
L.S.

Ing. Michal Valenta, Ph.D.
Head of Department

prof. Ing. Pavel Tvrdík, CSc.
Dean

Prague November 30, 2015

CZECH TECHNICAL UNIVERSITY IN 	PRAGUE

FACULTY OF INFORMATION TECHNOLOGY

ASSIGNMENT OF MASTER’S THESIS

 Title: Generating of UML entities from textual requirements specifications

 Student: Bc. David Šenkýř

 Supervisor: prof. Dr. Ing. Petr Kroha, CSc.

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2016/17

Instructions

The goal of this thesis is to investigate the method of grammatical inspection and its suitability for
processing of textual requirements specifications in the sense of ambiguity, inconsistency, and completeness.

1. Analyze the problem and the possibility to use appropriate systems like Stanford Core NLP to generate
a static UML model.
2. Implement an editor in Java that helps to indicate whether the given word within a sentence is a candidate
for a class, a relation, or an attribute.
3. Implement an interface (e.g., in XMI) that allows to export the found model to the next step of processing,
e.g., using Enterprise Architect.
4. Evaluate the system using simple examples and compare it with the intuitive solution.
5. Summarize and evaluate the results reached.

It is a research work.

References

Will be provided by the supervisor.

Czech Technical University in Prague

Faculty of Information Technology

Department of Software Engineering

Master’s thesis

Generating of UML Entities
from Textual Requirements Specifications

Bc. David Šenkýř

Supervisor: Prof. Dr. Ing. Petr Kroha, CSc.

9th May 2017

Acknowledgements

I would like to kindly thank my thesis supervisor, Professor Kroha, for guid-
ance, optimism, and valuable advice. I would also like to thank my family
and friends for their continuous support.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46(6) of the Act, I hereby grant a nonexclusive author-
ization (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity. However,
all persons that makes use of the above license shall be obliged to grant a
license at least in the same scope as defined above with respect to each and
every work that is created (wholly or in part) based on the Work, by modi-
fying the Work, by combining the Work with another work, by including the
Work in a collection of works or by adapting the Work (including translation),
and at the same time make available the source code of such work at least in a
way and scope that are comparable to the way and scope in which the source
code of the Work is made available.

In Prague on 9th May 2017 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2017 David Šenkýř. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Šenkýř, David. Generating of UML Entities from Textual Requirements
Specifications. Master’s thesis. Czech Technical University in Prague, Fac-
ulty of Information Technology, 2017.

Abstrakt

Kvalita zpracováńı požadavk̊u na softwarový systém zastává d̊uležitou roli
v rámci celého životńıho cyklu vývoje a údržby softwarového projektu – protože
ostatńı fáze jsou na ńı závislé. Formulace takových požadavk̊u jako text
v přirozeném jazyce je běžnou prax́ı. Přirozený jazyk je však náchylný k řadě
nepřesnost́ı jako je např́ıklad nejednoznačnost, nekonzistence či neúplnost.
Tato práce představuje CASE nástroj pojmenovaný TEMOS, který je schopný
generovat fragmenty UML modelu tř́ıd z textových požadavk̊u na softwarový
systém, a zároveň může být uživateli nápomocný v odhalovańı zmı́něných
nepřesnost́ı v textu.

Kĺıčová slova textové požadavky na softwarový systém, analýza textu,
zpracováńı přirozeného textu při návrhu softwarového systému, UML model
tř́ıd

ix

Abstract

The quality of Requirements Engineering plays an important role in the whole
development life cycle of every software project – because the other phases de-
pend on it. Writing requirements specifications in natural language is a com-
mon practice. The natural language is, unfortunately, prone to a number of
inaccuracies like ambiguity, inconsistency, and incompleteness. This thesis
presents the CASE tool called TEMOS that is able to generate fragments of
the UML class model from textual requirements specification and also helps
the user with the detection of some inaccuracies in the text.

Keywords software requirements specification, requirements engineering,
text mining, text analysis, natural language processing in software engineering,
UML class model

x

Contents

Introduction 1
Motivation . 1
Text Structure . 2

1 Domain Introduction 5
1.1 Requirements Engineering . 5
1.2 Natural Language . 6
1.3 Ontology Databases . 8
1.4 UML Models . 9

2 Related Work 11

3 Analysis and Design of Solution 15
3.1 Software Requirements . 15
3.2 User Interface . 19

4 Our Approach 21
4.1 Overview . 21
4.2 Text Preprocessing . 22
4.3 Nature Language Processing using Stanford CoreNLP 23
4.4 Grammatical Inspection . 26
4.5 Ambiguity . 27
4.6 Inconsistency and Incompleteness 28

5 Implementation 29
5.1 Technologies . 29
5.2 Architecture . 30
5.3 Graphical User Interface . 30

xi

5.4 Custom Controls . 31

6 Testing 33
6.1 Software Development and Testing 33
6.2 Experiments and Results . 33
6.3 Summary . 41

Conclusion 43
Evaluation . 43
Future Work and Ideas . 43

Bibliography 45

A Acronyms 49

B Contents of DVD 51

C System Requirements for TEMOS 53
C.1 Additional Information . 53

D Example of Generated XMI File 55

E Intransitive Verbs Testing Tool 61

xii

List of Figures

0.1 The Software Development Life Cycle (SDLC) 2

1.1 Problems of Textual Requirements Specifications 7
1.2 Class Diagram Example . 10

3.1 Use Case Diagram . 18
3.2 GUI Wireframe . 20

4.1 The Text Document Analysis . 22
4.2 The Result of Tokenizer Annotator 23
4.3 The Result of POS Tagger Annotator Annotator 24
4.4 The Result of Dependency Parse Annotator – Enhanced++ De-

pendencies . 25
4.5 The Result of Dependency Parse Annotator – Basic Dependencies 25
4.6 The Result of Coref Annotator . 25

5.1 The Package Diagram . 31

6.1 The Generated Class Diagram of Musical Store 34
6.2 The Incorrect Result of Dependency Parse Annotator 35
6.3 The Generated Class Diagram of Automatic Teller Machine 36
6.4 The Generated Class Diagram of Video Rental 38
6.5 The Generated Class Diagram of Hotel Booking System 40
6.6 TEMOS – View of Specification 41
6.7 TEMOS – View of Classes Manager 42

E.1 Intransitive Verbs Testing Tool . 61

xiii

Introduction

Motivation

The significant phase of the software development life cycle (SDLC 1)
is undoubtedly the investigation and the processing of the requirements
specification. Actually, by well-known standard phases of SDLC, illustrated
in Fig. 0.1, the mapping of the requirements specification is the first one or one
of the first output from the initial investigation of a software system
utilization. Independently of SDLC model or used methodology2 [1]. The
form of such specifications is usually textual – because a contract for the de-
velopment of a software system should define the scope of the system and its
functionality based on the requirements specification.

The requirements specification is also the essential input for next develop-
ment steps – such as modeling individual parts of a system. And the quality
of the outputs of these steps is, of course, dependent on the quality of the
input requirements. As Leonid Kof stated in his paper [2] – Requirements
Engineering is the Achilles heel of the whole software development process.

The requirements investigation and other development processes are re-
peated with each new contract for the new software system. This led to the
development of CASE tools. CASE is an used abbreviation of computer-aided
software engineering tools. These are tools that assist the engineer during dif-
ferent stages of SDLC to simplify his or her task.

Given the severity of requirements specification and new possibilities
of computer-aided support for natural language processing, we were motiv-
ated for design and develop of such CASE tool. The tool that assists mapping

1In some literature also used as system development life cycle.
2E.g. waterfall model, iterative and incremental model, v-shaped model, spiral model,

agile development – SCRUM method, extreme programming, etc.

1

Introduction

parts of textual requirements specification to corresponding fragments from
static UML model. Investigation of possibilities of appropriate system for nat-
ural language processing and implementation of mentioned tool is the main
goals of this master’s thesis.

Figure 0.1: The Software Development Life Cycle (SDLC)

Text Structure

This thesis is organized in the following way that meets the software
engineering view of the software development process – the analysis (chapters
1 and 2), the design (chapter 3 and 4), the implementation (chapter 5),
and the testing (chapter 6).

Chapter 1 covers a brief overview of domains that relate to this thesis.

Chapter 2 is devoted to related work in previously introduced domains.

Chapter 3 is focused on solution design.

Chapter 4 serves our approach and overview of processing of textual require-
ments specifications.

2

Text Structure

Chapter 5 describes implementation of designed solution from the
third chapter.

Chapter 6 is devoted to presenting solving examples using our application.

Finally, the conclusion summarizes achieved results and offers possibilities
of the future work.

3

Chapter 1
Domain Introduction

This thesis is primary focused on the requirements engineering, the natural
language processing, and the UML models. In this introductory chapter, we
present a brief overview of these domains.

1.1 Requirements Engineering

The process called requirements engineering is the initial process by which
it comes into contact analysts and client to clarify client’s expectations of
the future software. The requirements specification verified by the client (the
stakeholder) is then the main output of this process. The requirements engin-
eering primary consist of the following phases [3]:

• elicitation – meetings and appointments, observations of users, etc.,

• analysis – thinking and inventing, discussions, notes, etc.,

• specification – writing documents, using agreed notation, etc.,

• verification – other meetings, reading documents, presenting prototypes,
clarifying the scope of functionality, etc.

All this can be repeated multiple times with various people from various
departments.

1.1.1 Requirements Specification

The requirements specification covers the scope of the future software – which
should be characterized by at least the following categories [3]:

5

1. Domain Introduction

• the functional requirements – requirements related to software function-
ality like the workflow3 of tasks and activities that will be supported,

• the interface requirements – user interface design, software/hardware
integration requirements, etc.,

• the non-functional requirements – properties of systems as a whole like
performance (e.g. response time), accessibility and availability, extens-
ibility and scalability, security, etc.,

• the other requirements – legislative, multilingualism, etc.

From the formal point of view, there exist standards like ISO/IEC/IEEE
29148-2011 4 [4], methodologies like SWEBOK Guide [5] or Volere Require-
ments Specification Template [6] (that is translated in various languages), as
well as CASE tools that support better requirements organization or even
manual assignment of requirements with parts of the model like Enterprise
Architect [7].

The SWEBOK Guide (The Guide to the Software Engineering Body of
Knowledge), at the time of writing this work in version 3, published by IEEE,
includes a chapter dedicated to previously mentioned requirement engineering
phases with guidelines and best practices.

Actually, as mentioned below, the most widely used approach is to write
requests in natural language as non-structured text. And these are the spe-
cifications for which we are interested in.

1.2 Natural Language

The natural language plays in this field very important role. The market re-
search [8] states that nearly 80 % of all specifications account for requirements
are written in common natural language.

Many clients who award contracts on software projects, and IT projects in
general, obviously operate outside the IT sector. In these cases, the natural
language is surely the clear choice for the description of the expected func-
tionality and requirements. Otherwise, even if the client knows more formal
methods of requirements formulation like diagrams, models, etc., requirements
formulation in the natural language is necessary because of a contract. The

3The set of inputs, the behaviour, and the set of outputs.
4ISO/IEC/IEEE 29148-2011: Systems and Software Engineering – Life Cycle Processes

– Requirements Engineering. The successor of IEEE 830-1998: Recommended Practice for
Software Requirements Specifications.

6

1.2. Natural Language

contract is then the primary relevant source, which can be assessed in the
event of a legal case.

The advantage of using natural language is that can be interpreted both
by the customer and by the analyst. However, its freedom without any formal
restriction making them prone to a number of inaccuracies and incomplete ex-
pressions. Previous customer nescience of the formal methods of requirements
formulation is now balanced by analyst nescience of the customer’s business
domain. What is natural for the domain expert from the customer team may
not be fully evident for the analyst – also domain expert, but in a different
domain.

Writing requirements may also be cooperative works of several people. In
cases where is the contractor a company, it can be assumed that it is almost a
rule. This is another source of inaccuracies and misleading descriptions. For
example, simple describing a term in the text by several synonyms, may – in
the case of little-know or domain specific term – result in a situation, where
the analyst denotes synonyms as various terms.

Maintain requirements specification written in natural language complete
and straightforward is a difficult task with a high probability of introducing
new inaccuracies as illustrates a schema in Fig. 1.1 that is adapted by Pro-
fessor Easterbrook’s presentation [9].

mmd Problems of Textual Requirements Specifications

inconsistentredundant

incomplete

ambiguous

not
understandable

expand

 add
explanations

reduce

formalize

expand

resolve

condense

imply

Figure 1.1: Problems of Textual Requirements Specifications

7

1. Domain Introduction

Some natural language pitfalls are covered in the third chapter where we
describe their typical characteristics and introduce our approach to minimize
them.

1.2.1 Natural Language Processing

A computerized processing of natural language requires the collaboration of
engineers and especially linguistic experts. A interdisciplinary field devoted to
this domain is called computational linguistics. Its origins date back to 1950s
[10] where there were the first mention of a computer controlled translations
of text from one language to another.

The increasing evolution of natural language processing (NLP) offers new
opportunities in the fields of information retrieval, text mining, question an-
swering, speech recognition, etc.

Nowadays it is possible to choose from a variety of natural language pro-
cessing systems. Below are presented some of the complex NLP systems,
however nice overview of standalone tools for various text processing tasks is
available at [11].

• Stanford CoreNLP [12] – a suite of NLP tools written in Java language,
but also has portations for other programming languages ,

• Natural Language Toolkit (NLTK) – written in Python,

• Apache OpenNLP – written in Java.

1.3 Ontology Databases

The natural language processing in the case of requirements engineering
depends on various domains (knowledge):

1. the domain of the scope of the business of the client organization (this
domain can be very sophisticated – e.g. pharmacy, medicine, etc.),

2. the domain of internal organization knowledge (”know-how”) – terms,
processes, workflows, etc. – the primary domain which is to be supported
by the created software,

3. the domain of the software and the software engineering – the client
specifies his or her view of the software behavior.

8

1.4. UML Models

The human IT analyst is a domain expert for the third listed domain, but
he or she is typically not focused on the first two listed domains. Therefore
the solution of this task is not possible without the knowledge of a semantic
of the text.

Computerized processing of natural language in this case can be supported
by acquire semantic knowledge from some ontology database. Get the ontology
related to the client’s scope of the business may be difficult – for many sectors
may not even exists. On the other hand, ontology databases for common
language are available. Examples of such databases follow.

• WordNET

• ConceptNet

• DBPedia

• Freebase

• OpenCyc

1.4 UML Models

The model can be interpreted as implementation of requirements. It is com-
mon practice that the model precedes the implementation. So, it becomes an
intermediary between the software analysis and the software implementation.

The UML is an abbreviation of Unified Modeling Language – the language
designed for visual modeling (primary of object oriented software systems) [13].
The UML was accepted in 1997 by OMG5 as the first open, industry standard
object oriented visual modeling language. These days, the UML is de facto
standard No. 1 in the software development life cycle and it is supported by
previously mentioned CASE tools.

The adjective unified refers to various diagrams throughout the entire de-
velopment cycle, independent of an application domain, a platform,
and a programming language. That is why many software design patterns
are expressed using the UML.

There are also a development approach called Model Driven Development
(MDD) that is based on generating prototypes from the models – users can
quickly get an idea of the system being developed.

5The Object Management Group – international not-for-profit technology standards con-
sortium, founded in 1989 [14].

9

1. Domain Introduction

Although, as mentioned, the UML provides various diagram, we are fo-
cused on the UML class diagram in the next subchapter, because our goal is
generating fragments of just this diagram.

1.4.1 UML Class Diagram

As the name suggests, class diagram deals with units called classes and rela-
tions between them. The notation is fully described in [13].

The example diagram in Fig. 1.2 describing the simple model that contains
3 classes – the building, the hotel, and the group of hotels. Every class has
some attributes. Every building has an area (e. g. in square meters), every
hotel has a name and star rating, etc.

This diagram also contains two relations. The first one between building
and hotel means that every hotel is also a building. Therefore every building
also has an area. The second relation is called association and in this context
means that every hotel is part of some group of hotels.

These basic presented features of the class diagram will be sufficient for
the purposes of this thesis.

class Class Diagram Example

Hotel

+ nam e
+ star rating

Group of Hotels

+ owner nam e

Building

+ area

is part of

Figure 1.2: Class Diagram Example

10

Chapter 2
Related Work

There are many interesting papers proposing that requirements engineering
should be supported by a CASE tools based on the linguistic approach. The
cited papers are chronologically sorted.

1992 Professor Rolland with collective in their paper [15] from 1992 intro-
duced a tool called OISCI. The mentioned tool processes French natural
language. A key idea of this paper is sentence patterns.

Let’s consider the following borrowed example sentences ”A subscriber
has a name and an address.” and ”The colydrena have a pedistylus and
a folicul.”. The first one contains well-know words – so the analyst
probably introduces the subscriber as entity type and the name and the
address as this entity’s attributes. In the second case, the analyst prob-
ably similarly introduces the colydrena as entity type and the pedistylus
and the folicul as this entity’s attributes. However, the situation in the
second sentence differs. The point is that decision can be taken without
the knowledge of the meaning of the words colydrena, pedistylus, and
folicul. This linguistic approach is based on the recognition of a partic-
ular sentence pattern. In this case, the pattern is described as <Subject
Group><Verb expressing ownership><Complement Group>.

The approach presented in this paper targets the creation of the char-
acterization of the parts of the sentence patterns that will be thereafter
matched.

OISCI also uses a text generation technique from the conceptual spe-
cification to natural language for the validation purposes.

11

2. Related Work

1997 V. Ambriola and V. Gervasi in their paper [16] from 1997 presented
web-based system called Circe that primary processes Italian natural
language (but may be also adapted for other languages). It consist of
partial tools. For our purposes, the most interesting tool is the main one
called Cico. Cico performs recognition of natural language sentences and
prepares inputs for other tools – graphical representation, metrication,
and analysis.

This paper presents idea that requirements specification may be con-
nected with a corresponding glossary describing all the domain-specific
terms used in the requirements. The glossary also handles synonyms of
terms. Similarly to previous paper, Cico uses predefined patterns that
are matched against the sentences from requirements specification.

2000 Leonid Cof in his papers [2] [17] broke down the NLP approaches into
three groups based on the related work.

• The first one is related to lexical methods – methods that don’t
rely on basic NLP approaches like part-of-speech tagging nor any
other parsing. These methods perceive the text as a sequence of
characters and looking for terms (subsequences) that occur repet-
itively.

• Syntactical methods create the second one group. These meth-
ods use part-of-speech tagging or looking for special sentence con-
struction. On this basis, they are able to distinguish objects and
relationships.

• The last group is semantic methods – methods that interpret each
sentence as a logical formula or looking for predefined patterns.

2001 Linguistic assistant for Domain Analysis (LIDA) is a tool presented in
the paper [18] from 2001.

According to previous tools, LIDA is conceived as a supportive tool
– it can recognize multi-word phrases, retrieving base form of words,
present frequency of word, etc. – and doesn’t contain algorithms for
automatic model elements recognition. This decisions are fully user-
side – the user marks candidates for entities, attributes, and relations
(inclusive operations and roles). On the other hand, LIDA besides the
text analyzing environment also contains the model editing environment
that is naturally based on the user’s marked candidates. The advantage
is that every change in the model requires corresponding adjustment of

12

textual requirements – therefore, the model still corresponds with the
input requirements specification.

LIDA also provides generating of the hypertext document based on the
model that contains descriptions of classes (superclasses, class attributes,
class relations and subclasses).

2015 A. Arellano, E. Zontek-Carney and M. A. Austin are authors of the
paper called Frameworks for Natural Language Processing of Textual
Requirements [19]. In this paper, there is presented tool TextReq based
on The Natural Language Toolkit (NLTK). This toolkit is a open source
platform for natural language processing in Python. It is an alternative
to Stanford NLP platform that is primary focused on Java language,
but also has portations for other programming languages (Python as
well). The concept presented in this paper is the closest from mentioned
papers to our approach.

Mentioned tool TextReq requires to run:

• Ruby,

• Bundler,

• Python,

• MySQL.

13

Chapter 3
Analysis and Design of Solution

This and the following chapters are already devoted to design and implement-
ation of a prototype of our software tool called TEMOS. It is an acronym
formed from Textual Modelling System. We would like to introduce a full-
featured CASE tool, therefore, in addition to the possibility of highlight parts
of the textual requirements and their mapping to the UML fragments by the
user, TEMOS will provide automatic text processing and automatic fragments
mapping. Due to domain-specific requirements, TEMOS will handle terms in
an editable glossary. Based on the processed text, TEMOS will be able to
generate found models in various formats to the next step of processing.

3.1 Software Requirements

In this thesis, a combination of words software requirements specification is
much used term – this time we present requirements focused on the character-
istics of TEMOS. Because the domain of our tool is evident from the previous
chapters, we limit ourselves only to the structured form of functional and
non-functional software requirements and expected use cases.

3.1.1 Functional Requirements

According to this chapter introduction paragraph and thesis assignment, we
expect to meet these functional requirements.

• F1: The tool should be able to insert the textual form of requirements
specification as a plain text.

15

3. Analysis and Design of Solution

• F2a: The tool should be able to provide editor in which the user is
able to mark parts of text as candidates for a class, an attribute, or
a relation. The tool should be able to help with this indication.

• F2b: The tool should be able to provide automatic indication of can-
didates for a class, an attribute, or a relation by text processing. The
user still should be able to make changes in automatic indication.

• F3: The tool should be able to provide an editable glossary of terms
from textual requirements.

• F4: The tool should be able to obtain a description of glossary terms
from the on-line resources.

• F5: The tool should be able to generate found model based on the
processed textual requirements in these formats:

– XMI,

– ECORE,

– DOT.

• F6: The tool should be able to export the created glossary.

• F7: The tool should be able to save and to load a project.

3.1.2 Non-Functional Requirements

• N1: The tool should be independent of the user’s operating system.

• N2: The tool should be written in Java (according to thesis assignment).

3.1.3 Use Cases

The overview of possible use cases is illustrated in UML Use Case diagram in
Fig. 3.1. The indication of candidates for a class, an attribute, or a relation
is hereafter also called as an annotation.

The expected typical use case scenario consists of the following use cases
(steps).

• UC1: Insertion of the textual form of requirements specification as
a plain text.

– The user selects a New Document option.

– The tool shows a text editor.

16

3.1. Software Requirements

– The user can type the text or use the copy and paste command.

• UC2: Customization of the editor.

– The user select a Settings option from the menu.

– The user can change a font size and colors of the highlights of
a class, an attribute, a relation, or a selected word.

• UC3: Automatic indication of candidates for a class, an attribute, or
a relation.

– The user select a Analyze (automatically) option from the menu.

– The tool automatically highlight candidates and map them to the
UML fragments.

• UC4: Manual indication of candidates for a class, an attribute, or
a relation.

– The user select a Analyze (manually) option from the menu or use
previously automatic indication.

– The user can change or delete existing indication or create a new
one.

• UC5: Manipulation with the glossary.

– The user select a Glossary option from the menu.

– The user can change or delete existing glossary term or create
a new one.

– The user can select a Recognize option and the tool then tries to
get a description from on-line dictionary.

• UC6: A model validation.

– The user select a Model validation option from the menu.

– The tool validates a model and notifies the user of deficiencies.

• UC7: Exporting a model.

– The user select an Export model option from the menu.

– The user select a required format of the exported model – XMI,
ECORE, or DOT.

– The user can also export the created glossary by an Export glossary
option from the menu.

17

3. Analysis and Design of Solution

• UC8: Save or load a project.

– The user selects a Project > Save option or a Project > Load option,
respectively, from the menu.

– The user select an appropriate file in his or her computer that will
be used for the save or the load operation.

uc Use Cases

Textual Requi rements Specification manipulation

Model manipulation

TEMOS (Textual Modelling System)

User

Insert textual
requirements
specification

Save model

Load model

Export to XMI

Export to DOT

Show glossary

Update glossary
term

Automatically
annotate

Manually annotate

Add glossary term

Remove glossary
term

Editor
customization

Export to ECORE

Obtain description
of glossary term from

on-line dictionary

Model validation

«extend»

« include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

« include»

Figure 3.1: Use Case Diagram

18

3.2. User Interface

3.2 User Interface

The tool provides a graphical user interface (GUI). Based on the fact that
the commonly used screen resolution is aimed at landscape (it is longer in
the width than in the height), also the GUI is oriented at landscape. The
wireframe in Fig. 3.2 shows the GUI organization. On the left, there is
a fixed width menu column. The top part is reserved for a navigation bar
between views devoted to the annotations editor, the glossary, etc. Naturally,
the remaining main space contains the selected view.

19

3. Analysis and Design of Solution

Figure
3.2:

G
U

I
W

irefram
e

20

Chapter 4
Our Approach

This chapter covers our approach to the main feature of our CASE tool –
problems related to natural language as a form of expression of requirements
for the software system. We try to handle repeating obstacles mentioned in
the introduction and related work in the second chapter. It is really important
to solve issues in requirements specification at the level of requirements en-
gineering and thereby reduce uncertainties in the next phases of development
(as well as too high cost of later changes [20]). It is obvious that the success
or the failure of the software project is highly dependent on the quality of
processing and understanding client needs and idea about the new software
system.

With regard to subchapter 1.1, which show the various forms of the re-
quirements specifications, we restrict our approach to the functional software
requirements. This restriction reflects the focus of this thesis on the fragments
of static UML model.

4.1 Overview

The schema in Fig. 4.1 demonstrates the whole analyze process implemented
in our tool. The schema also contains swim lines that visualize which parts are
computed by our algorithms (TEMOS swim lines) and which part is provided
by Standford Core NLP framework (the middle swim line). We recall that our
tool accepted any free text as the input.

21

4. Our Approach

class Text Document Analysis

text
preprocessing

tokenization

sentence
segmentation

part of speech
tagging

lemmatization

dependencies
recognition

coreferencies
recognition

sentence
patterns

recognition

relations
recognition

classes and
attributes
recognition

TEMOS Stanford Core NLP
 TEMOS
(& on-line resources)

glossary
construction

questions
generating

raw text
document

Figure 4.1: The Text Document Analysis

4.2 Text Preprocessing

In the first phase, the text is perceived as a plain sequence of characters.
During the continuously testing of text processing, we identify some cases that
is not properly handled by Stanford Core NLP system. That is the reason
why we introduced text preprocessing phase. The following list illustrates
problematic cases that are checked.

C1 Slash character within the meaning of the enumeration values.

• Example: His/her -> his or her.

C2 New-lines handling.

22

4.3. Nature Language Processing using Stanford CoreNLP

Example: In a numeric list, Stanford CoreNLP creates for every item number
a separate line without the item that is up to the next line.

4.3 Nature Language Processing using Stanford
CoreNLP

Text processing using Stanford CoreNLP is based on annotators. Considering
[12], we present below the description of used annotators. The showed order
is important due to dependencies of each annotator. The advantage is that
all annotators do not have to run at once but can be added sequentially as
needed.

The example figures showing the results of individual steps of annotation
were created using a web version of Stanford CoreNLP system6.

4.3.1 Tokenization

The tokenization is the first step provided by Stanford CoreNLP system. The
corresponding annotator is called Tokenizer Annotator, and its goal is to parse
the input text (the set of characters) into a sequence of tokens. A single token
(a unit carrying significance) represents a word or a special character like an
interpunction, etc. Whitespace characters (like spaces) don’t represent tokens,
but they are control characters for token recognition.

The result of tokenization process is shown in Fig. 4.2. The parts of the
text bounded by the top curve with the T character represents individual
tokens. As mentioned before, the dot character is also a separate token.

The rentable space is either a hotel bedroom or a meeting room .

T T T T T T T T T T T T T

Figure 4.2: The Result of Tokenizer Annotator

4.3.2 Sentence Segmentation

Based on the tokenization, tokens are crowding into sentences in the second
step. The responsible annotator is called Words to Sentence Annotator.

6http://www.corenlp.run

23

4. Our Approach

4.3.3 Part of Speech Tagging

The third annotator called POS Tagger Annotator provides part of speech
(POS) annotation (tagging) of every token – such as noun, verb, adjective,
etc. Interpunction and other special characters are annotated with the same
character that represents.

The following example in Fig. 4.3 demonstrates the result of POS Tagger
Annotator annotator.

The rentable space is either a hotel bedroom or a meeting room .

DT JJ NN VBZ CC DT NN NN CC DT NN NN .

Figure 4.3: The Result of POS Tagger Annotator Annotator

The English taggers use the Penn Treebank tag set [21]. This set makes
a distinction between different meanings of the base part of speech tags. For
example, the word is has the VBZ tag – VB tag means that the word is a verb
and the expanded VBZ tag informs that the verb is in the present tense and
is it the 3rd person singular verb. Similarly, nouns are categorized as singular
or plural, etc.

This information is useful for TEMOS besides automatic annotation, also
in the case in which the user manually annotate words – the editor strikes
annotate a non-word tokens like mentioned interpunction.

4.3.4 Lemmatization

The lemmatization is a process in which the Morpha Annotator generates base
forms (lemmas) for every token. E.g. the verbs read, reading, and emphreads
have the same lemma read, the words better and best have good as its lemma,
etc.

4.3.5 Dependencies Recognition

From our view, the most interesting annotator is called Dependency Parse
Annotator. It analyzes the grammatical structure of a sentence and looking for
relationships between words. The Fig. 4.4 presents the output of dependencies
annotation performed on the same example that was shown in subchapter
4.3.3. The dependency direction is indicated by an arrow.

Every sentence has a one or more root words. These are the words that
have no input dependencies. In the example above, there is one root word
– bedroom. We can see that bedroom contains a compound dependency on

24

4.3. Nature Language Processing using Stanford CoreNLP

The rentable space is either a hotel bedroom or a meeting room .

DT JJ NN VBZ CC DT NN NN CC DT NN NN .
cc compoundcompoundamod

det detdet
cc:preconj conj:or
cop punct

nsubj

Page 1 of 1

03.02.2017file:///F:/DP,%20prof.%20Kroha/Diplomová%20práce/untitled.svg

Figure 4.4: The Result of Dependency Parse Annotator – Enhanced++ De-
pendencies

the word hotel. It may indicate that a hotel bedroom is a multi-word term,
similarly like a meeting room.

Stanford CoreNLP provides more than one dependencies annotator [22]. In
our TEMOS tool, we use Enhanced++ Dependencies. This type of annotator,
inter alia, introduces relation called augmented conjunct. If you compare Fig.
4.4 (Enhanced++ Dependencies) and Fig. 4.5 (Basic Dependencies), you can
see that Fig. 4.4 a label of relation between a word bedroom and the last word
room differs. The Enhanced++ Dependencies annotator labeled this relation
as conj:or directly and we then not need iterate for the word represented
a conjunction or – this is an example of augmented conjunct. A list of enhanced
dependencies with examples is available on the web [23]. This site is created
in English, but it also offers a list of dependencies for many other languages
and their regional variants.

The rentable space is either a hotel bedroom or a meeting room .

DT JJ NN VBZ CC DT NN NN CC DT NN NN .
cc compoundcompoundamod

det detdet
cc:preconj conj
cop punct

nsubj

Page 1 of 1

03.02.2017file:///F:/DP,%20prof.%20Kroha/Diplomová%20práce/untitled4.svg

Figure 4.5: The Result of Dependency Parse Annotator – Basic Dependencies

4.3.6 Coreferencies Recognition

The last annotator by Stanford CoreNLP that we use is Coref Annotator. Its
purpose is to identify to which words like pronouns refers – as show in Fig.
4.6.

David likes blue cars . He is also a fan of busses .

Mention Mention
coref

Figure 4.6: The Result of Coref Annotator

25

4. Our Approach

4.4 Grammatical Inspection

This subchapter is focused on the third swim line of overview shown in Fig.
4.1. In our implementation of TEMOS, we exploit previously described
annotation provided by Standoford CoreNLP. We use the grammatical
inspection – primarily based on the dependencies recognition and part of speech
tagging – to identify a grammatical role of words in textual requirements, i.e.
object, subject, etc.

4.4.1 Annotations

The idea of mapping parts of the text document to UML class diagram frag-
ments is based on the annotations. Similarly, as a user can highlight individual
words in the text editor (e. g. Microsoft Word), he or she can also assign
annotation in the editor included in TEMOS to individual words or group
of words. Also, every Standford CoreNLP annotator uses custom annotations
to extend tokens with new information.

TEMOS introduces these annotation types:

• Class Annotation – a basic annotation that can exist separately.

• Attribute Annotation – the annotation that is associated with the owner
of the class annotation type.

• Relation Annotation – the annotation that mediates a link between
2 and more class annotations. Therefore, relation annotation contains
collections of source class annotations and target class annotations.

Every annotation is identified by the source word (token) and can also
consist of multiple words.

4.4.2 Patterns

According to [17], our approach of classes and relations recognition belongs to
semantic methods. Similarly to paper [15] presented in related work chapter,
we adapt approach of patterns.

The patterns-based recognition is based on the idea that the grammatical
role of a word in a sentence corresponds with the role of the entity assigned
to the word that the entity plays in the model.

The recognition process iterate trough root words introduced in subchapter
4.3.5. With regard to the part of speech tag of the current root word, it is
then matched against defined patterns for recognize a class, an attribute, or
a relation.

26

4.5. Ambiguity

4.4.2.1 Class–Specialization Pattern

For example, the class–specialization pattern is defined by these rules:

1. The root token must be a noun. This root token will be the class an-
notation (C1).

2. There must exist a verb (V) as a child of dependency of type copula
(briefly cop). This verb must be ”to be” verb.

3. There must exist a noun as a child of dependency of type nominal subject
(briefly nsubj). This noun will be the class annotation (C2).

4. If there exist any nouns as children of dependency of type conjunct
(briefly conj), they will be the class annotations (C3. . . Cn).

5. The relation annotation is created with the verb V as a source token and
C1 as a source class annotation and C3. . . Cn as target class annotations.

Let’s take a look at the Fig. 4.4 again. The word bedroom as a root token
meets this pattern. Therefore, a hotel bedroom and a meeting room are the
specialization of space. For completeness, it should be noted that the class
annotation is made up of the source noun and other nouns that are children
of dependency of type compound.

4.5 Ambiguity

The significant part of the textual requirements specification analyze is build-
ing a glossary of terms. Every class candidate is automatically introduced as
a term of the glossary.

Using the on-line ontology database ConceptNet7, we can look for syn-
onyms between terms and existing classes. These synonyms can be then
grouped as one term in the process of creation of the model.

We also use the on-line English dictionary Wordnik8 to provide a default
definition of the glossary term.

7http://www.conceptnet.io
8https://www.wordnik.com

27

4. Our Approach

4.6 Inconsistency and Incompleteness

Documents containing no proper describe of entities may lead to the undefined
behavior. Similarly, introduced entity which is not further used indicates
missing information. The reasons of incompleteness may be:

• The customer forgot to mention it.

• The customer means that some facts are best-known, and he does not
explain them.

We try to avoid the inconsistency and the incompleteness by checking if
a class has at least one attribute and if it is in relation to another class. This
check is part of the model validation offered by TEMOS.

We are also able to check relation in the way of correct usage of the verb.
The English verbs can take 0, 1, or 2 objects, depending on the verb. Verbs
without objects are called intransitive, and the other ones are called transitive.
Using the dependencies recognition, we check if the verb has any objects. If
no object is found, we check the verb against the list of intransitive verbs.

The list of intransitive verbs was composed using data from Wiktionary9.
Unfortunately, this data contains also non-verb words and some transitive
verbs, so we use our testing utility (see Appendix E) to remove them.

We use detected problems as a source for generating warnings and ques-
tions for the user.

9https://en.wiktionary.org/wiki/Category:English intransitive verbs

28

Chapter 5
Implementation

5.1 Technologies

5.1.1 JavaFX

Based on the thesis assignment and corresponding non-functional require-
ments N1 and N2 from subchapter 3.1.2, we chose the JavaFX software
platform which provides the advantage of independence of the user’s operat-
ing system.

The software platform JavaFX (the first version was released in 2008) is
an open source project based on the software platform Java. JavaFX brings
new possibilities to define a GUI and replaces previous UI toolkit Swing [24].

5.1.2 Formats of Exported Files

TEMOS allows the user to export the model in three different formats:

1. XMI (XML Metadata Interchange) – as it flows from the name, this
format uses the XML structure. You can import these files into e. g.
Enterprise Architect or OpenPonk (platform developed at our faculty).

2. ECORE – a custom structure based on the XML structure used in
Eclipse Modeling Framework (EMF).

3. DOT – a custom structure for graph representation – suitable for instant
visualization. It is used, for example, by Graphviz10.

10There is also an on-line version available at: http://www.webgraphviz.com

29

5. Implementation

5.2 Architecture

TEMOS was designed and implemented as client-side application. The ap-
plication includes Stanford CoreNLP framework and therefore the primary
functionality is available without having to connect to the Internet. If an
Internet connection is available, TEMOS can use the on-line resources men-
tioned below.

This application is based on the Model-View-Controller (MVC) pattern
that corresponds to the client-side JavaFX applications architecture [25].

TEMOS is also multithreading application. The most demanding time-
consuming task is undoubtedly text processing using Stanford CoreNLP. To
maintain application response, we used technique of background threads.

5.2.1 On-line Resources

The disadvantage of using free on-line resources may be their limitation on
the number of requests. TEMOS uses:

1. Wordnik – on-line dictionary used to get the default definition of glossary
terms – limitation: 250 requests per minute per our API key.

2. ConceptNet – ontology database used to find synonyms – limitation: 1
request per second per IP address.

If the limit is exhausted, the user is reminded that it is necessary to wait.

5.2.2 Package Structure

Package diagram in Fig. 5.1 shows a grouping of related classes and interfaces
into the packages. Main package (cz.cvut.fit.temos) and every package within
controls package also contain another package with graphical resources – which
were not shown for clarity.

5.3 Graphical User Interface

The GUI in JavaFX can be created using old-fashioned code-behind way
or a developer may use the FXML files which are defined similarly to the
HTML structure of web pages. The great advantage of JavaFX is then styling
the view (customizing colors, sizes, etc) using CSS.

The implemented GUI reflects draft from chapter 3. It is implemented as
two overlapping layers – the top layer is hidden most of the time and is used

30

5.4. Custom Controls

cz.cvu t.fit.temos

controllers

+ CoverLayerController

+ EditorController

+ MainController

+ MenuController

+ OntologyEditorController

+ TextEditorController

controls

+ C learButtonComboBox

+ CustomControlHelper

+ DecoratedLabel

+ F latButton

+ F latPopupButton

+ HorizontalSplitPane

+ InlineColorPicker

+ TooltipedLabel

+ IndexedControl

classManager

+ ClassManager

+ ClassNode

+ HTTP429Exception

+ MergeClassAnalyzer

model

+ Model

+ ModelExporter

+ ModelHelper

+ ModelLoader

facts

+ Class

+ GlossaryTerm

util

+ CollectionV iewerHelper

+ CompositeCollection

+ NodeUtil

+ OverrideableObservableList

+ Pair

+ ReadOnlyPair

nlp

+ Document

+ AnnotableReadOnlySentence

+ ReadOnlySentence

+ ReadOnlyToken

+ SentenceListIterator

annotations

+ Annotation

+ A ttributeAnnotation

+ C lassAnnotation

+ IntransitiveVerbWarning

+ RelationAnnotation

documentViewer

+ DocumentPane

+ DocumentViewer

+ SelectionTuple

+ SentenceRow

g lossaryViewer

+ GlossaryViewer

annotator

+ Annotator

+ CreateAnnotationException

+ InternalAnnotator

v iews

+ coverLayer.fxml

+ editor.fxml

+ main.fxml

+ menu.fxml

+ ontologyEditor.fxml

+ textEditor.fxml

resources

+ D ictionary

Figure 5.1: The Package Diagram

to display information messages and animation during the time-consuming
operations.

5.4 Custom Controls

Traditional approach of creating a GUI application is composition a view using
the controls. In the same way, it is possible create the GUI also in JavaFX
with using predefined JavaFX controls. If the front-end developer need more
customization of the GUI, he or she needs create a custom control – such
control that provides more functionality than predefined control or a specific
design.

As shown in package diagram in Fig. 5.1, the package called controls
contains a lot of custom controls tailored to the needs of GUI. The meaning
of most of them is apparent from their name – and therefore we only describe
the one following control here.

31

5. Implementation

5.4.1 HorizontalSplitPane Control

The one of the first implementations of TEMOS used the original Split-
Pane control provided by JavaFX. Unfortunately, during GUI implementa-
tion, we encountered a few bugs regarding behavior of that violate the spe-
cification. We reported these issues through Oracle Java Bug Database at
website http://bugs.java.com. These issues were accepted and incorpor-
ated into the database with labels JDK-8171071 and JDK-8172029. That
was the reason for creating our custom HorizontalSplitPane control. It is
based on the horizontal layout control HBox and it implements possibility
of varying width of the left and the right content based on the divider posi-
tion. For this purpose, our control has dividerPosition property and methods
for setting content – getLeftChildren and getRightChildren.

Unlike the original SplitPane control, our control allows you to hide divider
directly via dividerVisible property. Based on this, we implemented another
feature – in the case of hidden divider and change of its position, the divider
shortly animates to see where it is.

Developer can use our control directly in FXML view design similarly
as presented in listing 5.1.

Listing 5.1: Example of Usage of HorizontalSplitPane Control
<HorizontalSplitPane dividerPosition="0.7"

dividerVisible="true">
<leftChildren>

<!-- Custom content. -->
</leftChildren>
<rightChildren>

<!-- Custom content. -->
</rightChildren>

</HorizontalSplitPane>

32

Chapter 6
Testing

6.1 Software Development and Testing

The application was continuously tested using JUnit tests based on the
JUnit4 framework. The testing was primarily focused on the Model class
(that provides a data layer across the entire application) and the Document
class (that is responsible for parsing textual requirement specifications). These
tests are part of source files of TEMOS project and can be found on the en-
closed DVD. All functionality of the GUI was also tested with the minimum
resolution declared in Appendix C.

6.2 Experiments and Results

Create models based on the textual requirement specification is a creative
activity. Different analysts can create different models from the same require-
ments based on their experience. Therefore, testing the quality of generated
models by our TEMOS tools and testing models, in general, is not an easy
task and may be – from a certain point of view – subjective. For testing
purposes, we take some examples from [20] which are listed below. The ex-
amples are organized in the following way. In the gray box, there are original
requirements. These are followed by the generated model by TEMOS in the
form of the UML class diagram. This diagram was acquired using Enterprise
Architect after importing the model generated by TEMOS in the XMI format.
Every example is also supplemented with a brief comment on the quality
of the generated model.

33

6. Testing

6.2.1 Musical Store

6.2.1.1 Original Requirements

1. The musical store receives tape requests from customers.
2. The musical store receives new tapes from the Main office.
3. Musical store sends overdue notice to customers.
4. Store assistant takes care of tape requests.
5. Store assistant update the rental list.
6. Store management submits the price changes.
7. Store management submits new tapes.
8. Store administration produces rental reports.
9. Main office sends overdue notices for tapes.

10. Customer request for a tape.
11. Store assistant checks the availability of requested tape.
12. Store assistant searches for the available tape.
13. Store assistant searches for the rental price of available tape.
14. Store assistant checks status of the tape to be returned by customer.
15. Customer can borrow if there is no delay with return of other tapes.
16. Store assistant records rental by updating the rental list.
17. Store assistant asks the customer for his address.

6.2.1.2 Generated Model

class Class Diagram of Musical Store

customer

list

main officenotice

price change report

store store
administration

store assistant store
management

tape

- ava i labi l i ty
- rental price
- Store assistant check sta tus
- return

tape request

send

receive subm it

ask

update receive subm it

from from

producetake care of

send

Figure 6.1: The Generated Class Diagram of Musical Store

34

6.2. Experiments and Results

6.2.1.3 Discussion

The generated model fairly reflects the part of the requirements that cor-
responds with static UML model. These requirements also describes some
internal processes and system roles (like the manager, the assistant, and the
administrator) that do not necessarily have to be class candidates.

A clear failure occurred in the 14th sentence when the first words (”Store
assistant check status”) were marked as an attribute of the class tape. As can
be seen in Fig. 6.2, this error occurred because Stanford CoreNLP system did
not recognize the verb check – this word was incorrectly marked as a plural
noun. The same problem also occurs in sentences (11), (12), (13), and (16).

Store assistant checks status of the tape to be returned by customer .

NNP NN NNS NN IN DT NN TO VB VBN IN NN .
det auxpass casecompound

case mark nmod:agent
nmod:of

compound
compound

acl:to
punct

Figure 6.2: The Incorrect Result of Dependency Parse Annotator

6.2.2 Automatic Teller Machine

6.2.2.1 Original Requirements

1. Design the software to support a computerized banking network
including both human cashiers and automatic teller machines ATMs
to be shared by a consortium of banks.

2. Each bank provides its own computer to maintain its own accounts
and process transactions against them.

3. Cashier stations are owned by individual banks and communicate
directly with their own bank’s computer.

4. Human cashiers enter account and transaction data.
5. Automatic teller machines communicate with a central computer

which clears transactions with the appropriate banks.
6. An automatic teller machine accepts a cash card, interacts with

the user, communicates with the central system to carry out the
transaction, dispenses cash, and prints receipts.

7. The system requires appropriate record keeping and security provi-
sions.

8. The system must handle concurrent accesses to the same account
correctly.

35

6. Testing

9. The banks will provide their own software for their own computers;
you are to design the software for the ATMs and the network.

10. The cost of the shared system will be apportioned to the banks
according to the number of customers with cash cards.

6.2.2.2 Generated Model

class Class Diagram of ATM

automatic teller
machine

access

account account
transaction

datum

bank

- consortium

cashcash card

cashier

cashier station

computer

customer

- num ber

keep security
provision

software

system

- cost

transaction

user

m aintain

handle

accept
com municate

provide

interact

enter

own dispense

provide require

com m unicate

clear

comm unicate

maintain

Figure 6.3: The Generated Class Diagram of Automatic Teller Machine

6.2.2.3 Discussion

Recognition of class and relation candidates meets presented entities in re-
quirements. The automatic analysis only failed to distinguish the difference
between the human cashier and the automatic teller machine with respect to
the central system. The system is also marked differently in different sen-
tences. Therefore, this model requires more modifications than the previous
one.

36

6.2. Experiments and Results

6.2.3 ABC Video Rental

6.2.3.1 Original Requirements

1. Customers select at least one video for rental.
2. The maximal number of tapes that a customer can have outstanding

on rental is 20.
3. The customer’s account number is entered to retrieve customer data

and create an order.
4. Each customer gets an id card from ABC for identification purposes.
5. This id card has a bar code that can be read with the bar code

reader.
6. Bar code Ids for each tape are entered and video information from

inventory is displayed.
7. The video inventory file is updated.
8. When all tape Ids are entered, the system computes the total bill.
9. Money is collected and the amount is entered into the system.

10. Change is computed and displayed.
11. The rental transaction is created, printed and stored.
12. The customer signs the rental form, takes the tapes and leaves.
13. To return a tape, the video bar code ID is entered into the system.
14. The rental transaction is displayed and the tape is marked with the

date of return.
15. If past-due amounts are owed they can be paid at this time; or the

clerk can select an option which updates the rental with the return
date and calculates past-due fees.

16. Any outstanding video rentals are displayed with the amount due
on each tape and the total amount due.

17. Any past-due amount must be paid before new tapes can be rented.

37

6. Testing

6.2.3.2 Generated Model

class Class Diagram of Video Rental

amount

bar code reader bill

clerkcustomer

id card

- bar code

option

return

- date

system

tape

- m axim al num ber

video

video bar code idvideo rental

get selectselect

com pute

enterdisplay

Figure 6.4: The Generated Class Diagram of Video Rental

6.2.3.3 Discussion

This example describes the internal processes of the video rental company.
Although the generated model may look incomplete, the requisite entities
were captured from the point of view of the class diagram. The requirements
are primarily focused on the conditions and the following actions that are
displayed through other diagrams.

38

6.2. Experiments and Results

6.2.4 Hotel Booking System

The last tested example was created by us and it mostly contains
straightforward definitions (the structure of the sentence is in the format:
subject–verb–object(s)) which are, of course, the best for automated processing.

6.2.4.1 Original Requirements

1. We would like to create a hotel booking system.
2. Our business group owns many hotels.
3. Every hotel offers some rentable spaces.
4. The rentable space always has a specified rent cost and area (meas-

ured in square meters).
5. The rentable space is either a hotel bedroom or a conference room.
6. The hotel bedroom has a unique room number and a number of

beds.
7. The hotel bedroom may contain a television.
8. We would like to record a serial number and a display size of each

television.
9. Every hotel employs at least one receptionist.

10. A receptionist takes care of reservations from customers.
11. Every booking has a customer and a selected rentable space.
12. The customer is identified by name, surname, and address.
13. The reservation contains a start date and an end date.
14. The booking also has a unique identifier.
15. Every conference room has a name and a maximum capacity.
16. The meeting room can contain a projection screen.

6.2.4.2 Generated Model

You can find the generated XMI file in Appendix D. The appearance of this
class diagram corresponds to the status after accepting class unification tips
(booking=reservation and conference room=meeting room).

39

6. Testing

class Class Diagram of Hotel Booking System

business group

conference room

- m axim um capaci ty
- projection screen

customer

- surnam e
- address

hotel

hotel bedroom

- room num ber
- bed

name

receptionist

reservation

- start date
- end date
- identifie r

space

- rent cost
- area

telev ision

- seria l num ber
- display size

em ploy

have

take care of

have

have

offerown

identi fy

conta in

Figure 6.5: The Generated Class Diagram of Hotel Booking System

6.2.4.3 Discussion

This example shows recognition of all three types of annotations (the class an-
notation, the relation annotation, and the attribute annotation) and also shows
case of specialization between the class space and subclasses hotel bedroom and
conference room.

This result is already very close to real processing by the analyst. The
human analyst would probably not designate the name as a separate class –
TEMOS did not consider the name to be an attribute because it is a shared
information between two classes. The second attribute of the class hotel bed-
room should be labeled as number of beds with respect to the 6th sentence –
unfortunately, the current version of Stanford CoreNLP does not generate the
necessary link here.

40

6.3. Summary

6.3 Summary

TEMOS revealed most of the class candidates and the relationships between
them in presented examples. Greater success of generated models occurred
with requirements describing system properties.

In any case, the user can use automatic analysis as the initial model estim-
ate, which can be further edited directly in TEMOS. After that, the user can
export a model that matches his or her ideas for further processing in XMI,
ECORE, or DOT format.

The screenshots capture the testing of the last example of the hotel booking
system.

Figure 6.6: TEMOS – View of Specification

41

6. Testing

Figure 6.7: TEMOS – View of Classes Manager

42

Conclusion

Evaluation

We designed and implemented custom CASE tool TEMOS in JavaFX re-
flecting requirements from the chapter 3. It is a portable multi-threading
application using built-in Stanford CoreNLP platform and on-line resources
(like the English dictionary Wodnik and the ontology database ConceptNet).

TEMOS handles the requirements for the software system written in plain
text. Based on the test from the previous chapter, TEMOS is able to generate
drafts of UML class models. These models can be further modified or may
be exported for further processing (XMI and ECORE formats) or may be
visualized directly (DOT format).

During implementation, we also found the previously mentioned bugs that
we had reported and which may be useful for the JavaFX community.

Future Work and Ideas

Due to the high computational complexity (primarily due to Stanford CoreNLP
analysis), the client–server architecture might be interesting. This architec-
ture could also be used to collect data for the improvement of the analysis
process.

43

Bibliography

[1] ISAIAS, Pedro and Tomayess ISSA. Information System Develop-
ment Life Cycle Models. In: High Level Models and Methodologies
for Information Systems [online]. Springer New York, 2015, pp. 21–
40 [accessed: Nov 5, 2016]. ISBN: 978-1-4614-9254-2. Available from
http://dx.doi.org/10.1007/978-1-4614-9254-2 2

[2] KOF, Leonid. Natural Language Processing: Mature Enough for Require-
ments Documents Analysis? [online]. 2005 [accessed Nov 14, 2016]. Avail-
able from: https://wwwbroy.in.tum.de/publ/papers/Is NLP Mature.pdf

[3] KRÁTKÝ, Tomáš and Bohumı́r ZOUBEK. Requirements Engineering
[online presentation]. 2016 [accessed Nov 23, 2016]. Available from:
http://profinit.eu/wp-content/uploads/2016/12/02 Requirements intro-
1.pdf

[4] ISO/IEC/IEEE 29148-2011. Systems and Software Engineer-
ing – Life Cycle Processes – Requirements Engineering [on-
line]. 2011 [accessed Dec 12, 2016]. Available from: ht-
tps://doi.org/10.1109/IEEESTD.2011.6146379

[5] About SWEBOK [online]. IEEE Computer Society, 2004. [accessed: Nov
28, 2016]. Available from: https://www.computer.org/web/swebok

[6] Volere Requirements Specification Template [online]. The At-
lantic Systems Guild. [accessed: Nov 28, 2016]. Available from:
http://www.volere.co.uk/template.htm

[7] SPARX Systems. Enterprise Architect [software]. Version 12. Available
from: http://www.sparxsystems.com.au

45

http://dx.doi.org/10.1007/978-1-4614-9254-2_2
https://wwwbroy.in.tum.de/publ/papers/Is_NLP_Mature.pdf
http://profinit.eu/wp-content/uploads/2016/12/02_Requirements_intro-1.pdf
http://profinit.eu/wp-content/uploads/2016/12/02_Requirements_intro-1.pdf
https://doi.org/10.1109/IEEESTD.2011.6146379
https://doi.org/10.1109/IEEESTD.2011.6146379
https://www.computer.org/web/swebok
http://www.volere.co.uk/template.htm
http://www.sparxsystems.com.au

Bibliography

[8] LUISA, Mich, Franch MARIANGELA and Novi Inverardi PIERLUIGI.
Market Research for Requirements Analysis Using Linguistic Tools [on-
line]. [accessed Oct 18, 2016]. DOI: 10.1007/s00766-003-0179-8. Available
from: http://link.springer.com/10.1007/s00766-003-0179-8

[9] EASTERBROOK, Steve. Lecture 17: Requirements Specifications [on-
line presentation]. 2004 [accessed Dec 27, 2016]. Available from:
http://www.cs.toronto.edu/ sme/CSC340F/slides/17-specifications.pdf

[10] HUTCHINS, John. Retrospect and prospect in computer-based trans-
lation [online]. 1999 [accessed Nov 27, 2016]. Available from:
http://www.hutchinsweb.me.uk/MTS-1999.pdf

[11] NEUBIG, Graham. Natural Language Processing Tools [online]. [accessed
Nov 11, 2016]. Available from: http://www.phontron.com/nlptools.php

[12] MANNING, Christopher, Mihai SURDEANU, John BAUER,
Jenny FINKEL, Steven BETHARD, and David McCLOSKY.
The Stanford CoreNLP Natural Language Processing Toolkit
[online]. 2014 [accessed Nov 5, 2016]. Available from:
http://nlp.stanford.edu/pubs/StanfordCoreNlp2014.pdf

[13] ARLOW, Jim and Ila NEUSTADT. UML 2 and The Unified Process:
Practical Object-Oriented Analysis and Design. 2nd ed. Boston: Addison-
Wesley, 2005. ISBN 978-0-321-32127-5.

[14] About OMG [online]. Object Management Group,
2015. [accessed: Nov 14, 2016] Available from:
http://www.omg.org/gettingstarted/gettingstartedindex.htm

[15] ROLLAND, Colette and Christophe PROIX. A natural lan-
guage approach for Requirements Engineering [online]. [ac-
cessed: Nov 5, 2016]. DOI: 10.1007/BFb0035136. Available from:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.52.1277&rep=rep1&type=pdf

[16] AMBRIOLA, Vincenzo and Vincenzo GERVASI. Processing Natural Lan-
guage Requirements [online]. 1997 [accessed: Dec 28, 2016]. Available
from: http://dl.acm.org/citation.cfm?id=786786

[17] KOF, Leonid. An Application of Natural Language Pro-
cessing to Domain Modelling: Two Case Studies [on-
line]. 2004 [accessed Dec 2, 2016]. Available from:
https://pdfs.semanticscholar.org/ff28/af43b15a25bb59b2044c2e9bba9fa0008820.pdf

46

http://link.springer.com/10.1007/s00766-003-0179-8
http://www.cs.toronto.edu/~sme/CSC340F/slides/17-specifications.pdf
http://www.hutchinsweb.me.uk/MTS-1999.pdf
http://www.phontron.com/nlptools.php
http://nlp.stanford.edu/pubs/StanfordCoreNlp2014.pdf
http://www.omg.org/gettingstarted/gettingstartedindex.htm
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.52.1277&rep=rep1&type=pdf
http://dl.acm.org/citation.cfm?id=786786
https://pdfs.semanticscholar.org/ff28/af43b15a25bb59b2044c2e9bba9fa0008820.pdf

Bibliography

[18] OVERMYER, Scott, Lavoie BENOIT and Owen RAMBOW. Conceptual
Modeling through Linguistic Analysis Using LIDA [online]. 2001 [accessed:
Jan 2, 2017]. Available from: http://www.cogentex.com/papers/lida-
paper-197-final.pdf

[19] ARELLAANO, Andres, Edward ZONTEK-CARNEY, and
Mark A. AUSTIN. Natural Language Processing of Textual Re-
quirements [online]. [accessed: Dec 28, 2016]. Available from:
https://www.isr.umd.edu/ austin/reports.d/ICONS2015-AA-EC-
MA.pdf

[20] LANDHÄUßER, Mathias, Sven J. KOERNER, and Walter
TICHÝ. From Requirements to UML Models and Back: How
Automatic Processing of Text Can Support Requirements Engin-
eering [online]. 2014 [accessed: Dec 27, 2016]. Available from:
http://link.springer.com/article/10.1007/s11219-013-9210-6

[21] The University of Pennsylvania (Penn) Treebank Tag-set [on-
line]. Eric Atwell. [accessed: Dec 12, 2016]. Available from:
http://www.comp.leeds.ac.uk/amalgam/tagsets/upenn.html

[22] SCHUSTER Sebastian, Christopher D. MANNING. Enhanced English
Universal Dependencies: An Improved Representation for Natural Lan-
guage Understanding Tasks [online]. 2016 [accessed: Jan 2, 2017]

[23] Universal Dependencies v2 [online]. [accessed: Apr 14, 2017]. Available
from: http://universaldependencies.org

[24] EBBERS, Hendrik. Mastering JavaFX 8 Controls: Create Custom
JavaFX Controls for Cross-Platform Applications. New York: McGraw-
Hill Education, 2014. ISBN 978-0-07-183378-3.

[25] DEA, Carl, Mark HECKLER, Gerrit GRUNWALD, Jose PEREDA and
Sean M. Phillips. JavaFX 8: Introduction by Example. Second edition.
New York: Apress, 2014. ISBN 978-1-4302-6460-6.

47

http://www.cogentex.com/papers/lida-paper-197-final.pdf
http://www.cogentex.com/papers/lida-paper-197-final.pdf
https://www.isr.umd.edu/~austin/reports.d/ICONS2015-AA-EC-MA.pdf
https://www.isr.umd.edu/~austin/reports.d/ICONS2015-AA-EC-MA.pdf
http://link.springer.com/article/10.1007/s11219-013-9210-6
http://www.comp.leeds.ac.uk/amalgam/tagsets/upenn.html
http://universaldependencies.org

Appendix A
Acronyms

CASE Tools Computer-Aided Software Engineering Tools

CSS Cascading Style Sheets

GUI Graphical User Interface

HTML HyperText Markup Language

IEEE Institute of Electrical and Electronics Engineers

MDA Model Driven Architecture

MDD Model Driven Development

NLP Natural Language Processing

SDLC Software Development Life Cycle

UML Unified Modeling Language

XML Extensible Markup Language

XMI XML Metadata Interchange

49

Appendix B
Contents of DVD

README.txt......................the file with DVD contents description
Source Files.............................the directory of source codes

Intransitive Verbs Testing Tool...the directory of auxiliary tool
—————————————————————————- source codes
TEMOS..the directory of TEMOS source codes (IntelliJ IDEA project)
Thesis..............the directory of LATEX source codes of the thesis

Figures the thesis figures directory
*.tex.................... the LATEX source code files of the thesis

TEMOS...................the directory with the executable TEMOS tool
Presentation Video.avi..............the video presenting TEMOS
—————————————————————————-functionality
README.txt.....................the file with the launch instructions
TEMOS.jar the executable TEMOS tool
TEMOS.bat..the launch shortcut with the recommended JVM settings

Text..the thesis text directory
Master’s Thesis.pdf the Master’s thesis in a PDF format

51

Appendix C
System Requirements

for TEMOS

Here are listed the recommended system requirements to run TEMOS tool:

• minimum recommended Java version: 1.8.0 (update 91),

• minimum recommended JVM (Java Virtual Machine) heap size: 2.5
GB,

• minimum screen resolution: 800x600.

C.1 Additional Information

Installation TEMOS is a portable Java JAR application – no installation is
needed.

Launch You can run the TEMOS.jar, or you can use (if you are a Windows
user) the enclosed Run.bat file that runs the TEMOS application with
the minimum recommended heap size.

Internet connection TEMOS can run without an Internet connection. On
the other hand, some features use on-line resources such as dictionaries
and ontological databases and their launch requires an available Internet
connection.

Application log An application log (TEMOS.log file) is located in the sub-
folder called logs, and it is overwritten every time you run TEMOS.

53

Appendix D
Example of Generated XMI File

This XMI file was generated by TEMOS based on the example in subchapter
6.2.4.

Listing D.1: Example of Generated XMI File

<?xml version="1.0" encoding="UTF-8"?>
<xmi:XMI xmi:version="2.1"

xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"
xmlns:uml="http://schema.omg.org/spec/UML/2.1">

<xmi:Documentation exporter="Textual Modeling System (TEMOS)"
exporterVersion="1.0" />

<uml:Model xmi:type="uml:Model" name="Hotel_Model">
<packagedElement xmi:type="uml:Package"

name="Hotel" xmi:id="0">
<packagedElement xmi:type="uml:Class"

name="business group" xmi:id="1">
</packagedElement>
<packagedElement xmi:type="uml:Class"

name="hotel" xmi:id="2">
</packagedElement>
<packagedElement xmi:type="uml:Class"

name="space" xmi:id="3">
<ownedAttribute xmi:type="uml:Property"

name="rent cost" visibility="private" />
<ownedAttribute xmi:type="uml:Property"

name="area" visibility="private" />
</packagedElement>
<packagedElement xmi:type="uml:Class"

55

D. Example of Generated XMI File

name="hotel bedroom" xmi:id="6">
<generalization xmi:type="uml:Generalization" general="3" />
<ownedAttribute xmi:type="uml:Property"

name="room number" visibility="private" />
<ownedAttribute xmi:type="uml:Property"

name="bed" visibility="private" />
</packagedElement>
<packagedElement xmi:type="uml:Class"

name="conference room" xmi:id="7">
<generalization xmi:type="uml:Generalization" general="3" />
<ownedAttribute xmi:type="uml:Property"

name="maximum capacity" visibility="private" />
</packagedElement>
<packagedElement xmi:type="uml:Class"

name="television" xmi:id="10">
<ownedAttribute xmi:type="uml:Property"

name="serial number" visibility="private" />
<ownedAttribute xmi:type="uml:Property"

name="display size" visibility="private" />
</packagedElement>
<packagedElement xmi:type="uml:Class"

name="receptionist" xmi:id="11">
</packagedElement>
<packagedElement xmi:type="uml:Class"

name="reservation" xmi:id="12">
<ownedAttribute xmi:type="uml:Property"

name="start date" visibility="private" />
<ownedAttribute xmi:type="uml:Property"

name="end date" visibility="private" />
</packagedElement>
<packagedElement xmi:type="uml:Class"

name="booking" xmi:id="13">
<ownedAttribute xmi:type="uml:Property" name="identifier"

visibility="private" />
</packagedElement>
<packagedElement xmi:type="uml:Class"

name="customer" xmi:id="14">
<ownedAttribute xmi:type="uml:Property"

name="surname" visibility="private" />
<ownedAttribute xmi:type="uml:Property"

56

name="address" visibility="private" />
</packagedElement>
<packagedElement xmi:type="uml:Class"

name="name" xmi:id="15">
</packagedElement>
<packagedElement xmi:type="uml:Class"

name="meeting room" xmi:id="22">
<ownedAttribute xmi:type="uml:Property"

name="projection screen" visibility="private" />
</packagedElement>
<packagedElement xmi:type="uml:Association"

name="own">
<memberEnd xmi:idref="23" />
<ownedEnd xmi:type="uml:Property"

isOrdered="true" xmi:id="23">
<type xmi:idref="1" />

</ownedEnd>
<memberEnd xmi:idref="24" />
<ownedEnd xmi:type="uml:Property"

isOrdered="true" xmi:id="24">
<type xmi:idref="2" />

</ownedEnd>
</packagedElement>
<packagedElement xmi:type="uml:Association"

name="offer">
<memberEnd xmi:idref="25" />
<ownedEnd xmi:type="uml:Property"

isOrdered="true" xmi:id="25">
<type xmi:idref="2" />

</ownedEnd>
<memberEnd xmi:idref="26" />
<ownedEnd xmi:type="uml:Property"

isOrdered="true" xmi:id="26">
<type xmi:idref="3" />

</ownedEnd>
</packagedElement>
<packagedElement xmi:type="uml:Association"

name="employ">
<memberEnd xmi:idref="27" />
<ownedEnd xmi:type="uml:Property"

57

D. Example of Generated XMI File

isOrdered="true" xmi:id="27">
<type xmi:idref="2" />

</ownedEnd>
<memberEnd xmi:idref="28" />
<ownedEnd xmi:type="uml:Property"

isOrdered="true" xmi:id="28">
<type xmi:idref="11" />

</ownedEnd>
</packagedElement>
<packagedElement xmi:type="uml:Association"

name="contain">
<memberEnd xmi:idref="29" />
<ownedEnd xmi:type="uml:Property"

isOrdered="true" xmi:id="29">
<type xmi:idref="6" />

</ownedEnd>
<memberEnd xmi:idref="30" />
<ownedEnd xmi:type="uml:Property"

isOrdered="true" xmi:id="30">
<type xmi:idref="10" />

</ownedEnd>
</packagedElement>
<packagedElement xmi:type="uml:Association"

name="have">
<memberEnd xmi:idref="31" />
<ownedEnd xmi:type="uml:Property"

isOrdered="true" xmi:id="31">
<type xmi:idref="7" />

</ownedEnd>
<memberEnd xmi:idref="32" />
<ownedEnd xmi:type="uml:Property"

isOrdered="true" xmi:id="32">
<type xmi:idref="15" />

</ownedEnd>
</packagedElement>
<packagedElement xmi:type="uml:Association"

name="take care of">
<memberEnd xmi:idref="33" />
<ownedEnd xmi:type="uml:Property"

isOrdered="true" xmi:id="33">

58

<type xmi:idref="11" />
</ownedEnd>
<memberEnd xmi:idref="34" />
<ownedEnd xmi:type="uml:Property"

isOrdered="true" xmi:id="34">
<type xmi:idref="12" />

</ownedEnd>
</packagedElement>
<packagedElement xmi:type="uml:Association"

name="have">
<memberEnd xmi:idref="35" />
<ownedEnd xmi:type="uml:Property"

isOrdered="true" xmi:id="35">
<type xmi:idref="13" />

</ownedEnd>
<memberEnd xmi:idref="36" />
<ownedEnd xmi:type="uml:Property"

isOrdered="true" xmi:id="36">
<type xmi:idref="14" />

</ownedEnd>
</packagedElement>
<packagedElement xmi:type="uml:Association"

name="have">
<memberEnd xmi:idref="37" />
<ownedEnd xmi:type="uml:Property"

isOrdered="true" xmi:id="37">
<type xmi:idref="13" />

</ownedEnd>
<memberEnd xmi:idref="38" />
<ownedEnd xmi:type="uml:Property"

isOrdered="true" xmi:id="38">
<type xmi:idref="3" />

</ownedEnd>
</packagedElement>
<packagedElement xmi:type="uml:Association"

name="identify">
<memberEnd xmi:idref="39" />
<ownedEnd xmi:type="uml:Property"

isOrdered="true" xmi:id="39">
<type xmi:idref="14" />

59

D. Example of Generated XMI File

</ownedEnd>
<memberEnd xmi:idref="40" />
<ownedEnd xmi:type="uml:Property"

isOrdered="true" xmi:id="40">
<type xmi:idref="15" />

</ownedEnd>
</packagedElement>

</packagedElement>
</uml:Model>

</xmi:XMI>

60

Appendix E
Intransitive Verbs Testing Tool

We created this tool to verify if the verb is intransitive. This tool expects to
input a text file of words separated by a new line. We then test each word
using the on-line dictionary Wordnik. Below is a screenshot of the result of
Intransitive Verbs Testing Tool.

Figure E.1: Intransitive Verbs Testing Tool

You can find this tool included on the enclosed DVD.

61

	Introduction
	Motivation
	Text Structure

	Domain Introduction
	Requirements Engineering
	Natural Language
	Ontology Databases
	UML Models

	Related Work
	Analysis and Design of Solution
	Software Requirements
	User Interface

	Our Approach
	Overview
	Text Preprocessing
	Nature Language Processing using Stanford CoreNLP
	Grammatical Inspection
	Ambiguity
	Inconsistency and Incompleteness

	Implementation
	Technologies
	Architecture
	Graphical User Interface
	Custom Controls

	Testing
	Software Development and Testing
	Experiments and Results
	Summary

	Conclusion
	Evaluation
	Future Work and Ideas

	Bibliography
	Acronyms
	Contents of DVD
	System Requirements for TEMOS
	Additional Information

	Example of Generated XMI File
	Intransitive Verbs Testing Tool

