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Instructions

Hidden Markov model (HMM) is a discrete-time random process, where the output variables depend on the
states of an underlying discrete Markov chain that is usually unobserved. In many applications, however,
discrete-time models are not ideal and continuous-time models can better describe the real process.

In continuous-time hidden Markov model (CT-HMM) it is assumed that the underlying Markov chain is
continuous instead of discrete. It turns out that for CT-HMMs the task of parameter estimation is much more
complicated than for discrete HMMs. A general EM framework for continuous-time dynamic Bayesian
networks can be used but there is a need for efficient CT-HMM learning methods that can scale to large state
spaces (hundreds or more of states).

The goal of the thesis is to:

1) describe existing CT-HMM learning methods,

2) compare them analytically from an efficiency point of view,

3) implement two most efficient methods and compare them numerically on a suitable toy model.
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Lopatovský, Lukáš. Learning Methods for Continuous-Time Hidden Markov
Models. Master’s thesis. Czech Technical University in Prague, Faculty of
Information Technology, 2017. Also available from: 〈https://github.com/
lopatovsky/DP〉.

https://github.com/lopatovsky/DP
https://github.com/lopatovsky/DP


Abstrakt

Skrytý Markov̊uv proces se spojitým časem je slibným modelem s využit́ım
nejen pro biomedićınský výzkum. Nedostatek efektivńıch algoritmů pro jeho
učeńı v minulosti výrazne omezoval jeho použit́ı. Nedávno však byly prezentovány
nové efektivńı metody založené na EM algoritmu. V této diplomové práci
zkoumáme a srovnáváme současné moderńı metody, které jsou schopné vycvičit
modely obsahuj́ıćı až stovky skrytých stav̊u. Jako součást práce jsme vyvinuli
univerzálńı knihovnu pro skrytý Markov̊uv proces se spojitým a diskrétńım
časem, která efektivně implementuje nejslibněǰśı učebńı metody. Knihovna je
snadno použitelná a dostupná všem uživatel̊um pod licenćı open-source.

Kĺıčová slova skrytý Markov̊uv proces, skrytý Markov̊uv proces se spojitým
časem, strojové učeńı.

Abstract

The continuous-time hidden Markov model is promising not only for the
biomedical research. The lack of efficient learning algorithms has limited its
use in the past. However, recently the new efficient EM approaches were
presented. In this thesis we are examining and comparing current state-of-the-
art methods that are able to train models containing hundreds of hidden states.
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As the part of the work we have developed the general purpose continuous-
time and discrete-time hidden Markov model library effectively implementing
the best performing learning methods that is easy to use and available for
everyone under open-source license.

Keywords HMM, CT-HMM, hidden Markov model, continuous-time hid-
den Markov model, EM, HMMs, machine learning.
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Introduction

A continuous-time hidden Markov model (CT-HMM) is a variant of hidden
Markov model (HMM) where the output variables depend on the underlaying
continuous-time Markov process. This differentiates it from the traditional
HMM which is defined over discrete-time.

The CT-HMM model can be used on datasets with irregular observation
times where the state transitions are unobserved and usually occur in between
of two observations. This makes the model stronger and applicable to much
bigger set of problems comparing to discrete-time HMM which use is restricted
to equidistant time sequences. The most of the research is currently performed
over medical data. Patients undergo the examinations irregularly, while their
inner health state could change multiple times in between of two visits of
medical center. Use of the discrete-time model was insufficient. Quantifica-
tion of time leads to the emission sequence where most of the observations are
void. It also does not track possible changes of the states in between of two
observations. The CT-HMM can effectively solve these issues. It was used
successfully for prediction of disease interaction [16], modeling of glaucoma
progression [18, 19], and exploratory analyses of Alzheimer’s Disease [19]. Be-
sides the medical field it was also used to predict the read and write operations
arriving at a flash memory [26].

The cost for the higher flexibility of the model is more complex inference
procedure. There are not just unknown hidden states in observation points
but also unknown moments of state transition. The model parameter estim-
ation showed to be a hard problem to solve. First attempts based on the
direct maximizing of data likelihood and summing the probability through all
possible hidden states have only worked for restricted number of hidden states
or small number of allowed states transitions [26, 13]. There was a need for
more effective learning algorithm with less limitations [18].

The expectation maximization (EM) framework for the continuous-time
Markov process and Bayesian networks in general was introduced in [22]. It
was later extended to CT-HMM with the first proposed efficient EM algorithm
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Introduction

in [19]. The method is based on the computation of expected state transition
and expected time spend in the state. It leads to the problem of solving in-
tegrals of matrix exponentials which is the most computationally demanding
part of the method. Various approaches were used to solve it. Eigen decom-
position (referred to as Eigen) was used in [25] . However according [19] it
is not applicable for general jump-rate matrices which makes it unusable in
practice. Two other methods were introduced in [19]: direct truncation of
the infinite sum expansion of the exponential (referred to as Unif ) and mat-
rix exponentiation on an auxiliary matrix (referred to as Expm ). The Unif
method was marked as unstable later in the article, whereas Expm as being
most robust and time efficient and able to compute models with hundreds of
hidden states.

There was an effective theoretical solution, but there was no publicly avail-
able implementation that would spread the technology towards general public.
Our intention was to create first of its kind library implementing the state-
of-the-art methods for CT-HMM, that would be moreover easy and fast to
understand, and licensed as open source so it can be used and improved by
everyone.

As the result of this thesis, we have introduced the theory of the hidden
Markov Models (Chapter 1), described and explained the HMMs algorithms
(Chapter 2), implemented the general efficient HMM library for Python (de-
tails in Chapter 3). The library effectively implements both discrete-time and
continuous-time HMM. It provides all useful methods for work with the mod-
els as well as all algorithms described in the second chapter. Its key feature is
the EM algorithm for continuous-time HMM parameters estimation. We have
implemented more variants of Expm algorithm. User can choose between soft
and hard method 2.3.2, float-interval and integer-interval variant of algorithm
2.4 and train with both full and sparse jump-rate matrix. The behavior of all
implemented variants is examined by conducting experiments (Chapter 4).
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Chapter 1
Probabilistic Models

Before we start to talk about Continuous-time Hidden Markov Model (CT-
HMM) we will briefly explain its discrete-time variant, usually just referred
to as Hidden Markov Model (HMM or DT-HMM), starting by explaining
the underlaying Markov process. This forms logical hierarchy as the CT-
HMM is the natural extension of the discrete model sharing many ideas and
subroutines, and Markov process is base building block of overall model.

1.1 Discrete-time Markov Process

Discrete-time Markov process, also referred to as Markov chain, is the stochastic
process Xt in discrete equidistant time T = {1, 2, 3 . . . }, that in every time-
step occupies some state of the potentially infinite state set [8]. However,
later in the text we restrict ourself on the finite state set S = {s1, s2, . . . , sn}.
The process being in time ti ∈ T in the state sj will be denoted as Xti = sj .
Alternatively, to make some explanation simpler, we can also denote it just as
Xti = j. The state of the process can change in every time-step. Probability
that the process changed from state si to state sj is called transition probabil-
ity. We will refer to it as aij . The transition probabilities for all pairs of states
form square matrix of size n - the transition probabilities matrix A . Note
that elements on its diagonal, although referred to as transition probabilities,
represent the probabilities of the process remaining in the same state.

The Markov process is memory-less, not holding information about the
past states. So the probability of next transition depends only on the current
state. This characteristic is called the Markov property and can be expressed
by the following equation.

P(Xt = sj | Xt−1 = si, Xt−2 = sk, . . . )
= P(Xt = sj | Xt−1 = si), si, sj , sk ∈ S, t ∈ T

(1.1)

If not stated differently, we will always refer to the time-homogeneous
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1. Probabilistic Models

Markov processes. Homogeneity of the Markov process, described in following
equation, guarantees that one step transition probabilities are not changing
throughout the time so the matrix A stays constant.

aij = P(Xt = sj | Xt−1 = sj−1), 1 ≤ i, j ≤ n,∀t (1.2)
Standard stochastic constrains are applied for the transition probabilities

[23].

aij ≥ 0 (1.3)

n∑
j=1

aij = 1 (1.4)

1.2 Discrete-Time Hidden Markov Model

The Discrete-time Hidden Markov Model (HMM) [23] is doubly embedded
stochastic process consisting of underlaying discrete-time Markov process Xt

and another process O. The process O assigns to every state si the specific
observation symbol from the set V that will be emitted by certain probability.
The model is called “hidden”, because the state sequence of Markov process
is not directly visible. It can only be guessed from the measured observation
symbols using statistical techniques. The set V = {v1, v2, . . . , vm} is a set of
all observable (emission) symbols. The probability that state si emits symbol
vj or P(Ot = vj | Xt = si) will be denoted as bi(j) and together with other
elements form the matrix B, rectangular matrix of n rows and m columns.
Comparing to the single Markov process, HMM is able to model more complex
systems, that can be closer to describe the processes of real life problems.

The following parameters are needed to describe the HMM:

1. Hidden States
S = {s1, s2, . . . , sn} (1.5)

2. State Transition Probability Matrix

A = {aij}, 1 ≤ i, j ≤ n (1.6)

3. Observation Symbols

V = {v1, v2, . . . , vm} (1.7)

4. Observation Symbols Probability Matrix
B = {bi(k)}, where bi(k) is the probability that the observation vk will
occur, if the system is currently in state i.

bi(k) = P(Ot = vk | Xt = si), 1 ≤ i ≤ n, 1 ≤ k ≤ m (1.8)
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1.3. Continuous-Time Markov Process

5. Initial state distribution
π = {πi}, where πi is the probability of the initial state being si.

πi = P(X1 = si), 1 ≤ i ≤ n (1.9)

For the convenience we will declare parameter θ = (A,B,π) compactly
denoting the set of all parameters of the model.

1.3 Continuous-Time Markov Process

In the discrete-time Markov process described in Section 1.1 change of the
current state of the process could only occur once we have moved a step further
in the discrete time t. Comparing to this, in the continuous-time Markov
process (CTMP) can change of state occur at any moment (the occurrence
holds exponential distribution ).

A finite state continuous-time Markov process is a stochastic process {Xt |
t > 0} on the states S = {s1, s2, . . . , sn} (for n > 0 and S being the finite
state set), that in any time t occurs in corresponding state xt ∈ S.

It satisfies the following properties for times 0 ≤ u0 < u1 < · · · < ur < u :

Markov property: Probability of transition from state i to state j during
time interval t is stationary i.e. independent on the states of process in
the times u′ , u′ < u.

P(Xt+u = sj | Xu = si, Xur = sir , . . . , Xu0 = si0) =
= P(Xt+u = sj | Xu = si), si, sj , si0 , . . . , sir ∈ S

(1.10)

The property describes that the stochastic process is memoryless.

Homogeneity: Probability of transition from state si to sj in any given time
u ≥ 0 depends only on the length of the time interval t ≥ 0.

P(Xt+u = sj | Xu = si) = P(Xt = sj | X0 = si) =
= pij(t)

(1.11)

The upper mentioned conditions assert that the transition probability
pij(t), i, j = 1, . . . , n satisfies following conditions [15]:

pij(t) ≥ 0, (1.12)

n∑
j=1

pij(t) = 1, (1.13)
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1. Probabilistic Models

n∑
k=1

pik(u)pkj(t) = pij(u+ t). (1.14)

Equation (1.14) is known as Chapman-Kolmogorov equation. We can define
the matrix Pt, where the entry (i, j) is pij(t) to get the equation in matrix
form:

PuPt = Pu+t, t, u > 0. (1.15)

1.3.1 Jump Rates

Using the Chapman-Kolmogorov equation (1.14), and if we know the probab-
ility pij(t) for every states i, j and time 0 < t < t0, we are able to compute
the values for any time t > 0 [15].

State transition probability pij(t) is continuous for t = 0 [8]. After assign-
ing t = 0 we will get identity matrix P0 = I. Moreover from (1.15) follows
that pij(t) is continuous for all t > 0 and so that there exists the right derivat-
ive in 0. This knowledge enables us to determine the pij(t) for any given time
t > 0.

qij = dpij(t)
dt

∣∣∣∣
t=0

(1.16)

We will call this derivative qij the jump rate from state si to some other
state sj . The jump rate qii can be derived from the equation of transition
probabilities summing to one.

1 = pii(t) +
n∑

j=1,j 6=i
pij(t) (1.17)

Dividing it by time interval t and letting t decrease close to zero, we obtain
the following equation [5].

qii = −
n∑

j=1,j 6=i
qij (1.18)

We assume only finite rates qij . Infinite rate would immediately leave the
state, so it makes no sense for us to consider.

It can be shown that by construction of the CTMP from discrete time
Markov process (DTMP) 1.3.2 and it’s underlying Poisson process with rate
λ the equation qij = λaij holds. Where aij is the transition probability from
state si to state sj in DTMP 1.6. This is why we call qij the jump rate [8].

We can also look at qii as at the rate in which the Xt is leaving state si
(1.14). We define the jump-rates matrix as Q(i, j) = qij .
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1.3. Continuous-Time Markov Process

To get transition probabilities for any time t from matrix Q we need to
solve the Kolmogorov’s Backward equation

P′t = QPt, (1.19)

Kolmogorov’s Forward equation. They can be obtained from Chapman-
Kolmogorov equation (1.15) by differentiation [8]. The solution of the differ-
ential equation with the initial condition P0 = I leads to following matrix
exponentiation formula.

Pt = eQt (1.20)

1.3.2 Construction from Discrete-Time Markov Process with
Poisson Process Timing

The useful way for understanding the continuous-time Markov process is to
know its relation to the discrete process that can be shown by the following
construction [8].

We will take a homogeneous Poisson process N(t) with parameter λ and
a discrete-time Markov process Yν with states transition probabilities aij . We
assume the N(t) and Yν being mutually independent. By changing equidistant
timing of Yν to Poisson process timing, we will get the process YN(t) in which
transition from state si happens at each arrival in N(t) with probability ai =∑n,j 6=i
j=1 aij . Notice that the transition will not occur if i = j. Similarly,

the time spent in state si before the transition occurs can be described by
probability density function of exponential distribution with the parameter
λai as f(t) = λaie

−λait. Such a process Xt = YN(t) fulfills the CTMP definition
as described in Section 1.3.

Now we can derive the equation for probability of transition from state si
to state sj in the time t as the sum of all possible numbers of steps in which
the transition can occur.

pt(i, j) =
∞∑
n=0

P(N(t) = n,Xt = sj | X0 = si) =

=
∞∑
n=0

P(N(t) = n, YN(t) = sj | YN(0) = si) =

=
∞∑
n=0

P(N(t) = n)P(Yn = j | Y0 = i) =

=
∞∑
n=0

e−λt
(λt)n

n! anij

(1.21)
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1. Probabilistic Models

By differentiation of pt(i, j) with respect to t at 0, we get the following
equation for jump-rate matrix Q.

Q = λ(A− I) (1.22)

1.3.3 Fully Observable Continuous-Time Markov Process

Let’s have continuous time Markov process on the state space S with the
jump rates in the matrix Q, initial state probability distribution π, and the
known hidden state sequence X′ = (x′0, x

′
1, . . . , x

′

ν′
) occurring with transitions

in times T′ = (t′0, t
′
1, . . . , t

′

ν′
). Such a system in which we know when and

where the transition will happen is called fully observable [19]. We can count
its complete likelihood LFO what is the probability of state sequence X′ and
time sequence T′ being generated by model with parameters Q.

LFO = P(X ′
t
′
0

= x
′
0, . . . , X

′

t′ν
= x

′
ν | Q) =

=
ν
′−1∏
u=0

(q
x′ux
′
u+1

/qx′u
)(qx′ue

−q
x
′
u
τ
′
u) =

=
ν
′−1∏
u=0

q
x′ux
′
u+1

e
−q

x
′
u
τ
′
u

(1.23)

where qi =
∑n,i6=j
j=1 qij is the probability of transition from state i and

τ
′
u = t

′
u+1 − t

′
u is the time interval among two consecutive steps.

The equation can be further rearranged into form that group together
same state transition. Variable ηij marks the number of transition qij that
have occurred and τi is the total time spend in state si.

LFO =
n∏
i=1

n∏
j=1,i 6=j

q
ηij
ij e
−qiτi (1.24)

1.3.4 General Continuous-Time Markov Process

In general we do not know states of the system during all the time. It is only
known at some unevenly distributed times of observations T = (t0, t1, . . . , tν)
as X = (x0, x1, . . . , xν). This add an amount of insecurity in the probability
computation. We do not longer know, the number of transitions ηij as well as
the time spend in the specific state τi.

To count the likelihood of the process [19], we use earlier defined matrix
P(t) and its elements pij(t) 1.3. The time interval among two observation is

8



1.4. Continuous-Time Hidden Markov Model

marked as τu = tu+1 − tu.

L = P(Xt0 = x0, . . . , Xtν = xν | Q) =
ν−1∏
u=0

pxuxu+1(τu) (1.25)

It can be alternatively extended in the form

L =
ν−1∏
u=0

n∏
i=0,j=0

pij(τu)1(xu=si,xu+1=sj) (1.26)

where function 1(i, j) equals either 1, if both condition inside are true, or
0 if they are not. We define r as the number of all distinct time intervals from
the set T∆ = {τ1, τ2, . . . , τr}. In case of r being lower then the number of
observations it can be beneficial to aggregate them as in formula

L =
r∏

∆=1

n∏
i=0,j=0

pij(τ∆)C(τ=τ∆,xu=si,xu+1=sj) (1.27)

where function C denotes to total number of intervals for which is the
condition true.

1.4 Continuous-Time Hidden Markov Model

Continuous-time hidden Markov model is an extension of CTMP 1.3 where
states in times T = (t0, t1, . . . , tν) are not directly observed but just seen as
the observation symbols sequence O = (o0, o1, . . . , oν) emitted by the current
state si with the probability bi(o).

Emissions of the observable symbol can occur at any time independently
on the state transition times. For example it could be times when patient
undergoes medical examination. The times can generally have highly irregular
and unbalanced distribution.

The likelihood of completely observed system LFO is similar to the LFO
of CTMP (1.23) (1.24) with the difference we need to take into account the
probability of actual observation.

LFO = P(Xt0 = x0, . . . , Xtν = xν , Ot0 = o0, . . . , Otν = oν | Q,B) =

=
ν
′−1∏
u′

qx
u
′ x
u
′+1
e
−qx

u
′ τu′

v∏
u=0

bxu(ou) =

=
n∏
i=1

n∏
j=1,i 6=j

q
ηij
ij e
−qiτi

ν∏
u=0

bxu(ou)

(1.28)

There is much more latent information in such defined model. Not just
the hidden states, but also the unknown transition times and unknown state

9



1. Probabilistic Models

sojourn time (how long will the system remain in the state). Sometimes state
can change, without emitting a single observation. The large number of hidden
information make it to be more complex problem then the discrete time model.
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Chapter 2
Statistics

2.1 Expectation-Maximization Algorithm

Expectation-maximization (EM) algorithm (first introduced in [6]) is the method
for finding the maximum likelihood estimates(MLE) of parameters in prob-
abilistic models over incomplete data-set, i.e. data-set containing unobserved
(latent) variables. It is a natural generalization of maximum likelihood estim-
ation. However, the latent variables make finding of the MLE more difficult.
Direct count can be very computationally expensive. The EM algorithm uses
iterative approach to approximate the solution by repeating sequence of sim-
pler consecutive steps.

Let’s have x = (x1, x2, . . . , xn) containing the known (observed) vari-
ables and the vector z = (z1, z2, . . . , zn) containing latent (unobserved) vari-
ables. We set θ for unknown parameters we want to estimate. We denote
notation L(x, z;θ) = P(x, z|θ) for likelihood function which estimates the
probabilities for given parameters. We can count MLE directly by sum-
ming through all possible values of latent variables z as in following equation
L(x;θ) = P(x|θ) =

∑
z

P(x, z|θ) or get its approximation by EM algorithm in
following steps [17].

1. Initialization: Make initial guess of parameters θ̂0.

Continue by iterating through two following steps:

2. Expectation: Calculate expected value of the log-likelihood function
logL(x, z;θ) conditioned by z and given x where θ̂t is the current para-
meters estimation.

M(θ|θ̂t) = Ez|x,θ̂t
[logL(θ; x, z)] (2.1)

11
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3. Maximization: Find the values of parameters θ̂t+1 that maximize the
function defined in expectation step.

θ̂t+1 = arg max
θ

M(θ|θ̂t) (2.2)

As the value of M(θ̂t) matches the log-likelihood function at θ̂t, it follows
that Q(θ̂t) = log P(x, z; θ̂t) ≤ M(θ̂t+1) = log P(x, z; θ̂t+1) thus the function
values in consecutive iterations form non-decreasing sequence. The computa-
tion can be stopped once the parameters converge to some values, or if their
change is not more significant.

It is important to notice that this approach may lead to local optima. To
get better results the algorithm can be launched more times starting always
from different randomly initiated parameters. Possibly enhanced by the use
of some more advance non-linear optimization technique.

Look at [7] for more detailed, easily understandable tutorial with examples.

2.2 Discrete-Time Hidden Markov Model

When using HMM in real-world application we need to deal with following
problems. First we describe them and later in the successive subsections we
explain the algorithms that can effectively solve them (explained in detail in
Article [23] Sec. 3 A,B & C).

1. Compute the probability P(O|θ) of the observation sequence
O = (o1, o2, . . . , oν), given the parameters θ = (A,B,π) defined in
Section 1.2. Elements of the observation sequence O are some specific
measured data, taking values from the set V.

2. Choose the optimal state sequence X = (x1, x2, . . . , xν) having the ob-
servation sequence O and parameters θ.

3. Adjust the model parameters θ in the way it maximizes the probability
of observation sequence P(O|θ).

2.2.1 Forward-Backward Algorithm

The forward-backward algorithm is actually pair of two separate algorithms
(forward vs. backward). We will explain the forward one and at the end we
will describe the modifications that are needed to do the backward. Both of
them are sufficient to solve the first proposed problem 1 separately. We still
need to define both, because of the use in the later text.

Forward algorithm is the dynamic programming algorithm benefiting from
the Markov property (1.1) - the independence upon past events. We define for-
ward variable αt(i) as the probability of the partial observation sequence with

12



2.2. Discrete-Time Hidden Markov Model

the last observation in time t emitted by state si given the model parameters
θ.

αt(i) = P(o1, o2, . . . , ot, Xt = si | θ) (2.3)

The forward variables can be gradually counted using the bottom-up strategy
and following equations for t = 1 and t = t+ 1.

α1(i) = πibi(o1), 1 ≤ i ≤ n (2.4)

αt+1(i) =

 n∑
j=1

αt(j)aji

 bi(ot+1), 1 ≤ t ≤ ν − 1,

1 ≤ i ≤ n

(2.5)

Now we can obtain the solution of the first problem simply by summing
through the all forward variables in the time ν.

P(O|θ) =
n∑
i=1

αν(i) (2.6)

Similarly we can define backward variable βt(i) as

βt(i) = P(ot+1, ot+2, . . . , oν , Xt = si | θ). (2.7)

The Dynamic programming (DP) algorithm consist from two following equa-
tions for times t = ν and t < ν.

βν(i) = 1, 1 ≤ i ≤ n (2.8)

βt(i) =
n∑
j=1

aijbj(ot+1)βt+1(j), 1 ≤ t ≤ ν − 1,

1 ≤ i ≤ n
(2.9)

The solution for the first problem can be obtain by summing probabilities
for all the beginning states. We need to be careful not to forget to multiply
by probability of the first observation symbol being emitted as it is not part
of the definition for backward variable in time t = 1.

P(O|θ) =
n∑
i=1

β1(i)bi(o1) (2.10)

We need to count n variables at each time-step, each of them takes exactly
n steps to evaluate. It makes overall complexity O(n2ν).

13
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2.2.2 Individually Most Likely States Sequence

There are multiple ways how we can look at the word “optimal” in the problem
two statement 2. One of the possible approaches is to maximize the expected
number of correctly assigned states. To solve it, we define the variable de-
termining the probability of being in the specific state in the particular time.
We will also referred to it as “single state probability”.

γt(i) = P(Xt = si | O,θ) (2.11)

Here we can use already defined forward and backward variables and count
γt(i) as

γt(i) = P(Xt = si,O | θ)
P(O | θ) = αt(i)βt(i)

P(O | θ) =

= αt(i)βt(i)
n∑
j=1

αt(j)βt(j)

(2.12)

To get the desired individual most likely state xt, it is enough to find one
of the highest probability.

xt = argmax
1≤i≤n

γt(i), 1 ≤ t ≤ ν (2.13)

Applying this algorithm to the whole sequence leads to the highest expec-
ted number of correctly assigned states. However, the sequence as a whole
can in some cases have very low probability or even not be feasible. This
would happen if probability of transition among two consecutive states in the
sequence was zero.

2.2.3 Viterbi Algorithm

Another way how to look on the problem two 2 is to find single most prob-
able state sequence. It means to maximize P(X|O,θ) what is equivalent to
maximizing of P(X,O | θ).

Viterbi algorithm is dynamic programming algorithm that similarly to the
forward-backward algorithm benefits from memorylessness of Markov Chain.
In DP we can gradually count the variable δt(i) that represents the maximal
probability of the state chain from its beginning till the state in time t with
the state xt being si.

δt(i) = max
x1,x2,...,xt−1

P(x1, x2, . . . , xt = si, o1, o2, . . . , ot | θ) (2.14)
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2.2. Discrete-Time Hidden Markov Model

To get the actual state sequence we need to store information about the
state in time t− 1 which has maximized the previous equation. We store it in
the array ψt(i). Now we can define the initialization of the algorithm as

δ1(i) = πibi(o1), 1 ≤ i ≤ n (2.15)

ψ1(i) = 0, (2.16)

and consecutive bottom-up computation as

δt(i) = ( max
1≤j≤n

δt−1(j)aji)bi(ot), 2 ≤ t ≤ ν,

1 ≤ i ≤ n
(2.17)

ψt(i) = (argmax
1≤j≤n

δt−1(j)aji), 2 ≤ t ≤ ν,

1 ≤ i ≤ n.
(2.18)

Now we can get the searched state sequence probability

P∗ = max
1≤i≤n

(δt(i)), (2.19)

and the actual state path X∗ = (x∗1, x∗2, . . . , x∗ν) by backtracking

x∗t = argmax
1≤i≤n

(δt(i)), t = ν (2.20)

x∗t = ψt+1(x∗t+1), t = ν − 1, ν − 2, . . . , 1. (2.21)

The structure of the algorithm is very similar to the Forward-Backward
algorithm so we can easily see its complexity is also O(n2ν).

2.2.4 Expectation-Maximization Algorithm

There is any known general analytic solution for the problem three 3. There
exist more possible iterative algorithms from which we will describe the expectation-
maximization approach 2.1 based on the classic work of Baum and his col-
leagues called Baum-Welch algorithm [3]. We will start by defining the vari-
able ξt(i, j) as the probability of being in state si in time t and in state sj in
time t+ 1. Later we will also refer to it as “double state probability”.

ξt(i, j) = P(Xt = si, Xt+1 = sj | O,θ) (2.22)

15



2. Statistics

The probability can be computed using forward-backward variables as fol-
lows

ξt(i, j) = αt(i)aijbj(ot+1)βt+1(j)
P(O | θ)

= αt(i)aijbj(ot+1)βt+1(j)
n∑
i=1

n∑
j=1

αt(i)aijbj(ot+1)βt+1(j)

(2.23)

Obviously, it is in relation with already defined variable γt(i) - the prob-
ability of being in state si in time t.

γt(i) =
n∑
j=1

ξt(i, j) (2.24)

We can get expected number of transitions from si when summing γt(i)
over the time till ν − 1. Similarly we would get expected number of visits of
state si by summing γt(i) from t = 1 till t = ν.

E(transitions from si) =
ν−1∑
t=1

γt(i) (2.25)

If summing ξt(i, j) over the time we get expected number of transitions
from si to sj .

E(transitions from si to sj) =
ν−1∑
t=1

ξt(i, j) (2.26)

Now we have all what is needed to define the reestimated model θ̂ =
(Â, B̂, π̂).

π̂i = γ1(i) (2.27)

âij = E(transitions from si to sj)
E(transitions from si)

=

ν−1∑
t=1

ξt(i, j)

ν−1∑
t=1

γt(i)

(2.28)

b̂i(k) = E(times of visiting si and observing symbol vk )
E(times of visiting si)

=

ν∑
t=1,if Ot=vk

γt(i)

ν∑
t=1

γt(i)

(2.29)
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2.3. Continuous-Time Hidden Markov Model

The formulas can be interpreted as the steps of EM-algorithm with the ex-
pectation step being the computation of auxiliary function Q(θ, θ̂) and max-
imization step the maximization over parameter θ̂. It is important to notice,
that the found solution is local optimum. The searched space can be very
complicated containing many local optima. That’s way it can be helpful to
start the algorithm more times with different parameter initialization.

2.3 Continuous-Time Hidden Markov Model

We have introduced the basic problems of DT-HMM at the beginning of Sec-
tion 2.2. They can be similarly defined for continuous-time model. Just not
only the observation sequence O but also the time sequence T need to be
included. The solution for two first problems as well as a considerate part of
the third problem is pretty straight-forward. The discrete-time solutions just
needs to be redefined with different transition probability matrix for differ-
ent intervals. It is discussed more deeply in the following Subsection 2.3.1.
The EM algorithm for jump-rate matrix estimation is not so straight-forward
anymore. We need to care about what is happening in times between two
observations as it has impact on the results of likelihood computation. The
EM algorithm and its variants are explained in all the remaining subsections
of this chapter.

2.3.1 The Posterior State Probabilities

To count the single and double states probability of the CT-HMM with spe-
cified parameters, we do not need to know about the state transition that
have occurred in between of two observations. If we take just the observation
points into the account, we can look on the model as it was the time inhomo-
geneous DT-HMM. It is the model in which the state transition probabilities
can change in every time step. We have previously defined the transition prob-
ability from state si to state sj in time interval τ as pi,j(τ) = eQτ [i, j]. The
Pt can play the role of the transition probabilities matrix A in the discrete
time inhomogeneous model. For example the probability of the model with
the known states in the observation times can be computed as following

P(Xt0 = x0, . . . , Xtν = xν , Ot0 = o0, . . . , Otν = oν | Q,B) =

=
ν−1∏
u=1

pxu,xu+1(τu)
ν∏
u=1

bxu(ou),
(2.30)

where τu = tu+1−tu is the u-th time interval. It should be obvious now that
for the continuous variants of the Viterbi and Forward-backward algorithm
we only need to change the state transitions aij to the time variable pi,j(τu).
Now, we can use the forward and backward variables to count posterior state
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distribution for the single state γt(i) = P(Xtu = si | O,T,Qt) and the two
consecutive states ξt(i, j) = P(Xtu = si, Xtu+1 = sj | O,T,Qt) in the same
way as we have done in the discrete model.

2.3.2 Soft vs. Hard Method

The described way for computing of posterior state distribution of hidden
states is referred to as Soft method. Supplementary, there is the Hard method.
The Hard method EM algorithm tries to maximize the probability of the most
probable hidden states sequence. The sequence can be obtained by the Viterbi
algorithm and than be used ”hardly”, just considering the single pair of end
states for every time interval, to update the single and double states probab-
ility tables. Important to notice is that the Hard method tries to maximize
the probability of most likely sequence instead of maximizing the most likely
observed data [2]. So the optimization of the second mentioned is created just
as the byproduct. Also there is no guarantee for the Hard method that the
probability of the dataset being generated by the model will be non-decreasing
throughout the iterations. Instead we can securely claim the non-decreasing
character of maximal state sequence probability.

2.3.3 Continuous-Time Markov Process EM

There is no available analytic maximizer of likelihood function (1.27), however
it can be estimated iteratively by the EM algorithm proposed in article [20].
For the expectation step we will use logarithm of expected complete likelihood
function (1.24) with the estimated parameter of Q in step t noted as Q̂t.

ln(LFO) =
n∑

i=0,i 6=j

n∑
j=0

ln(q̂ij)E(ηij | X, Q̂t)− q̂iE(τi | X, Q̂t) (2.31)

In the maximization step we take the derivative with respect to qij and
evaluate new values for Q̂ so that they maximize the previous equation.

Q̂t(i, j) =


E(ηij |X,Q̂t)
E(τi|X,Q̂t) if i 6= j

−
n,k 6=i∑
k=1

qik, if i = j
(2.32)

The remaining non-trivial task is to evaluate expectations E(ηij | X, Q̂t)
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and E(τi | X, Q̂t). They can be expressed by following sums.

E(ηij | X, Q̂t) =
ν−1∑
u=0

E(ηij | xu, xu+1, Q̂t) =

=
ν−1∑
u=0

n∑
k=0,l=0

1(xu = k, xu+1 = l)E(ηij | xu = k, xu+1 = l, Q̂t)

(2.33)

E(τi | X, Q̂t) =
ν−1∑
u=0

E(τi | xu, xu+1, Q̂t) =

=
ν−1∑
u=0

n∑
k=0,l=0

1(xu = k, xu+1 = l)E(τi | xu = k, xu+1 = l, Q̂t)

(2.34)
The Markov property and homogeneity of the Markov process allows to

reduce the computation of expected values to all i, j, k, l ∈ S for all distinct
time-intervals. The ways how to do it are shown in Section 2.3.5.

2.3.4 Continuous-Time Hidden Markov Model EM

For the EM parameters estimation in DT-HMM, we have used the well known
Baum-Welch algorithm 2.2.4. We can use the similar approach for estimation
of parameters π̂ (2.27) and B̂ (2.29). We just need to use different transition
probabilities matrix for every different interval as described in Subsection
2.3.1.

The estimation of the Q̂ can’t be inherited from the discrete model, be-
cause the state transitions do not depend on the observation times and there
can even be more of them between two consecutive observations. The follow-
ing method proposed in the article [19], was the first which could efficiently
solve the issue.

In the expectation step we will calculate the expected value for logarithm
of fully observable likelihood function (1.28) given the model parameters and
observation sequences.

ln(LFO) =
n∑
i=1

n∑
j=1,i 6=j

(
ln(q̂ij)E(ηij | O,T, Q̂t)− q̂iE(τi | O,T, Q̂t)

)
+

+
ν∑
u=0

E(ln(bxu(ou)) | O,T, Q̂t)

(2.35)
The last part of the equation, specific for the hidden Markov model, doesn’t

contain q, so the result of maximization will be the same as in equation (2.32)
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for Markov process. Lack of the direct states observations makes the compu-
tation of the expected values ηij and τi more challenging. We need to obtain
it just from the knowledge about the emission sequence. First we will derive
the formula for the expectation E(ηij | O, T, Q̂t) which can be expressed as
the sum through all the possible state sequences.

E(ηij | O, T, Q̂t) =
∑

x0,...,xν

P(x0, . . . , xν | O,T, Q̂t)E(ηij | x0, . . . , xν , Q̂t)

(2.36)
The expected value formula can be rewritten as the sum of the partial

intervals.

∑
x0,...,xν

P(x0, . . . , xν | O,T, Q̂t)
ν−1∑
u=1

E(ηij | xu, xu+1, Q̂t) (2.37)

Because the Markov condition hold we can interval-wise divide the complex
probability function and for every of the time intervals sum through all the
possible states k, l at its edges.

ν−1∑
u=0

n∑
k=0,l=0

P(xu = k, xu+1 = l | O,T, Q̂t)E(ηij | xu = k, xu+1 = l, Q̂t)

(2.38)
The expected value of sojourn time E(τi | O,T, Q̂t) can be derived equi-

valently to get

ν−1∑
u=0

n∑
k=0,l=0

P(xu = k, xu+1 = l | O,T, Q̂t)E(τi | xu = k, xu+1 = l, Q̂t). (2.39)

In Subsection 2.3.1 we have shown how to count P(xu = k, xu+1 = l |
O,T, Q̂t). The remaining part, the computing of E(ηij | xu = k, xu+1 = l, Q̂t)
and E(τi | xu = k, xu+1) = l, Q̂t) is presented in following two subsections.

2.3.5 The End-State Conditioned Expectations

We have previously described how to use the end-state conditioned expecta-
tions ηij and τi to compute estimation of the jump-rate matrix Q by maxim-
izing of its resulting probability (2.32). In this section we will discuss them
more deeply and show the possible ways how to compute their values.

The Markov process we are describing is time-homogeneous. So the time
offset at the beginning of the interval is not important and we can anchor it
toward zero. The two following expectations are equivalent: E(ηij | xt1 =
k, xt2 = l,Q) = E(ηij | x0 = k, xt∆ = l,Q) where t∆ = t2 − t1. It can help
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us to save some computations as we can store the values and reuse them if
needed.

The expectations can be expressed in following way (see [12]).

E(ηij | x0 = k, xt = l,Q) = qij
pkl(t)

∫ t

0
pki(x)pjl(t− x)dx (2.40)

E(τi | x0 = k, xt = l,Q) = 1
pkl(t)

∫ t

0
pki(x)pil(t− x)dx (2.41)

We already know the solution of differential equation for counting the jump
probabilities p(t). So we can transform the previously stated integrals to the
form as shown in equation (2.41). We will denote the integrals as τ ijkl . For the
equation (2.41) it will be similarly τ iikl.

τ ijkl =
∫ t

0
pki(x)pjl(t− x)dx =

∫ t

0
eQx[k, i]eQ(t−x)[j, l]dx (2.42)

2.3.6 Methods to Solve End-State CE

There are several methods for solving of the proposed integral (2.42).
If the matrix Q is diagonalizable, the closed form can be obtained by

Eigen decomposition based algorithm as describe in [20]. However as claimed
in [19], the matrices are not diagonalizable in general. That makes the method
often inappropriate for use in Baum-Welch algorithm, because the jump-rate
matrices can take general form during the computation process.

The another method of Uniformization is based on truncating of infinite
sum defining the exponential as described in [11]. The main advantage of
the method is that all matrices can be precomputed and later reused, so it
doesn’t need any additional matrix multiplication [19]. The use of hard or
soft method 2.3.1 influence the time performance of the algorithm with hard
method being faster, because the posterior state probability table will become
sparse. The method’s running time also highly depends on the data and
values of Q matrix. Depending on it the sequence truncating point can differ
significantly.

The method referred to as Expm is using Matrix exponentiation to count
the proposed integrals. The method is described in article [24]. The advantage
is that just by one exponentiation of auxiliary matrix, we can get results for
all pairs of k, l end-states expectations. The auxiliary matrix W is in the form

W =
(

Q Iij
0 Q

)
where Iij is the square matrix of size Q composed by zeros

and the only one at position i, j. Indices i, j refer to the states of intermediate
visit as defined in the previous subsections. The following equality holds∫ t

0 e
Qx[k, i]eQ(t−x)[j, l]dx =

∫ t
0(eQxIeQ(t−x))[k, l]dx. In the article [24] is shown

that
∫ t

0 e
QxIeQ(t−x) = eQt[0 : n][n + 1 : 2n] where n is the size of the matrix

Q.
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We have got the matrix exponential form, for which conventional methods
for matrix exponentiation can be used. For example scaling and squaring
method using Padé approximants as described in [10].

We have decided to implement Expm method, because it is the most stable
and the fastest from the mentioned methods [19]. We have implemented it
with both soft and hard maximizer as we have found them interesting subject
to exploring. We have also implemented two variants of algorithm dependent
on the input data characteristic: float-interval and more time efficient, but
less general integer-interval variant. They will be described more properly in
next section.

2.4 Algorithms for CT-HMM parameters
estimation

This section roughly describe the algorithm 2.1 for CT-HMM learning - expect-
ation maximization approach estimating the jump-rate matrix Q also denoting
as continuous-time Baum-Welch algorithm. We only show the parts specific
for continuous-time model. The estimation of the other parameters (π,B),
forward and backward algorithm so as the single and double state probabilit-
ies can be easily derived from DT-HMM algorithm explained in Section 2.2.
It is also described in details in article [23].

The base of the algorithm is described in Algorithm 2.1 referring to its most
important frame parts. The algorithm shows training at a single observation
and time sequence. It is for the sake of simplicity. The training by more
complex dataset can be made by iterating trough all the sequences. There
are two methods affecting the way of convergence - soft and hard 2.3.2.
The soft method uses the forward-backward algorithm and the hard uses the
Viterbi algorithm to count posterior state probabilities (single and double-
state probability tables).

The part that counts the end-state conditioned probabilities is described
separately and it compounds two variants different by implementation and
computational complexity. We refer to them as float-interval variant 2.2 (the
name is derived from ability of the algorithm to process float time-intervals)
and integer-interval variant 2.3 (it can only process the data with integer
time intervals). As showed in the Chapter 4, the second mentioned variant is
significantly faster 4.2 and it probably do not produce any critical numerical
errors 4.3.

The both variants of the described algorithms iterate through all the pairs
of hidden states. Namely at 3rd line of float-interval algorithm 2.2, and at
2nd and 5th line of integer-interval algorithm 2.3. It can be optimized for
sparse jump-rate matrices Q. We can simply omit the pairs for which is the
jump rate equal zero. As once being set to zero the value can’t change by the
run of the algorithm.
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Algorithm 2.1 CT-HMM Parameters Estimation
1: Input data: observation sequence O = (o1, o2, . . . , oν), time sequence

T = (t1, t2, . . . , tv)
2: Input parameter: n - number of hidden states
3: Output: Q̂ - estimation of jump-rates matrix Q
4: procedure Baum-Welch
5: Q̂← randomly generated jump-rate matrix
6: T∆ ← find all distinct time intervals from T
7: repeat
8: P(t∆) ← count state transition probabilitieseQ̂t∆ for each t∆ from

T∆
9: Ξ← Ξ[u, k, l] = P(Xtu = k,Xtu+1 = l | O,T, Q̂), u ∈ 1, . . . , v − 1

10: . The double state probability
can be counted either from forward and backward probability tables - soft
method, or from viterbi algorithm most probable state sequence - hard
method. The P(t∆) is used for counting of state transition probabilities.

11: Ξ∆ ← sum together the matrices Ξ[u] with the same length of the
time interval tu+1 − tu that equals t∆ ∈ T∆, u ∈ 1, . . . , v − 1

12: Count end-state probabilities E(ηij | O,T, Q̂) and E(τi | O,T, Q̂)
13: . It can be counted by one of the two expm

based algorithm variants described later, float-interval algorithm 2.2 or
integer-interval algorithm 2.3.

14: Q̂← Q̂[i, j] = E(ηij |O,matrT,Q̂)
E(τi|O,matrT,Q̂) , and Q̂[i, i] = −

∑
i 6=j Q̂[i, j] a

15: until probability is satisfiable

a (2.32)

Algorithm 2.2 The Expm Based Algorithm for Counting End-States Con-
ditioned Probabilities (Float-Interval variant)

1: procedure Float-Interval
2: for all t∆ ∈ T∆ do
3: for all pair of states i, j ∈ S do

4: Dij ← (et∆W)[0 : n][n+ 1 : 2n], where W =
(

Q Iij
0 Q

)
5: Dij ← Dij

P(t∆)
6: if i is equal to j then
7: E(τi | O,T, Q̂) =

∑
k,l∈S Ξ∆[t∆, k, l]Dii[k, l]

8: else
9: Dij ← DijQ[i, j]

10: E(ηij | O,T, Q̂) =
∑
k,l∈S Ξ∆[t∆, k, l]Dij [k, l]
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Algorithm 2.3 The Expm Based Algorithm for Counting End-States Con-
ditioned Probabilities (Integer-Interval variant)

1: procedure Integer-Interval
2: for all pair of states i, j ∈ S do

3: Dij ← (eW)[0 : n][n+ 1 : 2n], where W =
(

Q Iij
0 Q

)
4: for all t∆ ∈ T∆ do
5: for all pair of states i, j ∈ S do
6: D′ij ← Dt∆

ij . Use square and multiply algorithm to effectively
compute power of Dij . Notice that every t∆ needs to be integer.

7: D′ij ←
D′ij

P(t∆)
8: if i is equal to j then
9: E(τi | O,T, Q̂) =

∑
k,l∈S Ξ∆[t∆, k, l]D

′
ii[k, l]

10: else
11: D′ij ← D′ijQ[i,j]
12: E(ηij | O,T, Q̂) =

∑
k,l∈S Ξ∆[t∆, k, l]D

′
ij [k, l]

2.5 Complexity

2.5.1 Time Complexity

By complexity we refer to the complexity of one iteration of EM-algorithm.
All the iterations are equivalent so to get full runtime complexity you can
multiply it by the iteration number.

The number of hidden states is denoted as n, the overall length of the
training sequences as ν.

• Discrete-Time Baum-Welch Algorithm
In one iteration of the discrete version of the algorithm the following
main procedures take part:

– Forward algorithm (Subsection 2.2.1 )- complexity O(n2ν).
– Backward algorithm (Subsection 2.2.1 ) - complexity O(n2ν).
– Computation of single state probabilities (Subsection 2.2.2 ) - com-

plexity O(nν). Summing and normalizing the forward and back-
ward probabilities, that are of size nν.

– Computation of double state probabilities (Subsection (2.23)) -
complexity O(n2ν). Constant-time computation of probabilities
for every pair of states in every time.

– Various summing operation - complexity O(n2ν). Just linear pass
trough the arrays, the biggest one has size n2ν.
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2.5. Complexity

As the operations are consecutive, the whole asymptotic complexity of
the algorithm is the maximum - O(n2ν).

• Continuous-Time Baum-Welch Algorithm

The complexity of the continuous-time algorithm depends on the chosen
variant of end-state conditioned probabilities counting. So we distin-
guish integer-interval 2.3 and float-interval 2.2 variants of the algorithm
(later just algorithm). In the first one is the time difference among two
consecutive observations integral, in the second it may be float. Float
algorithm can be used for the integral intervals, but not vice-versa.
The soft and hard method of convergence 2.3.2 doesn’t impact the
asymptotic complexity, as both the forward-backward algorithm and
the Viterbi algorithm have the same O(n2ν) complexity.
Let r be the number of different time intervals. In some cases it can be
much more restrictive than ν − 1 - the number of all intervals.
The first part of the algorithm is similar to the discrete-time version
2.5.1. With the difference, that we need to pre-compute the transition
probabilities matrix for every time interval. Than we can simply use the
discrete-time algorithms, as if dealing with heterogeneous DT-HMM.

– Pre-compute transition probability matrices - complexity O(rn3).
Call expm algorithm O(n3) [21] for every distinct time interval.

– Subpart similar to discrete-time algorithm - complexity O(n2ν)
2.5.1.

– Count end-state conditioned expectations 2.3.5:
1. integer-interval algorithm:
∗ Preprocessing end-state conditioned expectation - complex-

ity O(n5). In this step we compute all the integrals(2.42)
for unit time interval. It needs to call expm method O(n3)
at matrix W for every i and j 2.3.6.
∗ Count matrices for every time interval - complexity
O(rn5 log(tmax)), where tmax is the longest time interval
among two consecutive observations.
For every time interval, we go trough n2 matrices, that we
have already precomputed and we count its value for actual
interval by using square and multiply approach.

2. float-interval algorithm:
∗ Count end-state conditioned expectation for every interval

- complexity O(rn5). We needs to call expm method O(n3)
at matrix Wt for every i and j, where t is the length of the
interval 2.3.6.
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2. Statistics

The overall time complexity of the iteration is O(rn5 + n2ν), using the
float-interval algorithm and O(rn5 log(tmax) + n2ν) using the integer-
interval algorithm. However, it doesn’t necessary mean the float-algorithm
runs faster. As showed in the time measurement experiment 4.2 the
multiplicative constant for expm algorithm is very high. The experi-
ment has shown that there also exists logarithmic pseudo-dependence on
parameter tmax. It is bounded to counting of Padé approximants. The
matrices containing bigger numbers in average need to use the approxi-
mant of higher order, which is more complex to compute in the terms of
multiplicative constant. We have shown, that in the real practice, it is
generally much more computationally efficient to use the integer-interval
algorithm.
Till now, we have assumed the full jump-rate matrix Q. However, in
some cases we may intentionally forbid some state-to-state transitions.
Such a restriction also manifests itself in the term of complexity. Let’s
define m as the number of allowed state-to-state transition pairs. Than
the new complexity shrinks toO(rn3m+n2ν) orO(rn3m log(tmax)+n2ν)
respectively. Notice that the possible value for m which makes sense can
be in the interval (n, n2), depending on the sparsity of the matrix Q. So
it can effectively divide the full matrix complexity by n.

2.5.2 Memory Complexity

In the discrete-time model algorithm the biggest array is the one for storing
double state probabilities so the memory complexity is equal to its size -
O(n2ν).

In the continuous-time model algorithm there are more arrays of size n2ν
and the array of size n4 to store precomputed matrix exponentials. So the final
memory complexity is O(n2ν + n4). We can spare some memory with sparse
jump-rate matrix Q, because we only need to store the precomputed matrices
for nonzero elements of Q. The memory complexity for the sparse matrix
is O(n2ν + n2m) where m is the number of allowed state-to-state transition
pairs.
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Chapter 3
Implementation

The chapter discuss chosen technology and specific details of implementation.
The code, tutorial and documentation to the library can be found in supple-
mentary materials.

3.1 About Library

The goal was to create a library, that can be used by broad range of users.
Such a library should be written in the well known programming language.
It should be easy to install and also it should have introductory tutorial that
would help to get orientation in the most of the library functionality.

To accomplish the established goal we have chosen to create Python lib-
rary. Specifically, the development was done under Python 3.5. The Python is
highly used among machine-learning community and the library is easily ac-
cessible by downloading from Pip 1 or GitHub 2. The continuous-time hidden
Markov model parameter estimation is computationally highly demanding.
The using of the plain Python would make it cumbersome. To deal with
the issue, we have used libraries NumPy - for effective work with array and
matrices and SciPy [14] for the implementation of exmp algorithm [9]. To
make the computational performance even higher, we have decided to code all
the most demanding parts in Cython [4]. Cython is a compiled language that
generates CPython extension modules, so that the code-parts written in the
language can get C -like performance. The advantage is its easy integration
into the Python module.

The best way how to learn to use the library is follow the code examples.
That’s way we have decided to create IPython notebook with library usage
examples, covering all the main use-cases of the library. Reading it, the fol-
1 https://pypi.python.org/pypi/hmms
2 https://github.com/lopatovsky/HMMs
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3. Implementation

lower can get the understanding how to correctly use the library and learn,
what features are supported.

3.2 Library Functionality

The library implements discrete-time and continuous-time hidden Markov
models. Most of the functions are available for both models, sometimes their
input parameters or implementation details can differ depending on the model
characteristic.

3.2.1 Models Initialization

New model can be created directly by passing its parameter. θ = (A,B,π)
for the discrete-time model 1.2 and θ = (Q,B,π) for the continuous-time
model 1.4. The jump rate matrix Q can be defined as sparse by setting its
elements to zero. The algorithm automatically recognizes such elements and
spares the computational demands 2.4.

Other way to initialize the models is set the parameters randomly. The
procedure just need to enter the number of hidden states and number of
observation symbols. The random initialization is useful for training of the
new models to match the dataset or for the experimental purposes. The
random initialization of the continuous-time model is optional by uniform or
exponential distribution.

It is also possible to read model parameters from file or write them to the
file. We have used standard .npz format for storing multiple NumPy matrices
or arrays.

We can also convert the continues-time parameters and use them for ini-
tialization of discrete-time model. The conversion is made by exponentiation
of matrix Q for any given time interval t as A = eQt.

3.2.2 Probability and Statistical Functions

Giving the observation sequence (in the continuous-time model together with
the time sequence) or even whole dataset of sequences we can use the function
to count the probability that the data were generated by given model. The
function use the forward algorithm described in Section 2.2.1. Similar function
takes additionally to the observation and time also the hidden state sequence
and count the probability for all the sequences given the model.

The library enables us to generate our own data sequences using the model
parameters. We can even directly create whole artificial dataset. That may
be useful for experimenting with the models. The continuous time model
moreover needs to generate time sequences. We have chosen to generate them
with the exponentially distributed time intervals. The parameter λ of the
exponential distribution can be set as parameter.
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3.3. Implementation Details

We can get most likely state sequence and its probability by using the
Viterbi algorithm described in Section 2.2.3. The resulting sequence can be
plotted. It can be useful for the beginners to get the basic intuition about the
algorithm functionality.

3.2.3 EM Algorithms

We use EM algorithms to estimate the models parameters. The Baum-
welch algorithm for the discrete-time model described in section 2.2.4 and its
continuous-time variant (Section 2.3.4). Some of the algorithms sub-function
can be used separately - the forward and backward algorithm (2.2.1), the Vi-
terbi algorithm (2.2.3), algorithms for counting single and double posterior
state probabilities (described in Sections 2.2.2, 2.2.4 and 2.3.1). The Baum-
welch algorithm function can optionally return the probability estimation se-
quence containing the measures for every iteration. It is useful for plotting
algorithm convergences and deciding when is the best time to stop the al-
gorithm. To use the algorithm for the training we need to pass the dataset
of observation and for continuous-time model also time sequences. They can
be passed in the form of NumPy matrices or as list of NumPy arrays. The
second approach enable the training with sequences of different lengths.

The continuous-time algorithm is implemented in multiple variants. The
soft or hard method can be used as described in Section 2.3.2. The optional
boolean parameter can be set to enable fast convergence. The fast convergence
use, if possible, the integer variant of the algorithm. If the option is set to
false, algorithm always use the float variant. The integer and float variant of
the algorithm are described in Section 2.4. Soft method and fast option are
set to true by default, because they are given best expected results and time
efficiency 4.

3.3 Implementation Details

3.3.1 Logarithmic Probabilities

The probability values obtained in the hidden Markov models can often get
extremely small. Using the standard data-types, it could fast reach the under-
flow. Even the short sequences of few hidden states can underflow, if proper
conditions are met.

The use of infinite data-type would be possible. However, it would make
the algorithm unacceptably computationally and memory expensive, as the
bit-length of the numbers can grow linearly with the number of probabilities
to multiply.

More appropriate is to use log-probabilities (3.1). This makes the numbers
grows linearly, thus their bite-length logarithmically. Under this conditions
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3. Implementation

is the underflow for common data types and the feasible size of the data-set
almost impossible.

log(p1p2) = log(p1) + log(p2) (3.1)

3.3.2 ”Log-sum-exp” Trick

The log-probabilities work great for multiplication and division, but the prob-
lem appears, once we need to sum the probabilities. The so called ”log-sum-
exp” trick can be used to deal with the issue.

Let’s have probabilities p1,p2, . . . ,pn. Now we want to make the sum of
them. It is fairly simple, when they are usual float numbers:

∑n
i=1 pi. But it

can get trickier, if they are stored in the form of log-probability. We denote
log-probability log(pi) as ai. Than we can write the sum in the following form.
Notice that the output is also log-probability.

log
( n∑
i=1

eai
)

(3.2)

We can’t count it directly as the eai can be very small and underflow. The
idea of the trick is to take the biggest element out of the sum, as a multiplier
and move all the other in relative position toward it. Let’s b = maxi ai. Than
we can write the previous equation (3.2) in the form of equation (3.3).

log
(
eb

n∑
i=1

eai−b
)

=

= b+ log
( n∑
i=1

eai−b
) (3.3)

This approach only dismiss the elements that are relatively for data-type
maximal-range smaller than the biggest element b. Also the sum of more such
diminished elements, under normal circumstances, never have an impact on
the precision of computation - comparing the data-type imprecision.

3.3.3 The Sparse Jump-Rate Matrix

The time-complexity of the CT-HMM EM algorithm can shrink, when using
the sparse matrix, as described in Section 2.5.1. The implementation take
advantage of it, but not in the term of the theoretical complexity, since it
is still cycling trough all the matrix elements. The algorithm just stop to
perform the body of the cycle. Such solution may seems to be less effective in
the terms of theoretical time-complexity. The number of states under the real
conditions is not bigger than hundreds, so just cycling through all the matrix
elements is utterly negligible, comparing the matrix exponentiations taking
part in the body of the cycle.
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Chapter 4
Experiments

The definition of the hidden Markov models may seem to be simple. However,
in consequences it covers many non-trivial characteristics that needs some
intuition to be understood correctly. This chapter is purposed to discuss such
characteristic, and simultaneously try to support the allegations by presenting
the experiments.

The later part of the chapter contains the experiments that are connected
to the implemented methods or HMM theory.

1. Discrete-time vs. Continuous-time Hidden Markov Model
Comparison of the discrete and continuous-time HMM convergences at
the equivalent dataset.

2. Computational Complexity
Examination of the time complexity and comparison with theoretical
expectations.

3. Numerical Stability
Comparison of the float-interval and integer-interval method from the
point of numerical stability.

4. Soft vs. Hard Method
Comparison of Soft and Hard method from two different points of view.

5. Hidden States Number
Examination of the models behavior, when trained with variable num-
bers of hidden states.

Notice that the performance ratio used to measure quality of convergence
(unless otherwise stated) refer to the ratio of the logarithmic probability es-
timations of the trained model toward the original model (the one, which was
used to generate dataset). So the lower the ratio is, the better fit the model
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4. Experiments

the dataset. The performance ratio of the model before the first iteration is
often cut of the graph, because it can take too extreme value.

All time measurement experiments were performed on processor Intel R©

CoreTM i5-2520M CPU @ 2.50GHz.

4.1 Discrete-time vs. Continuous-time Hidden
Markov Model

In the theoretical part we are describing two models: discrete-time and continuous-
time hidden Markov model. The model convergence test compares how fast
they can learn from generated dataset (converge to the local optima) and
we have checked, if there is some significant difference among the converged
optima values.

As the continuous-time model takes, except the observations, also the time
vectors its domain range is obviously much broader. Still, it is possible to train
it at dataset for discrete-time model simply by adding artificial equidistant
time vectors.

Description

In the first part of the experiment we have used the dataset generated by the
model which we have created artificially to suit its purpose well. The model
contains three hidden states and three observation symbols. Comparing the
general randomly generated model (model with the parameters generated by
exponential distribution), it takes advantage of its more extreme position in
the parameter space. So its distance to the majority of the random generated
parameters is bigger. This makes the problem of convergence harder and in
final produces nicer graphs, unfolding more of the process characteristics.

Training dataset consists of 50 vectors. Each of them compounding 50
observation. For the continuous-time model we have add the same number of
time vectors, with unit time interval lengths.

For the experiment we have conducted ten runs of Baum-Welch algorithm
always starting from different random position, and averaged the results. The
starting positions were equivalent for both models. We have run 150 iterations
for every convergence.

The convergences for the single runs of the first experiment can be seen in
Figure 4.1 and then their average in Figure 4.2.

To make the results of the experiment more general we have continued
with the second part in which we have repeated the procedure of the exper-
iment with the same parameters five times on the models which parameters
were created by hand in some specific real-life like manner, and five times on
randomly generated models.
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4.1. Discrete-time vs. Continuous-time Hidden Markov Model

Observations

The convergences for the single runs of the first part of the experiment can be
seen in Figure 4.1 and then their average in Figure 4.2. Figures 4.3 and 4.4
show the results of the second second part of experiment.

In the figures with the average convergences 4.2 and 4.3 we can see the
continuous-time model converge slightly slower. However both models seem
to converge to the same value, closing the gap by every iteration. The single
run convergences 4.1 show the irregular speed of convergence of both models.
The better performance at the beginning doesn’t ensure it will not be over-
performed by other instances later. The convergence slopes seem to be more
regular towards the end of convergence.

The convergences to the datasets generated by the random models start
mostly with visibly lower performance ratio than the convergence lines gen-
erated by specific hand-made models 4.3. We can also see that the models
mostly over-performed the original model. For example, the average conver-
gence from the first experiment 4.2 is converging to the performance ratio
∼ 0.99481.

Conclusions

The slower convergence of continuous-time model is bounded with different
character of the model. Since in the discrete-time model we always know the
precise time when the state-change can happen (always at observation point),
in continuous-time model it can happen in any time in between as well. Thus,
computing of the new estimated parameters in maximization step needs to
deal with more uncertainty. In continuous-time model is uncertainty not only
caused by indirect observation of hidden states, but also by possible state
changes in between of the observations. As we have any observations from
that area, the probability estimation is counted by parameters from the last
iteration, what is creating momentum in favor of old parameters and slow
down the convergence process. The longer is the time interval, the stronger is
the momentum.

In the second experiment we have shown, how characteristic of the searched
model influenced training complexity. The randomly generated models usually
generate datasets with higher entropy. Such datasets are closer to converge
from most regions of the parameter space.

The over-performing of the original model is caused by the overfitting. The
small size of dataset was not sufficient to cover characteristic of the model
completely, instead the trained models were learned to fit its imprecision.
It is not a problem for our experiment as the original models were chosen
more-less randomly and it fills in its purpose. The over-performing would
probably gradually disappear with growing size of the data-set. It is shown in
experiment 4.5.1.
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Figure 4.1: Models convergences

Figure 4.2: Average of the convergences from various random starting points
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4.1. Discrete-time vs. Continuous-time Hidden Markov Model

Figure 4.3: Average of the convergences for various generated datasets

Figure 4.4: Average of the convergences for various generated datasets (zoom)
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All of the training conducted during this experiment converged close to
global optima. We have used simple three-states models. Behavior of more
complex models will be examined later in Section 4.5.2.

4.2 Computational Complexity

In this section we are comparing time-performance of the float and integer-
interval variants of CT-HMM as described in implementation part 2.4. In
two following subsections we experiment with variable hidden states number
and maximal time interval and examine, if the measured values correspond to
their theoretical expectations described in Section 2.5.

4.2.1 Variable Hidden States Number

The hidden states number, referred to as n is key parameter in overall al-
gorithm complexity. Due to computing of the matrix exponentials O(n3) for
every pair of end states, it influences the final time-complexity by its fifth
power n5. The upper bound theoretical complexity dependence on n is the
same for both of the variants. However, the float-algorithm counts the mat-
rix exponential by expm method separately for every time interval, while the
integer-algorithm counts it only once and then use the matrix multiplication
to get the individual results 2.5.1. In the experiment we measure and compare
times of most costly algorithm parts, and notice how big is the portion of the
overall computational complexity consumed by them.

Description

We have trained the models with the variable number of hidden states. To
minimize the impact of the other factors we have let the number of output
variables to be constantly 10 and we have used the same randomly gener-
ated dataset for both algorithm variants. The integral times intervals were
generated by exponential distribution with parameter 0.5. To minimize the
time measurements error we have always run 10 iterations of algorithm and
repeated the overall procedure 5 times.

To see how the size of the dataset influence time demand, we have con-
ducted all the described experiments twice. Once with the small dataset -
compounding 10 sequences of 10 observations and once with the big dataset -
compounding 10 sequences of 100 observations.

Observation

In Figure 4.5 we can observe that the float-interval algorithm is always slower.
The prevalent source of complexity is the expm method. In the float-interval
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algorithm over the small dataset are all other parts of the algorithm almost
neglectable comparing to it.

Comparing to the expm are the time demands of square and multiply al-
gorithm considerably smaller. It is called multiple times over different time
intervals and still takes smaller portion of the time as the single expm call.

The increase of the dataset size caused the larger gap among the whole
algorithm time complexity and its measured subparts - either expm or the
sum of expm and square and multiply depending on the algorithm 4.5b.

Conclusion

We have only changed the number of states and let the dataset to be the same
so the tmax parameter from the integer-interval complexity O(rn5 log(tmax)) is
fixed as constant. This makes both algorithm variants to have same complexity
O(rn5). The measurements have shown the big multiplicative constant of
expm method. That’s way it is almost always better to use the integer-interval
algorithm. (Its numerical stability is tested later in Section 4.3)

The most of the computational power is used to count matrix exponentials
expm. In most cases it is the predominant cause of algorithm “slowness”. It
makes not much sense to edge-optimize other parts of the algorithm. Instead,
the faster implementation of expm, its parallelization or replacement with
other method could spare the significant portion of time.

Training over the big dataset has decreased the percentage of the time
spent by expm method. It is because the higher demand of other algorithm
parts. Potentially, it can happen that this gap would overgrowth the expm
part. The complexity of the algorithm part that call expm method only
depend on r, the number of different time intervals, however there are parts
of the algorithms with complexity O(n2T ) 2.5.1 where T is number of all time
intervals. So for the huge dataset with lower number of hidden states and
many identical time intervals can this part be the predominant cause of the
complexity.

4.2.2 Variable Maximal Time Interval

The other parameter presented in the theoretical time complexity of the
integer-interval algorithm O(rn5 log(tmax)) is tmax, maximal length of the time
interval. On the oder side the parameter is not part of the float-interval al-
gorithm complexity term O(rn5) 2.5.1. The experiment aims to observe how
the variable value of tmax changes the computational demand of the algorithm.

Description

In the experiment we have set tmax as the variable taking values of powers
of two from 21 to 256. The use of higher values (even floats) was impossible,
because of conversion to 64-bites integer used in SciPy expm method that
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(a) Small dataset

(b) Big dataset

Figure 4.5: Time complexity of two algorithm variants and their subparts
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eventually causes the integer overflow. We have generated the dataset of 10
sequences by 10 observations. There was always at least one time-interval of
length tmax and all other were chosen uniformly from interval (1, tmax). We
have trained the model of 10 hidden states and 10 observation variables. To
smooth the influence of the time measurement imprecision we have run 10
iterations and repeated the whole experiment 5 times.

Observation

Contrary to initial expectation both float and integer interval algorithm com-
putational times are growing seemingly logarithmically with increasing tmax.
The cause of growth in float-interval algorithm is expm method, in integer-
interval algorithm it is caused mainly by square and multiply method. There is
a steep growth of the float-interval algorithm time demands present for small
tmax values.

Figure 4.6: Time-complexity of two algorithm variants and their subparts

Conclusion

The steep growth at the beginning is caused by choice of integral interval
lengths. For small values of tmax is higher probability of more same sized
time intervals. That has direct impact at the complexity where variable r is
directly presented. The chance of choosing two same interval length for bigger
tmax values is extremely low.

The logarithmic grow of square and multiply method is obvious. But to
explain similar behavior of the expm method we need to look deeper into

39



4. Experiments

its implementation [1]. The method is using Padé approximants of different
values from 3 to 13. The computation of the approximants of higher order
is computationally more costly. The algorithm is choosing the smallest Padé
approximant which securely not overgrow the wished threshold error. Our
observation suggest that the bigger the numbers in the exponentiated matrix
are, the bigger is the probability of the more complex Padé approximant being
chosen.

4.3 Numerical Stability

The main advantage of integer-interval variant of algorithm is that it com-
putes costly matrix exponential only once and derives all other exponentials
of the matrix multiplications by computing its powers via square and multiply
method. It arises the question of numerical stability of the method. Can
inaccuracies acquired by square and multiply significantly change direction of
convergence?

Description

In the experiment we have run both integer-interval and float-interval al-
gorithms with same initial parameters. As the value of interest we have meas-
ured the relative euclidean distance among both models jump-rates matrices
Q. We have used the models of 5 hidden states and 5 observable variables at
the dataset of 100 observation points. Time intervals were generated by expo-
nential distribution with parameter λ equals 0.1, 0.01 and 0.001 consecutively.
The obtained plotted error is the average value of 10 runs of the experiment.

Observation

The measured relative error of jump-rate matrices seems to grow faster at the
beginning and gradually slowing its pace by growing iterations. Values of the
relative error are very small. However it seems that the variance magnitude
grows with the decreasing magnitude of exponential parameter λ. (Figures
4.7a,4.7b,4.7c)

Conclusion

The experiment haven’t shown any significant error propagation. It has been
a bit more prevalent at the beginning of the convergence as during this phase
are the changes in the jump-rate matrices most prominent. Later errors seems
to be eliminated as the solutions converging to the local optima. Probably,
under some more extreme edge conditions the matrices may diverge. But,
when taking into the account the randomness of the initial configuration and
assorted characteristic of the parameter space we do not see it as problem and
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(a) λ = 0.1

(b) λ = 0.01

(c) λ = 0.001

Figure 4.7: Relative distances of jump-rates matrices for data generated by
exponential distribution with variable parameter λ
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we do not think it can, in general, negatively influence the performance of the
algorithm.

4.4 Soft vs. Hard method

This experiment compare the soft and the hard method of EM algorithm
described in Section 2.3.2. The methods differ in their maximization function.
The soft method maximize the probability of the dataset being generated
by the model, whereas the hard method maximize the probability of the most
likely state sequence generating the dataset. We have examined and compared
the results of both these functions for both models.

Description

There is any unified result of hard method trainings. Use of datasets generated
by different models and also the various initial random parameters produce
very different results. This makes the experimenting to be a complex task. In
the observation we have tried to show the results uncovering most prevalent
characteristics. First, we have measured the performance ratio on both train-
ing and testing dataset. We have chosen small tree hidden states model that
was trained on the dataset of 100 sequences of 100 observation points as it
manifests the methods characteristics sufficiently well.

The goal of the second part was to explore the possible strong feature of the
hard method - maximizing the probability of most likely state sequence. We
have taken the most probable state sequence of the trained model and com-
pared its probability of being generated by both trained and original model.
Performance ratio is this probability divided by probability of most probable
sequence generated by the original model.

Observation

On Figure 4.8 we can see the resulting convergences of the first part of the ex-
periment measured on the tasting dataset. Models trained by the soft method
all converge relatively good. On the other side models trained by the hard
method are unstable at the beginning and the final performance ratio depends
heavily on the initial random generation of parameters.

Figures 4.9 show two different results of hard method convergence. While
the probability of the most probable state sequence in both cases over-performed
the original model, probability of the same sequence being generated by the
original model is very low in the case on Figure 4.9b. The soft method be-
have more stable always producing intermediate results similar to the original
model.

42



4.4. Soft vs. Hard method

Figure 4.8: Probability of the testing dataset being generating by the models

Conclusion

The hard method is maximizing the different likelihood function as described
in Section 2.3.2. Its use for maximizing the probability of dataset being gen-
erated by the model is very unstable. Although sometimes it can produce
satisfying results, it just appears as the side effect of its original purpose.

The hard method behaves considerably well in maximizing the probability
of most probable state sequence. However, as the experiments uncovered the
resulting sequence has often very low probability of being generated by the
original model, thus the models parameters are different.
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(a) example of the hard method successful convergence

(b) example of the hard method misleading convergence

Figure 4.9: Performance ratio of the most probable state sequence

4.5 Hidden States Number

The number of hidden states is an important parameter, influencing the char-
acteristic of the model. The higher number means the higher plasticity of
the model. It can be beneficial as the model can better fit the domain space,
however sometimes it may not be useful at all and cause the over-training.
The parameter also critically influence the time and memory complexity of
the algorithm. In following two experiments we observe how variable number
of states behave when matching the dataset generating by single model, and
in the later one we try to find the limits of the algorithm regarding the number
of states and examine how the increasing complexity of the parameter space
influence the convergence ability.
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Figure 4.10: Schema of the model “birth and death”

4.5.1 Plasticity of the Models

Description

For this experiment we considered an artificial model consisting of five hidden
states and four observation symbols arranged in the way of birth and death
chain as in Figure 4.10. There is not allowed for the model to change states
except in the way of arrows. To add the uncertainty into the dataset we
have blurred the observation symbol emission by adding the 15% error to the
emitted symbol. The model is deliberately built in the way so it uncovers the
properties worthy to explore. However the properties are more or less visibly
present in any model.

We have generated three random datasets. The small training dataset
consisting of 15 sequences each by 15 observations and two big datasets of 100
sequences by 100 observations, one for training and other for testing purpose.
We have used both training datasets to train models with variable number of
hidden states (from 2 to 8) and marked their performance after every of one
hundred iteration at the respective training and big testing dataset. We have
repeated the experiments five times and plotted the average results.

Observation

The models, except the ones with 2 and 3 hidden states, were able to over-
perform the original model at the small training dataset after couple of itera-
tions 4.11a. The bigger number of hidden states makes the convergence faster
and also converge to the lower value. The measure at the testing dataset
shows, that the models were actually over-fitted after couple of iterations and
later diverge from the actual model. 4.11b.

On the contrary the convergence lines plotting the training on the big data-
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set 4.12a are almost the same as results on the testing data 4.12b. Models with
the hidden states number higher or equal 5 converge well. After one hundred
iteration they have reached performances in interval (1.00025, 1.006) on the
training dataset and (1.0032, 1.01) on the testing dataset. Higher number of
states make the convergence faster, but all of the models seems to converge
to the similar value. Models with the 4 or lower number of hidden states
converge visibly worse.

Conclusion

Choosing the correct number of hidden states is crucial as its under-valuating
can negatively influence the performance of the algorithm. Insufficient number
of the hidden states for models 2-4 does not allow them to converge to the
optimum values. The waves on the convergence lines of models 2 and 3 reveal
that the averaged convergence lines differ. That marks the instability, thus
the model that is too weak to cover the problem space. Model 4 was probably
not able to distinguish the states at the ends of the birth and death sequence.
That’s way it has not reached the peak performance.

We haven’t proof that the over-valuated number of hidden states makes
the models more vulnerable to overfitting as all models has overfitted similarly.
The higher number of states than in the original model makes the model to
converge in the smaller number of iterations, but not to the considerably better
values. However, the cost of computationally more expensive single iteration
makes their convergence slower in real time.

The experiment also stresses the importance of sufficiently sized dataset,
as the small one emphasized the statistical error and lead to the over-fitting
of the models. That is not the surprise, the weak dataset can’t train powerful
model.

4.5.2 High Number of Hidden States

Training of models with high number of hidden states is computationally
expensive. In this experiment we measure time demands of training for full
and sparse jump-rate matrix as described in algorithm section 2.4. The second
part of the experiment examines performance ratio and how it changes with
the growing number of hidden states.

Description

All datasets used in this experiment were generated by the model with “birth
and death” sequence of hidden states (similar as in Figure 4.10) always with
the same number of hidden states and observation symbols as the trained
models. The jump-rate matrix Q of such a model is three-diagonal. The
actual jump rates in the nonzero positions were generated randomly.

46



4.5. Hidden States Number

(a) Performance on the small training dataset

(b) Performance on the testing dataset

Figure 4.11: Performance of the models with variable hidden states number
trained by the small dataset
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(a) Performance on the big training dataset

(b) Performance on the testing dataset

Figure 4.12: Performance of the models with variable hidden states number
trained by the big dataset
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Figure 4.13: Time demands of single iteration

As the training models we have used full jump-rate matrix and sparse
(three-diagonal) jump-rate matrix. All parameters were initially randomly
generated. In the first part of the experiment we have measured time of single
iteration for models with full and sparse matrix. For full matrix we have used
models with 5 to 75 hidden states, for the sparse matrix models with 5 to
170 hidden states. We have used dataset of 1000 observation points. In the
second part we have compared the convergence of models with full and sparse
jump-rate matrix with variable number of hidden states. To overcome the
overfitting we have used dataset of 10000 observation points.

Observation

In Figure 4.13 we can see that also the models with the high number of hidden
states are able to converge in feasible time. Sparsity of the jump-rate matrix
is crucial for the algorithm speed. It is possible to make three iteration in a
hour by model with full matrix of 75 hidden states and the same number of
iterations by model with sparse matrix of 170 hidden states.

The second part of the experiment in Figure 4.14 shows the results of the
trained models on the testing dataset. The models with sparse jump-rate
matrix converge significantly faster and reach the similar performance rate for
all hidden states number. On the other hand the models with full jump-rate
matrix are becoming a bit less plastic with growing number of hidden states.
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Figure 4.14: Convergences for full and sparse matrices with variable number
of hidden states

Conclusion

We have shown that the implemented algorithm is fast enough to train models
with high number of hidden states. The use of the sparse jump-rate matrix
can significantly shrink the time-demands and also produce faster and bet-
ter convergence. We recommend to use the sparse matrix always when the
characteristic of the problem allows it, and if we are sure that the transition
between two states can’t occur.

The higher is the number of nonzero elements in the jump-rate matrix, the
harder problem is need to be solved because convergence in multidimensional
parameter space is more likely to fall in a local minima.
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Conclusion

In this Master’s thesis we have provided detailed theoretical description of
discrete-time and continuous-time hidden Markov models. We have examined
general characteristic of CTHMM and explained how it differs from discrete-
time model. Most emphases was given to continuous-time model learning
methods which various variants were described and implemented.

We have created the first of its kind general purpose continuous-time hid-
den Markov model library under open-source license 3. The computationally
effective and simple to use library provides broad functionality and imple-
mentation of current state-of-the-art algorithms for both discrete-time and
continuous-time hidden Markov model. The most novel part are several vari-
ations of EM learning algorithm using method of matrix exponentiation for
counting end-state conditioned expectations (expm).

The implemented algorithms are able to handle hundreds of hidden states.
Fully connected model of 75 hidden states or sparse model of 170 hidden states
can run one iteration of continuous-time learning algorithm in time under 20
minutes on 2.50GHz machine, when trained on the medium sized dataset.

We have implemented two variants of the expm algorithm different in the
maximized likelihood function, so called soft and hard method. Soft method
maximizes the probability of the training dataset being generated by the
model, hard method uses the results of the Viterbi algorithm maximizing
the most probable state sequence. We have shown the superiority of the soft
method as the hard method is not directly optimizing the wished likelihood
function and often produces misleading results.

The models trained on the dataset with integer lengths of time intervals
can benefit from intege-interval variant of algorithm sparing the number of
matrix exponential computations, which as we have shown is the most time
demanding part of the algorithm. The experiments referring to its numer-
3 accesible at pip https://pypi.python.org/pypi/hmms and GitHub https://github.com/

lopatovsky/HMMs
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Conclusion

ical stability demonstrated that the relative error is negligible to negatively
influence the computation, whereas the time demands decreased radically.

Future Work

The effective algorithm for the continuous-time hidden Markov model para-
meters learning is relatively new. It has shown to be successful in biomedical
field, but it certainly could be applied to solve problems of different domains.
The open-source library may help to spread the method to the broader range
of data scientist with different fields of interests.

The functionality of the library can be further increased. Either by looking
for the new convergence methods or implementing the model extension (for
example support of continuous or multiple observations).

It would be interesting to examine CT-HMM comparing to recurrent neural
network as they share some common characteristics. Possibly some hybrid
method could be developed.
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Appendix A
Acronyms

CL Complete Likelihood

CT-HMM Continuous-time Hidden Markov Model

CTMP Continuous-time Markov Process

DP Dynamic Programming

DT-HMM Discrete-time Hidden Markov Model

DTMP Discrete-time Markov Process

EM Expectation-Maximization

HMM Hidden Markov Model

MLE Maximum Likelihood Estimation
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Appendix B
Contents of enclosed CD

readme.txt......................brief description of the CD content
HMMs ................................. hidden Markov models library

hmms.................................................source files
cthmm.pyx.........continuous-time hidden Markov model class
dthmm.pyx ........... discrete-time hidden Markov model class
art.py...................additional functions for visualization
train.py...............additional functions for multi-training

docs ........................................ documentation files
tests ............................... testing and experiment files

experiments.py .................source code for experiments
hmms.ipynb ................................. interactive tutorial
setup.py .................................... installation script
README.md ............................ description of the library

text..............................................text of the thesis
DP Lopatovsky Lukas 2017.tex.........text of the thesis in latex
DP Lopatovsky Lukas 2017.pdf..........text of the thesis in pdf
img ......................... images and data files to experiments
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