
doc. Ing. Jan Janoušek, Ph.D.
Head of Department

prof. Ing. Pavel Tvrdík, CSc.
Dean

Prague February 7, 2017

CZECH TECHNICAL UNIVERSITY IN PRAGUE

FACULTY OF INFORMATION TECHNOLOGY

ASSIGNMENT OF MASTER’S THESIS

 Title: Detection of a license plate position from camera records of moving cars

 Student: Bc. Vladislav Jásek

 Supervisor: doc. RNDr. Ing. Marcel Jiřina, Ph.D.

 Study Programme: Informatics

 Study Branch: System Programming

 Department: Department of Theoretical Computer Science

 Validity: Until the end of summer semester 2017/18

Instructions

The aim is to design and implement an algorithm that enables detection of license plates on moving cars
from camera to records (videos). The car that has installed the camera is also moving.

1) Study the task of detecting license plates and approaches used to detect them.
2) Propose a robust algorithm to detect a position of a license plate from a camera record. The camera is
installed in a moving car.
3) Implement the proposed algorithm in an appropriate programming language. Utilize the OpenCV library.
4) Verify the implemented algorithm on real data. Evaluate the results and discuss the advantages and
disadvantages of the algorithm used.

References

Will be provided by the supervisor.

Czech Technical University in Prague

Faculty of Information Technology

Department of computer science

Master’s thesis

Detection of a license plate position from
camera records of moving car

Bc. Vladislav Jásek

Supervisor: doc. RNDr. Ing. Marcel Jǐrina, Ph.D.

9th May 2017

Acknowledgements

I would like to thank doc. RNDr. Ing. Marcel Jǐrina, Ph.D. and Ing. Jakub
Novák for their help, support and patience during our consultations.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on 9th May 2017 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2017 Vladislav Jásek. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Jásek, Vladislav. Detection of a license plate position from camera records of
moving car. Master’s thesis. Czech Technical University in Prague, Faculty
of Information Technology, 2017.

Abstrakt

Tato práce se zabývá problémem detekce registračńıch značek z kamery je-
doućıho auta. Některé stávaj́ıćı př́ıstupy k problematice jsou v této práci
shrnuty. Dále je představeno několik state-of-the-art algoritmů pro detekci a
tracking objekt̊u. Je navržen, implementován a otestován detekčńı framework
řeš́ıćı daný problém.

Kĺıčová slova poč́ıtačové viděńı, rozpoznáváńı registračńıch značek, trackováńı
objekt̊u, onboard kamera, zpracováńı obrazu, detekce

Abstract

This thesis deals with the problem of license plates detection in moving scene.
Some of the current approaches to the problem are summarized in this thesis.
Several state-of-the-art techniques of tracking and detection are introduced
and detection framework solving the problem is proposed. Practical imple-
mentation is described and experimentally evaluated.

Keywords computer vision, licence plate recognition, object tracking, on-
board camera, image processing, detection

ix

Contents

Introduction 1
Problem statement . 2
Goals of the thesis . 2
Thesis outline . 2

1 Basics 5
1.1 Image processing . 5
1.2 Converting image to grayscale 8
1.3 Data Mining . 10
1.4 Spatial domain indexing algorithms 11

2 Analysis 15
2.1 Typical ALPR system . 15
2.2 Licence plate detection . 17
2.3 Vehicle detection . 18
2.4 Viola-Jones algorithm . 19
2.5 HOG detector . 22
2.6 Lucas-Kanade Optical flow tracker 24
2.7 Tracking-Learning-Detection 25

3 Proposal 29
3.1 Obtaining sample data . 29
3.2 Outline of the detection framework structure 30
3.3 Preprocessing . 31
3.4 Matching . 32
3.5 Object classes . 33
3.6 Tracker . 33

4 Realization 35
4.1 Use cases . 35

xi

4.2 Requirements . 35
4.3 Used technologies . 36
4.4 Detector learning phase . 37
4.5 Class Car . 37
4.6 Class CarTracker . 39
4.7 Class QuadTree . 40

5 Testing 43
5.1 Class Car . 43
5.2 Class CarTracker . 43
5.3 Class QuadTree . 44

6 Experimental results 45
6.1 Metrics . 45
6.2 Program settings . 45
6.3 Highway . 46
6.4 One target . 47
6.5 Tunnel . 48
6.6 Night chase . 49

Conclusion 51
Future research . 51

Bibliography 53

A Acronyms 57

B Contents of enclosed CD 59

xii

List of Figures

1.1 HSB color space [1] . 7
1.2 Example of quad tree structure[2] 12
1.3 k-d tree decomposition for the point set (2,3), (5,4), (9,6), (4,7),

(8,1), (7,2) [3] . 13
1.4 Corresponding k-d tree [4] . 13

2.1 Typical automatic license plate recognition system pipeline 16
2.2 Example of 7x7 Laplacian of Gaussian kernel (the Mexican hat

operator) . 18
2.3 All Haar-like features [5] . 20

3.1 The TrueCam A4 camera . 29
3.2 Typical frame from the onboard camera 30
3.3 Simplified scheme of the framework 30
3.4 Image after the histogram equalization and grayscale conversion.

The green rectangles are objects of interest recognized by Viola-
Jones detection framework. Notice the false alarm in the center
and undetected car to the left. 31

3.5 Example of KCF tracker drift. The second image is took 480 frames
after the first. 33

3.6 Overall schema of the detection phase of the proposal 34

4.1 Use cases summarization . 35
4.2 Examples some of positive samples from the dataset 37

6.1 The highway . 46
6.2 Chasing one target . 47
6.3 The tunnel . 48
6.4 Very bad lighting conditions . 49

xiii

Introduction

Computer vision is a very promising and quickly growing interdisciplinary field
that finds its uses in a very large scale of applications, for example:

OCR is a process of transferring images containing characters to textual
form of data, which is useful for preserving written books.

Another field in which computer vision has very broad and useful ap-
plication is medicine where image processing algorithms are comprised, for
example, of very complex scans of human organs that are subsequently used
for preventive monitoring and eventual diagnosis of diseases.

Next field with important use of computer vision is biometrics, the authen-
tication method based on the unique physiological features of an authenticated
living organism (typically human), for example, by fingerprint or eye cornea.

Motion capture is a technology that finds widespread use when shooting
movies, in the advertising industry, but also in purely practical tasks such
as military. The goal of its application is to create a 3D model of a moving
object. This is achieved by the fact that the object being filmed (typically an
actor or animal) is covered by small contrasting markers, whose trajectories
are then captured by cameras from different angles. Subsequently, a 3D object
model is created using photogrammetric algorithms.

We can not forget the use in photography and in art, thanks to which
today our camera and mobile phones can create panoramas, detect smiles and
have many other features.

Another promising field of computer vision is automobile safety. Because of
high level of active safety, cars can recognize brands, lanes and keep themselves
away from other cars. There is even the first car with almost complete version
of autopilot. Nothing like that would be possible without computer vision.

We can only say that everybody in our neighborhood is in contact with
computer vision (often unknowingly) every day and a very large number of
applications can also be tested by a person who does not have a great technical
knowledge.

In this thesis, we propose methods for moving object detection and object

1

Introduction

tracking with applications in visual surveillance and consider robustness and
computational cost as the major design goals of our work.

Problem statement

The aim is to design and implement an algorithm that enables detection of
license plates on moving cars from camera to records (videos). The car that
has installed the camera is also moving.

Goals of the thesis

• Study the task of detecting license plates and approaches used to detect
them.

• Propose a robust algorithm to detect a position of a license plate from
a camera record. The camera is installed in a moving car.

• Implement the proposed algorithm in an appropriate programming lan-
guage. Utilize the OpenCV library.

• Verify the implemented algorithm on real data. Evaluate the results and
discuss the advantages and disadvantages of the algorithm used.

Thesis outline

In order to describe the accomplished goals, the thesis will be structured to
chapters in the following manner:

• Basics
In this chapter we will explain some formal definitions, basic terms and
fundamental concepts used in the thesis, mainly related to image pro-
cessing, computer vision and data mining.

• Analysis
In this section the reader will be introduced to the problematics of license
plate recognition, typical schema of automatic license plate recognition
system (ALPRS) will be introduced.
Current research in the field of license plate detection and car detection
will be summarized.
Several state-of-the-art algorithms and frameworks that can be useful
for object detection and tracking will be presented.

• Implementation
In this chapter, the implementation based on the design proposed in

2

Thesis outline

previous chapter will be presented. First the use cases and requirements
will be summarized. Then available technologies will be presented and
compared. In following section, the learning phase of the detector will
be discussed. Structure of the program will be presented and all used
classes will be described.

• Testing
During the development, every finished component underwent extensive
unit testing. These tests are summarized in this chapter.

• Experimental results
Experimental results of the final product will be reviewed in this chapter.

3

Chapter 1
Basics

In this chapter we will explain some formal definitions, basic terms and fun-
damental concepts used in the thesis, mainly related to image processing,
computer vision and data mining.

1.1 Image processing

The purpose of this section is to present selection of some basic image pro-
cessing techniques. Image processing is processing of images or series of im-
ages, using mathematical operations.

Most image-processing techniques involve isolating the individual signal
components creating the image and applying standard signal-processing tech-
niques to them.

Images are also often processed as three-dimensional signals with the third-
dimension being time or luminance/chrominance.

The output of image processing is also an image or some characteristics or
features, extracted from the image.

1.1.1 Image

By the term image, in the scope of this thesis, we will always mean bitmap
(also called raster) image.

• From the mathematical point of view, the image is continuous function
of two variables:

i(x, y) : R2 → Rn (1.1)

• In computer representation, the term image typically means two dimen-
sional matrix of equidistant samples:

i(x, y) : N2 → Rn (1.2)

5

1. Basics

Where Rn is a vector of features, that denote position of the color in
color space.

1.1.2 Color space

Is a useful conceptual tool for defining the color capabilities of image pro-
cessing device or data file. A color space relates numbers, vectors, names
etc. to actually produced color, either being mapped to palette or organized
by topology, based on some mathematical features, thus allows to reproduce
representations of color between various devices and data formats.

Color spaces can be either device dependent, expressing color relative to
some other space or device independent, expressing color in absolute terms
against some defined color standard.

Here we will explain some most common color spaces with applications in
image processing:

• RGB
Is an additive color model, in which the components of Red, Blue and
Green light are mixed together. Three-dimensional volume is described
by treating the component values as ordinary Cartesian coordinates in
a euclidean space.

• HSV
This space is a cylindrical-coordinate space. The abbreviation stands
for Hue, Saturation, Value and is also called HSB [6] (Hue, Saturation,
Brightness).

6

1.1. Image processing

Figure 1.1: HSB color space [1]

The angle around the cylinder axis defines Hue, which is the wavelength
within the visible-light spectrum at which the energy output from a
source is greatest. Saturation is the relative bandwidth of the visible
output from a light source, and is expressed by distance from the cylinder
center. Brightness is the amplitude at the wavelength where the intensity
is greatest [7].

• HSL
This space is very similar to HSV. The Hue has the same definition
as in HSV. S also stands for Saturation, however Lightness stands for
brightness relative to the brightness of a similarly illuminated white.
Both HSL and HSV are simple linear transformations of RGB models.

• YUV
The Y component determines the brightness. The color information
is separated out into 2 channels– U and V are blue luminance and red
luminance differences respectively [8] . This color space was invented for
color television broadcast because of the backward compatibility with
monochromatic devices.

1.1.3 Object tracking

Is the task of computing trajectory of the given object in a sequence of video
frames [9] . The input of the tracker is the appearance of the object in the

7

1. Basics

first frame. Output is the curve or the sequence of coordinates of the object
in consecutive frames.

Trackers typically assume that the object is visible through- out the se-
quence. If the tracker allows the temporary disappearance of the object from
the scene, then the task is called long term object tracking.

1.1.4 Object detection

Is the task of detecting all objects of interest in a single video frame [10] .
Detectors typically require offline training stage, so they cannot be applied
to unknown objects. Output from the detector is the set of coordinates of all
detected objects.

Object detection is typically much more computationally expensive task
than object tracking.

1.1.5 Image segmentation

Image segmentation is the process of partitioning the image into logical re-
gions. There are many different ways to perform image segmentation based
on for example:

• Color properties (Thresholding)

• Spatial properties

• Gradient domain properties (edge/corner detection)

1.1.6 Histogram

In the image processing histogram shows frequency of pixels intensity values,
thus is probability density function of pixel luminance (or other pixel feature).
The x axis shows the range of values of the feature and the y axis shows the
frequency of these values.

1.1.7 Histogram equalization

Is the process of transforming cumulative distribution function of pixel lumin-
ance to linear function, which has the effect of increasing contrast.

1.2 Converting image to grayscale

There are several different approaches to convert image to grayscale. The
most typical are [11]:

8

1.2. Converting image to grayscale

Algorithm 1 Histogram equalization
1: Is[0] = P[0]
2: for k = 1 to L do
3: T[k] = T[k-1] + P[k]
4: end for
5: for r = 0 to L do
6: S[r] = round(T[r]*L)
7: end for
8: for y = 0 to M do
9: for x = 0 to N do

10: r = I[y, x]
11: He[y, x] = S[r]
12: end for
13: end for

• Averaging RGB values
is the most trivial approach, however it generally does not preserve con-
tours and does not represent shades of gray relative to the way humans
perceive luminosity.

• Weighted averaging of RGB values
Because the human eye does not perceive red, green and blue intensities
equally, the better way of conversion is to multiply the values by the
relative weights of eye sensitivity to particular color. The most common
formula is:

L = R ∗ 0.3 + G ∗ 0.59 + B ∗ 0.11 (1.3)

although slightly different constants can be used.

• Desaturation
Consists in setting the saturation in HSV image to zero.

• Selecting a channel
This is what most digital cameras use for taking gray scale photos. The
channel typically selected is green, because the human eye is most sens-
itive to it.

• Converting in gradient domain
Is computationally expensive, however preserves all the contours in the
original image.

9

1. Basics

1.2.1 Image normalization

Is the process of rescaling and shifting the luminance values of the image to a
desired value range. Linear normalization can be computed as:

I ′ = (I − Imin)I ′max − I ′min

Imax − Imin
+ I ′min (1.4)

Where I is original luminance of the pixel, I ′ is the new luminance of the
pixel, Imax, I ′max, Imin, I ′min are maximal and minimal allowed intensities in
new respective old image.

Nonlinear normalization also exists.

1.2.2 Convolution and Correlation

Convolution (∗) is a weighted average with one function(discrete or analog)
constituting the weights and another the function to be averaged [12]. In the
scope of the thesis, we will consider only discrete convolution in 2D, which is
commonly used in image filtering. 2D convolution is mathematically defined
as:

G[i, j] =
k∑

u=−k

k∑
v=−k

h[u, v]F [i + u][j + v] (1.5)

It describes how our image responds to a filter. Correlation is just convolution
with the filter reversed and describes similarity of two signals/images:

G[i, j] =
k∑

u=−k

k∑
v=−k

h[u, v]F [i− u][j − v] (1.6)

Note that convolution is both associative and commutative, in contrast to
correlation.

In image processing, kernel filter is typically defined by a finite matrix
[13] and the origin point. That is the position of the kernel which is above
the current output pixel. This could be outside of the actual kernel, though
usually it corresponds to one of the kernel elements. For a symmetric kernel,
the origin is usually the center element. The effect of filtering is obtained by
convolving the image matrix with the kernel matrix.

1.3 Data Mining

Data mining is the process of discovering patterns, dependencies and extract-
ing useful features from seemingly unstructured and complex data. The data
are analyzed from different perspectives and summarized into useful informa-
tion. The basic two problems of data mining are classification and regression.

10

1.4. Spatial domain indexing algorithms

1.3.1 Classification problem [14]

Suppose we have a (potentially infinite) set of vectors X, that can be covered
by finite number of disjunct classes:

X ⊂ C1 ∪ C2 ∪ . . . ∪ Cn&Ci ∩ Cj = Ø, i 6= j (1.7)

And we want to classify any x ∈ X, based only on finite set of known x and
their corresponding class C.

Thus our goal to construct a classifier, the projection from:

f : X → Y ; Y = {C1 . . . Cn} (1.8)

Examples of some simple classifiers are:

• k-NN

• Decision tree

• Naive Bayes classifier

1.3.2 Regression problem

Regression [14] can be seen as an approximation of an unknown mapping

g : X ← Y (1.9)

, using a known mapping f ∈ F , where X and Y are some vector spaces and
the mapping f is chosen from F based on a sequence:

f = (x(1)), y(1)), . . . , (x(1)), y(1)); f ∈ X ∗ Y (1.10)

Examples of some simple regression techniques are:

• Least Mean Squares

• MLP

1.3.3 Ensembling

In machine learning, ensemble methods use multiple learning algorithms to
obtain better predictive performance than could be obtained from any of the
constituent learning algorithms alone.

1.4 Spatial domain indexing algorithms

This section is dedicated to introduction of some basic spatial indexing al-
gorithm. These algorithms allow us to effectively compute collisions, matches
and other useful properties and relations between objects placed in (typically)
euclidean space.

11

1. Basics

1.4.1 Grid

Probably the simplest non trivial indexing structure available. The image is
divided into equidistant samples along both axes. Their intersections then
define the bounding boxes of our grid.

The reference to indexed object is simply put into correct bounding box,
which is calculated by normalizing the object coordinates by the number of
samples in each dimension.

1.4.2 Quad Tree

Quad tree is a sophisticated technique of spatial domain indexing. Every node
of the tree represents a certain bounding box of our image and is either a node
or has exactly four children [15].

Children divide bounding box of their parent into four quadrants, that are
obtained by splitting the parent bounding box along both x and y axis in half,
which means that all the nodes on the same level have exactly same size of
their bounding box.

The references to indexed objects are stored only in leaves.

1 2

34

1 2 3 4

8 x 8

4 x 4

2 x 2

1 pixel

Figure 1.2: Example of quad tree structure[2]

• Insertion
To insert a reference to point into a tree only means to traverse from
the root to the certain leaf node, deciding to which bounding box of
the children our node belongs. If the inserted objects spans along more
quadrants, the references are put in each of them.
If a certain number of objects is put into one quadrant, this quadrant is
then split into four and all its points are passed to the children.

• Query
To query a quad tree for a single object, we only need to traverse to
the leaf quadrant like when inserting and then compare all the objects
referenced in this quadrant.

12

1.4. Spatial domain indexing algorithms

Analogous structure in 3D is called Octree.

1.4.3 K-D Tree

K-D Tree is another spatial indexing tree. It is a binary tree, where every
node contains exactly one point. Each level of a K-D tree splits all children
along a specific dimension, using a hyperplane that is perpendicular to the
corresponding axis. The corresponding point coordinate in this axis equals
median of the inserted set. The two divided subsets are then passed to the
children, where are recursively split along next axis and so on.

0 2 4 6 8 10
0

2

4

6

8

10

Figure 1.3: k-d tree decomposition for the point set (2,3), (5,4), (9,6), (4,7),
(8,1), (7,2) [3]

x

x

Y

(7,2)

(5,4) (9,6)

(2,3) (4,7) (8,1)

Figure 1.4: Corresponding k-d tree [4]

13

Chapter 2
Analysis

In this section the reader will be introduced to the problematics of license
plate recognition, typical schema of automatic license plate recognition system
(ALPRS) will be introduced.

Current research in the field of license plate detection and car detection
will be summarized.

Several state-of-the-art algorithms and frameworks that can be useful for
object detection and tracking will be presented. We will explain their basic
concepts, define their typical applications and summarize their pros and cons.

2.1 Typical ALPR system

Most of the automatic license plates recognition systems are multi-stage sys-
tems [16], that get the image of the car and then process it according the
following pipeline:

1. The license plate position is localized in the picture of the car.

2. The plate is cropped from the picture, deskewed and resized to some
normalized size.

3. The resulting image undergoes normalization process, which typically
includes histogram equalization and some thresholding. The result is
typically binary image.

4. The individual characters are then extracted from the image, most ob-
vious method of separation being morphological operations and floodfill
algorithm.

5. The characters are then recognized by some classifier.

6. Syntactic and geometrical check of the plate is then performed.

15

2. Analysis

7. Recognized character of the license plate are then typically aggregated
over several frames in order to improve robustness.

Plate localization

Plate orientation and sizing

Normalization

Character segmentation

Optical character recognition

Syntactical/Geometrical analysis

Averaging of values over frames

Figure 2.1: Typical automatic license plate recognition system pipeline

All of these steps are well known problems,so this thesis will rather focus
on producing the input to standard ALPR system, locating the cars from the
scene recorded by onboard camera, that is placed in a moving car.

This may look similar to the localization of the plate procedure, however,
the scene is generally much more complex and changes dynamically. Also
the objects of interest (cars) can have variety of colors, shapes and sizes as
opposed to license plates, whose appearance follow fixed (and typically very

16

2.2. Licence plate detection

simple) form. So while sharing some similarities with plates localization this
problem is much more complex.

2.2 Licence plate detection

Because there is a lot of similarities and overall large problem intersection
with the first stage of ALPRS we would like to summarize related work in
this field of research. Most of the existing solutions are based either on image
segmentation or on detection of the edges.

2.2.1 Based on image segmentation

In this paper [17], a region-based license plate detection method is proposed.
Using mean shift procedure in the joint spatial-range domain, the input color
vehicle images are segmented into many regions. The selection criteria is
related to the proportions of the size of license plates to that of vehicle images.
The resulted regions are called candidate region. The following features are
then extracted: rectangularity, aspect ratio and edge density and the decision
is based on the Mahalanobis classifier.

Authors of this article [18] have proposed another method of license plate
localization that is based on the connected components analysis. Color space
of the image is changed to the YUV model but only the luminance is recorded.

The neighborhood of every point of the image is analyzed in the form of
a square (5x5) to specify the biggest difference in brightness. If the specified
contrast exceeds the threshold for a given point, it means that a sort of edge
was found in the image which may mean some kind of border between the
character and the background and this point is specially marked. If the con-
trast in the given point is too small then only the threshold operation takes
place. White and black areas which are the results of the thresholding are
then labeled.

The next step is the elimination stage, which goal is to leave in the picture
only these spots which are most likely to be license plate characters, assuming
that each spot represents a single character and is not connected with any
other object in the image. The spots are eliminated on spatial properties,
such as width and height.

Their neighborhood is then analyzed and the spots are grouped into seg-
ments, which are further eliminated.

2.2.2 Based on edge detection

Another common approach [19] to the problem is to find the position of the
plate by analyzing features of the edges, as proposed in article. Preprocessing
part incorporate the adjustment of rotated image. Then after preprocessing,
Harris corner algorithm is applied to extract the feature from the image. After

17

2. Analysis

extracting all the corner points, the sliding window approach is applied to
find the most likely number plate region. Soft thresholding is taken as part of
sliding window with the goal that it works for the majority of pictures. Aspect
ratio (AR) limit is set to restrict the LP viably subsequent to separating every
single corner point and amid SW approach.

In the article [20], the image is first converted into grayscale, then the
density of both horizontal and vertical edges is measured by Sobel detector. In
contrast to article, where instead of Sobel detector, the Laplacian of Gaussian
(Mexican hat operator) is used as convolution kernel.

In order to make the edges continuous the morphological dilation operation
is used.

KLoG =



0 0 3 2 2 2 3 0 0
0 2 3 5 5 5 3 2 0
3 3 5 3 0 3 5 3 3
2 5 3 −12 −23 −12 3 5 2
2 5 0 −23 −40 −23 0 5 2
2 5 3 −12 −23 −12 3 5 2
3 3 5 3 0 3 5 3 3
0 2 3 5 5 5 3 2 0
0 0 3 2 2 2 3 0 0


(2.1)

Figure 2.2: Example of 7x7 Laplacian of Gaussian kernel (the Mexican hat
operator)

Another edge based approach, mentioned [21] is based on intersection of
areas with high vertical and high horizontal edge density. First, vertical edges
are detected from the image and binarized. Then, license plate candidates are
extracted by the two-stage detection process. In this process a sliding-window
technique is used to mark all windows which satisfied edge density conditions.
Edge density conditions are computed on integral edge image allowing us to
significantly increase the processing speed of the method. To better distin-
guish between license plates and complex backgrounds, the edge analysis is
performed to remove specific edges. Finally, false candidates are filtered out
based on geometrical and textural properties. The proposed method can de-
tect multiple license plates with different sizes in a complex background.

2.3 Vehicle detection

Another field of research similar to the problem of this thesis is vehicle detec-
tion. Authors of this article [22] summarized the possible features to look for
in the vehicle detection as follows: symmetry, color, shadow, corners, edges,

18

2.4. Viola-Jones algorithm

vehicle lights and disparity (the difference in the left and right halves of the
image between corresponding pixels).

In the article [23] is proposed approach based on applying the background
subtraction method based on CS (compressive sensing), the measurements
of the video is firstly obtained through the compressive sample operated on
the input video images. The measurements of the background image will be
achieved from the estimation of the former measurements. Besides, the back-
ground image needs real-time update about the changes in external environ-
ment. When conducting the background subtraction, the differential threshold
operation should be undertaken on the measurements of background model
and measurements of the real-time video frame image to determine whether
there existed moving vehicle in the frame image.

In another article [24], approach with background motion compensation
via background subtractor is combined with optical flow tracking to detect
general moving objects from moving car.

Another approach is combined WaldBoost detector and the TLD tracker
that are scheduled so that a real-time performance is achieved [25].

2.4 Viola-Jones algorithm

Proposed in 2001, Viola-Jones detection framework is the first algorithm being
able to detect faces in real time on contemporary hardware [26]. Today, it is
still considered state-of-the-art algorithm.

This detector works with very simple image features, called Haar-like fea-
tures, because of they conceptual similarity with Haar wavelets, used in dis-
crete wavelet transforms (DWT).

2.4.1 Haar-like features

A Haar-like feature is obtained by taking two or more adjacent rectangular,
equally sized regions in the specific section of the grayscale image, summing
pixel intensities of each region and then computing difference between each
sum. Which is equal to applying convolution on the particular section of image
with simple kernel that has predefined shape.

19

2. Analysis

Figure 2.3: All Haar-like features [5]

Computed difference is then used as a feature for further categorization of
the classified image.

Rotated Haar-like features also exist [27] , however, they are scarcely used,
because in practical usage, the image (or more often the classifier, the effect
being the same) is typically rescaled to some very small resolution, where
multiplication with rotation matrix produces rounding errors.

2.4.2 Sliding window

In the context of computer vision (and as the name suggests), a sliding win-
dow is rectangular region of fixed width and height that “slides” across an
image. The algorithm performs exhaustive search of the image, using sliding
windows on the whole image with all possible scales, deciding whether the
actual window contains desired features. When a certain amount of features
match, the detector indicates a hit.

However, simple computing of the features of each window would be com-
putationally expensive. However, a simple technique from dynamic program-
ming allows us to compute every feature in constant time. That trick is called
integral image and is considered a contribution of the authors of the detector.

2.4.3 Integral images

Also called summed area table, is a data structure for very efficient com-
puting the sum of values in any rectangular subsegment of the image:

I(x, y) =
i≤x′∑
i=0

j≤y′∑
j=0

i(x, y) (2.2)

20

2.4. Viola-Jones algorithm

It can be computed by single pass over the image, the value at any point is
just sum of all the pixels above and left (inclusive) [28].

Once the integral image is generated, sum of any rectangular subsegment
can be computed in constant time (O(1)), using only values at four positions
(corners of the).

i≤x′∑
i=x0

j≤y′∑
j=y0

i(x, y) = I(x0, y0) + I(x′, y′)− I(x0, y′) + I(x′, y0) (2.3)

So, now we know, which features are used by the detector and how the
detector evaluates them during detection stage. The promising features are
selected by Adaboost algorithm.

2.4.4 AdaBoost

Adaboost (short for Adaptive Boosting) represents one of state-of-the art en-
sembling machine learning techniques [29].

Weak classifier is a classifier whose decision abilities are only slightly better
than tossing a coin (0.5). Decision stumb, also called 1-rule, is defined as a
decision tree with only one internal node (root). Definitively is considered a
weak classifier.

We will discuss the classic version of Adaboost, that operates only on bin-
ary classifiers (typically decision stumps), however version for multiple classi-
fication and regression problems also exists.

The key idea is that it combines several weak learners into one strong
learner. This is achieved by generating multiple models from the training
data, purpose of every new model is to correct the errorneous classification
from the previous one. The process continues until all the training samples
are correctly classified by the last model or maximum number of models is
reached.

Each used decision stump is build during the training phase from one
haar-like feature.

Algorithm 2 Adaboost algorithm
1: procedure AdaBoost(a, b)
2: set uniform example weights
3: for each base learner i do
4: train i with weighted sample
5: test i on all data
6: set weight of i with weighted error
7: update example weights
8: end for
9: end procedure

21

2. Analysis

2.4.5 Haar cascades

The exhaustive classification of all selected haar-like features would be very
time expensive. In order to make the detector work with satisfactory speed in
real-time, there must be introduced some hierarchy.

Multiple strong classifiers, each operating on subset of selected haar-like
features are combined into sequential cascade. The image must pass every
stage of the cascade to be positively classified as desired object.

2.5 HOG detector

HOG stands for Histogram of Oriented Gradients and today is one of the most
common algorithms used in tasks that involve person detection.

The HOG detector again uses the sliding window approach, like the Viola-
Jones algorithm did, however, instead of evaluating a set of local features, it
relies only on one global feature of the actual window, the HOG descriptor
[30].

2.5.1 Gradient image

Let us consider 8-bit grayscale image with intensity range (0; 255). A gradient
vector for each given pixel is simply a measure of change in the intensity along
the x and y directions:

∆i,j =
[
xi−1 − xi+1
yj−1 − yj+1

]
(2.4)

The magnitude | ∆i,j | and angle ϕ∆i,j
then can be computed as:

| ∆i,j |=
√

x2
i,j + y2

i,j (2.5)

ϕ∆i,j
= arctan xi,j

yi,j
(2.6)

The difference between two adjacent pixels can be in range (−255; 255),
so the range must rescaled to fit the gradient image into two 8-bit images of
original size.

The key insight here is that the gradient is invariant to absolute values of
pixels in the original image. Normalization of gradient vector also makes it
invariant to multiplication of pixel values (constrast adjustments) [30].

2.5.2 HOG descriptor

To compute the HOG descriptor, the window must be resampled to a pre-
defined size (the size used in original algorithm is 64x128).

22

2.5. HOG detector

Then, we operate on fixed size square pixel cells (originally 8x8) within the
detection window, the cells being organized in the manner that two adjacent
cells complete overlay the middle cell (50% overlap of two cells).

Within a cell, we compute the gradient vector at each pixel and start
putting these gradients into quantized histogram, according to ϕ∆i,j

, the bin
size of the histogram is typically 20◦.

For each gradient vector, it’s contribution to the histogram is given by
the magnitude of the vector (so stronger gradients have a bigger impact on
the histogram). We split the contribution between the two closest bins. The
histogram is then normalized.

The HOG descriptor is the vector of histograms of all cells from the image.
The histogram will be very similar for the same object under different

lighting conditions, making it easier to recognize the object despite changes
in lighting [30].

The underlying classifier is Support Vector Machine [31], separating the
classes by optimal hyperplane.

2.5.3 SVM

The purpose is to:

• Separate the data by two parallel hyperplanes.

• Maximize their margin.

Assume that our dataset D is linearly separable to two classes C+ and C−
. Given a hyperplane H0, separating our dataset:

wT x + b = 0, (2.7)

we can choose two hyperplanes H− and H+, that can also separate our
data and satisfy:

H− : wT x + b = −1 (2.8)
H+ : wT x + b = 1 (2.9)

from the definition, they are equidistant to H0. The points from must met
the following condition, to ensure that H− and H+ really separate our data:

wT xi + b ≥ 1; xi ∈ C+ (2.10)
wT xi + b ≤ −1; xi ∈ C− (2.11)

These two constraints can be combined:

yi(wT xi + b) ≥ 1 (2.12)

23

2. Analysis

Let m be the perpendicular distance of H− and H+, let x be the point on
H−, then, because w is perpendicular to H+, we can denote vector k as:

k = m
w

‖w‖
(2.13)

If we add the vector k to x, we will get point on the hyperplane H+. Thus:

wT (x + k) + b = 1 (2.14)

and after substitution of k we get:

wT (x + m
w

‖w‖
) + b = 1 (2.15)

Dot product of vector with self yields the square of its norm:

wT x + b + m
‖w‖2

‖w‖
= 1 (2.16)

Because x belongs to H−, then wT x + b + m = −1:

−1 = 1−m‖w‖ (2.17)

m = 2
‖w‖

(2.18)

Thus maximizing the margin is equivalent to minimizing the norm of w.

2.6 Lucas-Kanade Optical flow tracker

Optical flow is the pattern of apparent motion of image objects between two
consecutive frames caused by the movement of object or camera. It is 2D
vector field where each vector is a displacement vector showing the movement
of points from first frame to second.

Algorithms based on optical flow make three implicit assumptions [32]:

• All intensity changes can be explained by intensity gradients.

• Neighboring pixels have similar motion.

• The time interval between two frames is short enough for the objects to
do not displace significantly.

Now, consider a pixel in the first frame of the video. It moves by some
distance in the next frame:

I(x, y, t) = I(x + dx, y + dy, t + dt) (2.19)

24

2.7. Tracking-Learning-Detection

By approximating the function by first order Taylor polynomial, we obtain:

I(x + dx, y + dy, t + dt) ≈ I(x, y, t) + ∂I

∂x
dx + ∂I

∂y
dy + ∂I

∂t
dt (2.20)

And so:
∂I

∂x
dx + ∂I

∂y
dy ≈ −∂I

∂t
dt (2.21)

Dividing through by dt, we obtain [33]:

∂x

∂t
= u (2.22)

∂y

∂t
= v (2.23)

Because u and v are unknown, we cannot solve this equation, however, we
have set an assumption that neighboring pixels have similar motion, so we can
take a 3x3 patch around the pixel of interest and find their equations:

S

[
u
v

]
= t (2.24)

Now the problem is overdetermined, but we can apply least squares fit method
if the matrix S is invertible:

ST S

[
u
v

]
= ST t (2.25)

To get the best approximate solution:[
u
v

]
= (ST S)−1ST t (2.26)

Lucas-Kanade method computes optical flow for a sparse feature set.

2.7 Tracking-Learning-Detection

Tracking-Learning-Detection algorithm (also called Predator tracker) is state-
of-the-art method of long term tracking of one object [34].

The input to the algorithm is a video stream and user defined bounding
box, defining the object of interest in the first frame. When run, the algorithm
will then try to continuously track the object in the video stream, learning
from incoming frames how the object’s appearance changes.

As the name suggests, the algorithm is build from three cooperating blocks,
running simultaneously:

25

2. Analysis

2.7.1 Tracker

The object is tracked frame-to-frame. The used method of tracking is called
template tracking. The object is represented by template (a image patch
and its histogram). The motion is defined as a transformation, that minimizes
mismatch between template and candidate patch.

The template tracking can either be static (the template does not change),
adaptive (the template updates with each frame) or these two approaches can
be combined.

2.7.2 Detector

Detector uses the sliding window approach (with reduced number of possible
scales and shifts), each window is passed to cascaded classifier. The classifier
has three stages [34]:

• Patch variance:
This stage rejects all patches, for which gray-value variance is smaller
by a user defined threshold than variance of the tracked patch . The
gray-value variance can be expressed as:

Ep2 −E2p (2.27)

And can be computed in constant time, using integral images. The
purpose of this stage is to quickly reject non-promising patches.

• Ensemble classifier:
The ensemble is composed of number of classifiers, each of them performs
a number of pixel comparisons on the patch.

• NN:
As the last stage, the nearest neighbor of the patch from the data model
space is found. If the relative similarity is above certain threshold, the
object detector scores a hit. The similarity between two patches is ex-
pressed as

S(pi, pj) = 1
2(NCC(pi, pj)) + 1, (2.28)

where NCC stands for Normalized Correlation Coefficient.

Relative similarity is defined as:

Sr(p, M) = S+

S+ + S−
, (2.29)

S+ and S− stand for similarity with positive and negative neighbors
from the object model M .

26

2.7. Tracking-Learning-Detection

2.7.3 Learning

The purpose of the component is to improve performance of the detector by
evaluating it in every frame of the stream.

The performance is evaluated by two functions, so called P and N experts.
The P-expert and N-expert are capable to identify false positives and false
negatives respectively.

Both of the experts make errors themselves, however, their independence
enables mutual compensation of their errors.

27

Chapter 3
Proposal

In this chapter the framework that enables detection of the license plates
from camera installed in a moving car will be proposed, based on some of the
algorithms described in previous chapter.

3.1 Obtaining sample data

In order to get relevant data for our problem, we needed some video samples
for continuous verification of our proposal, these were obtained by recording
some typical scenes in which the proposed algorithm should be used.

The camera used was TrueCam A4, which is a low-to-middle class onboard
camera, charged from 12V charging plug. The records are stored on micro SD
card.

Figure 3.1: The TrueCam A4 camera

Features relevant for the testing are:

• FullHD 1080i (1980x1080)

• 30 FPS (frames pes second)

29

3. Proposal

• 130◦ FOV (field of view)

• Output in H264-MPEG-4 AVC format (24 bit depth, RGB color space).

Figure 3.2: Typical frame from the onboard camera

3.2 Outline of the detection framework structure

We decided to combine the advantages of both detection and object tracking
approach in order to make the whole proposed framework faster and more
reliable. The main idea is to decide for each frame which approach use and
switch between them in order to achieve real time performance.

Figure 3.3: Simplified scheme of the framework

30

3.3. Preprocessing

3.3 Preprocessing

In order for our detection system to work under different lighting and outdoor
conditions, the whole frame of the scene must be preprocessed before it will
be passed to the detector.

Because of the presumed complexity of the scene and the requirement for
real time detection, it would be unwise to use some computationally expensive
preprocessing techniques such as complex segmentation or bilateral filtering.

Instead, convolution with a small gaussian smoothing kernel will be used
for reducing the noise.

Afterwards, the image will be converted to YUV color space and then the
chrominance channels will be discarded.

After this procedure the histogram equalization will be performed, in order
to prepare normalized data for the detector stage.

3.3.1 Detector

Viola Jones detection framework will be used as a detector because of sufficient
performance. The detector will be trained to recognize our objects (cars) for
initial detection in the whole preprocessed frame.

The detector will periodically check the scene to detect objects of interests,
which will then be passed to matching stage.

Figure 3.4: Image after the histogram equalization and grayscale conversion.
The green rectangles are objects of interest recognized by Viola-Jones detec-
tion framework. Notice the false alarm in the center and undetected car to
the left.

31

3. Proposal

3.4 Matching

After detection of all objects of interest in the single frame, these regions will
be passed to matching phase, in order to classify them against objects known
from previous frames as one of:

• Newly detected objects

• Candidates for recognized objects

• Recognized known objects

Because we presume that our detector will be working with sufficient fram-
erate for our objects to do not displace significantly, our matching phase will
be based only on property of position and scale.

We will suppose that there can be many objects in the scene. In order to
match them with better than quadratic time complexity, we will use the quad
tree spatial indexing algorithm, the brute force matching will then take place
only within each leaf of the tree.

The criteria for matching will be:

• Percentage of intersection
Because of our constrain on sufficient frame rate, we can assume that
one object has a fairly high intersection with its appearance in previous
frame.

• Scale
Also, the scale between two consecutive appearances of the object does
not change drastically.

Another more sophisticated methods of matching could be proposed, for
example histogram matching, however these methods generally have higher
computational complexity and would not yield much better results according
to our assumptions.

32

3.5. Object classes

3.5 Object classes

Based on their appearance in previous frames, each detected object’s state
can be classified into one of the three classes:

3.5.1 Newly detected objects

If the object can not be matched against any known object, in order to fil-
ter possible false alarms, the newly detected objects will be put into pool of
possible positive detections for further evaluation.

3.5.2 Candidates for recognized objects

In the pool of possible recognized objects, each object has its own time to
live property. With processing next frames in the sequence, this property
decreases. After this property reaches zero, the object is treated as false
alarm and is destroyed.

However, each object in the pool also stores how many times was matched
against objects detected in consecutive frames. When this value reaches a
certain threshold, the object is considered to be verified and is relocated to
the pool of recognized object.

3.5.3 Recognized known objects

When the object is passed to this pool, it will be assigned with unique ID.
TTL property is raised to higher constant, allowing the object to survive more
unsuccessful detection passes. Every time detector matches this object against
entity from current frame the TTL is reset to this higher constant.

3.6 Tracker

The object also has a new tracker entity assigned, that will update the object
position when the detector is not active or does not score a hit against.

Figure 3.5: Example of KCF tracker drift. The second image is took 480
frames after the first.

33

3. Proposal

Because the trackers have the tendency to drift away from the object in
time, the position of the tracker is corrected to position from detector output
when hit is scored.

Due to superior performance and quality, the chosen tracker is KCF.

Enough hits

Objects from the frame detected

Known object?

Candidate object?

Objects matched and their type decided

Object passed to candidate pool

Passed to known objects pool

TTL reset

Object discarted

Tracker assigned

Hits count increased

TTL = 0?

Object in pool unmatched?

TTL decrease

Tracker corrected

Yes

Yes

No

Yes

Yes

No

Yes

No

Figure 3.6: Overall schema of the detection phase of the proposal

34

Chapter 4
Realization

In this chapter, the implementation based on the design proposed in previ-
ous chapter will be presented. First the use cases and requirements will be
summarized. Then available technologies will be presented and compared. In
following section, the learning phase of the detector will be discussed. Struc-
ture of the program will be presented and all used classes will be described.

4.1 Use cases

Folowing use cases specify interaction between the user and finished applica-
tion.

View licence plates position from camera

View licence plates position from video file

User

Figure 4.1: Use cases summarization

4.2 Requirements

In this section i would like to summarize both the functional and non-functional
requirements. These define how the application should work and specify pos-
sible constraints.

35

4. Realization

4.2.1 Functional requirements

• Detect the positions of license plates.

• Assign the unique ID to detected entities across multiple frames.

4.2.2 Non-functional requirements

• Command line interface

• Visual output

• Detect the license plates positions from video camera stream in real time

• Robustness of detection and tracking

4.3 Used technologies

In this section the available implementation technologies will be summarized
and compared.

4.3.1 C++

Available selection of the programming languages was narrowed by the re-
quirement of using OpenCV library to Java, Python, C and C++.

From these languages C does not support object oriented programming
paradigm, which perfectly fits the purpose.

Python is interpreted language, thus will generally be slower and less ap-
pealing for use in real-time applications.

Java is also interpreted language, but it provides JIT (just in time) com-
piler to transform performance critical parts of application to native machine
code. The great disadvantage is very poor documentation for OpenCV in
version for Java.

After all these consideration the final choice went to C++, which is com-
piled language and has relatively good documentation for the OpenCV library,
which is also natively written in C++.

4.3.2 OpenCV library

Is a BSD licensed open source library, containing over 2500 image processing,
machine learning and computer vision algorithms.

This software is used by many well-established companies, some examples
are Google, Yahoo, Microsoft, Intel, IBM, Sony, Honda and Toyota.

OpenCV is written natively in C++ and has a templated interface that
works seamlessly with STL containers.

The used version will be OpenCV 3.1, which is latest stable release avail-
able.

36

4.4. Detector learning phase

4.4 Detector learning phase

The OpenCV library provides a command line tool for training of the Haar
Cascades, the opencv traincascade. This tools requires two separate collec-
tions of images, serving as positive and negative examples.

Application opencv createsamples then generates a large number of pos-
itive samples from our positive images, by applying transformations and dis-
tortions.

As a positive samples 250 random image from this dataset were used. 500
random images from my phone served as a negative samples.

However, the trained cascade did not perform well, so we decided to use
OpenCV’s supplied cascade for detection of cars instead (cars.xml).

It should be noted that the training of the detector took about 14 hours,
thus it would be very time consuming to train the classifier on the whole
dataset.

Figure 4.2: Examples some of positive samples from the dataset

4.5 Class Car

This class represents one car and is responsible for the tracking phase of the
underlying object.

4.5.1 Constants

• HITS
The constant defines how many successful detections must the car pass
be moved into pool of recognized objects.

37

http://ai.stanford.edu/~jkrause/cars/car_dataset.html

4. Realization

• TTL
This value defines how many detection cycles the object survives when
in pool of possible objects.

• KNOWN OBJECT TTL
This value defines how many detection cycles the object survives when
in pool of recognized objects.

• INTERSECTION UNION RATIO
Defines the minimal overlay of the objects between frames to be con-
sidered the same object.

4.5.2 Methods

• Car (constructor)

• Init
Performed when the objects passes the continuous detection phase. This
method initializes and assigns the instance of KCF tracker to the car.
Also gives unique ID to the car.

• Correct
Effectively reattaches tracker to the new position estimated by output
from the detector, thus avoiding tracker drift.

• Update
Notifies the tracker to track the position of the car on the current frame.

• Hit
Notifies the class that the detector scored a hit against contained object.

• UpdateTTL
Decreases the Time To Live property. When TTL reaches zero, the
tracker is detached and whole instance of object is destroyed.

• ResetTTL
Resets the Time To Live property to constant KNOWN OBJECT TTL.

• Match
Decides whether a specific region in the frame contains actual car.

4.5.3 Members

• m IdPool
Static variable, the unique IDs of all known objects are generating by
incrementing this variable.

38

4.6. Class CarTracker

• m Id
Unique ID of the object.

• m Tracker
Pointer to the attached KCF tracker object. KFC tracker is implemented
in OpenCv library tracking API.

• m Alive
Indicates validity of the object. Negative value means either tracker
failed, the object did not passed the initial detection stage or TTL has
expired.

• m Rect
This variable contains actual bounding of the object.

• m Hits
Value indicates how many matches from the detector hits the object
needs to be evaluated as recognized object. Its decreased every time
detector scores a hit agains this object.

• m TTL
This value indicates how many unsuccessful detections the object en-
dures before is destroyed. If the object passed the evaluation phase, this
value is continuously updated when the object is detected by detector.

4.6 Class CarTracker

This class represents the whole detection and tracking framework.

4.6.1 Constants

• CASCADE FILE
The path to the XML file containing trained Haar Cascade, that will be
used by detector.

• DETECTION PERIOD
Defines the period of frames in which the detection is performed when
the pool of candidate objects is empty.

4.6.2 Methods

• Process
This function is the main routine and completely processes one frame. It
performs the detection stage when the frame matches the period defined
in constant DETECTION PERIOD. Also performs the tracking stage
of known objects.

39

4. Realization

• Track
Performs tracking of all members of the known objects pool and displays
their bounding boxes. Destroys the objects with tracker failure.

• Detect
This function first converts the frame into grayscale image and performs
histogram equalization.
Then tries to detect possible cars in the frame. All detector hits are
then matched against both possible and recognized objects, their status
being updated. The possible objects that accumulated enough hits are
moved to pool of known objects and their trackers are initialized.
Eventual new objects are then inserted into possible objects pool. Status
of members of both pools is updated and outlived objects are destroyed.

4.6.3 Members

• m FrameNr
This variable is frame counter and is incremented with each Process
function call.

• m Cars
This linked list serves as a pool for successfully recognized cars.

• m Possible
This linked list serves as a pool for the candidates for recognized cars.
Every object with successful hit from the detector underwents its eval-
uation phase there, after which is either discarded or moved to m Cars.

• m Classifier
This is a reference to Haar classifier, using the cascade specified in con-
stant CASCADE FILE. This classifier is used to perform the detection
phase and is implemented in the OpenCV’s object detection library.

4.7 Class QuadTree

This class realizes the quad tree structure for matching phase of the algorithm.

4.7.1 Constants

• SPLIT
Defines the capacity of one leaf. If the number of objects in the leaf
exceeds this constant, the leaf splits (if not in maximum depth).

• MAX DEPTH
Defines maximum depth of the tree.

40

4.7. Class QuadTree

4.7.2 Methods

• QuadTree (constructor)
Constructs empty node of quadtree.

• Fits
Checks if object fits into the current node.

• Split
Splits the leaf and creates its children.

• AddToChilds
Finds the fitting child of the current node and adds the object into it.

• Add
Adds object to the tree, eventually calls AddToChilds and Split to pre-
serve correct structure of the tree.

• Match
Checks whether any object in the tree matches the input object.

4.7.3 Members

• m Bounds
Boundary box of the node.

• m Childs
Pointer to the childs of the node.

• m Objects
Pointers to the contained objects.

• m ObjectsNr
Number of the objects stored.

• m ObjectsLen
m Objects allocated size.

41

Chapter 5
Testing

During the development, every finished component underwent extensive unit
testing. These tests are summarized in this chapter

5.1 Class Car

• Tracker failure test
The underlying tracker was supplied with random sequences of images
and regions of interest outside of the image borders. The class was tested
to deal with such issues.

• Tracker correction test
Randomly shifted targets were preserved to the tracker. The class was
tested to deal with this condition with and without the detector help.

• Matching test
Extensive matching using the Quad Tree structure was tested.

5.2 Class CarTracker

• Detector test
The performance of the detector was tested with different preprocessing,
for example with added gaussian noise.

• Idle/busy mode test
Random regions of the image were inserted into pool of possible objects
and the detector behavior according to the setting of constant DETEC-
TION PERIOD was checked.

43

5. Testing

5.3 Class QuadTree

• Addition/Removal test
Multiple objects were inserted into the tree and the correctness of the
structure was validated.

44

Chapter 6
Experimental results

In this section, i would like to present experimental results of my implement-
ation of proposed algorithm. For these purposes, i have recorded several dif-
ferent scenes under diverse conditions.

6.1 Metrics

In order to evaluate the results, following metrics will be introduced:

• Car count
Number of distinguishable cars in the video. Percentage is always 1.0.

• True positives
Count of successfully classified cars. Percentage is computed as Car
Count divided by True positives.

• False positives
Number of false alarms. Percentage is computed as False positives di-
vided by True positives.

• Multiply classified
Count of multiply classified (relabeled) cars. Percentage is computed
relatively to True positives.

6.2 Program settings

Program constants were set as follows:

• Car :: HITS = 5;

• Car :: TTL = 10;

• Car :: KNOWN OBJECT TTL = 30;

45

6. Experimental results

• Car :: INTERSECT UNION RATIO = 0.1;

• CarTracker :: CASCADE FILE = ”cars.xml”;

• CarTracker :: DETECTION PERIOD = 10;

The Haar cascade file used was the supplied OpenCV cascade classifier for
cars detection (cars.xml).

6.3 Highway

This scene is placed on the highway, in good weather conditions and broad
daylight. Because the road is straight, most of the cars are facing the camera
with their backs.

Figure 6.1: The highway

The detection of cars in opposite direction is irrelevant, because they are
not entirely visible, due to barriers separating traffic lanes.

Also trucks, although mostly correctly detected are not taken into account.

6.3.1 Results
metric count percentage
cars in the video 5 1.0
true positives 5 1.0
false positives 1 0.16
multiply classified 0 0.0

46

6.4. One target

6.4 One target

In this video, for most of the time, the recording car is following another
car on entirely empty route. One parking lot with several other cars is then
approached. The video ends with approach of the nearby town, where several
cars are met in opposite direction.

Figure 6.2: Chasing one target

Cars at the pump station are not counted, because they are not in the
center of the scene.

6.4.1 Results
metric count percentage
cars in the video 10 1.0
true positives 8 0.8
false positives 3 0.27
multiply classified 1 0.1

47

6. Experimental results

6.5 Tunnel

In this scene, the recording car moves in a tunnel, so the scene is relatively
dark, with artificial lighting. There are clusters of cars in the same direction.
In the evaluation of the results only cars whose contours are distinguishable
by human eye count.

Figure 6.3: The tunnel

6.5.1 Results
metric count percentage
cars in the video 7 1.0
true positives 5 0.71
false positives 3 0.3
multiply classified 2 0.28

48

6.6. Night chase

6.6 Night chase

This scene is filmed in very bad lighting conditions, rendering the detection
unreliable. The detector was almost unable to detect cars in opposite direc-
tion, so there is a major weakness in the proposal.

Figure 6.4: Very bad lighting conditions

6.6.1 Results
metric count percentage
cars in the video 11 1.0
true positives 5 0.45
false positives 5 1.0
multiply classified 2 0.18

49

Conclusion

This thesis introduced some of the current approaches to the problem of li-
cense plates detection from camera of moving car. Several state-of-the-art
techniques of tracking and detection are introduced and detection framework
solving the problem is proposed. This framework was successfully implement,
evaluated and proof of concept was verified.

Future research

However, there are several imperfections that can be subject to future research,
for example more robust matching of overlaying objects or better optimization
for scenes with many objects.

Also, as implied by the testing phase, some better preprocessing should be
proposed, in order to improve objects detection in bad lighting conditions.

Training of the Haar cascade classifiers is another object of possible future
research.

51

Bibliography

[1] Shiffman, D. HSB Color Space. 2008. Available from: https://
processing.org/tutorials/color/

[2] Mula, W. Bitmap and its compressed quadtree representation. 2008.
Available from: https://en.wikipedia.org/wiki/Quadtree#/media/
File:Quad_tree_bitmap.svg

[3] Wikipedia. k-d tree decomposition for the point set (2,3), (5,4), (9,6),
(4,7), (8,1), (7,2). 2006. Available from: https://en.wikipedia.org/
wiki/K-d_tree#/media/File:Kdtree_2d.svg

[4] Guel, M. Y. The resulting k-d tree. 2008. Available from: https:
//en.wikipedia.org/wiki/K-d_tree#/media/File:Kdtree_2d.svg

[5] Berggren, K.; Gregersson, P. Haar Wavelets. 2008. Available
from: http://fileadmin.cs.lth.se/graphics/theses/projects/
facerecognition/

[6] Vargas, J. HSL, HSB and HSV color: differences and conversion. oct
2013. Available from: http://codeitdown.com/hsl-hsb-hsv-color/

[7] Rouse, M. Definition - hue, saturation, and brightness. 2014. Available
from: http://whatis.techtarget.com/definition/hue-saturation-
and-brightness

[8] Wright, C. YUV Colorspace. 2004. Available from: http://
softpixel.com/˜cwright/programming/colorspace/yuv/

[9] Alper Yilmaz, M. S. Object Tracking: A Survey. dec 2006. Available from:
https://www.ppgia.pucpr.br/˜alceu/pdi/Video%20Segmentation%
20and%20Tracking/Yilmaz.pdf

[10] Yali Amit, P. F. Object Detection. Available from: https://
cs.brown.edu/˜pff/papers/detection.pdf

53

https://processing.org/tutorials/color/
https://processing.org/tutorials/color/
https://en.wikipedia.org/wiki/Quadtree#/media/File:Quad_tree_bitmap.svg
https://en.wikipedia.org/wiki/Quadtree#/media/File:Quad_tree_bitmap.svg
https://en.wikipedia.org/wiki/K-d_tree#/media/File:Kdtree_2d.svg
https://en.wikipedia.org/wiki/K-d_tree#/media/File:Kdtree_2d.svg
https://en.wikipedia.org/wiki/K-d_tree#/media/File:Kdtree_2d.svg
https://en.wikipedia.org/wiki/K-d_tree#/media/File:Kdtree_2d.svg
http://fileadmin.cs.lth.se/graphics/theses/projects/facerecognition/
http://fileadmin.cs.lth.se/graphics/theses/projects/facerecognition/
http://codeitdown.com/hsl-hsb-hsv-color/
http://whatis.techtarget.com/definition/hue-saturation-and-brightness
http://whatis.techtarget.com/definition/hue-saturation-and-brightness
http://softpixel.com/~cwright/programming/colorspace/yuv/
http://softpixel.com/~cwright/programming/colorspace/yuv/
https://www.ppgia.pucpr.br/~alceu/pdi/Video%20Segmentation%20and%20Tracking/Yilmaz.pdf
https://www.ppgia.pucpr.br/~alceu/pdi/Video%20Segmentation%20and%20Tracking/Yilmaz.pdf
https://cs.brown.edu/~pff/papers/detection.pdf
https://cs.brown.edu/~pff/papers/detection.pdf

Bibliography

[11] Helland, T. Seven grayscale conversion algorithms (with pseudo-
code and VB6 source code). oct 2011. Available from: http://
www.tannerhelland.com/3643/grayscale-image-algorithm-vb6/

[12] Yarlagadd, R. Convolution and Correlation. Analog and Digital Signals
and System, 2010.

[13] Powell, V. Image Kernels Explained Visually. 2015. Available from: http:
//setosa.io/ev/image-kernels/

[14] Demut, R. Common characteristics of classification and regression. 2010.
Available from: https://edux.fit.cvut.cz/courses/MI-ADM/_media/
lectures/02/skripta1-v2.pdf

[15] Johnson, N. Damn Cool Algorithms: Spatial indexing with Quadtrees
and Hilbert Curves. Available from: http://blog.notdot.net/2009/11/
Damn-Cool-Algorithms-Spatial-indexing-with-Quadtrees-and-
Hilbert-Curves

[16] Sheetal Rani, P. K. D. A Review of Recognition Technique u sed Auto-
matic License Plate Recognition System. 2015. Available from: http:
//research.ijcaonline.org/volume121/number17/pxc3904938.pdf

[17] Wenjing Jia, X. H., Huaifeng Zhang. Region-based license plate detection.
nov 2007. Available from: http://www.sciencedirect.com/science/
article/pii/S1084804506000762

[18] Muhammad H Dashtban, H. B., Zahra Dashtban. A Novel Ap-
proach for Vehicle License Plate Localization and Recognition.
jul 2011. Available from: http://www.ijcaonline.org/volume26/
number11/pxc3874382.pdf

[19] Tejendra Panchal, A. P., Hetal Patel. License Plate Detection Using Har-
ris Corner and Character Segmentation by Integrated Approach from an
Image. 2016. Available from: http://www.sciencedirect.com/science/
article/pii/S187705091600185X

[20] Bulugu, I. Algorithm for License Plate Localization and Recognition
for Tanzania Car Plate Numbers. 2013. Available from: https://
www.ijsr.net/archive/v2i5/IJSRON2013933.pdf

[21] Tarabek, P. A real-time license plate localization method based on
vertical edge analysis. 2012. Available from: https://fedcsis.org/
proceedings/2012/pliks/354.pdf

[22] Wang, G.; Xiao, D.; et al. Review on vehicle detection based on
video for traffic surveillance. sep 2008. Available from: http://
ieeexplore.ieee.org/document/4636684/

54

http://www.tannerhelland.com/3643/grayscale-image-algorithm-vb6/
http://www.tannerhelland.com/3643/grayscale-image-algorithm-vb6/
http://setosa.io/ev/image-kernels/
http://setosa.io/ev/image-kernels/
https://edux.fit.cvut.cz/courses/MI-ADM/_media/lectures/02/skripta1-v2.pdf
https://edux.fit.cvut.cz/courses/MI-ADM/_media/lectures/02/skripta1-v2.pdf
http://blog.notdot.net/2009/11/Damn-Cool-Algorithms-Spatial-indexing-with-Quadtrees-and-Hilbert-Curves
http://blog.notdot.net/2009/11/Damn-Cool-Algorithms-Spatial-indexing-with-Quadtrees-and-Hilbert-Curves
http://blog.notdot.net/2009/11/Damn-Cool-Algorithms-Spatial-indexing-with-Quadtrees-and-Hilbert-Curves
http://research.ijcaonline.org/volume121/number17/pxc3904938.pdf
http://research.ijcaonline.org/volume121/number17/pxc3904938.pdf
http://www.sciencedirect.com/science/article/pii/S1084804506000762
http://www.sciencedirect.com/science/article/pii/S1084804506000762
http://www.ijcaonline.org/volume26/number11/pxc3874382.pdf
http://www.ijcaonline.org/volume26/number11/pxc3874382.pdf
http://www.sciencedirect.com/science/article/pii/S187705091600185X
http://www.sciencedirect.com/science/article/pii/S187705091600185X
https://www.ijsr.net/archive/v2i5/IJSRON2013933.pdf
https://www.ijsr.net/archive/v2i5/IJSRON2013933.pdf
https://fedcsis.org/proceedings/2012/pliks/354.pdf
https://fedcsis.org/proceedings/2012/pliks/354.pdf
http://ieeexplore.ieee.org/document/4636684/
http://ieeexplore.ieee.org/document/4636684/

Bibliography

[23] Cao, Y.; Lei, Z.; et al. A Vehicle Detection Algorithm Based on Compress-
ive Sensing and Background Subtraction. 2012. Available from: http:
//www.sciencedirect.com/science/article/pii/S2212671612000765

[24] Kim, D.-S.; Kwon, J. Moving Object Detection on a Vehicle
Mounted Back-Up Camera. dec 2015. Available from: https://
www.ncbi.nlm.nih.gov/pmc/articles/PMC4732056/

[25] Caraffi, C.; Voj́ı̌r, T.; et al. A System for Real-time Detection and Track-
ing of Vehicles from a Single Car-mounted Camera. Master’s thesis,
Czech Technical University in Prague Faculty of Electrical Engineering,
2012.

[26] de Souza, C. Haar-feature Object Detection in C#. dec 2014. Avail-
able from: https://www.codeproject.com/articles/441226/haar-
feature-object-detection-in-csharp

[27] Messom, C.; Barczak, A. Fast and Efficient Rotated Haar-like Features
using Rotated Integral Images.

[28] Kelly, M. Computer Vision – The Integral Image. sep 2010. Available
from: https://computersciencesource.wordpress.com/2010/09/03/
computer-vision-the-integral-image/

[29] Brownlee, J. Boosting and AdaBoost for Machine Learning. apr 2016.
Available from: http://machinelearningmastery.com/boosting-and-
adaboost-for-machine-learning/

[30] McCormick, C. HOG Person Detector Tutorial. may 2013. Available
from: http://mccormickml.com/2013/05/09/hog-person-detector-
tutorial/

[31] KOWALCZYK, A. SVMs - An overview of Support Vector Machine.
2017. Available from: https://www.svm-tutorial.com/2017/02/svms-
overview-support-vector-machines/

[32] Rojas, P. D. R. Lucas-Kanade in a Nutshell.

[33] Marshall, D. Optical Flow Constraint Equation. 1997. Available
from: http://users.cs.cf.ac.uk/Dave.Marshall/Vision_lecture/
node47.html

[34] Zdenek Kalal, J. M., Krystian Mikolajczyk. Tracking-Learning-
Detection. jan 2010. Available from: http://kahlan.eps.surrey.ac.uk/
featurespace/tld/Publications/2011_tpami

55

http://www.sciencedirect.com/science/article/pii/S2212671612000765
http://www.sciencedirect.com/science/article/pii/S2212671612000765
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4732056/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4732056/
https://www.codeproject.com/articles/441226/haar-feature-object-detection-in-csharp
https://www.codeproject.com/articles/441226/haar-feature-object-detection-in-csharp
https://computersciencesource.wordpress.com/2010/09/03/computer-vision-the-integral-image/
https://computersciencesource.wordpress.com/2010/09/03/computer-vision-the-integral-image/
http://machinelearningmastery.com/boosting-and-adaboost-for-machine-learning/
http://machinelearningmastery.com/boosting-and-adaboost-for-machine-learning/
http://mccormickml.com/2013/05/09/hog-person-detector-tutorial/
http://mccormickml.com/2013/05/09/hog-person-detector-tutorial/
https://www.svm-tutorial.com/2017/02/svms-overview-support-vector-machines/
https://www.svm-tutorial.com/2017/02/svms-overview-support-vector-machines/
http://users.cs.cf.ac.uk/Dave.Marshall/Vision_lecture/node47.html
http://users.cs.cf.ac.uk/Dave.Marshall/Vision_lecture/node47.html
http://kahlan.eps.surrey.ac.uk/featurespace/tld/Publications/2011_tpami
http://kahlan.eps.surrey.ac.uk/featurespace/tld/Publications/2011_tpami

Appendix A
Acronyms

CV Computer vision

OCR Optical character recognition

GUI Graphical user interface

XML Extensible markup language

NN Nearest Neigbor

SVM Support Vector Machine

KCF Kernelized Correlation Filters

FPS Frames per second

FOV Field of view

57

Appendix B
Contents of enclosed CD

readme.txt the file with CD contents description
exe the directory with executables
src.......................................the directory of source codes

wbdcm implementation sources
thesis..............the directory of LATEX source codes of the thesis

text..the thesis text directory
thesis.pdf...........................the thesis text in PDF format
thesis.ps..............................the thesis text in PS format

59

	Introduction
	Problem statement
	Goals of the thesis
	Thesis outline

	Basics
	Image processing
	Converting image to grayscale
	Data Mining
	Spatial domain indexing algorithms

	Analysis
	Typical ALPR system
	Licence plate detection
	Vehicle detection
	Viola-Jones algorithm
	HOG detector
	Lucas-Kanade Optical flow tracker
	Tracking-Learning-Detection

	Proposal
	Obtaining sample data
	Outline of the detection framework structure
	Preprocessing
	Matching
	Object classes
	Tracker

	Realization
	Use cases
	Requirements
	Used technologies
	Detector learning phase
	Class Car
	Class CarTracker
	Class QuadTree

	Testing
	Class Car
	Class CarTracker
	Class QuadTree

	Experimental results
	Metrics
	Program settings
	Highway
	One target
	Tunnel
	Night chase

	Conclusion
	Future research

	Bibliography
	Acronyms
	Contents of enclosed CD

