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Instructions

Online Ramsey theory (ORT) is a modern branch of the well-developed classical Ramsey theory, which
studies the existence of homogeneous substructures in various large combinatorial structures. We focus on
ORT problems regarding graphs: Builder and Painter play in turns, where Builder draws an edge and Painter
colors it either red or blue. Builder wins if there is a monochromatic copy of a graph H, otherwise Painter
wins; Builder must win as fast as possible. Recently, ORT gained a lot of attention in the international
community. Moreover, there exists a lot of interesting open questions to be solved, which we want to
address by this thesis.

1) Survey previous work in the field of graph ORT.
2) Investigate the differences of online Ramsey number and size Ramsey number for certain graph classes,
like paths, cycles, and various subclasses of trees.
3) Try to attack the problem of investigating the online Ramsey number of trees.
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Abstrakt

Tato práce se zabývá online Ramseyovou teoríı. Problém je definován jako kombinator-
ická hra Buidera a Paintera. Je dán libovolný graf H a hraćı plocha nekonečně mnoha
nezávislých vrchol̊u. Každé kolo Builder postav́ı novou hranu do grafu hraćı plochy a
Painter ji obarv́ı červeně nebo modře. Online Ramseyovo č́ıslo grafu H je minimálńı počet
kol, které Builder potřebuje, aby vynutil vznik jednobarevného podgrafu isomorfńıho s H
uvnitř hraćı plochy.

Online Ramseyovo č́ıslo se často srovnává se size-Ramsey č́ıslem, což je nejmenš́ı počet
hran grafu takového, že libovolné jeho obraveńı dvěma barvama obsahuje jednobarevnou
kopii H. Size-Ramsey č́ıslo shora omezuje online Ramseyovo č́ıslo, nicméně zdá se obt́ıžné
dokázat, že je mezi nimi asymptoticky významný rozd́ıl.

Existuje pouze jeden výsledek takového typu, od Conlona [On-line Ramsey Numbers,
SIAM J. Discrete Math. 2009], který dokázal, že pro nekonečně mnoho úplných graf̊u je
online Ramseyovo č́ıslo asymptoticky menš́ı než size-Ramsey č́ıslo.

V této diplomové práci je popsána nekonečná rodina stromů, pro které je online Ram-
seyovo č́ıslo asymptoticky menš́ı než size-Ramsey č́ıslo. Také jsou v ńı dokázány horńı
meze pro online Ramseyovo č́ıslo cykl̊u a k-podrozdělených hvězd. A nakonec je přesně
určena hodnota omezeného online Ramseyova č́ısla pro trojúhelńıky versus hvězdy na tř́ıdě
souvislých graf̊u.

Kĺıčová slova online Ramseyova č́ısla, size-Ramsey č́ısla, Ramseyova grafová teorie
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Abstract

In this thesis we study the online Ramsey theory. The problem is defined as a game
between Builder and Painter. They are given an arbitrary graph H and a playground of
infinite number of independent vertices. On each round, Builder builds a new edge to the
playground and Painter colors it either red or blue. The online Ramsey number of a graph
H is the minimum number of rounds Builder needs to force a monochromatic H to appear
as a subgraph of the playground.

We compare the online Ramsey number to the size-Ramsey number, which is the
minimum number of edges in a graph, that for arbitrary 2-edge-coloring contains a mono-
chromatic copy of H. The size-Ramsey number upper bounds the online Ramsey number,
however it seems to be difficult to show that there is an asymptotic gap between them.

There is only one known result of this type, by Conlon [On-line Ramsey Numbers,
SIAM J. Discrete Math. 2009], who showed that for an infinite number of complete graphs,
the online Ramsey number is asymptotically smaller than the size-Ramsey number.

In this thesis we describe an infinite family of trees for which the online Ramsey
number is asymptotically smaller than size-Ramsey number. We also prove upper bounds
for online Ramsey numbers of cycles and k-subdivided stars. And finally we provide an
exact value of online Ramsey numbers of triangles versus stars restricted to connected
graphs.

Keywords online Ramsey number, size Ramsey number, Ramsey graph theory
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Chapter 1

Introduction and Notation

Let us suppose we are given a graph and its edges are colored arbitrarily red or blue.
Results in the field of Ramsey graph theory suggest that if the initial graph satisfies some
conditions, then a certain monochromatic subgraph will always be present. As an example,
given people are always either mutually friends or strangers, it is certain that in a group of
six people there are three who know each other or three who are mutually strangers (also
known as Theorem on friends and strangers). The same notion can be expressed in graph
theory by a complete graph with six vertices and each edge colored either red or blue.
Vertices correspond to people and edge color to their relationship, red for friends and blue
for strangers. The statement that three of these people are in the same relationship with
each other is analogous to saying that a 2-edge-colored complete graph on six vertices
contains a monochromatic triangle.

The theorem on friends and strangers can be generalized such that we ask a question:
How many people do we need to guarantee that n of those people are in a same mutual
relationship? This generalization allows more types of relationships than two, however
it is not clear whether there is always a solution. This problem was studied by F. P.
Ramsey and in 1930 [1] he proved that the solution exists. From a graph theoretic view,
he showed that when given k complete graphs with respective orders and colors, the order
of an edge-colored complete graph, which contains at least one monochromatic clique of
respective order and color, is finite. The minimal order of such a complete graph is called
the (classical) Ramsey number. This result was followed by an explicit upper bound on
Ramsey number by Erdős and Szekeres [2] and lower bound by Erdős [3]. It should be
noted that there are only 9 known precise Ramsey numbers for non-trivial cases, which
demonstrates the difficulty of evaluating Ramsey numbers [4].

Given k arbitrary graphs in their unique colors, the generalized Ramsey number is the
minimal order of a complete graph such that it contains one of those arbitrary graphs as
a monochromatic subgraph in its color. Since any graph is contained as a subgraph in a
complete graph on the same number of vertices, it follows that the generalized Ramsey
number for arbitrary graphs is finite and bounded by the Ramsey number of its respective
complete graph. There are many results for generalized Ramsey numbers, some of which
we will recall in this thesis.

Later, a version called size-Ramsey number was introduced by Erdős et al. [5]. Size-
Ramsey number minimizes the number of created edges instead of the order of the complete
graph. Clearly, the size-Ramsey number is bounded by the number of edges in the complete
graph of respective Ramsey number. This version was studied for example in [6, 7, 8, 9, 10].

The online Ramsey number, which combines the notion of Ramsey numbers and com-
binatorial games, was introduced independently by Beck [11] and Friedgut et al. [12]. It is
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1. Introduction and Notation

best defined as a game of two players called Builder and Painter, playing over an infinite
set of vertices. They are given k arbitrary graphs and one color for each of these arbitrary
graphs. Each round, Builder creates an edge and Painter colors it one of k colors immedi-
ately. Builder’s goal is to force one of the arbitrary graphs to appear as a monochromatic
subgraph in its color, regardless of Painter’s decisions. Painter’s goal is to deny Builder
achieving his goal for as many rounds as possible. The online Ramsey number is the min-
imum number of rounds such that Builder has a winning strategy, assuming both players
play optimally.

The online Ramsey number is guaranteed to exist, because Builder can simply create
a big complete graph, which by the Ramsey theorem contains a smaller monochromatic
clique. Therefore, similarly to previous versions of Ramsey numbers, our only goal is to
determine its value. This led to the creation of a new version of online Ramsey number we
call restricted online Ramsey number. It was introduced in 2004 by Grytczuk et al. [13].
Unlike versions we presented so far, this version does not allow Builder to create arbitrary
graphs. Instead, Builder is only allowed moves which keep the graph in the given class of
graphs. This might restrict Builder in a way such that he needs significantly more moves
to win. If the class of graphs is too strict, it is impossible for Builder to win, meaning such
online Ramsey number does not exist. The focus of study in the restricted online Ramsey
number variant is to define a class of graphs which allow Builder to win. Some results for
this variant can be found in [14, 13, 15, 16].

Although we know, that the online Ramsey number is not bigger than the size-Ramsey
number, it is not clear whether there is an asymptotically significant difference. As far
as we know, there is only one known result for nontrivial graphs which proves that there
is an asymptotic gap between the size-Ramsey number and the online Ramsey number.
The proof was made in 2009 by Conlon [17] showing that there is an infinite number of
complete graphs for which the online Ramsey number is smaller than their size-Ramsey
number. Therefore, we define the main goal of this thesis is to study differences between
size-Ramsey numbers and online Ramsey numbers and to characterize cases for which the
online Ramsey number is asymptotically smaller than the size-Ramsey number.

In this thesis we present the following results. First, we describe the second nontrivial
infinite family of graphs, for which the online Ramsey number r̃ is asymptotically smaller
than the size-Ramsey number r.

Theorem 1. There is an infinite sequence of trees T1, T2, . . . such that |Ti| < |Ti+1| for
each i ≥ 1 and

lim
i→∞

r̃(Ti)

r(Ti)
= 0.

Second, we show a result for the online Ramsey number of stars with subdivided edges
which matches the lower bound for size-Ramsey number, however in a constructive way.
Similarly, we show a constructive proof that the online Ramsey number of even cycles is
no more than 23n/2− 20, and for odd cycles 24n− 20, lowering the known upper bounds.

Theorem 2. Let Cn be a cycle on n vertices. Then r̃(Cn) ≤ 23n/2− 20 if n is even, and
r̃(Cn) ≤ 24n− 20 if n is odd.

And last, we provide an exact value of a restricted online Ramsey number of triangles
versus stars, when Builder is allowed to make only connected graphs.

Theorem 3. The online Ramsey number for a red C3 versus a blue Sn, given Builder is
allowed to create only connected graphs, is r̃C(C3, Sn) = 3n− 1.

2



1.1. Notation

The rest of the thesis is arranged as follows. After the introduction we continue with a
brief notation overview. In Section 2, we survey work done so far in Ramsey graph theory,
generalized Ramsey numbers, size-Ramsey number, and online Ramsey number and we
reiterate on results which are relevant to our work. Then in Section 3 we elaborate on our
own results. In Section 3.1, we start by proving Theorem 1, presenting a family of trees
for which the online Ramsey number is asymptotically smaller than their size-Ramsey
number. Then we show our results for subdivided stars and cycles in Sections 3.2 and 3.3
respectively. And last, we solve restricted online Ramsey number of triangles versus stars
by proving Theorem 2 in Section 3.4.

1.1 Notation

We define a graph G as an ordered pair (V,E) of its vertices V (G) and edges E(G). The
order of G is the number of its vertices |V (G)|. A tree T is a graph which is connected
and |E(T )| = |V (T )| − 1. A forest is a union of disjoint trees. We use G to denote the
complement of graph G,

G = (V (G), {{u, v} | u, v ∈ V (G)} \ E(G)).

Let Kt be a complete graph of order t, Kn,m be a complete bipartite graph, Pn a path
of length n, and Sk = K1,k a star with k vertices connected to a common center vertex,
i.e.,

Kt = ({v1, v2, . . . , vk}, {{u,w} | for all u,w ∈ v1, v2, . . . , vk;u 6= w}),
Kn,m = (V (Kn) ∪ V (Km), E(Kn ∪Km)) assuming V (Kn) ∩ V (Km) = ∅,
Pn = ({v1, v2, . . . , vn+1}, {{vi, vi+1} | i ∈ {1, 2, . . . , n}}),
Sk = ({u, v1, v2, . . . , vk}, {{u, v} | v ∈ v1, v2, . . . , vk}}).

We will use ∆(G) = maxu∈V (G) |{u, v} ∈ E(G)| as the maximum degree of graph G.
Let the k-edge-coloring, or k-coloring, of a graph G be a function f : E(G)→ {1, 2, . . . , k},
and note that it does not have to be a proper edge-coloring.

In Section 3.1 we show results for the following graphs. Let Sk,l be a tree consisting
of a vertex v which has k neighbors x1, . . . , xk and each xi is connected to l leaves. Let
spider σk,l for k ≥ 3 and l ≥ 1 be a union of k paths of length l that share exactly one
common endpoint.

We denote Ramsey number by r(n1, n2, . . . , nk), similarly generalized Ramsey number
as r(G1, G2, . . . , Gk), size-Ramsey number as r(G1, G2, . . . , Gk) and online Ramsey number
as r̃(G1, G2, . . . , Gk) (for proper definitions see Section 2). We also use rG(G1, G2, . . . , Gk)
and r̃G(G1, G2, . . . , Gk) for the restricted size-Ramsey number and restricted online Ram-
sey number respectively. For the 2-color version with two identical target graphs, we use
r(n) = r(n, n) and similarly r(G), r(G) and r̃(G) respectively for each Ramsey number
version.

3





Chapter 2

Survey of related results

Survey of the field of Ramsey theory would take several hundred pages, so in this section
we cover only results essential to Ramsey theory and results related to this thesis. Broader
survey of Ramsey theory can be found for example in Handbook of Graph Theory [4] and
Ramsey Theory [18].

The majority of results in Ramsey graph theory use only 2 colors. For the sake of
consistency, we chose the first color to be red and the second to be blue throughout this
thesis.

We divided this section based on variants of the Ramsey number. We first define the
classical Ramsey number and show few essential results. We follow with the definition
of generalized Ramsey number and present few results as well. After that we define size-
Ramsey number and establish known results which are related to our goal of finding an
asymptotic gap between the size-Ramsey number and the online Ramsey number. In the
last part, we formally introduce an online Ramsey number. We will reiterate on few known
results which bound the online Ramsey number and we will remind results made in variant
where Builder is restricted. We also include two known results in more detail. The first
is the only result in showing that online Ramsey number is asymptotically smaller than
size-Ramsey number by Conlon [17]. The second is proof of upper bound for paths by
Grytczuk et al. [19], which we use to establish our upper bounds on cycles and subdivided
stars.

2.1 Results for classical Ramsey numbers

Given a number t, what is the minimum number r(t) such that a Kr(t) with edges colored
arbitrarily red or blue, such that there is either a red Kt or a blue Kt as a subgraph?
The r(t) is called Ramsey number and even though it answers such a simple question,
determining its value proved to be quite difficult.

Definition 1. Let the Ramsey number r(t1, t2, . . . , tk) be the minimum number, such that
k-edge-colored complete graph of such order is guaranteed to contain at least one Ki as a
monochromatic subgraph in i-th color.

By definition, order of parameters does not have any influence on the Ramsey number.
Also trivially for n ≥ 2, r(2, n) = r(n, 2) = n.

The first nontrivial result which is associated with Ramsey numbers was made in 1930
by F. P. Ramsey [1] (and re-released in 1987 [20]).

5



2. Survey of related results

Theorem 4 (Ramsey’s Theorem [1], simplified). Given positive integers k, n1, n2, . . . , nk,
there is a least positive integer r(n1, n2, . . . , nk) such that, for any partition C1, C2, . . . , Ck
of the edges of a complete graph Kp with p ≥ r(n1, n2, . . . , nk), there is for some i a
complete subgraph Kni all of whose edges are in Ci.

The partitions of the edges are commonly described as colors. Partitioning edges of G
into k sets is analogous to coloring those edges with k colors, which we refer to as k-edge-
coloring of G. Compared to the introductory example, here we have k colors instead of 2
and each complete graph can have different order.

The Ramsey numbers in the form r(t) = r(t, t) are called diagonal Ramsey numbers
and those with r(n,m) where n 6= m are called off-diagonal Ramsey numbers.

The Ramsey numbers were upper bounded by Erdős and Szekeres [2] proving, that
r(m,n) ≤ r(m − 1, n) + r(m,n − 1), for all m,n ≥ 3, which can be used inductively to
prove

r(m+ 1, n+ 1) ≤
(
m+ n

m

)
, (2.1)

which was used to get an upper bound

r(t) ≤ [1 + o(1)]
4t−1√
πt
.

Several years later, Erdős [3] came up with the first lower bound on Ramsey number,
showing that

r(t) ≥ 2t/2, (2.2)

using probabilistic method. Since then, there have been many results refining these
bounds. The best bounds as of today are as follows. The bounds on diagonal Ramsey
numbers r(t) are

r(t) ≥ t2t/2[(
√

2/e) + o(1)],

r(t+ 1) ≤ t−c
log t

log log t

(
2t

t

)
,

for some constant c. The lower bound is due to Spencer [21], and the upper bound is due
to Conlon [22]. For off-diagonal Ramsey numbers we have

c′s
t
s+1
2

(log t)
s+1
2
− 1

s−2

≤ r(s, t) ≤ cs
ts−1

(log t)s−2
.

The lower bound is due to Bohman and Keevash [23] and the upper bound due to Ajtai
et al. [24]

2.2 Results for generalized Ramsey numbers

Ramsey’s theorem implies that for any given set of target graphs G1, G2, . . . , Gk the min-
imal order of k-edge-colored complete graph which contains Gi in i-th color is finite.

Definition 2. Let the generalized Ramsey number r(G1, G2, . . . , Gk) be the minimum
number, such that arbitrarily k-edge-colored complete graph of such order contains at least
one Gi as a monochromatic subgraph in i-th color.

6



2.3. Results for size-Ramsey numbers

Clearly for any graphs Gn and Gm of order n and m respectively, r(Gn, Gm) ≤ r(n,m).
However generalized Ramsey number can be significantly smaller than Ramsey number,
as demonstrated by Gerencsér and Gyárfás [25]

r(Pn, Pm) = n+

⌊
m

2

⌋
− 1,

which has only linear order compared to the exponential lower bound for classical Ramsey
number.

In 1973 Bondy and Erdős [26] investigated Ramsey number for red cycles and either
blue cycles or blue cliques, showing the exact values for many cases. This was followed by
Rosta [27, 28] and by Faudree and Schelp [29] leading to a complete solution for cycles.
For 3 ≤ m ≤ n and (m,n) 6= (3, 3), (4, 4),

r(Cm, Cn) =


2n− 1 when m is odd,

n+ m
2 − 1 when m and n are even, and

max{n+ m
2 − 1, 2m− 1} when m is even and n is odd.

This was followed by an increased interest in the 3 color version of the Ramsey number
for cycles.

In 1977 Chvátal [30] proved that the Ramsey number of cliques versus trees of orders
m and n is

r(Km, Tn) = (m− 1)(n− 1) + 1.

Since the generalized Ramsey number is the most studied of the variants we describe
in this thesis, we had to skip many inspiring results in the sake of brevity.

2.3 Results for size-Ramsey numbers

The graphs created for generalized Ramsey numbers are always complete graphs. However
the number of required edges to reach the same goal might be asymptotically smaller than
the number of edges in a complete graph. This notion is captured in the definition of the
size-Ramsey number.

Definition 3. Let the size-Ramsey number r(G1, G2, . . . , Gk) be the minimum number
of edges of a graph, for which arbitrary k-edge-coloring contains at least one Gi as a
monochromatic subgraph in i-th color.

Its value has trivial lower bound and is upper bounded by the number of edges of the
complete graph for respective generalized Ramsey number.

1 +
k∑
i=1

(E(Gi)− 1) ≤ r(G1, G2, . . . , Gk) ≤
(
r(G1, G2, . . . , Gk)

2

)
Both of these cases occur, so we are interested in characterization of specific bounds for
various classes of graphs.

A different view on the size-Ramsey number is through a combinatorial game of two
players. The players, Builder and Painter, are given k target graphs G1, G2, . . . , Gk.
Builder first creates the whole graph and then Painter colors all the edges with k colors,
attempting to avoidGi in i-th color. The size-Ramsey number r(G) describes the minimum
number of edges the Builder must construct in order to ensure that regardless of Painter’s

7



2. Survey of related results

decisions a monochromatic copy of Gi in i-th color will be created somewhere in the graph.
We will draw comparisons to this interpretation in Section 2.4.

There are several known results for size-Ramsey numbers, however they frequently rely
on probabilistic method which in turn makes those results non-constructive.

In 1978 by Erdős et al. [5] showed that the size-Ramsey number for cliques is the same
as number of edges of the clique for the respective classical Ramsey number.

r(Km,Kn) =

(
r(m,n)

2

)
(2.3)

Interestingly, results concerning size-Ramsey number of trees are well developed. Let
T0 and T1 be partitions of the unique bipartitioning of the given tree T . Let β(T ) =
|T0|∆(T0) + |T1|∆(T1). In 1990 Beck [6, 7] showed bounds on the size-Ramsey number of
trees

β(T )/4 ≤ r(T ) ≤ O(β(T ) log(|T |)12).

In 1995 Haxell and Kohayakawa [9] refined the upper bound of Beck and proved that

r(T ) = O(β(T ) log ∆(T )).

Recently, in 2012 Dellamonica [8] showed that Beck’s lower bound is asymptotically tight,
proving Beck’s conjecture

r(T ) = Θ(β(T )).

He proved existence of a graph G with special properties using the probabilistic method
and provided an algorithm to embed any T into such G.

In 1983 Beck [6] showed that the size-Ramsey number of paths is linear in their length
by upper bounding them with r(Pn) < 900n. This bound was improved in 2015 by Dudek
and Pra lat [31] to r(Pn) < 137n.

There are also some results in variation which requires the target graph to appear as
an induced monochromatic subgraph.

Definition 4. Let the induced size-Ramsey number be the minimum number of edges of
a graph, for which arbitrary k-edge-coloring contains at least one Gi in i-th color as an
induced monochromatic subgraph.

In 1995 Haxell, Kohayakawa and  Luczak [10] showed that induced size-Ramsey number
for cycles r(Cn) is linear in n. This result naturally applies to size-Ramsey numbers, since
induced variant implies non-induced one.

2.4 Results for online Ramsey numbers

The notion of an online Ramsey number was introduced independently by Beck [11] and
by Friedgut et al. [12]. The online Ramsey number is often introduced in terms of the
following combinatorial game, called an online Ramsey game.

The game is played in rounds between Builder and Painter. Each round Builder
creates an edge and Painter colors it immediately with one of k colors. These edges in-
duce gradually growing background graph. The game also contains a set of target graphs
G1, G2, . . . , Gk. Builder wins the game whenever the background graph contains a mono-
chromatic subgraph in i-th color isomorphic to the target graph Gi. Painters goal is to
play the game for as many rounds as possible.

8



2.4. Results for online Ramsey numbers

Definition 5. The online Ramsey number is the minimum number of rounds such that
Builder has a winning strategy in the online Ramsey game if both players play optimally.

The connection to classical Ramsey number and Ramsey theorem implies that Builder
will always win, when given enough rounds. However, the online Ramsey number is also
bounded by the size-Ramsey number.

In Section 2.3 we mentioned that the size-Ramsey number can be defined in terms of a
combinatorial game of two players. First one creates m edges in order to ensure that any
k-coloring of those edges of the graph G yields Gi in i-th color as a subgraph. However,
in that variant Builder first created the whole graph and then Painter picked one of k
colors for each edge. The online Ramsey game gives Builder an advantage of knowing the
edge-coloring of the graph built so far. This means Builder has more information than in
the game for size-Ramsey number and can alter his strategy accordingly. But he can still
use the same moves he would use in the game for size-Ramsey number, therefore

r̃(G1, G2, . . . , Gk) ≤ r(G1, G2, . . . , Gk).

This means that many results from size-Ramsey numbers translate as upper bounds to
online Ramsey numbers.

The best known bounds for online Ramsey number of complete graphs r̃(Kt) are

r(t)− 1

2
≤ r̃(Kt) ≤ t−c

log t
log log t 4t

where c is a positive constant. The lower bound is due to Alon (and was first published
by Beck [11]), and the upper bound is due to Conlon [17].

In 2008 Grytczuk, Kierstead and Pra lat [19] came up with an upper bound for paths

r̃(Pn) ≤ 4n− 3

which we present in detail later in this section. The cases of the online Ramsey number
of paths versus various graphs have been recently investigated by Cyman et al. [32].
They showed that r̃(P3, Pl+1) = r̃(P3, Cl) = d5l/4e for all l ≥ 5. They also determined
r̃(P4, Pl+1) up to an additive constant for all l ≥ 3, and proved some general lower bounds
for online Ramsey numbers of the form r̃(Pk, H).

Besides the value of the online Ramsey number, we are also interested in structure of
the created background graph. Particularly we are interested in a class of graphs which
allow Builder to win. This led to the definition of a variant by Grytczuk, Ha luszczak and
Kierstead [13].

Definition 6. Given a class of graphs G and a set of graphs G1, G2, . . . , Gk, let the re-
stricted online Ramsey number r̃G(G1, G2, . . . , Gk) be the minimum number of rounds such
that the background graph is always in G and Builder has a winning strategy in the online
Ramsey game if both players play optimally.

It was proved by Grytczuk et al. [13] that for a class of forests F and an arbitrary
forest F , the online Ramsey number r̃F (F ) exists. Their proof is constructive and gives
an exponential upper bound on r̃F (F ). Note that in the size-Ramsey number variant the
forest F cannot be forced on the class of forests, because Painter can always color the
edges in a way that the biggest monochromatic subgraph is a star.

We say the graph G is avoidable on class G if r̃G(G) does not exist. If r̃G(G) does
exist, then G is unavoidable on class G. We also use these terms for whole class of graphs
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when it is true for all graphs from that class. If every graph from class G is avoidable on
G, then G is self-avoidable, and if every graph from class G is unavoidable on G, then G is
self-unavoidable.

Besides self-unavoidability of forests, Grytczuk et al. [13] proved that the class of
k-colorable graphs is self-unavoidable. They showed that outerplanar graphs are self-
avoidable, and that cycles are unavoidable on planar graphs, and few other results for
small graphs. They also generalized self-unavoidability of 3-colorable graphs to the online
Ramsey game with 3 colors. They conjectured that the class of graphs unavoidable on
planar graphs is exactly the class of outerplanar graphs.

Recently, in 2014 Petř́ıčková [15] showed that outerplanar graphs are unavoidable on
planar graphs. She also showed an infinite subclass of non-outerplanar graphs which are
unavoidable on planar graphs, disproving the conjecture of Grytczuk et al. [13].

In 2011 Butterfield et al. [14] investigated r̃B(G) of graphs B with bounded degree.
They got several results, one of which is that G is unavoidable on B which has maximum
degree at most 3 if and only if G is a linear forest or each component lies inside K1,3.
Shortly after, Rolnick [16] provided a complete classification for trees T on the class of
graphs with maximum degree 4.

In 2009 Conlon [17] studied the online Ramsey number of cliques. He proved that
there is a constant c such that for infinitely many values of t, Builder needs to draw
no more than c−t

(
r(t)
2

)
edges to obtain a monochromatic Kt. Therefore, for infinitely

many complete graphs the online Ramsey number is asymptotically smaller than their
size-Ramsey number. As far as we know, this is the only result of its kind, showing an
asymptotic gap between the size-Ramsey number and the online Ramsey number.

We will now remind the proof of Conlon [17], and right after that we show an upper
bound on paths by Grytczuk, Ha luszczak and Kierstead [13].

2.4.1 Online Ramsey number of Complete graphs

Our main goal is to compare online and size-Ramsey numbers. In some cases, it is clear that
online Ramsey number will not be asymptotically smaller than its size-Ramsey number
counterpart (e.g., paths and cycles). However, there is a well known conjecture by Kurek
and Ruciński [33] regarding complete graphs, saying that

lim
t→∞

r̃(Kt)

r(Kt)
= 0.

In 2009 Conlon [17] made a step in proving this conjecture by showing that there are
infinitely many values of t for which the online Ramsey number of Kt is asymptotically
smaller than its size-Ramsey number.

Theorem 5 (Conlon 2009). There exists a constant c > 1 such that, for infinitely many
t,

r̃(t) ≤ c−t
(
r(t)

2

)
.

Informally said, the proof is based on creating one vertex of a monochromatic clique at
a time. Each such vertex either contributes to the red clique or the blue clique. When we
meet some threshold we finish all edges of the complete subgraph which is big enough to
contain the rest of the monochromatic clique. Then we bound the total number of created
edges and show it is asymptotically smaller than respective size-Ramsey number.

10
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Proof. Let α = 0.01, µ = 0.99, ν = 0.01, and let R and B be counters for red and blue
colors which are initially set to 0, and let V0 be n isolated vertices. Let NR(v, V ) and
NB(v, V ) denote the red and blue neighborhood of the vertex v in the set of vertices V .
We repeat the following for i from 0 increasing by 1, until either R ≥ µt or B ≥ µt or
R ≥ νt and B ≥ νt at the same time. Select an arbitrary vertex vi+1 of Vi, and create
|Vi| − 1 edges from vertex vi+1 to all other vertices of |Vi|. If R = B we set Vi+1 to
NC(vi, Vi) where C is the majority color. If R > B we set Vi+1 to be NR(vi, Vi) only
|NR(vi, Vi)| ≥ (1− α)(|Vi| − 1) and NB(vi, Vi) otherwise. Similarly, if R < B we set Vi+1

to be NB(vi, Vi) only |NB(vi, Vi)| ≥ (1 − α)(|Vi| − 1) and NR(vi, Vi) otherwise. Now we
increase counter R by one if we chose Vi+1 to be NR(vi, Vi) or we increase counter B by
one if NR(vi, Vi) was chosen.

Suppose that either R ≥ µt or B ≥ µt or R ≥ νt and B ≥ νt is true. We finish by
creating Kp over vertices of Vm in

(
p
2

)
rounds.

The number of iterations where we select the majority color is at most νt. Such
iterations can be paired up with iterations where we balance values of counters B and R,
in which we choose at least α vertices. When we get close to bound νt we can continue
increasing either R or B. This time we make at most µt iterations, and each one we choose
at least (1−α) of vertices. It follows that the final number of vertices in the last iteration
is p = n(1/2)νtανt(1− α)µt. To ensure that p ends up big enough we set

n =
(α

2

)−νt
(1− α)−µtp. (2.4)

Since we use n− 1 rounds during the first iteration and each successive iteration will
use less than n − 1 rounds, we can bound the number of rounds during all iterations by
mn. Therefore the final number of rounds is no more than mn+

(
p
2

)
.

We set p = max(r((1 − µ)t, t), r((1 − ν)t)), which ensures that a monochromatic Kt

will appear. By setting p ≥ r((1 − µ)t, t) we either win by a blue Kt or we have a red
clique of order (1−µ)t. If we finished by condition R ≥ µt, the (1−µ)t red vertices which
are connected to each other and to all the vertices of Vm will form a red clique of order
t. The same argument works if we finished by condition B ≥ µt. On the other hand, by
setting p ≥ r((1−ν)t) we ensure at least one monochromatic clique of order (1−ν)t. And
since we ended up with R ≥ νt and B ≥ νt, vertices which are connected to each other
and to the (1− ν)t clique in one color, forming a monochromatic clique of order t.

We know that this process will create a monochromatic Kt. To prove that the necessary
number of rounds to complete a Kt is small, we first show bound on p ≤ 1.001−tr(t).

If we reached either R ≥ µt or B ≥ µt, then

r((1− µ)t, t) = r(0.01t, t) ≤
(

1.01t

t

)
=

(
1.01t

0.01t

)
≤
(

1.01et

0.01t

)0.01t

≤ 1.06t ≤ 1.25−tr(t).

We obtained these expressions in the following way. The first comes from substitution,
then we used Inequation 2.1, next is true by definition, next follows from the fact that(
n
k

)
≤ (en/k)k, then we evaluated all the constants, and the last comes from r(t) ≥ 2t/2

(Inequation 2.2).

We also want to show similar results for the case where we reached R ≥ νt and B ≥ νt
instead. Our goal is to show r((1 − ν)t) = r(0.99t) ≤ 1.001−tr(t). Suppose for the
contradiction that there is some t0, such that for all t ≥ t0,

r(t)

r(0.99t)
≤ 1.001t.
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We use telescoping to get

r(0.99−At0) ≤ (1.001)(0.99
−1+···+0.99−A)t0r(t0) ≤ (1.001)100(0.99)

−At0r(t0).

Now, by setting t = 0.99−At0 and C = r(t0), we get

r(t) ≤ C(1.001)100t ≤ C(1.106)t.

Which is false, because r(t) ≥ 2t/2 (Inequation 2.2) and C(1.106)t = o(
√

2
t
).

Proofs of both cases led to the conclusion, that there are infinite different values of t
such that p ≤ 1.001−tr(t). The last step we need to do is to show, that all of this can be
done in reasonable number of rounds. By the previous discussion, the number of rounds
is no more than

mn+

(
p

2

)
≤ t
(α

2

)−νt
(1− α)−µtp+

(
p

2

)
,

which comes from m ≤ µt+νt = t and n from Equation 2.4. We continue by substitution,
and get the following inequality.

mn+

(
p

2

)
≤ t
(α

2

)−νt
(1− α)−µtp+

(
p

2

)
≤ t(200)0.01t(0.99)−0.99tp+

(
p

2

)
≤

≤ t(1.06497)tp+

(
p

2

)
≤ r(t)− 1

4
p+

(
p

2

)
≤ 1.001−t

(
r(t)

2

)
= 1.001−tr(Kt)

Proving that there is an infinite family of cliques for which online Ramsey number is
asymptotically smaller than their size-Ramsey number.

2.4.2 Online Ramsey number of Paths

In 2008 Grytczuk, Kierstead and Pra lat [19] showed an upper bound on r̃(Pn). In partic-
ular, they showed that for a path Pn of length n, r̃(Pn) ≤ 4n−3. Note that in the original
paper Pn denotes path of length n − 1, which leads to r̃(Pn) ≤ 4n − 7, however to make
our notation consistent throughout this thesis we use Pn to denote path of length n. Now
we will present their result.

Theorem 6. The online Ramsey number for paths of length n has an upper bound r̃(Pn) ≤
4n− 3.

Proof. Assume we have two disjoint monochromatic red and blue paths. A red path of
length m ending in vertex u and a blue path of length k ending in vertex v. We create an
edge f = {u, v} which is without loss of generality blue. Now we create an edge e = {u,w}
where w is previously unused vertex. If the edge e is red, we make the red path longer
by adding e to it. If that is not the case and e is blue, we make the blue path longer by
adding f and e, and shorten the red path by one, so that the paths end up disjoint again
(see Fig. 2.1).

If the paths have zero lengths, we create an edge and get one path of length 1 in only
one move. If one path has length 0 and its only vertex would have been removed from it,
we pick a different isolated vertex as its new endpoint.

The sum of lengths m+k is increased by 1 every two rounds. To get a monochromatic
Pn it suffices to make m+k = 2n−1. Thus we need at most 2(m+k)−1 = 2(2n−1)−1 =
4n− 3 rounds to create a monochromatic path Pn. (Note that if we had denoted paths by
number of vertices as in the original paper, we would have had at most 2(2(n−1)−1)−1 =
4n− 7 rounds.)
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u v

m k

f
w

e

wlog

Figure 2.1: One step in creating a monochromatic Pn
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Chapter 3

Our results

Our main goal is to characterize for which classes of graphs there is an asymptotic gap
between the size-Ramsey number and the online Ramsey number. In this part of the thesis
we present our results.

First and foremost, in Section 3.1 we present an infinite family of trees for which the
online Ramsey number is asymptotically smaller than their size-Ramsey number.

Then, in Section 3.2 we explore online Ramsey number of stars with subdivided edges
(spiders) and show an upper bound, which asymptotically matches the lower bound for
their size-Ramsey number.

In Section 3.3, we show that online Ramsey number of cycles is no more than 23n/2−20
for even cycles, and 24n− 20 for odd cycles, providing new upper bounds for the r̃(Cn).

And last, in Section 3.4, we show an exact value of r̃C(C3, Sn) where C is class of
connected graphs.

3.1 Online Ramsey Number of Trees

Let us denote Sk,` a tree consisting of a root vertex c which has k neighbors x1, x2, . . . , xk
and each xi is connected to ` leaves. Note that Sk,` has 1 + k + k` vertices and k` leaves.

In the following theorem we show that any tree Sk,` exhibits small online Ramsey
number.

Theorem 7. r̃(Sk,`) ≤ k2 + 2k`2 + 8k`+ 2k − 4`− 3 = O(k2 + k`2).

Proof. To force a monochromatic Sk,`, we start by creating a star S2(p+k−1)−1, where
p = k(` + 1) + k − 1, with center in c. without loss of generality, let the majority color
of created edges be blue. It follows that we have a blue Sp+k−1. We continue by creating
p+ k− 1 stars with centers in leaves of Sp+k−1, each with ` leaves of its own. If k of these
stars are blue, we win immediately. If that is not the case, we know that at least ` of those
stars are red. We will denote these red stars and their centers by T 0 = {T 0

1 , T
0
2 , . . . , T

0
p }

and C0 = {c01, c02, . . . , c0p} respectively. Now for i = 1, . . . , k we do as follows. First we
create k + ` − 1 new edges Ei between an arbitrary center u ∈ Ci−1 and k + ` − 1 other
centers in Ci−1. If there are k red edges among Ei we win. If this is not the case there
must be at least ` blue edges in Ei from u to vertices of Bi ⊆ Ci−1. Let X ⊆ T i−1 be
stars such that their centers are in Bi ∪ {u}. At the end of each step let T i = T i−1 \X
and Ci = Ci−1 \ (Bi ∪ {u}).
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Note that in each step we either win or create a blue S` which is connected with a blue
edge to vertex c. If we did not win by building a red Sk,` in k steps we know that there
are k blue stars S` each connected with a blue edge to c forming a blue Sk,`.

c

Figure 3.1: One step in building S2,3

We started by creating a monochromatic Sp+k−1 in 2(p+ k − 1)− 1 rounds. Then we
made p + k − 1 disjoint monochromatic stars S` for which we needed (p + k − 1)(2l − 1)
rounds. After that, we connected centers of stars in k+`−1 rounds k times which required
k(k+ `− 1) rounds in total. This gives us that the final number of necessary rounds is no
more than 2(p+k−1)−1+(p+k−1)(2l−1)+k(k+`−1) = k2+2k`2+8k`+2k−4`−3.

Recall that due to Beck [7] we have a lower bound for trees T which is r(T ) ≥ β(T )/4
where β(T ) is defined as

β(T ) = |T0|∆(T0) + |T1|∆(T1),

where T0 and T1 are partitions of the unique bipartitioning of the tree T . The β for our
family of trees is β(Sk,`) = (1 + k`)k + k(`+ 1) = Θ(k2`), whis gives us the lower bound
in size-Ramsey number r(Sk,`) = Ω(k2`).

Since by Theorem 7 we have r̃(Sk,`) = O(k2 +k`2), the online Ramsey number for Sk,`
is asymptotically smaller than its size-Ramsey number if k = ω(`).

Corollary 1. There is an infinite sequence of trees T1, T2, . . . such that |Ti| < |Ti+1| for
each i ≥ 1 and

lim
i→∞

r̃(Ti)

r(Ti)
= 0.

3.2 Family of trees of arbitrary depth

Let us define a spider σk,` for k ≥ 3 and ` ≥ 1 as a union of k paths of length ` that share
exactly one common endpoint. Let a center of σk,` denote the only vertex with degree
equal to k.

In the following theorem we obtain an upper bound on r̃(σk,`) that asymptotically
matches the lower bound on r(σk,`).

Theorem 8. r̃(σk,`) ≤ k2`+ 32k`− 10k − 24`+ 8 = O(k2`).

Proof. We describe the Builder’s strategy for obtaining a monochromatic σk,`. We first
create monochromatic paths P

′
= {P ′1, P

′
2, . . . , P

′
4k−3} of length 2` using the strategy by

Grytczuk et al. [19]. Let the majority color among these path without loss of generality
be blue, and denote these blue paths P1, P2, . . . , P2k−1. Let Pi,j denote a j-th vertex on
path Pi. We create a new vertex u and edges E

′
= {{u, v} | v ∈ {P1,1, P2,1, . . . , P2k−1,1}}.

If there are k blue edges among E
′

there is σk,` with center in u. If this is not the case
there are at least k red edges E1 ⊆ E

′
. Let vertices V 1 = {v | {u, v} ∈ E1, {u, v} is red}.

Note that we defined E1 and V 1 such that |E1| = |V 1| = k and they form a red Sk.
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For i from 1 to ` − 1 we do as follows. Let U1 = {Pq,i+1 | q ∈ {1, . . . , 2k − 1}}. For
each vj ∈ V i for j from 1 to k create k edges Dj = {{vj , w} | w ∈ Uj}. If Dj has k blue
edges, they connect k blue paths of length 2l to a center vj forming a blue σk,`. If that is
not the case there is one red edge {vj , q} ∈ Dj . Let Uj+1 = Uj \ {q} and continue with
next iteration of j.

If there is no blue σk,` after the last iteration for j, we prepare for the next iteration
of i. Let edges Ei+1 = {{v, q} | v ∈ V i, q ∈ U1, {v, q} is red} and vertices V i+1 = {q |
{v, q} ∈ Ei+1}. Note that |Ei+1| = |V i+1| = k and that u is the center vertex of a red
σk,i+1.

When we finish the last iteration of i and we did not win by obtaining a blue σk,` in
the process, there is a red σk,` with vertices V (σk,`) = {u} ∪ {v | v ∈ V i, 1 ≤ i ≤ `} and
edges E(σk,`) = {e | e ∈ Ei, 1 ≤ i ≤ `}.

We built 4k − 3 paths of length 2` using strategy by Grytczuk et al. [19] in (4k −
3)(4(2`) − 3) rounds. We created 2k − 1 edges from u and then we used k2` rounds to `
times repeat process which created k2 edges. We either got a blue σk,` in the process or a
red σk,` after using not more than k2`+ 32k`− 10k− 24`+ 8 rounds, which concludes the
proof.

Note that |V (σk,`)| = 1 + k`, |E(σk,`)| = k` and ∆(σk,`) = k. The Beck’s [7] lower
bound for spiders is β(σk,`) = k(1 + kb`/2c) + 2(kd`/2e) = Θ(k2`), so our result for online
Ramsey number of spiders asymptotically matches their lower bound for size-Ramsey
number.

3.3 Online Ramsey Number of Cycles

The Ramsey number for cycles was investigated by Bondy and Erdős [26]. Also generally
more complicated version of size-Ramsey numbers, where the target monochromatic graph
has to be induced on subset of vertices of the background graph, was investigated by
Haxell et al. [10], proving that the induced size-Ramsey number of Cn is linear in n. This
naturally bounds the online variant with as well.

Since n ≤ r̃(Cn) ≤ r(Cn) we know that the online Ramsey number is linear, however
the exact value of r̃(Cn) is still unknown. In this section we will present an upper bounds
for r̃(Cn).

3.3.1 Upper bound for even cycles

Theorem 9. Let Cn be a cycle on n vertices, where n is even. Then r̃(Cn) ≤ 23n/2− 20.

Proof. To create an even cycle Cn we first obtain 13 monochromatic paths of length 2n
(using the strategy by Grytczuk et al. [19]) and choose 7 paths ρ1, ρ2, . . . , ρ7 of the same
color which are without loss of generality red. Let ρi,j denote j-th vertex of path ρi. Note
that connecting vertex u /∈ ρi to vertices w1 = ρi,j and w2 = ρi,j+n−2 either creates a red
Cn or at least one edge {u,w1} or {u,w2} is blue. We will now enforce a Cn on these
paths in the following way.

Let u be an unused vertex and let Q = ρ1 and W = ρ2. To create one blue path of
length n/2 we start by creating edges from u to Q1 and Qn−1. If both of these edges are
red, we win. If that is not the case then at least one edge {u, v1} where v1 ∈ {Q1, Qn−1}
is blue. Now for i from 1 to n/2 − 1 we do this. Let X = W if i is odd and X = Q of
i is even. Create edges {vi, Xi+1} and {vi, Xi+n−1} and again by the same argument we
either win, or one of these edges {vi, vi+1} where vi+1 ∈ {Xi+1, Xi+n−1} is blue. After all
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iterations finish, we have a blue path of length n/2 − 1 starting in u and ending in vn/2.
Finish the path by creating edges {vn/2, ρ7,1} and {vn/2, ρ7,n−1}.

Using this procedure we built a blue path of length n/2 starting in u and ending in
either ρ7,1 or ρ7,n−1. We repeat this procedure two more times using Q = ρ3,W = ρ4 and
Q = ρ5,W = ρ6 as initial settings. All of these paths start in the same vertex and two of
these paths will necessarily have a common endpoint, creating a blue Cn as a result.

We will now further improve the upper bound on even cycles by optimizing length of
initial paths. Path ρ7 needs to be n−2 edges long. For paths ρ1, ρ2, . . . , ρ6 we use ρ1,1 and
ρ1,n−1 in first iteration, ρ2,2 and ρ2,n in second iteration, ρ1,3 and ρ1,n+1 in third iteration,
. . . , and similarly for paths ρ3, ρ4 and ρ5, ρ6. Since there are n/2−1 iterations in building
a blue path, we require these paths to be at least (n−2) + (n/2−1) = 3n/2−3 long. (We
chose 2n to make the basic idea clearer.) This can be reduced even more with changing
value of i only every even iteration, which we call foding (Fig. 3.2).

. . .

. . .

. . .

. . .

Figure 3.2: Improving upper bound for even cycles with folding

Using this method, we require paths ρ1, ρ2, . . . , ρ6 to have the length at least

(n− 2) +

(⌊ n
2 − 1

2

⌋
− 1

)
≤ 5n

4
− 7

2
.

It would be easy to create seven paths of the same length, however ρ7 is shorter. Let
Q = 5n

4 −
7
2 . We now have the choice to either build seven paths of length Q (which is

longer than n− 2 for all n ≥ 2) or we will make one path of length 6(Q+ 1) + (n− 2). If
we choose the former method, we get

13r̃ (PQ) = 13 (4 (Q)− 3) = 65n− 221.

If we choose the latter method, we will be finished in at most

4 (6 (Q+ 1) + (n− 2))− 3 =
17n

2
− 20

rounds. This means the latter method for creating all necessary initial paths is superior
for n > 402

113 , which holds true for n ≥ 4, and hence for any reasonable even cycle.

After folding blue paths we decreased number of rounds to create initial paths to
r̃(Pq) = 17n/2 − 20, for q = 6(5n/4 − 7/2 + 1) + (n − 2). Then we used 3(2(n/2)) = 3n
rounds to make three blue paths. This gives us the final upper bound for online Ramsey
number of even cycles r̃(Cn) ≤ 3n+ 17n/2− 20 = 23n/2− 20.

On Figure 3.3 we see 7 red paths and 3 blue paths. Notice that each blue edge is created
with its counterpart (pattern demonstrated on ρ5, ρ6), both starting in same vertex and
ending n−2 edges apart (see ρ1), forcing one of them to be blue or a red Cn would appear
immediately. Note that counterpart edges would be red, because if they were blue, we
would not need to create another edge to force a blue edge.
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u

ρ1

ρ2

. . .

. . .

ρ3

ρ4

. . .

. . .

ρ5

ρ6

. . .

. . .

ρ7

16 edges

Figure 3.3: Whole process of making C18

3.3.2 Upper bound for odd cycles

Theorem 10. Let Cn be a cycle on n vertices, where n is odd. Then r̃(Cn) ≤ 24n− 20.

Proof. An upper bound for odd cycles Cn is based on upper bound for even cycles. Let
c0, c1, . . . , c2n−1 denote vertices on the cycle C2n modulo 2n, therefore ci for i ≥ 2n denotes
vertex cj , j = i mod 2n. We start with building without loss of generality a blue C2n

using strategy described in Section 3.3.1. Then we add edges E = {{ci, ci+n−1} | i ∈
{1 + j(n − 1)}, j ∈ {0, 1, . . . , (n − 1)}}. Each edge in E connects two vertices which are
n− 1 apart on C2n, and since gcd(n− 1, 2n) = 2 it will take exactly n edges to complete
a cycle C

′
n = ({c0, c2, . . . , c2n−2}, E).

Note that if any edge of C
′
n is blue, it forms a blue cycle using that edge and part of

the C2n. However if every edge of E is red, then C
′
n forms a red cycle (see Fig. 3.4).

We first used the strategy for even cycle C2n which took 23(2n)/2 − 20 = 23n − 20
rounds. Then we simply added n edges to form the C

′
. This gives us the upper bound for

odd cycles r̃(Cn) ≤ r̃(C2n) + n ≤ 24n− 20.

Figure 3.4: Final step of building C9
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3.4 Online Ramsey Number of Stars vs Triangles

Upper bound of r̃C(C3, Sn)

Theorem 11. r̃C(C3, Sn) ≤ 3n− 1, where C is class of connected graphs.

Proof. We start with creating 2n − 1 edges from a vertex u forming a star S2n−1. We
know that one of the following three cases will occur:

1. A blue Sn occurred, which wins the game immediately.

2. A red Sn+1 occurred, which can be exploited to force a blue Sn on its leaves in n
rounds.

3. A blue Sn−1 and a red Sn occurred.

In any case we used at most 2n−1 rounds so far. The first case is winning position already.
In the second case we create a Sn on leaves of the red star. If every edge is blue, we win by
a blue Sn, otherwise there is a red C3 formed by one red edge and edges of the original red
Sn+1. The second case therefore takes at most 3n− 1 rounds. If the third case occurs we
do as follows. Let v denote a leaf of the red star, which is guaranteed to exist in this case.
We create an edge e = {v, w}, where w is previously unused vertex. If Painter decides to
color e red, we create an edge {w, u} which either completes a red C3 on vertices u, v, w,
or it completes a blue star with center in u. In either case we completed one of the desired
graphs in at most 2n+ 1 rounds. If Painter decides to color e blue, we build n− 1 edges
between v and other leaves of the original red star Sn. This either completes a red C3 in
similar manner as in the second case, or we get a blue Sn−1 on leaves of the original red
star with the center in v. This blue Sn−1 together with the blue edge e forms a Sn with
the center in v. This case can be performed in no more than 3n− 1 rounds. See Fig. 3.5
for an overview of the whole strategy.

u

v
w

(1) blue Sn
(3) blue Sn−1
and red Sn

(2) red Sn+1

Figure 3.5: Builders strategy for r̃(C3, S5) on connected graphs
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Lower bound of r̃C(C3, Sn)

We proved that the Builder is able to force either a red C3 or a blue Sn in at most 3n− 1
rounds. However, to prove the tight bound, we also have to show that the Painter is able
to defend for at least 3n− 2 rounds.

Theorem 12. r̃C(C3, Sn) > 3n− 2, where C is class of connected graphs.

Proof. To prevent construction of C3 we will divide vertices of the background graph
G into partitions P1 and P2, which are initially empty. Let partition of vertex v be
P(v) = {Pi | v ∈ Pi} and partition without vertex v be P ′(v) = {Pi | v /∈ Pi}. Whenever
Builder adds a new vertex to the background graph G, we will decide its partition. We
will decide color of an edge only from partitions of incident vertices in the following way.
The edge {u, v} will be painted blue if u ∈ P(v) and red if u ∈ P ′(v). Let number of
blue edges of partition P be B(P) = |{{u, v} | u, v ∈ P, {u, v} ∈ E(G)}|, meaning all
blue edges which are between vertices of P . This coloring scheme ensures, that Builder
cannot enforce a red C3, because the subgraph of the background graph formed by the red
edges is bipartite. Note that if Builder creates a new edge between two vertices which are
already used in the background graph, the color of that edge is known to him in advance.

Let a round be active if Builder either introduced a new vertex to the background
graph, or he connected two components of the background graph, and let all other rounds
be passive. We will denote edges created in active and passive rounds as active and passive
edges respectively. Let a Builders strategy be called delayed strategy, if all feasible games
played by that strategy all active rounds were played before all passive rounds. Note that
any Builders strategy which plays against our Painters strategy can be transformed to
an equivalent delayed strategy, because the color of passive edges is already decided, so
Builder can postpone all passive rounds until the very end of his strategy.

At this point both players know that the only way to win is by forming/denying a
blue Sn. Our goal as Painter will be to restrict the number of vertices and number of blue
edges in each partition in a way that the blue Sn cannot be formed for as long as possible.

We assume Builders strategy is delayed and restricted to connected graphs. Note that
there will be two new vertices in the first move, one in each other active move, and none
in all passive moves. We assign the first edge {u, v} vertices to partitions P1 and P2

respectively and color the first edge red. Now we have to decide the partition of each
introduced vertex of respective active edge. Let the new edge be e = {u, v}, where u is
already in the background graph and v is the newly introduced vertex. We will choose
the partition of v in the following way:

1. if |P1| ≥ n and |P2| ≥ n put v into partition with less blue edges,

2. if |Pi| = n and |Pb| < n then put v to P2−i,

3. otherwise put v to P ′(u) (edge will be colored red).

These rules clearly ensure that no blue edge can be created until one partition has n
vertices in it, which in turn means that first n created edges will be red (Fig. 3.6 (1)).
After one partition Pi has n vertices then all new vertices will be put in the partition with
less vertices (Fig. 3.6 (2)). Edges created in this process might be colored blue, however
note that there is no chance for Builder to make an Sn in any partition until there are at
least n + 1 vertices in it. He adds new vertices in active rounds and both partitions will
have exactly n vertices after 2n−1 rounds. Now any new vertex will be put into partition
with less blue edges, which is Pi with zero blue edges (Fig. 3.6 (3)). This is last round
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which needs to be active for the strategy to work. Now builder will have to use at least
n rounds to finish Sn on Pi (Fig. 3.6 (4)). If he wanted to switch, and build Sn on P2−i
he would have to ensure that B(Pi) ≤ B(P2−i) which would take n− 1 rounds, rendering
such strategy not better than building Sn on Pi.

(1)

P1

P2

(2)

P1

P2

(3)

P1

P2

(4)

P1

P2

Figure 3.6: Painters strategy for r̃(C3, S5) on connected graphs

Corollary 2. r̃C(C3, Sn) = 3n− 1, where C is class of connected graphs.

Note that the condition of connectivity for the background graph is important for ana-
lysis of Painter’s defending strategy. The described Painter’s strategy could be exploited
by the Builder in the following way. First we create star Sn, which will be by the Painter’s
strategy red. Then create an isolated red edge, which would be also red by the Painter’s
strategy. We draw an edge between any vertex of the isolated edge and any vertex of the
star. The resulting graph will have n + 1 vertices in one component, now we only need
to build the blue Sn star on vertices of that component and we win. This means that for
disconnected graphs the lower bound of presented Painter’s strategy is 2n.

We presented Builder’s way to force either a red C3 or a blue S5 in no more than
3n − 1 rounds, and also we showed Painter’s defending strategy to avoid r̃(C3, S5) in
3n− 2 rounds. This implies that the bound is tight, proving Theorem 11.

Future work

There are many open problems in the online Ramsey graph theory. The main questions
that directly follow from this thesis are: First, to determine the online Ramsey number of
triangles versus stars r(C3, Sn) without restricting class of graphs. And second, to expand
the class of trees for which the online Ramsey number is asymptotically smaller than the
size-Ramsey number, possibly characterizing the class of such trees completely.
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[24] Ajtai, M.; Komlós, J.; Szemerédi, E. A Note on Ramsey Numbers. Journal of Com-
binatorial Theory, Series A, volume 29, 1980: pp. 354–360.
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Appendix A

Contents of enclosed CD

readme.txt...................................the file with CD contents description
src-thesis........................the directory of LATEX source codes of the thesis
text......................................................the thesis text directory

thesis.pdf......................................the thesis text in PDF format
thesis.ps.........................................the thesis text in PS format
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