapped to the filesystem
where VO-CLOUD has been deployed – it has tree structure of files and folders.
There are in total five ways to get data to the system’s storage:

1. A user can directly upload files from his local device through VO-
CLOUD’s web user interface.

2. A user can command the server to download file/files from remote lo-
cations using FTP or HTTP protocol. By using this method server can
download multiple files if passed location points to folder in FTP server
or to directory listing of HTTP protocol.

3. A user can command the server to download astronomical spectra from
VO databases using protocols SSAP and DataLink. These two proto-
cols have been developed as IVOA recommendations. SSAP is basically
a protocol that allows to query astronomical spectra fulfilling specified
filter conditions and it returns a list of spectra together with meta-
data [10]. These spectra could be either directly downloaded, or, if VO
service supports it, the DataLink protocol can be used to apply addi-
tional spectra transformations on the service provider’s side before a
download [11].

4. A user can command the server to store an output of any computational
job to the system’s storage.

5. VO-CLOUD’s storage can be also modified by directly modifying a folder
structure on the side of server where the Master server has been deployed
(e.g. by connecting to the server directly through SSH protocol and
modifying data using terminal commands).

Master server’s user interface also offers operations to download selected files
from server’s storage to user’s device, to delete selected files, to create new
folders, to rename files, etc. Note that operations changing the storage’s state
can be issued only by users that have user role ADMIN or MANAGER.

Master server provides functionality for user to create a new computational
job. Every job is represented by a job type and a configuration in JSON data
format. Job type is in fact the choice of a specific preprocessing or data mining
application. Job types are divided to two categories:

• Non-restricted jobs – Jobs that can be created and executed by any
logged in users.
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• Restricted jobs – Jobs that can be created and executed only by users
with higher permissions because to fully utilize their potential it is nec-
essary to have write permissions to the system’s storage.

There are currently three types of jobs that can be executed on the VO-
CLOUD system. Preprocessing and Random Decision Forest (RDF) method
that has been implemented by Andrej Palička in his Bachelor’s thesis [12]
and Self-Orginizing Maps (SOM) method that has been developed by Lukáš
Lopatovský in his Bachelor’s thesis [13]. Preprocessing job type takes spectra
stored in the system’s storage and it preprocesses them to the format that is
an input of RDF and SOM job types. Due to necessity to store data from
preprocessing job type back to the VO-CLOUD’s storage the preprocessing
job type is set as a restricted job. RDF and SOM job types are non-restricted.

In fact, multiple workers supporting a single specific job type can be con-
figured. Master server selects from the list one worker that is the least loaded
and delegates the computational job on it through UWS worker’s interface.
After the execution of a job has started, the Master server periodically checks
worker’s job phase through UWS API and when the execution stops, the Mas-
ter server downloads results from the worker and it commands worker to delete
results on its side. User can view the execution phase of every created job.
Jobs’ phases are directly mapped to phases of UWS pattern (see figure 1.5).

2.1.2 Universal worker

Computational jobs are not executed by the Master server itself but they are
delegated to computational components of the distributed system – generic
workers. Worker has following responsibilities in the VO-CLOUD system:

1. It provides UWS service that the Master server communicates with.

2. It parses JSON configuration for every new job and downloads all nec-
essary files from the Master server that are listed in the configuration
and are therefore necessary for computation.

3. It passes JSON configuration together with downloaded files to a specific
preprocessing or data mining application.

4. It stores computed results until the Master server downloads them.

The worker is a relatively simple web application written in the Java EE
platform. As it has been already stated in its responsibilities it must expose
a UWS interface that the Master server communicates with. A JavaServlet
Techology is involved in the UWS service implementation. No additional Java
EE technologies (especially EJB) are used in the worker’s implementation
and thus it can be deployed on lightweight Java EE server that has no EJB
container (e.g. Tomcat).
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In the original implementation of VO-CLOUD system (originally named
VO-KOREL [14]) there had to be an implemented application for each indi-
vidual type of workers. Every new preprocessing or data mining method re-
quired also a new worker application implementation. Moreover, every server
where such workers have been deployed can have different settings, i.e., the
path to the preprocessing or data mining application could be different. It
was necessary to build an individual package for each server and worker type.
Source codes of these applications were almost identical with the exception of
a few lines of codes and configuration strings. This approach was detrimental
for maintenance as every minor change in the source code required multiple
recompilations and deployments.

This approach was changed as the result of Jakub Koza’s Bachelor’s thesis
that brings a new concept called Universal worker.

”A universal worker is a new type of the servlet based application
that is used instead of all other worker application types. The
idea is to deploy only one instance of universal worker applica-
tion on one computer worker node where multiple computational
executable applications are supported.”[5]

Universal worker is configured using a XML configuration file that matches
XSD schema specially created for a Universal worker concept [5]. The schema
can be seen in appendix C. Universal worker uses multiple job list collections
instead of only one – one job list per one worker XML tag configured in the
XML configuration file. The fragment of a such worker’s configuration can be
seen in figure 2.1.

As can be seen in the example 2.1 the most important part of worker’s
configuration is actually a specification of a process call. Whenever some
job should be started on the Universal worker, the worker actually creates a
new working directory. All files that are necessary for a job execution are
downloaded to this directory. Also the JSON configuration that was passed
as a job parameter is saved into this directory as a file. Finally, the process
specified in the XML configuration is executed in this directory and a path
to the configuration JSON file is passed as a parameter to this process (this
is caused by the last command tag in XML configuration containing special
substitution sequence ${config-file}.

Workers have been specifically designed to constitute the distributed part
of the VO-CLOUD system. There can be multiple workers on multiple ma-
chines. If there are more workers for a single job type, VO-CLOUD system
automatically chooses the one that is the least loaded. In the matter of de-
ployment it is essential that VO-CLOUD’s Master server has network visibil-
ity to individual workers in order to communicate with their UWS interface.
However, workers do not have to be exposed to users’ devices at all. If it is
expected that workers should be able to download data from VO-CLOUD’s
Master server the visibility must be bidirectional.
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. . .
<ns : worker>

<ns : i d e n t i f i e r>p r e p r o c e s s i n g</ns : i d e n t i f i e r>
<ns : d e s c r i p t i o n>Preproce s s ing</ns : d e s c r i p t i o n>
<ns : r e s t r i c t e d>t rue</ns : r e s t r i c t e d>
<ns : b i n a r i e s−l o c a t i o n>/ usr / l o c a l /

workers / p r e p r o c e s s i n g</ns : b i n a r i e s−l o c a t i o n>
<ns : exec−command>

<ns : command>python3</ns : command>
<ns : command>${ b i n a r i e s−l o c a t i o n }/

run pr e p ro c e s s i ng . py</ns : command>
<ns : command>${ con f i g− f i l e }</ns : command>

</ns : exec−command>
</ns : worker>
. . .

Figure 2.1: Universal worker configuration fragment

2.1.3 Specific preprocessing or data mining application

VO-CLOUD’s Universal worker component would be useless without an appli-
cation that is capable of preprocessing passed data or unearthing new relevant
information from them. As it has been already stated there are currently three
of these applications – Preprocessing, SOM and RDF. All of them are writ-
ten in Python programming language and their behaviour can be altered by
changing an input JSON configuration. These applications are simply called
as a new process from the Universal worker component. Despite Python being
used as a technology for all three job types, there is no limitation on technol-
ogy used, i.e., any process that can be executed on worker’s hosted system
can be used for purposes of the Universal worker component.

Universal worker redirects standard output stream and standard error
stream of application’s process to its own temporal files that are afterwards
passed to the Master server together with results. Also the exit status code
of the process is passed back to the Master server. If the status code is equal
to zero, the process is considered to be successfully ended and the job’s phase
is set to COMPLETED state. Otherwise, job’s phase is set to ERROR state. A
user can go through standard output and error files on the Master server to
uncover a reason for the process failure.

Applications executed by the Universal worker can also create an visual-
ization output that the Master server can present to the user. It was designed
this way because every job type can require different type of visualization. Vi-
sualization is optional and there are two types of visualization that the Master
server can utilize:
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• Static visualization – Process produces static image/images that are
placed directly to the working directory. These images are directly pre-
sented to a user in a web interface. Master server supports following
image formats: PNG, JPEG, GIF.

• Dynamic visualization – Process produces a simple web application. In
order to do so the process must produce index.html file as a starting
point of the web application that must be placed directly in the work-
ing directory. Master server renders content of this file inside a special
HTML tag IFRAME that basically allows to run another web page in-
side a web page. Process can also produce additional HTML files and
link those files via standard hypertext relative links. It can also con-
tain a JavaScript code for additional scripting capabilities. By using
this approach the computational application can for example render a
complicated clickable visualization with spectra rendering capabilities.

2.2 Deployment

In order to be able to continue with this Master’s thesis it is important to
explain the deployment of the current solution as this is the state that is
going to be extended. VO-CLOUD system is currently deployed on two
servers at Stellar Department of the Astronomical Institute of the Czech
Academy of Sciences in Ondřejov. These servers are named vocloud-dev
and betelgeuse. Whereas vocloud-dev is only a virtual server with rela-
tively small amount of computational resources, betelgeuse is a powerful
physical server with 12 CPU cores supporting Hyper-Threading technology
(24 virtual CPU cores) and 128 GiB RAM memory. However, unlike the
vocloud-dev server, the betelgeuse server is especially for security reasons
not available publicly. Therefore, there is a reverse proxy server Nginx7 de-
ployed on the vocloud-dev server. The reverse proxy simply forwards all
incoming HTTP/HTTPS requests starting with URI /vocloud-betelgeuse
to the Java EE server hosted on the betelgeuse server. It also redirect URI
/ to the previous one, therefore the VO-CLOUD system is available on URL
address https://vocloud-dev.asu.cas.cz.

Whole VO-CLOUD system is currently deployed on the betelgeuse server
on the Java EE server called WildFly8. There is a single Master server in-
stance and a single Universal worker instance deployed on the WildFly server.
The Universal Worker is configured so that it provides a job execution service
for Preprocessing, RDF and SOM job types. Master server requires a rela-
tional database for its functionality. There is a PostgreSQL9 database that is

7http://nginx.org
8http://wildfly.org
9https://www.postgresql.org
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Figure 2.2: Deployment diagram

deployed also on the betelgeuse server inside a Docker container. Docker10 is
very powerful technology that considerably simplifies deployment of applica-
tion components on different machines. This technology is explained in detail
in the following chapter because it is a crucial technology for for the purposes
of this work.

Deployment diagram of the current solution can be seen in the figure 2.2.

2.3 Workflow example

For the sake of completeness, let’s describe a scenario of user’s communica-
tion with the VO-CLOUD system. A user in this scenario needs to down-
load data from a VO archive, to apply preprocessing on them and to apply
Self-Organazing Maps (SOM) method to find similarities between passed as-
tronomical spectra [13]. As the user intents to use the restricted job type –
Preprocessing – he must have either a MANAGER user role or ADMIN user role.

1. User logs into the VO-CLOUD system using his username and password.

2. User navigates through VO-CLOUD’s storage tree structure and select-
s/creates a directory where spectra from VO archive should be down-
loaded.

10https://www.docker.com
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3. User clicks Append new files using SSAP button, he fills in all neces-
sary input parameters and he configures a DataLink protocol settings
(if DataLink protocol is supported by the VO archive and if user wants
to use it).

4. User commits the download request. Progress of this request and possi-
ble errors can be seen on a dedicated page.

5. When the download is completed, user continues on page of a Prepro-
cessing job creation. He either creates a JSON configuration file from
scratch or he selects one of the pre-created configurations. Files that
should be preprocessed and preprocessing parameters are specified in
the JSON configuration.

6. User starts a preprocessing job. Progress can be seen on a dedicated
page.

7. After the preprocessing job is completed, user opens details of the job
and checks that there is an expected output.

8. User then stores an output of the preprocessing job to system’s storage
in order to have it as a source for additional experiments.

9. In a similar way to the preprocessing job, user creates a new SOM job
and as an input he selects an output of the preprocessing job stored in
the system’s storage.

10. When the SOM execution job is completed, user opens details of the job.
SOM job type provides an interactive visualization that user can deeply
explore and it can help him to unearth new interesting information.
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Chapter 3
Requirements analysis

This chapter is dedicated to the description of all functional and non-functional
requirements that are demanded by the new version of the VO-CLOUD sys-
tem. The fulfilment of these requirements is the aim of this Master’s thesis.
Before diving into these requirements it is important to explain all new tech-
nologies that are going to be involved in the new version of the system.

3.1 New technologies

The basis of this work is in fact integration of many new technologies to an
existing solution of the VO-CLOUD system in order to simplify scientific work
with the system and to extend its capabilities. The comprehension of these
technologies is crucial for the practical part of this thesis, thus this section
should introduce these technologies to the reader.

3.1.1 Docker

One of the most important technologies that was used in the practical part
is Docker. Docker technology has been already mentioned in the section ex-
plaining VO-CLOUD’s deployment 2.2 because the database server of the
currently deployed solution uses a Docker container. Docker is a software
container platform where piece of software is packaged into isolated contain-
ers [15]. The containers are functionally very similar to the virtual machines,
however, containers in Docker platform do not bundle a full operating system,
but only software libraries and settings required to make the software work as
needed [15].

”Docker containers running on a single machine share that ma-
chine’s operating system kernel; they start instantly and use less
compute and RAM. Images are constructed from filesystem lay-
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ers and share common files. This minimizes disk usage and image
downloads are much faster.”[16]

Docker containers are isolated from each other and they are even isolated
from the system hosting the Docker containers. This approach offers great
security benefits. Nevertheless, it is possible to link Docker containers together
using a Docker linking functionality, if it is necessary. For example, it is a
standard approach to deploy a database and an application server on two
different Docker containers and link these two containers together.

There are two important terms in Docker terminology that must be ex-
plained:

• Docker image – Docker images are basically immutable snapshots of a
Docker container. They have layered structure comprised of commits
that were applied on the base image. Docker images are created by
calling a build Docker command that takes a special Dockerfile file
containing instructions that are gradually processed to produce the final
Docker image. It is also possible to extend an existing image to create a
new image with added functionality. Built Docker images can be pushed
to remote repositories and thereafter they can be easily pulled on every
device that requires them.

• Docker container – Docker containers are instances of Docker images.
Every Docker image can be started using a Docker command run and
this is the way to create a new Docker container. Multiple Docker con-
tainers can be created from a single Docker image and multiple Docker
containers can be running on a single host machine.

For illustration, let’s demonstrate an example of fast PostgreSQL database
deployment using a Docker technology by using a single terminal command:

docker run −−name db −d −p 5432:5432
−e POSTGRES USER=<username>
−e POSTGRES PASSWORD=<password>
pos tg r e s

This is how a database server is currently deployed on the betelgeuse server.
The command does following actions:

1. It pulls postgres Docker image from the public Docker repository11 if
it is not pulled already in the hosted system.

2. It creates a new Docker container named db. Database in the container
has specified username and password.

11https://hub.docker.com

26

https://hub.docker.com


3.1. New technologies

3. It exposes TCP port 5432 from the container to port 5432 on the hosted
system.

4. It starts a newly created container in the background and it prints unique
container’s identifier.

The most time consuming operation is pulling of Docker image from a repos-
itory. If the image is already pulled on the hosted system, the Docker run
command is processed almost instantly.

3.1.2 Apache Hadoop

The Apache Hadoop is a an open-source project developed by the Apache
Software Foundation. It is a framework specially developed for the distributed
processing of large data sets across clusters of computers using a single pro-
gramming model. The Apache Hadoop infrastructure can scale up from the
single machine to thousands of servers, each offering its computational and
storage resources [17]. The Apache Hadoop consists of following modules[17]:

• Hadoop Common – The common utilities that are necessary for other
Hadoop modules.

• Hadoop Distributed File System (HDFS) – Specially designed distributed
file system that provides high-throughput access to stored data. This
module is explained in more detail in the next section 3.1.3.

• Hadoop YARN – A framework for managing cluster resources and sche-
duling computational jobs.

• Hadoop MapReduce – A system of parallel processing of large data
sets. Even though MapReduce is very important concept in the Apache
Hadoop infrastructure, this technology is not involved in the practical
part of this thesis and it has been substituted for the Apache Spark
compute engine. The Apache Spark is explained in section 3.1.4.

It is important to note that the whole Apache Hadoop framework is built
on the Java technology.

3.1.3 Hadoop Distributed File System

As it has been already stated, Hadoop Distributed File System (HDFS) is one
of the core modules of the Apache Hadoop framework infrastructure. It is a
distributed filesystem very similar to other distributed file systems, however,
HDFS is highly fault-tolerant and it was specifically designed to be deployed
on low-cost hardware [18].

HDFS has a master/slave architecture and it consists of two types of com-
ponents:
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• Name Node – Master component that manages the file system namespace
and regulates access to files by clients [18]. There is only one Name Node
component on the HDFS cluster.

• Data Node – The slave component that manages storage attached to the
nodes that they run on [18]. There is usually one Data Node component
per each device connected to the HDFS cluster.

Data in HDFS are stored inside blocks. The size of blocks depends on the
HDFS settings, however, it is usually 64 MB or 128 MB. Data Nodes have no
knowledge about files stored inside HDFS [18]. They manage only their file
blocks – each block is stored as a separate file in a local filesystem of Data
Node’s device.

An image of entire HDFS filesystem is kept by the Name Node inside its
memory. Name Node also decides where each file’s data block should be stored
(on which Data Node) and also where other replicas of the same data block
should be stored. Replication factor (a number stating how many Data Nodes
should carry a given data block) can be set on every HDFS file differently.
Replication is an essential feature that ensures fault-tolerance functionality
and it also improves computational times on some jobs as some data blocks
do not have to be moved from one Data Node to another.

Despite the fact that the HDFS has been designed for big data processing,
it is important to point out that it was designed for smaller amount of big files
than for many small files. According to Tom White [19], every file, directory
and block in HDFS is represented by an object inside Name Node’s memory
that takes approximately 150 bytes. For illustration, let’s demonstrate an
example of storing in total 10 TB of data. In the first scenario data are
distributed in 100 kB files, whereas in the second scenario data are distributed
in 1 GB files. Let’s consider that HDFS uses 128 MB sized blocks. As can be
seen in table 3.1, the first scenario requires 15 GB of Name Node’s memory,
whereas the second scenario only 12 MB. Furthermore, HDFS is primarily
designed for streaming access of large files and not of small files, because it
causes lots of seeks and lots of hopping from Data Node to Data Node to
retrieve each small file [19]. The problem with small files is very urgent in this
case as data here usually consist of astronomical spectra – each in a separate
approximately 50 kB sized file.

3.1.4 Apache Spark

Apache Spark is an open-source big data general-purpose cluster computing
system written in Scala programming language, that provides high-level APIs
in Java, Python, Scala and R programming languages and it also provides an
optimized engine that supports general execution graphs [20]. Apache Spark
software comes also with a rich set of higher-level tools like special Spark’s Ma-
chine Learning Library (MLlib), which consists of common learning algorithms
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Table 3.1: Comparison of file size behaviour in HDFS

Total data size 10 TB 10 TB
Block size 128 MB 128 MB
Size of each file 100 kB 1000 MB
Files count 100 000 000 10 000
Blocks per file 1 8
Blocks count 100 000 000 80 000
Total memory 15 GB 12 MB

and utilities, including classification, regression, clustering, collaborative fil-
tering, dimensionality reduction, as well as lower-level optimization primitives
and higher-level pipeline APIs [21].

The great advantage of Apache Spark software is that it can utilize an
existing Hadoop infrastructure. Spark jobs can be executed in a standalone
mode on a single device or in a simple cluster created specially for the purposes
of Spark using a tools bundled in the Apache Spark binaries. However, it can
also enqueue a Spark job using already mentioned module of Hadoop cluster –
Hadoop YARN – that manages cluster resources and schedules computational
jobs. The reason why this is usually a better solution for big clusters is that
Hadoop YARN is usually precisely configured regarding available resources on
each cluster’s node. Moreover, if multiple jobs are enqueued for execution on
the Hadoop YARN, the scheduler rather delays an execution of later jobs to
offer the executing job full cluster capabilities. Spark framework can also fully
utilize the Hadoop Distributed File System (HDFS) as a source of input data
sets or as an output job storage.

It is important to explain the main difference between the Hadoop MapRe-
duce approach and Spark approach. MapReduce has been designed specifically
for one-pass computation – it has one Map phase and one Reduce phase. How-
ever, many algorithms require multiple-pass computations. If they would be
converted to the MapReduce pattern they would require multiple MapReduce
jobs to be executed – output of the preceding one would be an input of the
successive one. All these intermediate outputs have to be stored in the dis-
tributed file system before the next step begins, hence, this approach tends
to be slow due to replication and disk storage [22]. Spark on the other hand
allows programmers to hold results in memory instead of writing them to disk,
especially when they need to work on the same dataset multiple times [22]. If
data do not fit into the memory, Spark framework automatically stores part
of the data to disk. Since Spark prefers using a fast RAM memory to using
a slow disk, jobs executed in Spark framework are usually many times faster
than by using a Hadoop MapReduce.
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3.1.5 Jupyter Notebook

The Jupyter Notebook is a web-based application that extends console based
approach to interactive computing in a qualitatively new direction [23]. In
the past it was common to use some console-based application for an inter-
active experimenting over a set of data. However, this approach had many
disadvantages that the Jupyter Notebook application is trying to improve.

The Jupyter Notebook application implemented in Python programming
language runs as a server on the machine where it was started by using a
single command:

jupyte r notebook

User can connect to it using his favourite web browser application. The di-
rectory where this command has been invoked is important because it is set
as a working directory for the Jupyter Notebook application. The application
consists of three following components:

• Notebook Dashboard – It is basically a file browser that lets user go
through the working directory, create, view, modify, delete files, start
Notebook documents and inspect already running Notebook documents
and Kernels.

• Notebook document – Notebook document is the most important com-
ponent of the Jupyter Notebook applications. ”Notebook documents
are both human-readable documents containing the analysis description
and the results (figures, tables, etc. . . ) as well as executable documents
which can be run to perform data analysis.”[24]

• Kernel – The source code from a Notebook document is executed in
the component called Kernel. It is basically the computational engine of
the Jupyter Notebook application. Multiple Kernels can be configured
in the single Jupyter Notebook application, each can support different
programming language. For example, one Kernel could execute source
code from Notebook documents as a Python code, second as an R code,
third as a Scala code, etc. . .

One of the great advantages of the Jupyter Notebook application is the
fact that the server can be started on one device and a client can connect
to it from another device. All computations take place on the side of the
server inside a Kernel component, thus a client can induce computationally
challenging experiments on the server side using only a web browser on his
potentially slow device and see results either in simple text format or in more
sophisticated output, e.g., plots or tables.
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3.2 Functional requirements

This section lists all new functional requirements that are demanded by the
new version of the VO-CLOUD system.

FR 1 Master server must provide an ability to plot selected astronomical
spectrum file saved in its storage.

FR 2 Master server must be able to plot multiple spectra files in the same
plot.

FR 3 Master server must be able to plot large csv files containing multiple
spectra.

FR 4 Master server must provide a zooming and panning functionality in
the plotted spectra.

FR 5 Plotted spectra must be able to be exported into ps, eps,pdf, png,
raw and svg image format.

FR 6 Plotter must be able to load x axis values from an external meta.xml
file if a spectrum file does not contain it itself.

FR 7 Plotter must be able to plot following spectra file formats: fit, fits,
vot, csv.

FR 8 Master server must provide an ability to switch to Jupyter Notebook
environment.

FR 9 Files from the Master server’s storage must be visible and available
for experimenting from the integrated Jupyter Notebook environ-
ment.

FR 10 Files from completed jobs in the Master server must be visible and
available for experimenting from the integrated Jupyter Notebook
environment.

FR 11 The Jupyter Notebook must support following Kernel types:

• Python 2
• Python 3

FR 12 Job and storage files from the Master server available to Jupyter
Notebook must be read only.

FR 13 The Jupyter Notebook environment must be available only to users
authenticated in the VO-CLOUD system.
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FR 14 The Jupyter Notebook environment must be available only to users
with a user role either MANAGER or ADMIN.

FR 15 The Jupyter Notebook environment must provide a writeable direc-
tory where users can create their own files and Jupyter Notebooks.

FR 16 Every user’s Jupyter Notebook writable directory must be isolated
from all other users.

FR 17 Users should not authenticate again for accessing the Jupyter Note-
book environment. Authentication should be straightforward when
user is already authenticated in the VO-CLOUD’s Master server.

FR 18 There must be a possibility to create new worker types utilizing the
Apache Spark technology – Spark workers.

FR 19 Spark workers must be able to download files from the Master server’s
storage directly to the specified path in HDFS.

FR 20 Spark workers must have a defined set of default parameters that are
passed to the Spark job.

FR 21 The set of Spark job parameters should be optionally configured by
a user in the JSON configuration during the Spark job creation.

FR 22 The output of Spark job should be optionally downloadable from the
HDFS back to the VO-CLOUD system.

FR 23 Master server must provide a possibility for user to browse the HDFS.
User should be able to modify the HDFS in the same way as the
Master server’s storage.

FR 24 Plotter must be able to plot spectra files stored in the HDFS.

FR 25 Files stored inside HDFS must be visible and available for experi-
menting from the integrated Jupyter Notebook environment in the
same way as the files from the Master server’s storage.

3.3 Non-functional requirements

NFR 1 For security reasons, whole VO-CLOUD system must secure its
communication over HTTPS protocol. Incoming connections over
HTTP protocols must be redirected to HTTPS connections.

NFR 2 Newly implemented modules should use Docker technology in order
to make deployment more straightforward.
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NFR 3 Source codes of the VO-CLOUD system must be published under
the Open Source license and they must be publicly available on a
public repository.

NFR 4 The new Spark worker type must be able to run on the same ap-
plication server as the Master server as well as on an application
server on a different machine.
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Chapter 4
Realisation

There are three main goals in the extension of the current solution of the
VO-CLOUD system:

• Implementation of spectra plotter

• Integration of Jupyter Notebook environment

• Integration of HDFS and Apache Spark

This chapter is dedicated to the explanation of all of these goals in detail in
the following sections.

4.1 Astronomical spectra plotting capability

The current version of the VO-CLOUD system has been originally designed
to not differentiate between file types saved in the Master server’s storage. It
was user’s responsibility to know what is an actual representation of respective
files. Workers of the VO-CLOUD system have been designed in the exactly
same way. They basically take a JSON configuration containing the list of
files that they should download from the Master server. Then they pass the
downloaded files and the same JSON configuration file to some computational
process. The process is actually the element that should know what files it is
working with. If it is desirable, the process can create a visualization output
that Master server can present to the user.

For instance, the Preprocessing job type currently deployed on the VO-
CLOUD system processes passed astronomical spectra files and produces an
csv file containing a preprocessing output. It also produces a simple web ap-
plication – interactive plotter for output spectra that utilizes dygraphs12 –
an open source JavaScript charting library. The VO-CLOUD system simply

12http://dygraphs.com
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Figure 4.1: Example of astronomical spectrum plot of star 31 Pegasi

takes the Preprocessing binaries as a black box that requires a JSON configu-
ration and some input files and then it collects all the Preprocessing produces
and it presents it back to the user as a set of files and an in-browser appli-
cation. VO-CLOUD does not have to know anything about file types at any
time currently.

Despite the fact that the VO-CLOUD system has been designed generally
for any kind of data processing, nowadays it is especially used for processing
of astronomical spectra files.

Astronomical spectrum file – A file containing a record of an astronom-
ical spectrum together with additional metadata describing when the
spectrum was recorded, under what conditions, how it was processed,
etc. . . Astronomical spectrum is a very important concept of the stellar
astronomy, as it is a record of the electromagnetic radiation radiating
from the observed object. Astronomical spectrum can be easily visu-
alized as a function of its wavelength and a radiative energy so-called
flux. [25] An example of plotted spectrum can be seen in figure 4.1.

Whereas the VO-CLOUD system’s storage mostly contains only astronom-
ical spectra files, there is currently no way to visualize them other than by
sending them to a specific job that is able to plot them or by downloading
them to the user’s device and visualize them in some other application (e.g.
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Spectral Analysis Tool (SPLAT)13). These approaches are not suitable as ex-
perimenting astronomers often require to visualize the selected set of spectra
to check that spectra wavelengths are correctly cut after preprocessing phase,
that its values are correctly normalized to [0.0, 1.0] interval and so on. There-
fore new functional requirements on the VO-CLOUD system emerged – to
plot as much astronomical spectra file types stored in the system’s storage as
possible.

4.1.1 Core visualisation problems statement

Whereas it seems that the visualisation of astronomical spectra files is really
straightforward, the opposite is true. The fact that the VO-CLOUD is a
web application brings some problems that complicate the visualisation. This
section is dedicated to description of these problems.

Multiple spectra file formats

Astronomical spectra can be stored in multiple specialized formats and even
inside these formats there can be more ways in which spectra can be stored.
The desired spectra visualiser should naturally support as much of these op-
tions as possible. Based on functional requirements, the visualiser should
support following spectra file formats:

• Flexible Image Transport System (FITS) – It is a format for astronom-
ical spectra files with extension .fit or .fits and it was designed in
order to facilitate the interchange of astronomical image data between
observatories. ”A FITS file consists of a sequence of one or more header
and data units (HDUs) optionally followed by special record. The struc-
ture of a FITS file is based on blocks with a length of 2880 8-bit bytes
(23040 bits)”[26] There are more ways to store an astronomical spectrum
inside a FITS file. The most straightforward way is to store two vectors
with the same length – a vector of x axis values defining points in a
wavelength and a vector of y axis values defining the actual flux value of
the respective wavelength point (”respective” means that the point has
the same index in vector). Another way is to write only a vector of flux
values and to describe a wavelength axis in FITS metadata, e.g., define
the value wavelength of the first point and the step distance to the next
wavelength point either in linear or logarithmic scaling. However, the
problem is that the names of metadata keys are not usually standardized
and moreover some FITS files do not even fully meet the FITS specifi-
cation, thus it is almost impossible to implement a visualizer supporting
every astronomical spectrum FITS file.

13http://star-www.dur.ac.uk/˜pdraper/splat/
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• VOTable – The VOTable format is a recommendation developed by
the IVOA organisation and it is newer than FITS specification. ”The
VOTable format is an XML standard for the interchange of data rep-
resented as a set of tables.”[27] The table in this context contains an
unordered set of rows and each row contains a sequence of cells. The
VOTable format can be utilized in many ways (e.g. it is used in already
mentioned protocol SSAP as a carrier of the SSAP query results), how-
ever, it is mainly utilized as a format for astronomical spectra files as it
can carry spectra data as well as metadata. There are two main ways
to store spectra inside VOTable format files:

– TABLEDATA – Two vectors of an astronomical spectrum are mapped
as rows with two columns – wavelength and flux pairs – using table
XML elements (TR and TD elements – the same as in HTML).

– BINARY – Wavelength and flux vectors are serialized in the binary
format that is intended to be easy to read by parsers. It is basically
a sequence of cells serialized as a sequence of bytes. [27] Every cell
belongs to some row and some column and the size in bytes of the
cell is defined by the column’s data type. Column data types and
additional metadata are specified at the beginning of the VOTable
file.

• CSV – Whereas FITS and VOTable files represent a single astronom-
ical spectrum, sometimes it is desirable to have multiple astronomical
spectra stored inside a single file. One of the most useful formats for
this purpose is a simple Comma-Separated Values (CSV) format. The
CSV file contains each spectrum on a single row and for each spectrum
it contains multiple values separated by a comma character (sometimes
other characters such as a space or a semicolon can be used, however,
a comma is used the most often). The first value of a spectrum row
contains a spectrum identifier (e.g. the name of original file where spec-
trum has been taken from) and the rest of row values represents the
flux spectrum vector. The CSV spectra file does not contain any header
row. The great advantage of this approach is that the CSV spectra
file can be easily split to multiple smaller CSV files. It is important to
note that the CSV spectra files contain no information about wavelength
vector. The CSV spectra file is usually an output of some preprocess-
ing method that takes multiple spectra as an input and preprocesses
them to a single CSV spectra file. Input spectra are interpolated to the
same wavelength values and the resulting wavelength vector is exported
as a meta.xml file – the file in VOTable format containing a row with
the wavelength vector. Data mining methods do not usually need the
meta.xml file as they mostly work only with spectra flux vectors. The
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meta.xml serves especially for purposes of visualisation and additional
preprocessing methods.

Spectra visualizer must support plotting of multiple astronomical spectra
together. User can select either one file or multiple files to plot. These selected
files may have different format. The CSV file must be plottable by itself (in
this case it should be assumed that the wavelength vector contain values of
f(x) = x function where x is an index of a flux vector value) or with correct
wavelength values if meta.xml file is specified.

Data volume problem

There is a big difference between visualising a single astronomical spectrum
file with size of approximately 50 kB and multiple spectra (stored as multiple
files or a single big CSV file) with total size in megabytes. If spectra for
visualising were really small the best solution would be to transfer all necessary
data to client’s web browser and visualise them using a JavaScript code. The
problem is that data are usually too big for web browser’s JavaScript interpret
to handle. Moreover, users with limited network connectivity would have to
wait a very long time because web browsers usually wait until all data have
been downloaded before they pass them to the JavaScript code – there is no
way to visualise spectra continually as new data are being downloaded.

The better way to solve the big data problem visualisation is to generate
an image of a plot on the server’s side and then send it to user’s web browser
that simply shows the image. There are a few advantages to this solution:

• Client code have no responsibility of differentiating between multiple
spectra file formats.

• There are no requirements on computational capabilities of user’s device.

• There is no need for transfer of big amount of data from server to user’s
device – only one image of a desired quality.

This approach seems to be better than the first one, however, there is also a
great disadvantage. An ability to zoom in the resulting image is conditioned
by the image quality. Images would either have to be unnecessarily large or
the quality after image zooming would be unacceptable. It is necessary to
find the compromise between the first and the second approach mentioned
in this section in order to implement a sufficient solution for the resulting
astronomical spectra visualiser.

Technology integration problem

As it have been already explained in the previous section 4.1.1, the spectra
visualising must at least partially take place on the server side. In order to do
so it is important to implement mainly two following components:
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• A parsing module for all possible astronomical spectra file types that
takes a set of files as an input and returns a set of wavelength vector
and flux vector pairs – one pair for each astronomical spectrum.

• A plotting module that takes output of the previous module and it plots
all spectra into a plot image.

The problem is that there are no libraries implemented in the Java language
that are able to parse FITS or VOTable spectra file formats. Whereas it
would be a relatively easy task to implement VOTable parser in Java as it
is basically a XML document and Java offers technologies for straightforward
XML document parsing, the FITS format parsing would have to be imple-
mented whole from scratch. Also, Java offers almost no tools with plotting
capabilities. Plotting libraries written in Java language are mostly targeted at
desktop applications and they do not fit with purposes of a web application.

On the other hand, Python programming language seems like a right way
to go. Parsing of both FITS and VOTable spectra file formats can be im-
plemented easily using the Astropy Python project – a community effort to
develop a core package for astronomy using the Python programming language
and improve usability, interoperability, and collaboration between astronomy
Python packages [28]. Python also offers an excellent plotting library named
Matplotlib.

”Matplotlib is a 2D graphics package used for Python for appli-
cation development, interactive scripting, and publication-quality
image generation across user interfaces and operating systems.”[29]

The solution implemented in the Python programming language would
be a straightforward to do, however, the VO-CLOUD system is implemented
in the Java programming language. It is important to decide whether it is
better to implement the spectra visualiser in Python language and to make an
integration with the current solution more difficult, or whether to implement
it in Java language to have an integration trivial but to implement parsing
and plotting modules all from scratch.

4.1.2 Solution

After considering all above stated problems I have eventually decided to im-
plement the whole astronomical spectra visualiser in the Python language as
a new web application and then integrate this application to the current solu-
tion of the VO-CLOUD system. By using the Python programming language
many thing have been simplified as it is possible to delegate many application
responsibilities to libraries that this application utilizes.

The application was named spectraviewer and it was implemented as a
web server application by utilizing a Python package named Tornado – a web
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framework and asynchronous network library [30]. The data volume problem
4.1.1 has been solved smoothly by utilizing the WebSocket protocol. The Web-
Socket is a protocol that uses a transport layer of HTTP protocol in order to
create bidirectional communication between a server and a client [31]. After
assembling a WebSocket connection between a client and a server, the client
can send a message to the server as well as the server can send a message to the
client. Due to the fact that Tornado server is implemented on asynchronous
principles, it is very easy to implement the WebSocket protocol using the Tor-
nado Python package. Every WebSocket protocol event (connection opened,
connection closed, message received) on the server side triggers a method call
of a respective tornado.websocket.WebSocketHandler class instance. New
instance of this class is created for every new incoming WebSocket connection.

The application works in the following way:

1. Client sends the list of spectra he would like to visualise.

2. Application parses the listed spectra and it saves the plot figure inside
its temporal key-value storage – the key is a randomly generated unique
identifier and the value is the figure itself.

3. Application responds to client with the HTML template containing
JavaScript client code and the storage identifier.

4. Client renders the HTML template and he creates a new WebSocket
connection to the specific server endpoint passing the storage identifier
as an argument.

5. Server links newly received WebSocket connection with the figure stored
inside the storage.

6. Server sends a message to the WebSocket connection containing an image
of the figure.

7. Client shows the received image in the page.

8. Client can use panning or zooming tools on the image. When he does
so, the parameters of expected transformation are sent to the server
through the WebSocket connection.

9. Server applies desired transformation on the linked figure and it sends
back a new image through the WebSocket connection.

10. Client can repeat steps 8 and 9.

11. When client closes the page, the WebSocket connection is closed and the
server removes the relevant figure from the temporal key-value storage.
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The Matplotlib Python package has been highly utilized in this solution as it
provides a simple API for complex plots creation and, moreover, it contains an
implementation of WebAgg backend – an engine that contains key-value store
for plot figures, integrated support for zooming and panning tools and pre-
pared JavaScript code for client side. This engine has been specially created for
Jupyter Notebook environment to allow interactive working with Matplotlib
plots, however, it perfectly fits with purposes if this application as well.

The realisation of spectra file parsers is very simple. The application uti-
lizes Astropy Python package for parsing files in FITS and VOTable formats.
In the FITS format it was necessary to distinguish between formats containing
the wavelength vector inside the data part and formats having the wavelength
vector described by metadata either in linear or logarithmic scaling. In the
case of CSV files, if there is meta.xml file containing the wavelength vector in
the set of selected files to plot, spectra from CSV file are plotted by using this
wavelength vector, otherwise it is assumed that wavelength vector contains
values 0, 1, 2, . . .

The last important part was to integrate the newly created Python ap-
plication to the VO-CLOUD system. The application utilizes the fact that
the VO-CLOUD Master server’s storage is actually directly accessible on the
filesystem of the hosting system. The spectraviewer application is also de-
ployed on the same server, thus the only thing that is necessary to be passed
from the VO-CLOUD’s Master server to the spectraviewer in order to visu-
alise selected spectra is a set of spectra paths in the Master server’s storage.
There is no need to move possibly large spectra from one application to an-
other – spectra plotting application simply works on the same data set as
the VO-CLOUD’s Master server. Also, there is no need for communication
between the Master server and the spectraviewer application as all com-
munication goes through the client’s web browser. The workflow of spectra
plotting is following:

1. User selects desired spectra files for plotting in the Master server’s user
interface.

2. User clicks Plot selected spectra button.

3. Master server creates a dialog window containing an IFRAME HTML
element pointing to the view endpoint of the spectraviewer application.

4. User’s web browser automatically makes a GET HTTP request to the
endpoint and renders the response in the IFRAME window.

5. User now communicates with the spectraviewer application (see 4.1.2).

6. User closes the dialog window – the WebSocket connection is closed.

The view endpoint URI mentioned in the step 3 is simply a web resource
with URI /view that takes two parameters:
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Figure 4.2: Example of integrated spectraviewer application

• spectra – List of spectra file paths separated by a comma character.

• prefix – Optional parameter that specifies a path that every path from
spectra parameter should be prefixed with.

For instance, if user wants to visualise two spectra files in a directory
DATA/test, the resulting URI would be:

/view ? p r e f i x=DATA%2Ftest%2F&
spec t ra=mi140017 . f i t s %2Cth210042 . f i t s

Also, as you can see in the example, special characters (in this case slashes and
commas) are URL escaped. An example of the spectraviewer application
can be seen in figure 4.2.

Docker

In order to simplify deployment on the server the whole spectraviewer
application has been bundled as a Docker image. Created Docker image
has been also pushed to the public Docker Hub repository14 under name
kozajaku/spectraviewer. The whole application is now deployable by exe-
cuting a single command:

14https://hub.docker.com
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docker run −p 7000:7000 −−name spec t rav i ewer −d
−v / vocloud / s to rage : / tmp/ f i l e s y s t e m : ro
kozajaku / spec t rav i ewer

The command simply pulls the image from the public repository (if it has not
been pulled already), it mounts the /vocloud/storage directory on the host-
ing system to the /tmp/filesystem as a read-only directory in the container,
it exposes TCP port 7000 from the container to the port 7000 on the hosting
system, it names newly created container spectraviewer and it starts the
container in a detached mode.

4.2 Jupyter Notebook environment integration

As it has been already mentioned in the section 3.1.5, the Jupyter Notebook
environment is a very powerful tool that can help users to create complex
experiments in Jupyter Notebook documents, to invoke code on the server
side and to collect results back by using only a web browser application. The
created spectraviewer tool can be easily used to quickly visualise a selected
set of astronomical spectra files, however if user needs some other way of
visualisation or if he requires some programmatic way to filter spectra or to
preprocess them before visualisation, the spectraviewer tool is not sufficient.
In order to do so, a user would have to download the desired set of astronomical
spectra files from the VO-CLOUD’s Master server to his device and then
conduce experiments over these spectra on his local device (e.g. in the Jupyter
Notebook environment running directly on his device). This approach is not
really straightforward as users need to start their own instance of the Jupyter
Notebook environment on their device which could be tricky if they are not
familiar with Python packages installation. Moreover, they need to download
whole astronomical spectra files even if they are for instance interested only
in the first few spectra (lines) of a big CSV file.

One of the main goals of this Master’s thesis is to find a way to integrate
the Jupyter Notebook environment directly to the VO-CLOUD system. An
expectation is that a user that is interested in the set of data stored inside the
Master server’s storage would be able to transition to the Jupyter Notebook
environment from the VO-CLOUD by clicking a single button. The environ-
ment would run on the side of the VO-CLOUD server and it would have a
prepared Jupyter Kernel for Python language. The Kernel would have in-
stalled all scientific and visualisation Python packages that the user would be
likely to use. Also, the Jupyter Notebook environment would have a direct ac-
cess to all data stored on the VO-CLOUD’s storage thus a user would be able
to directly utilize files without the necessity to copy them to a new location.
A user would even be able to implement a new way to visualise astronomical
spectra if he decided to do so.
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The whole Jupyter Notebook server is implemented in the Python pro-
gramming language and its implementation utilizes the Tornado web frame-
work – the same framework that is involved in the implementation of the
spectraviewer application. When the Jupyter Notebook server is started, it
exposes the web user interface on a TCP port (implicitly 8888) and the direc-
tory where the jupyter notebook command has been executed is considered
as the working directory for the Jupyter Notebook environment. From the
Jupyter Dashboard a user can create a new Notebook document in the cur-
rent directory but he can also open a terminal window. The terminal window
works exactly the same way as if a user would connect directly to the hosting
server and execute terminal commands in the server’s console. The terminal
window has exactly the same permissions as a system user under which the
Jupyter server has been started.

4.2.1 Core Jupyter integration problems

There are a few problems that complicate deployment and integration of the
Jupyter Notebook environment to the VO-CLOUD system.

Authorization problem

Functional requirements state that only users authenticated in the VO-CLOUD
system can have access to the Jupyter Notebook environment. Moreover, only
users with a user role either MANAGER or ADMIN can have access to the environ-
ment. The Jupyter Notebook implements a token-based authorization that
could be utilized for this purpose. The Jupyter’s token-based authentication
is enabled by default in newer versions of the Jupyter Notebook and it works
in the following way:

1. When the Jupyter Notebook is started the token is either passed as a
program parameter or it is generated randomly.

2. User who knows the token passes the token as a HTTP parameter in the
first request to the Jupyter server. If the parameter is not passed or is
invalid the Jupyter server redirects user to a dedicated page where user
can insert the token as a form input.

3. If the token passed by a user is correct server sends an authorization
cookie.

4. From now user sends the authorization cookie in every request instead
of the token and the server accepts it as a valid authentication.

The token-based authentication could be theoretically involved in the in-
tegration in the following way:
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1. The Jupyter Notebook server is started with a specific token and the
VO-CLOUD Master server knows this token.

2. When a user demands a transition from the Master server to the Jupyter
server, the Master server checks that the user has an authorization to
do so.

3. If the user has an authorization, the Master server sends the Jupyter
authentication token to the user.

4. User connects to the Jupyter Notebook server using the authentication
token.

The stated solution is very simple, however, there is a security problem –
there is only one security token and it is valid all the time. If any user’s
device would be compromised, any potential attacker having this token would
be able to authenticate to the Jupyter Notebook environment and to utilize
the resources of the server where it have been deployed. In order to change the
token it would be necessary to generate a new token, to restart the Jupyter
Notebook server and set the new token to it and also to set the new token
to the VO-CLOUD Master server. Therefore, it is necessary to find a better
solution for this problem.

Users isolation problem

Beside the authorization problem, functional requirements also state that users
with access to the Jupyter Notebook environment must have working directo-
ries isolated from each other, i.e., Jupyter Notebook documents and additional
files that users store inside the Jupyter’s working directory should be inacces-
sible by all the other users. The Jupyter Notebook environment has not been
designed to solve this problem. It is necessary to have multiple Jupyter Note-
book servers deployed – one for each user. However, this brings additional
problems with authorization as a user has to connect to the relevant Jupyter
server with correct authentication credentials.

System isolation problem

It is important to mention that all users with access to the Jupyter Notebook
environment have basically the same permissions as the system user under
which the Jupyter Notebook environment has been started. Users can either
utilize the code executed inside the Jupyter Notebook documents or they can
directly use the terminal feature of the Jupyter Dashboard. If the hosting
system has properly configured permissions for this system user, there should
be no problem. However, there is always a chance of some access rights mis-
configuration that would expose the whole system and its applications to the
security risk.
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4.2.2 Solution

The integration problems can be solved elegantly by utilizing a JupyterHub
project together with Docker technology.

4.2.2.1 JupyterHub

The JupyterHub project is a set of processes that together provide an ability
for users to log to their own separate instance of the Jupyter Notebook server
– each with different authentication credentials and with a different working
directory [32]. The JupyterHub is comprised of three major subsystems[32]:

• Single-User Jupyter Notebook Server – The Jupyter Notebook server
that is started for every user that logs in. The object that starts these
servers is called Spawner.

• Proxy – The public part of the JupyterHub project implemented in
JavaScript programming language upon Node.js15 technology. The proxy
dynamically routes HTTP requests to the Hub and to the Single-User
Jupyter Notebook servers.

• Hub – Manages user accounts, authentication and coordinates individual
Jupyter Notebook servers using the Spawner. The Hub is implemented
in Python by using the Tornado web server.

For the sake of this work, it is important to describe how the JupyterHub
authentication and server spawning work[32]:

1. Proxy implicitly forwards all incoming request to the Hub process ex-
posed on URI /hub/.

2. When a user is authenticated correctly in the Hub, the Hub’s Spawner
creates a new Jupyter Notebook server instance for the user.

3. The Proxy is notified to forward /user/<username>/* requests to the
newly created server instance (<username> is substituted for user’s user-
name).

4. Two HTTP cookies containing an encrypted token are created. One for
/hub/ and another for /user/<username>.

5. User is redirected to the newly created Jupyter Notebook server instance.

After ensuing previous steps, the Jupyter Notebook server instance for the
specific user has been started and exposed on the JupyterHub’s proxy. How-
ever, there must be an additional authorization layer on the side of the
Jupyter Notebook server, otherwise anyone would be able to access the server
instance[32]:

15https://nodejs.org
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1. The Jupyter Notebook server instance forwards the encrypted cookie to
the Hub for authorization.

2. If the cookie is valid, the Hub responds with the user’s username.

3. If the user is the owner of the Jupyter Notebook server instance, access
is allowed.

4. If the username is wrong or the cookie is invalid, the user is redirected
to /hub/login.

4.2.2.2 JupyterHub Spawner

Each Jupyter Notebook server instance is started by the Hub subsystem by an
object called Spawner. The Spawner object has following responsibilities[32]:

• Start the Jupyter Notebook server process.

• Poll whether the process is still running.

• Stop the process when necessary.

There are many implementations of the JupyterHub spawner object. The
implicit one is called LocalProcessSpawner. This spawner implementation
works only on UNIX systems as it spawns new server instances as a process
under the UNIX system user with name matching the authenticated one in
the JupyterHub authentication process. There are cases where this solution
could be sufficient, however, in this case there is no mapping between UNIX
system users and users inside the VO-CLOUD system.

The crucial implementation of the JupyterHub Spawner that is utilized
in the VO-CLOUD–JupyterHub integration is named DockerSpawner. This
spawner implementation starts for each authenticated user a Docker container
that packages the whole Jupyter Notebook server. The utilization of Docker
containers has also a great advantage. The environment inside the running
Docker container is isolated from the hosting system, therefore, this approach
very effectively deals with the system isolation problem 4.2.1. If the Jupyter
Notebook server would have badly configured access permissions, in the worst
case scenario a user could break only the server on the container itself. Other
Docker containers or the hosting system are inaccessible from the inside of the
Docker container.

4.2.2.3 JupyterHub Authenticator

The JupyterHub Authenticator is another important object in the Hub subsys-
tem. Its responsibility is to provide authentication capabilities to the Jupyter-
Hub server. Practically, the Authenticator is any Python class that inher-
its from the class jupyterhub.auth.Authenticator. It consists of a single
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method authenticate that basically takes a username and a password of a
user that is trying to authenticate. If the user’s credentials are correct the
method must return the user’s username. Otherwise, the method must return
the special Python value None.

In order to integrate the JupyterHub to the VO-CLOUD system, it was
necessary to design and implement the way of authentication. The workflow
of the authentication is done in the following way:

1. User connects to the VO-CLOUD’s Master server and logs in with his
credentials.

2. In order to transition to the Jupyter Notebook environment, user clicks
the Jupyter button in the Master server’s user interface.

3. Master server generates a new randomly generated token, links the token
with the user’s username and saves it temporarily in the in-memory
storage.

4. Master server sends the token to the user’s web browser.

5. User’s web browser does a HTTP POST request to the JupyterHub’s
login endpoint /hub/login. The POST request contains two parameters
– the username identical to the user’s username on the Master server and
the token.

6. JupyterHub delegates the authentication task to the authenticator’s im-
plementation – the VocloudAuthenticator.

7. The VocloudAuthenticator does a HTTP POST request to the Mas-
ter server’s token checking endpoint. It passes the token as a POST
parameter.

8. If token is valid and not expired, the Master server returns the username
of the user account linked with this token and it invalidates the token.

9. The VocloudAuthenticator checks that the username received from the
Master server matches the one received from the user’s web browser.

10. If usernames match it returns the username to the JupyterHub.

11. User is now authenticated to the JupyterHub.

There is no other way to authenticate to the JupyterHub than to transi-
tion from the VO-CLOUD’s Master server using the provided token. Every
generated token is valid only for a limited amount of time and it is invalidated
as soon as it is used. This solution is significantly better from a security point
of view than the solution explained in the section 4.2.1, as there is no way to
utilize potentially caught token, since it is valid only for a very short period of
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Figure 4.3: JupyterHub solution Docker deployment

time. Security cookies are also difficult to exploit, as they contain encrypted
information identifying the user’s web browser and device.

The implementation of the VO-CLOUD’s Master server has been extended
to support the new functionality of the authentication token endpoint. It was
implemented as a very simple RESTful service. The token in-memory storage
has been implemented as a Singleton EJB bean.

4.2.2.4 Deployment

The Docker technology has been used both for Jupyter Notebook server in-
stances and for the whole JupyterHub itself. This solution is really interesting
as there is the JupyterHub Docker container that requires to spawn addi-
tional Docker containers with the Jupyter Notebook server instances on the
same server where the JupyterHub container is deployed itself, but not in-
side the JupyterHub’s container. Moreover, in order to have access to the
Master server’s storage and jobs directory it is necessary to mount these di-
rectories to every one of the individual Jupyter Notebook Docker containers.
Every Jupyter Notebook Docker container has its own working directory that
is backed in the filesystem of the hosting system.

In order to be able to start a new Docker container from the inside of
another Docker container but not inside the Docker container itself, it is nec-
essary to mount the Docker socket file /var/run/docker.sock from the host-
ing server to the spawning Docker container. The Docker socket is basically
a client for communicating with the Docker daemon process – the Docker
container with the mounted Docker socket will gain an ability to control the
Docker daemon in the same way as it can be done directly from the hosting
server.
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The deployment of the JupyterHub solution can be seen in the figure 4.3.
The whole deployment solution has been implemented as a project named
vocloud-jupyterhub and the deployment consists of adjustment of .env con-
figuration file and of invocation of two commands:

make
docker−compose −d

The first command creates all necessary Docker networks and volumes and
then it builds the Jupyter Notebook server Docker image and the JupyterHub
image. The second command starts the JupyterHub container in a detached
mode and exposes its web interface on the TCP port specified in the .env
configuration file.

Since JupyterHub is running on the betelgeuse server, it was necessary
to expose the server also in the reverse proxy on the vocloud-dev server.
The small improvement was also done – when a user accesses the /hub/login
URI of the JupyterHub server using a HTTP GET method, the reverse proxy
sends a redirect back to the user pointing to the VO-CLOUD’s Master server
login page. Now when a user logs out from the JupyterHub server or when he
randomly accesses some JupyterHub’s resource without authentication, he is
automatically redirected to the VO-CLOUD’s login page.

4.2.3 Summary

Every user now has access to his own instance of the Jupyter Notebook server
that is started on demand as a Docker container. Every user has his own
working directory isolated from all other users where he can create new files
and Notebook documents. Also, in this working directory there are two read-
only directories mounted from the hosting system – the Master server’s storage
and jobs directory. Users have direct read access to all files saved in these
directories without a necessity to copy files from them to some other location.

Users have access to the terminal window feature of the Jupyter Notebook
environment, however, this terminal has access only to the specific Docker
container as it is isolated from the hosting system. Users can use the terminal
window to install additional Python packages, that are not implicitly provided,
however, the Jupyter Notebook Docker image should be already provided with
all necessary Python packages such as Matplotlib, Astropy, NumPy, pandas
and many others.

User can transition to his Jupyter Notebook environment from the VO-
CLOUD system by clicking only a single button – whole authentication process
is done automatically in the background. When user logs out from the Jupyter
Notebook environment, he is automatically redirected back to the VO-CLOUD
system.
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4.3 Apache Spark and HDFS integration

The final goal if this Master’s thesis is to find a way to integrate the VO-
CLOUD system with the Hadoop infrastructure in order to be able to utilize
the distributed file system HDFS and to start Apache Spark jobs using the
Hadoop YARN scheduler. The current solution of the VO-CLOUD computa-
tional workers is usable, however, the usability of workers is limited by two
factors:

• The set of input data must be always downloaded again from the Mas-
ter server’s storage to the computational worker for every individual
job. This approach enables the deployment of workers on additional
separated devices.

• The worker’s computational task is always executed on a single device
of the specific worker. The computational capability is limited by CPU
and memory resources of the single device.

While the current solution of the VO-CLOUD system can be easily applied
on a processing of a limited amount of data set, the need has emerged to be
able to process the whole astronomical spectra archive LAMOST-DR1. The
Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST) is
a meridian active reflecting Schmidt telescope located in Xinglong Station
of national Astronomical Observatory in China [33]. Data Release 1 (DR1)
of this telescope’s observations comprises of 2,202,000 astronomical spectra
files encoded in FITS format. Every astronomical spectrum file takes up
approximately 90 kB of a disk space and the whole uncompressed archive
in total takes up 189 GiB of a disk space. It is unrealistic to use current
computational workers for purposes of processing the whole spectra archive,
as the whole archive would have to be stored in the VO-CLOUD’s storage
and also it would have to be downloaded to a worker for every computational
job. It is necessary to design a better solution – utilize the capabilities of the
Apache Spark and the Apache Hadoop infrastructure.

4.3.1 Hadoop deployment

Firstly it was necessary to deploy the Hadoop infrastructure to the servers in
Stellar Department of the Astronomical Institute of the Czech Academy of
Sciences in Ondřejov where the VO-CLOUD system is also running. It was
decided that the Hadoop computational cluster would consist of two servers:

• betelgeuse – The server where the VO-CLOUD system is currently de-
ployed. It has 12 CPU cores supporting the Hyper-Threading technology
(24 virtual CPU cores) and 128 GiB RAM memory.

• antares – The server with 8 CPU cores and 24 GiB of RAM memory.
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Figure 4.4: Hadoop cluster deployment on Ondřejov servers

As it has been already explained in the section 3.1.3, the Hadoop Dis-
tributed File System (HDFS) is comprised of NameNode and DataNote pro-
cesses. The DataNode processes is basically the component that saves the data
blocks in the device’s filesystem. The NameNode is the controlling component
that has information about all files stored in the HDFS, their data blocks and
where are these blocks saved. In this case, the DataNode process is running on
both betelgeuse and antares server and the NameNode controlling process
is running only on the betelgeuse server.

The Hadoop YARN has been deployed very similarly. It consists of two
processes:

• ResourceManager – The YARN scheduler and resource managing pro-
cess that has information about all available NodeManager processes.

• NodeManager – The process that can receive a computational work from
the ResourceManager.

The betelgeuse server runs both processes, whereas the antares server runs
only the NodeManager process.

The diagram of the whole Hadoop infrastructure deployment can be seen
in the figure 4.4.

4.3.2 Apache Spark

The installation of the Apache Spark was very simple – it was only necessary
to download the Apache Spark binaries and to properly define environment
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variables to correctly point to the path of the Apache Hadoop installation
directory.

All jobs that are expected to be executed inside the Apache Spark envi-
ronment are submitted using the spark-submit script that is bundled with
the Apache Spark installation package. Multiple parameters can be passed to
the spark-submit script. The most important are:

• --master – Defines where the Spark job should be running. In order to
have the job managed by the Hadoop YARN scheduler, it is necessary
to pass yarn as a value for this parameter.

• --deploy-mode – Defines where the execution driver should run. The
driver is the application that orchestrates the job execution of individual
executors. There are two options that can be passed to this parameter:

– client – The driver should run on the side of the device where
the spark-submit script has been executed. This option is picked
when it is necessary to instantly see the progress of job’s execution.

– cluster – The driver should run on any device in the cluster. The
cluster’s resource manager simply picks the best suitable cluster’s
node for this task.

• --num-executors – The count of computational executors. This option
is only used together with the --master yarn. In fact, the Hadoop
YARN allocates its resources for computational containers named ex-
ecutors. Every executor can run only on a single cluster node, however,
multiple executors can run on the single node. Each executor requires to
have an allocated specific amount of CPU cores and a specific amount
of RAM memory. The Spark computation on YARN can start when
the desired amount of executors have been started with all required re-
sources.

• --executor-cores – A number of CPU cores allocated per each execu-
tor.

• --executor-memory – A RAM memory amount allocated per each ex-
ecutor.

4.3.3 Small files problem

As it has been already explained in the section 3.1.3, the HDFS is ineffective
in storing a big amount of small files, because it uses large data blocks (e.g.
128 MB). It is significantly better when there is smaller amount of big files.
In order to be able to execute Spark computational jobs over the LAMOST-
DR1 spectra archive, at first it is necessary to copy the whole archive to the
HDFS to make the data available on all cluster nodes. The problem is that
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the LAMOST-DR1 archive is comprised of millions of small spectra files that
the HDFS cannot handle.

In order to solve the problem it is necessary to find a way to merge multi-
ple small files together to make a big file. In some problem instances this task
is very trivial. For instance, it is easy to merge multiple CSV files together by
appending them one after another. However, some file formats are not merge-
able, as they have a complex structure. The FITS format is unfortunately
one of these formats, therefore it is necessary to find a better way to merge
astronomical spectra FITS files together.

4.3.3.1 SequenceFile

SequenceFile seems to be a good solution to the small files problem. It is a
flat file consisting of binary key/value pairs and methods for its reading and
writing are part of the Hadoop API [34]. In this context, multiple astronomical
spectra files would be merged into a single SequenceFile, where the key would
be the name of the original spectrum file and the value would be the content of
the spectrum file itself. SequenceFile stores the key/value pairs serialized in
a binary format one after another. It does not offer an ability to quickly find
a desired key (i.e. file name) as it has no indexes to the keys stored inside the
SequenceFile, however, this functionality is not even required in this case,
as all spectra need to be processed.

Unfortunately, there is a serious problem that makes the deployment of
the SequenceFile format almost impossible. Apache Spark jobs can be im-
plemented in three programming languages – Java, Scala and Python. The
SequenceFile API methods have been programmed in a Java language and
these methods utilize a Java Serialization mechanism. This API can be used
naturally in Java and also in Scala as it runs on the Java Virtual Machine and it
can call any Java API. The problem is the Python programming language, for
it does not have the Serialization mechanism from the Java language and thus
it naturally has no implementation of SequenceFile format. It is expected that
the Python programming language could be used for programming a Spark
job, therefore it is necessary to find a better way of spectra files merging.

4.3.3.2 Apache Avro

Apache Avro is a data serialization system that can be utilized to solve the
small files problem. The Avro relies on schemas that are written in a JSON
format. Every file that was written in the Avro format contains, apart from
the data, the JSON schema itself. Data in the Avro format are saved in the
compact binary format derived from the JSON format and they are stored as a
sequence of rows. Every row represents one record with the format matching
the defined Avro schema. The Avro has APIs written in many languages
including Java, Scala and Python. [35]
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1 {
2 "type": " record ",
3 "name": " FitsFiles ",
4 " aliases ": ["Fits"],
5 " fields " : [
6 {"name": "name", "type": " string ", "doc": "Fits

file name"},
7 {"name": " content ", "type": "bytes", "doc": "

Binary content of the fits file"}
8 ]
9 }

Figure 4.5: Apache Avro schema JSON

1 . . .
2 w r i t e r = DataFi leWriter ( open ( ” output . avro ” , ”wb” ) ,

DatumWriter ( ) , schema , codec=” d e f l a t e ” )
3 f o r f in f i l enames :
4 with open ( f , ” rb ” ) as fd :
5 content = fd . read ( )
6 w r i t e r . append ({ ”name” : f , ” content ” : content })
7 w r i t e r . c l o s e ( )
8 . . .

Figure 4.6: Fragment of code serializing spectra files to the Avro format

Let’s illustrate the Avro serialization format on the current problem. It is
basically necessary to achieve the same functionality as in the SequenceFile for-
mat. The designed schema can be seen in the figure 4.5. The schema contains
definition for two fields (i.e. two columns) – the first (name) specifies the name
of the original spectrum file and the second (content) specifies the binary con-
tent of the file itself. The only action that remains is to use this schema to seri-
alize spectra from the LAMOST-DR1 archive to Avro format and to push the
Avro files to the HDFS. The simple tool named spectra-avro-serializer
has been implemented for this purpose in the Python language. The most
important fragment of code of this tool that takes the schema and spectra
files and serializes them to a single Avro file can be seen in the figure 4.6.

The whole archive has been processed by the spectra-avro-serializer
tool. Instead of 2,202,000 small spectra files, the archive now consists of
only 1,169 files in serialized Avro format. Moreover, as can be seen in the
example 4.6, the deflate compression codec has been utilized to make the
archive even smaller. Instead of 189 GiB it takes up only 85.7 GiB of storage
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space. All newly created Avro files have been moved to the HDFS and can be
now used as a data source for any Apache Spark job.

4.3.4 VO-CLOUD integration

One of the goals of this work is to find a way to integrate the Spark job
submitting feature utilizing the HDFS to the existing solution of the VO-
CLOUD system. Currently there is only one implemented tool that utilizes
the Apache Spark – the preprocessing tool named vocloud spark import.
However, there is expected to be more tools in the future that would utilize
an output of the preprocessing tool and produce significant results. Therefore,
it is necessary to design the integration solution in a general way to allow an
easy adoption of new Spark job types.

Every Spark job method is expected to work in the following way:

• The binaries of the Spark job (hereinafter Application) are prepared in
some specific directory on the server.

• The Application is written in either Java or Scala or Python program-
ming language.

• The Application expects to be executed with exactly one parameter –
the path to the JSON configuration file.

• The JSON configuration contains parameters that define a behaviour of
the Application. It is provided by a user.

• Every individual Application could require a different set of the param-
eters passed to the spark-submit.

• A user can amend the spark-submit parameters.

• The Application takes as an input data stored inside the HDFS.

• The Application produces output to the HDFS.

In the current state of deployment the VO-CLOUD system is deployed
on the server that is also a part of the Hadoop cluster. This generally does
not have to be true as the cluster could theoretically run on a different set of
servers. The integration solution must be designed generally to also meet this
requirement.

4.3.4.1 Spark Worker

The solution has been designed as a new type of the VO-CLOUD Worker
named Spark Worker. Whereas the Universal Worker focuses on a general
execution of processes, the Spark Worker is deeply focused on an execution
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of Apache Spark jobs. The Master server has not been altered in any way.
The Spark Worker from the Master server’s point of view provides the same
functionality as the Universal Worker – it is exposed as a UWS service and
for every new job it expects a JSON configuration.

The task of the Spark Worker is to provide a UWS service endpoint for each
available Application. The workflow of the Spark Worker can be described in
the following way:

1. Spark Worker receives a Spark job execution request. The JSON con-
figuration is passed as a request parameter.

2. Spark Worker prepares the input data on the HDFS if necessary.

3. Spark Worker prepares the spark-submit script parameters.

4. Spark Worker prepares the JSON configuration file for the Application.

5. Spark Worker executes the Application – it calls the spark-submit
script and passes to it prepared parameters, Application binaries and
a path to the prepared configuration file.

6. Spark Worker waits until the execution finishes.

7. Spark Worker downloads the output data from the HDFS if desired.

8. Spark Worker results are downloaded by the Master server.

Similar to the Universal Worker, the Spark Worker is also based on the
XML configuration file that specifies the whole Spark Worker. The XSD
schema of this configuration file can be seen in the Appendix D. The most
notable tag from the XML configuration file is <submit-params> that specifies
the set of parameters that are passed to the spark-submit script. This tag
can be specified in two places of the XML document – in the XML root tag
and in the definition of each worker (Application). The parameters specified in
the XML root tag define an implicit set of parameters that is utilized for every
Application. The parameter set can be extended or overwritten by parameters
specified in the worker’s definition. Moreover, the JSON configuration can
contain an additional set of parameters that extends or overwrites parameters
defined in the XML configuration. This allows user to have a full control
over the Spark execution, however, if he does not specify any parameters the
implicit ones defined in the Spark Worker XML configuration file are used.

The JSON configuration that user passes to the Spark Worker consists of
the following JSON objects:

• download files – Defines a set of files that should be downloaded from
the VO-CLOUD’s Master server and stored in the HDFS in the specified
paths.
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• spark params – Defines a set of additional spark-submit script param-
eters.

• job config – Defines an actual JSON configuration that should be
passed to the Application.

• copy output – Defines a set of files or directories in the HDFS that
should be downloaded to the Spark Worker and subsequently to the
VO-CLOUD’s Master server.

All these specified JSON objects are optional. If they are not defined, no files
copied between the Spark Worker and the HDFS and the unmodified param-
eters specified in the Spark Worker’s XML configuration file are used. If the
job config parameter is not specified, the whole passed JSON configuration
is considered as an input for the Application. For instance, if user wants to
execute a Spark job that takes as an input data that are already available on
the HDFS and if user does not want to modify implicit spark-submit param-
eters, he passes the exactly same JSON configuration as is expected by the
Spark computational job.

Examples of the Spark Worker configuration and an explanation of each
possible parameter are described in detail in the Appendix F.

4.3.4.2 Utilizing a different Hadoop cluster

The designed and implemented solution of the Spark Worker is not tightly
coupled with the Ondřejov servers infrastructure. It is also possible to use a
Hadoop cluster that is deployed on a different set of servers. In order to utilize
the different Hadoop cluster it would be necessary to install the Spark Worker
on some of the cluster’s node. Similar to the Universal Worker, the Spark
Worker also uses only the JavaServlet technology (not EJB), therefore it is
necessary to deploy it inside a Java EE servlet-enabled server (e.g. Tomcat).
The web port of the Java EE server must be accessible for the Master server,
therefore the port must be either exposed publicly or the routing tunnel has
to be defined. Also, if the feature to download data from the Master server’s
storage to the HDFS is required it is necessary to have the Master server web
port accessible for the Spark Worker. This is usually not problem, as the
Master server is usually available publicly. However, in some cases the cluster
could have firewall rules that block the access to the public network. In this
case the firewall exception would have to be made.

4.3.4.3 HDFS browsing capability

The Spark Worker allows users to create and execute Apache Spark jobs run-
ning on the Hadoop cluster in the same way as any other jobs that he is used
to use. He simply passes the JSON configuration that contains all necessary
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information to conduce a preprocessing or a computational experiments. De-
spite the fact that he can specify in the configuration to download files from
the Master server’s storage to the HDFS, to execute Spark job and to down-
load the results from the HDFS back to the Master server, the usual way to
use this worker is to use the data already available in the HDFS and leave the
results in the HDFS without downloading anything. The problem is that user
has currently no way to browse the HDFS other than by connecting directly
to the cluster using the SSH protocol and by executing terminal commands.
This approach is insufficient as he needs to have access rights to the server.

This problem has been solved elegantly by utilizing a project developed by
Cloudera Inc. called hdfs-nfs-proxy 16. The project simply allows to mount
the whole HDFS as a directory in the UNIX filesystem. The HDFS has been
mounted as a new directory inside the Master server’s storage. Now users can
view the HDFS directly from the Master server’s user interface. They can even
create/delete/modify files and folders that are saved in the HDFS if they are in
a user role with write permissions. Moreover, the HDFS directory is available
for both the spectraviewer tool and the Jupyter Notebook server, therefore
they can easily visualise spectra stored in the HDFS and they can also conduct
experiments inside the integrated Jupyter Notebook environment.

4.4 Future improvements

There are a few improvements that could be done in the future. The first
one is related to the web user interface of the Master server. When a user
creates a new job he has to specify the JSON configuration that is passed
to the relevant Worker (either Universal or Spark). There is a possibility to
choose a configuration from the set of prepared configurations and then to
alter it, however, this is still very counter-intuitive way from the user’s point
of view as he still needs to modify some possibly complex configuration. One
of the future improvements could be to replace the direct JSON configuration
modification for a set of HTML input elements where user could simply modify
only the parameters that are relevant for him in a dedicated input box. This
could make a process of jobs creation much easier.

Another possible improvement could be to implement the Avro serializa-
tion functionality directly to the Spark Worker. Currently the Avro serializa-
tion format has been used only to process the LAMOST-DR1 archive in order
to be able to get the whole archive to the HDFS. It is possible to configure the
Universal Worker to involve the same Avro serialization tool that was created
for the serializing of the whole archive, however, in the future it would be
better to implement it directly to the Spark Worker.

Lastly, it would be useful to package the whole VO-CLOUD system as a
set of Docker images and then create some deployment scripts. As can be seen

16https://github.com/cloudera/hdfs-nfs-proxy
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in the Master server’s installation guide in the Appendix E, it can be really
tricky for inexperienced users to deploy their own instance of the VO-CLOUD
system. If an example instance of the VO-CLOUD system would be packaged
as a Docker image, he could start the whole VO-CLOUD example instance by
executing only a few terminal commands.
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Conclusion

The goal of this Master’s thesis has been met. The fundamental concepts,
the workflow and the deployment of the original VO-CLOUD system have
been analysed. Many new components have been implemented and integrated
into the VO-CLOUD system. A user using the VO-CLOUD system can now
easily visualise selected astronomical spectra directly in the web user environ-
ment or he can seamlessly transition to the Jupyter Notebook environment
where he can conduct his own experiments or implement other ways of visu-
alisation. He can also create complex computationally intensive jobs that are
executed on the Hadoop computational cluster by utilizing the Apache Spark
technology. The Docker technology has been highly involved in the design and
implementation of new components.

I have gained a valuable experience during the process of designing and the
implementation of new components especially in the areas of Apache Hadoop,
Apache Spark, Docker and Jupyter Notebook technologies. Also I have ac-
quired a knowledge about the fundamental concepts of VO technologies and
about the astronomy in its entirety.
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Appendix A
Acronyms

API Application Programming Interface

CPU Central Processing Unit

CSV Comma-Separated Values

DB DataBase

DR1 Data Release 1

EE Enterprise Edition

EJB Enterprise JavaBean

FITS Flexible Image Transport System

FR Functional Requirement

FTP File Transfer Protocol

GUI Graphical User Interface

HDFS Hadoop Distributed File System

HDUs Header and Data Units

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

HTTPS HyperText Transfer Protocol Secure

IVOA International Virtual Observatory Alliance

JPA Java Persistence API

JPQL Java Persistence Query Language
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A. Acronyms

JSF JavaServer Faces

JSON JavaScript Object Notation

LAMOST Large Sky Area Multi-Object Fibre Spectroscopic Telescope

NFR Non-functional Requirement

ORM Object-Relational Mapping

RAM Random Access Memory

RDF Random Decision Forests

REST Representational State Transfer

SOM Self-Organizing Maps

SPLAT Spectral Analysis Tool

SQL Structured Query Language

SSAP Simple Spectral Access Protocol

SSH Secure Shell

TCP Transmission Control Protocol

URI Uniform Resource Identifier

URL Uniform Resource Locator

UWS Universal Worker Service

VO Virtual Observatory

XHTML Extensible HyperText Markup Language

XML Extensible Markup Language

XSD XML Schema Definition

YARN Yet Another Resource Negotiator

70



Appendix B
Contents of enclosed DVD

readme.txt......................the file with DVD contents description
src.......................................the directory of source codes

impl........................................implementation sources
repositories.txt...the file containing list of GitHub repositories
spectra-avro-serializer............Avro serializer tool sources
spectraviewer......................spectraviewer tool sources
vocloud...........VO-CLOUD master server and workers sources
vocloud-authenticator ......... VocloudAuthenticator sources
vocloud-jupyterhub...............vocloud-jupyterhub sources
vocloud spark import............vocloud spark import sources

thesis..............the directory of LATEX source codes of the thesis
text..........................................the thesis text directory

thesis.pdf...........................the thesis text in PDF format
zzp.txt ....................... the thesis task in a plain text format
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Appendix C
Universal worker XML

configuration file schema

1 <?xml version="1.0" encoding="utf-8"?>
2 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
3 targetNamespace="http://vocloud.ivoa.cz/universal/schema"
4 xmlns:tns="http://vocloud.ivoa.cz/universal/schema"
5 elementFormDefault="qualified">
6 <xsd:complexType name="worker">
7 <xsd:sequence>
8 <xsd:element name="identifier" type="xsd:token"/>
9 <xsd:element name="description" type="xsd:string"/>

10 <xsd:element name="restricted" type="xsd:boolean" default=
"false"/>

11 <xsd:element name="binaries-location" type="xsd:string"/>
12 <xsd:element name="exec-command" type="tns:command-list"/>
13 </xsd:sequence>
14 </xsd:complexType>
15 <xsd:complexType name="command-list">
16 <xsd:sequence>
17 <xsd:element name="command" type="xsd:string" maxOccurs="

unbounded"/>
18 </xsd:sequence>
19 </xsd:complexType>
20 <xsd:element name="uws-settings">
21 <xsd:complexType>
22 <xsd:sequence>
23 <xsd:element name="vocloud-server-address" type="xsd:

anyURI"/>
24 <xsd:element name="local-address" type="xsd:anyURI"/>
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C. Universal worker XML configuration file schema

25 <xsd:element name="max-jobs" type="xsd:positiveInteger"
default="4"/>

26 <xsd:element name="description" type="xsd:string"/>
27 <xsd:element name="default-destruction-interval" type="

xsd:positiveInteger" minOccurs="0"/>
28 <xsd:element name="max-destruction-interval" minOccurs="

0" type="xsd:positiveInteger"/>
29 <xsd:element name="default-execution-duration" default="

3600" minOccurs="0" type="xsd:positiveInteger"/>
30 <xsd:element name="max-execution-duration" default="3600

" minOccurs="0" type="xsd:positiveInteger"/>
31 <xsd:element name="workers">
32 <xsd:complexType>
33 <xsd:sequence>
34 <xsd:element name="worker" maxOccurs="unbounded"

minOccurs="0" type="tns:worker"/>
35 </xsd:sequence>
36 </xsd:complexType>
37 </xsd:element>
38 </xsd:sequence>
39 </xsd:complexType>
40 </xsd:element>
41 </xsd:schema>
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Appendix D
Spark worker XML

configuration file schema

1 <?xml version="1.0" encoding="utf-8"?>
2 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
3 targetNamespace="http://vocloud.ivoa.cz/spark/schema"
4 xmlns:tns="http://vocloud.ivoa.cz/spark/schema"
5 elementFormDefault="qualified">
6 <xsd:complexType name="params-list">
7 <xsd:sequence>
8 <xsd:any minOccurs="0" maxOccurs="unbounded"

processContents="skip"/>
9 </xsd:sequence>

10 </xsd:complexType>
11 <xsd:complexType name="environment">
12 <xsd:sequence>
13 <xsd:any minOccurs="0" maxOccurs="unbounded"

processContents="skip"/>
14 </xsd:sequence>
15 </xsd:complexType>
16 <xsd:complexType name="worker">
17 <xsd:sequence>
18 <xsd:element name="identifier" type="xsd:token"/>
19 <xsd:element name="description" type="xsd:string"/>
20 <xsd:element name="submit-params" type="tns:params-list"

minOccurs="0"/>
21 <xsd:element name="submit-target" type="xsd:string"/>
22 </xsd:sequence>
23 </xsd:complexType>
24 <xsd:element name="uws-settings">
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D. Spark worker XML configuration file schema

25 <xsd:complexType>
26 <xsd:sequence>
27 <xsd:element name="vocloud-server-address" type="xsd:

anyURI" minOccurs="0"/>
28 <xsd:element name="local-address" type="xsd:anyURI"/>
29 <xsd:element name="spark-executable" type="xsd:string"/>
30 <xsd:element name="hadoop-default-fs" type="xsd:string"/

>
31 <xsd:element name="max-jobs" type="xsd:positiveInteger"

default="4"/>
32 <xsd:element name="description" type="xsd:string"/>
33 <xsd:element name="environment" type="tns:environment"/>
34 <xsd:element name="submit-params" type="tns:params-list"

minOccurs="0"/>
35 <xsd:element name="workers">
36 <xsd:complexType>
37 <xsd:sequence>
38 <xsd:element name="worker" maxOccurs="unbounded"

minOccurs="0" type="tns:worker"/>
39 </xsd:sequence>
40 </xsd:complexType>
41 </xsd:element>
42 </xsd:sequence>
43 </xsd:complexType>
44 </xsd:element>
45 </xsd:schema>
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Appendix E
Master server README file

E.1 VO-CLOUD Master server

E.1.1 Requirements

• JDK 7+
• Application server supporting Java EE 7 with EJB container support

(Wildfly, Glassfish, . . . )
• Database (PostgreSQL, MySQL, . . . )
• Maven tool for project building

E.1.2 Install guide

For instance I will use Debian amd64 with Wildfly 8.2 application server,
JDK 8 and PostgreSQL 8.4.

1. Install JDK 8

• Download JDK from http://www.oracle.com/technetwork/
java/javase/downloads/index.html in zip file form, for example
jdk-8u45-linux-x64.tar.gz
• Extract archive to /usr/lib/jvm
• Setup enviroment variables for Java – add these lines to the end of

/etc/profile

export JAVA_HOME=/usr/lib/jvm/jdk1.8.45
export PATH=$JAVA_HOME/bin

2. Install WildFly 8.2.0

• Download zip from http://wildfly.org/downloads/
• Extract archive to the /usr/local
• In the newly extracted WildFly directory execute

bin/add-user.sh and setup a new WildFly administering user
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E. Master server README file

3. Start Wildfly by executing bin/standalone.sh. Server should success-
fully start. If everything went OK:

• Server is running on http://localhost:8080/
• Admin console on http://localhost:9990/

4. Install and configure PostgreSQL database server

• Install PostgreSQL using apt-get install postgresql
• Log in as a postgres user su - postgres and start client command

line psql template1
• Type in following commands to setup database for vocloud:

CREATE USER vocloud WITH PASSWORD ’vocloud’;
CREATE DATABASE vocloud;
GRANT ALL PRIVILEGES ON DATABASE vocloud TO vocloud;

Note: You should really not use the same password as username.
Do not forget to change it!

It is also possible to use Docker technology to install PostgreSQL inside
a Docker container. To do this, execute the following command:
docker run --name db -d -p 5432:5432

-e POSTGRES_USER=<username>
-e POSTGRES_PASSWORD=<password>
postgres

5. Configure database resource in WildFly:

• Log into the WildFly admin console at http://localhost:9990/
• Type in credentials of administrating user
• Download JDBC for PostgreSQL from

https://jdbc.postgresql.org/
• In the admin console navigate to Deployments section
• Click Add
• Select downloaded JDBC .jar file and click OK
• Enable newly uploaded JDBC driver
• Navigate to a Configuration tab
• Select Datasources
• Click Add and insert following values:

– Name: VocloudDS
– JNDI Name: java:jboss/datasources/vocloud

• Click Next
• Select the newly deployed PostgreSQL JDBC driver
• Click Next
• Insert following values:

– Connection URL:
jdbc:postgresql://localhost:5432/vocloud
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E.1. VO-CLOUD Master server

– Username: <your-database-username>
– Password: <your-database-password>

• Click Done
• Enable newly created VocloudDS

Datasource can be tested in the section Connection>Test connection –
ping test should be successful.

6. Configure e-mail resource in WildFly:
It is necessary to have an email address that serves as the source of emails
sent by vocloud. For instance, I will use address vocloud@vocloud.org
where SMTP is running on port 465 and the host address of the SMTP
server is smtp.vocloud.org.

• Navigate to Configuration section
• Select Socket Binding
• Click View on standard-sockets
• Select Outbound Remote section
• Click Add and insert:

– Name: vocloud-smtp
– Host: smtp.vocloud.org
– Port: 465

• Click Save
• Navigate to the Mail subsystem section
• Click Add and insert:

– JNDI Name: java:jboss/mail/vocloud-mail
• Click View on the newly created mail session
• Click Add and insert:

– Socket binding: vocloud-smtp
– Type: smtp
– Username: <username-to-the-email-server>
– Password: <password-to-the-email-server>

• Check Use SSL (if the port is 465)
• Click Save

7. Configure security in WildFly

• Navigate to Security Domains in Configuration section
• Click Add and insert:

– Name: VocloudSecurityDomain

• Click Save
• Click View on the newly created security domain
• Click Add and insert:

– Code: Database
– Flag: required
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E. Master server README file

• Click Save
• Now click on the newly created Login module
• Click on Module Options
• Add the following key=value pairs:

– dsJndiName = java:jboss/datasources/vocloud
– principalsQuery = select pass from useraccount where

username=?
– rolesQuery = select groupName, ’Roles’ from

useraccount where username=?
– hashAlgorithm = SHA-256
– hashEncoding = hex

8. Create master server’s vocloud.war package

• Navigate to the VO-CLOUD’s master server application’s directory
• Execute mvn package
• Package should be now created in target/vocloud.war

9. Deploy vocloud.war package to the WildFly server

• Log into the WildFly’s admin console
• Navigate to section Deployments
• Click Add
• Select vocloud.war file
• Submit
• Enable the newly deployed application

VO-CLOUD master server should now be running at
http://localhost:8080/vocloud

10. Create admin account

• Open VO-CLOUD master server application in web browser
• Click Register
• Register a new account with username admin

This account now has administrator privileges.
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Appendix F
Spark worker README file

F.1 Spark worker

F.1.1 Requirements

• JDK 7+
• Java application server supporting Java servlet technology (Tomcat,

WildFly, . . . )
• Maven tool (if building is necessary)
• Spark deployable application for each Spark worker type

F.1.2 Install guide

For instance I will use Debian amd64 with WildFly 8.2 application server,
JDK 8 and Maven 3.1.

1. Install JDK 8

• Download JDK from http://www.oracle.com/technetwork/
java/javase/downloads/index.html in zip file form, for example
jdk-8u45-linux-x64.tar.gz
• Extract archive to /usr/lib/jvm
• Setup environment variables for Java – add these lines to the end

of /etc/profile:

export JAVA\HOME=/usr/lib/jvm/jdk1.8.45
export PATH=$JAVA_HOME/bin

2. Install WildFly 8.2.0

• Download zip from http://wildfly.org/downloads/
• Extract archive to the /usr/local
• In the newly extracted wildfly directory execute bin/add-user.sh

and setup a new WildFly administering user.
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F. Spark worker README file

3. Start Wildfly by executing bin/standalone.sh. Server should successfully
start. If everything went OK:

• Server is running on http://localhost:8080/
• Admin console on http://localhost:9990/

4. Configure spark-worker configuration file (optional step if you want an-
other configuration that it is in pre-built archive)

• Download sources for spark-worker
• Go to src/main/resources/
• Adjust uws-config.xml file
• Go back to sources root
• Execute command mvn package
• Worker is compiled and the deployable archive is created in

target/spark-worker.war

5. Deploy spark worker to Wildfly

• Open WildFly admin console on http://localhost:9990/
• Login with the credentials of administrating user
• Navigate to Deployments section
• Click Add
• Select deployable spark-worker.war archive
• Click OK
• Enable the newly deployed application

UWS service should now be running on
http://localhost:8080/spark-worker/uws

Note: This is only description of spark-worker application which serves as
the mediator between the master server and spark submit script. In order
to make a worker fully functional you have to set proper configuration values
into the UWS configuration file matching your running Spark instance.

F.1.3 Configuration file description

Configuration of the Spark worker is define by the xml file containing all
necessary information for the Spark worker deployment. The schema of the
XML configuration file is specified by XSD file and is located in
src/main/resources/configSchema.xsd.

Let us explain the configuration file format on the example:

1 <?xml version="1.0" encoding="utf-8"?>
2 <ns:uws-settings
3 xmlns:xsi=’http://www.w3.org/2001/XMLSchema-instance’
4 xmlns:ns=’http://vocloud.ivoa.cz/spark/schema’
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5 xsi:schemaLocation=’http://vocloud.ivoa.cz/spark/schema
configSchema.xsd’>

6 <ns:vocloud-server-address>http://localhost:8080/vocloud-
betelgeuse</ns:vocloud-server-address>

7 <ns:local-address>http://localhost:8080</ns:local-address>
8 <ns:spark-executable>/opt/spark/bin/spark-submit</ns:spark-

executable>
9 <ns:hadoop-default-fs>hdfs://betelgeuse:9000</ns:haddop-

default-fs>
10 <ns:max-jobs>4</ns:max-jobs>
11 <ns:description>Spark UWS worker</ns:description>
12 <ns:environment>
13 <HADOOP_CONF_DIR>/opt/hadoop/etc/hadoop</HADOOP_CONF_DIR

>
14 </ns:environment>
15 <ns:submit-params>
16 <conf name="spark.driver.maxResultSize">12g</conf>
17 <conf name="spark.yarn.executor.memoryOverhead">4096</

conf>
18 <master>yarn</master>
19 <driver-memory>4g</driver-memory>
20 <deploy-mode>client</deploy-mode>
21 <num-executors>5</num-executors>
22 <executor-cores>3</executor-cores>
23 <executor-memory>4g</executor-memory>
24 </ns:submit-params>
25 <ns:workers>
26 <ns:worker>
27 <ns:identifier>spark-preprocessing</ns:identifier>
28 <ns:description>Spark preprocessing</ns:description>
29 <ns:submit-params>
30 <packages>com.databricks:spark-avro_2.10:2.0.1</

packages>
31 <py-files>
32 /home/hadoop/workflow-test/preprocessing/

vocloud_spark_import/dist/
vocloud_spark_preprocess-0.1.0-py2.7.egg

33 </py-files>
34 </ns:submit-params>
35 <ns:submit-target>
36 /home/hadoop/workflow-test/preprocessing/

vocloud_spark_import/bin/vocloud_preprocess.py
37 </ns:submit-target>
38 </ns:worker>
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39 </ns:workers>
40 </ns:uws-settings>

• vocloud-server-address [optional] – Specifies URL address to the de-
ployed vocloud server. This URL is necessary when the worker needs
to download some data from the vocloud server. Note that in order to
do so you will have to arrange the network visibility from the worker to
master server and vice versa.

• local-address – Hostname URL to the worker server from the master
server point of network view.

• spark-executable – Path to the spark-submit script on the filesystem.

• hadoop-default-fs – URL locator of the HDFS filesystem.

• max-jobs – Maximum count of jobs that this worker allows to be run
concurrently. Note that Spark execution manager (e.g. YARN) can have
additional restrictions to the count of jobs/resources requirement.

• description – Description of this UWS worker.

• environment [optional] - The sequence of optional tags settings the en-
vironment variables to be passed to the spark-submit script. For this
current instance the HADOOP CONF DIR variable is set to be able to use
--master yarn parameter properly.

• submit-params [optional] – This complex tag can be either in the root
uws-settings tag or in the worker tag (see later). It specifies implicit
parameters to be passed to the spark-submit. Parameters from the
root tag can be overriden by the parameters specified in the worker tag
and both parameter specification can be overridden by the parameters
specified in the job’s configuration file. Parameters are specified in the
following format:

<param-name>param-value</param-name>

This statement is translated to --param-name param-value in the
spark-submit script. Note: <conf> tag have a special form:

<conf name="conf-name">conf-value</conf>

that is translated to --conf conf-name=conf-value. There can be
multiple <conf> tags.

• workers – Contains sequence of <worker> tags.

• worker – Contains configuration for the single worker type instance. It
contains following tags:
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– identifier – Identification if the worker. Must not contain space
character.

– description – Description of the worker.
– submit-params – Same as in the root tag.
– submit-target – Path to the file that should be passed to the

spark-submit script.

F.1.4 Job configuration

The following JSON is an example of the spark job configuration.
1 {
2 "download_files": [
3 {
4 "urls": [
5 "vocloud://DATA/allspec-ond700-prep/prep.csv",
6 "vocloud://DATA/allspec-ond700-prep/prep2.csv"
7 ],
8 "folder": "/user/test/input1/"
9 },{

10 "urls": ["vocloud://DATA/folder/st.csv"],
11 "folder": "/user/test/input2/"
12 }
13 ],
14 "spark_params": {
15 "num-executors": "2",
16 "executor-cores": "4",
17 "conf": {
18 "spark.driver.maxResultSize": "12g",
19 "spark.yarn.executor.memoryOverhead": "4096"
20 }
21 },
22 "job_config": {
23 "dataset": "hdfs:///user/workflow-test/lof-input/

preprocessed.csv",
24 "min_pts": 15,
25 "output": "hdfs:///user/workflow-test/output/lof_kepler-

out.csv"
26 },
27 "copy_output": [
28 {
29 "path": "/user/workflow-test/output/lof_kepler-out.

csv",
30 "output_name": "preprocessed.csv",
31 "merge_parts": true
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32 }
33 ]
34 }

Most of the configuration JSON file is optional. The only mandatory part
is job config object part that specifies the configuration file of the Spark
application. The content of this object will be written in the temporary file
and the path will be passed to the spark-submit script as the last parame-
ter. If the configuration does not contain the copy output item, the whole
configuration file is considered as the config for the spark-submit script – in
this case it would be:

1 {
2 "dataset": "hdfs:///user/workflow-test/lof-input/

preprocessed.csv",
3 "min_pts": 15,
4 "output": "hdfs:///user/workflow-test/output/lof_kepler-out.

csv"
5 }

• download files – Specifies files that should be downloaded from the
vocloud filesystem (or some other URL) and saved to the hdfs to the
specified path before the spark job itself is executed. It must contain
array where each item is object containing two mandatory items:

– urls – Array of string containing the remote file path. It supports
http/https protocol and if the path has scheme vocloud the files
are downloaded from the vocloud’s filesystem. Note: in order to
do so it is necessary that worker has properly set the path to the
vocloud server and the server is directly visible on the network.

– folder – Target path on HDFS where the files specified in the urls
part should be saved. Save fails if the path already exists.

Note: In order to be able to download files into the HDFS it is necessary
that the worker application has properly setup write permission to the
HDFS. This is usually done by adding user under which the worker
application is started to the supergroup group.
• spark params – Allows user to override any parameters passed to the

spark-submit script. It contains JSON object where each item "name":
"value" is translated to the parameter --name value. The only ex-
ception is an item named conf that if present must contain additional
JSON object where each item "name": "value" is translated to --conf
name=value. Parameters here can override the default one specified in
the xml configuration file.
• job config – Specifies the configuration for the Spark job itself. See

above.
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• copy output – Allows user to obtain files from the hdfs back to the vo-
cloud. It must contain JSON array containing JSON objects containing
following items:

– path – Path to the file or folder on the HDFS.
– output name [optional] – Name of the copied file or directory. If

not present, tries to find out the file/folder name from the path
parameter.

– merge parts [optional] – Spark jobs usually produce results as
folder containing part xxx files. If this item is set to true the
worker merges these parts together to produce a single file. This
item is optional, default value is set to false.
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