
L.S.

Ing. Michal Valenta, Ph.D.
Head of Department

prof. Ing. Pavel Tvrdík, CSc.
Dean

Prague February 9, 2016

CZECH TECHNICAL UNIVERSITY IN 	PRAGUE

FACULTY OF INFORMATION TECHNOLOGY

ASSIGNMENT OF MASTER’S THESIS

 Title: Messaging and Task Management Application Based on the PSI Theory

 Student: Bc. Roman Lanský

 Supervisor: Ing. Robert Pergl, Ph.D.

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2016/17

Instructions

The Performance in Social Interaction (PSI) theory is one of the basic Enterprise Engineering theories that
studies interaction and communication between people and helps with the distribution of responsibilities.
The aim of the thesis is to apply the theory to increase productivity in daily professional and personal lives
through a personal application for communication and task management based on the PSI Transaction
Axiom.

1. Analyse the usability of the PSI theory for everyday communication and task management.
2. Create a design of the application.
3. Create a web-based prototype of the application as a proof-of-concept.
4. Test the application on real situations, evaluate the results.

This thesis is a subject of cooperation between the #ForMetis company and FIT CTU #CCMi.

References

Dietz, J.L.G., 2006. Enterprise ontology: theory and methodology. Springer, Berlin; New York.

Czech Technical University in Prague

Faculty of Information Technology

Department of Software Engineering

Master’s thesis

Messaging and Task Management

Application Based on the PSI Theory

Bc. Roman Lanský

Supervisor: Ing. Robert Pergl, PhD.

17th February 2017

Acknowledgements

I want to thank my supervisor Ing. Robert Pergl, PhD. for introducing me to
the subject, my colleague Ing. Marek Skotnica for giving me a technological
insight, and Dr. ir. Steven van Kervel for filling me with enthusiasm about
the topic.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on 17th February 2017 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2017 Roman Lanský. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Lanský, Roman. Messaging and Task Management Application Based on the
PSI Theory. Master’s thesis. Czech Technical University in Prague, Faculty
of Information Technology, 2017.

Abstrakt

PSI teorie tvoř́ı jednu ze stěžejńıch část́ı oblasti Enterprise Engineering. Pokrývá
společenské a komunikačńı aspekty organizaćı, které jsou považovány za základńı
stavebńı kameny podnik̊u. Tato teorie má kořeny v sociologii, předevš́ım v
Habermasově teorii komunikativńıho jednáńı. Ćılem práce je představit up-
latněńı této teorie v praxi v podobě aplikace pro pośıláńı zpráv a správu
úkol̊u vhodné pro každodenńı využ́ıváńı. Jedńım z hlavńıch záměr̊u práce je
zprostředkováńı této teorie široké veřejnosti.

Tato práce zkoumá hlavńı teorie a pod ně spadaj́ıćı axiomy, podle nichž
jsou určeny funkčńı požadavky a na jejich základě je navržena webová aplikace
vycházej́ıćı z PSI teorie komunikace, je umožňuje správu požadavk̊u a slib̊u
mezi uživateli. Pr̊uběh vývoje prokázal, že tato teorie je pro podobné využit́ı
vhodná a vysoce užitečná, jelikož vytvář́ı pevný základ pro funkčńı logiku
aplikace.

Kĺıčová slova PSI, teorie PSI, ψ-teorie, DEMO, Enterprise Engineering,
Enterprise Ontology, Ontologie, Aplikace pro posln zprv a sprvu kol

ix

Abstract

PSI theory is one of the integral parts in the field of Enterprise Engineering.
It covers the social and communication aspects of the organisation, which are
considered the essential building blocks of enterprises. The theory has roots
in the sociology, mainly in the Habermas’s Theory of communicative action.
The aim of the thesis is to present the application of the theory in the form of
a messaging and task management application suited for everyday use. One
of the main goals is to expose the theory to broad public.

The thesis explores core theories and underlying axioms to devise a set
of functional requirements upon which designs a web-based application that
utilises the PSI theory of communication to manage requests and promises
between users. The theory proves useful and well suited for the task, laying a
solid foundation for the application’s logic.

Keywords PSI, PSI-theory, ψ-theory, DEMO, Enterprise Engineering, En-
terprise Ontology, Ontology, Task and Management application

x

Contents

Introduction 1

Aim of the thesis . 1

Key points . 2

Structure and methodology outline 2

I Theoretical part 3

1 Theory 5

1.1 Chapter introduction . 5

1.2 Ontology . 5

1.3 Enterprise ontology . 6

1.4 Enterprise engineering . 7

1.5 PSI Theory . 7

1.6 DEMO . 23

2 State of the art 25

2.1 Chapter introduction . 25

2.2 Trello . 25

2.3 Google Inbox . 26

2.4 Asana . 26

2.5 Wunderlist . 27

2.6 Chapter conclusion . 27

II Practical part 29

3 Analysis of requirements 31

3.1 Chapter introduction . 31

3.2 Operation axiom analysis . 31

xi

3.3 Transaction axiom analysis . 33
3.4 Composition axiom analysis . 35
3.5 Distinction axiom analysis . 36
3.6 Functional requirements not tied to the theory 36
3.7 Non-functional requirements analysis 36
3.8 Requirements summary . 37
3.9 Chapter conclusion . 37

4 Used technology 41
4.1 Chapter introduction . 41
4.2 .NET . 41
4.3 C# . 43
4.4 ASP.NET Core . 43
4.5 LINQ . 45
4.6 Entity Framework . 46
4.7 Web-specific tools and libraries 47
4.8 Dependency management tools 48

5 Application design 49
5.1 Vocabulary specification . 49
5.2 Use case diagrams . 50
5.3 Conceptual model . 56
5.4 Required views . 57
5.5 State machine . 58
5.6 Transaction chaining . 61
5.7 Application prototype . 61

6 Test scenarios 65
6.1 Chapter introduction . 65
6.2 Chapter summary . 68

Conclusion 69
Evaluation of functional requirements 69
Evaluation of non-functional requirements 69
Opportunities . 69
Thesis conclusion . 71

Bibliography 73

A Acronyms 77

B Contents of enclosed CD 79

xii

List of Figures

1.1 EE theories . 7

1.2 Coordination act . 10

1.3 Standard notationt . 11

1.4 Actors . 12

1.5 The basic transaction pattern . 13

1.6 The basic transaction pattern . 14

1.7 The standard pattern of a transaction 15

1.8 The complete transaction pattern 16

1.9 The composition pattern . 16

1.10 The self-activation . 18

1.11 The disctinction axiom . 18

1.12 The coordination act . 19

1.13 The claims . 20

1.14 Intelligent System Partitioning . 22

1.15 Integrated System Perspectives . 23

2.1 Trello . 25

2.2 Google Inbox . 26

2.3 Asana . 26

2.4 Wunderlist . 27

4.1 .Net Standard . 42

4.2 MVC Pattern . 44

4.3 Entity Framework . 46

4.4 AdminLTE . 47

5.1 Actor hierarchy . 50

5.2 Anonymous user use cases . 51

5.3 Application user use cases - promises 54

5.4 Application user use cases - contacts 54

5.5 Business user use cases . 55

xiii

5.6 Basic transaction . 55
5.7 Basic conceptual model . 56
5.8 Basic state machine . 58
5.9 Initiator revokes state machine . 59
5.10 Executor revokes state machine . 59
5.11 Complete state machine . 60
5.12 State machine extension - save . 60
5.13 Simple chaining . 61
5.14 Onion architecture . 62
5.15 Database schema . 63

xiv

List of Tables

3.1 Functional requirements . 38
3.2 Non-functional requirements . 39

6.1 Evaluation of functional requirements 70
6.2 Non-functional requirements . 71

xv

Introduction

Aim of the thesis

The aim of the diploma thesis is to propose a conceptual application for
messaging and task management, based on the Performance in Social Interac-
tion (PSI) theory of enterprise engineering. The theory studies interaction and
communication between people and helps with the distribution of responsib-
ilities by proposing a transaction axiom, a universal model of communication
patterns. This axiom is a foundation for finding and understanding basal
acts occurring during interaction between people, where one agent requests
something from the other participant. The theory is strongly leveraged in
the Design & Engineering Methodology for Organizations (DEMO), an en-
terprise modelling methodology in which communication is the cornerstone of
organisations. The DEMO is a robust tool for enterprise process analysis and
representation based on several underlying scientific theories. As such, it has
a potential downside of not being readily comprehensive for people unfamil-
iar with it, which makes the methodology difficult to approach and partially
conceals the benefits it could bring.

A possible solution for providing people with knowledge of the positives is
to take some core aspects of the axioms the theory builds on and incorporate
them unobtrusively in common activities they perform daily. The thesis is
intended as a complement to the DEMO by focusing on the everyday aspect
of communication, specifically on creating a platform for keeping track of tasks
required from and by its users. The platform is based on aforementioned PSI
theory, providing users with a way to manage their responsibilities emerging
from ordinary interactions with other people, from noting simple tasks through
creating ad hoc process chains to enabling businesses to offer their services in
the form of transparent and easy-to-reach entry point transactions.

1

Introduction

From the conceptual point of view, the thesis aspires to explore the possib-
ility of simplifying the PSI theory on the presentation front. It must be easily
comprehensive to a wide range of users without any prior knowledge of the
theory and its principles and terms.

Key points

The key points of the thesis are:

• Introduction of the ψ-theory and its axioms

• The design and implementation of an application prototype that employs
the ψ-theory in an approachable manner

• Utilisation of modern technologies

Structure and methodology outline

In the first part of the thesis the theories are explored and presented. The the-
oretical chapter is a compilation of scientific resources on the topic of ψ-theory
and Enterprise Ontology and provides an insight into the field of Enterprise
Engineering. It also contains a short chapter about the state-of-the-art ap-
plications similar to the goal of the thesis.

Second part applies the theory in the form of an application prototype.
Firstly the functional and non-functional requirements are stated. Then the
application design is shown, followed by an introduction of used technologies.

In the second half of the practical part, the key features of the application
prototype are shown and a proof of concept in the form of test scenarios is
provided. The thesis then evaluates and summarises its results.

2

Part I

Theoretical part

3

Chapter 1

Theory

1.1 Chapter introduction

The first chapter of the thesis presents underlying theories upon which the
work stands. It is a compilation of researched source materials. The chapter
defines basal and related concepts in order to set a foundation for a formu-
lation of requirements, both functional and non-functional. The backbone of
the chapter is the section 1.5 which introduces the ψ-theory and its major
components. Special attention is given to the transaction axiom owing to the
fact that an application of this axiom is the aim of the thesis.

The chapter starts with a general notion of what ontology is, as this term
is crucial in the understanding of the enterprise ontology (and consequently
the enterprise engineering). The core theory follows divided into multiple
subsections to ensure is is covered thoroughly. The chapter ends with a section
devoted to the DEMO methodology1.

1.2 Ontology

Ontology is a philosophical and scientific discipline holding a prominent posi-
tion in theoretical computer science. According to Lofaro [1], it can be defined
as:

“Ontology:

1. In philosophy, ontology is the study of the nature of being, be-
coming, existence, or reality, as well as the basic categories of
being and their relations. Traditionally listed as a part of the

1The DEMO methodology is not in the scope of the thesis, but the author decided to
include a brief overview as it is closely connected to the topic and will be addressed later in
the chapter regarding future opportunities.

5

1. Theory

major branch of philosophy known as metaphysics, ontology
deals with questions concerning what entities exist or can be
said to exist, and how such entities can be grouped, related
within a hierarchy, and subdivided according to similarities
and differences.

2. In computer science and information science, an ontology
formally represents knowledge as a set of concepts within a
domain, and the relationships between pairs of concepts. It
can be used to model a domain and support reasoning about
concepts.” (Lofaro, 2015)

As one can see from the two definitions, there is a difference in the philo-
sophical and engineering approach to ontology. The former revolves around
more general questions and can be approximated as “[. . .] the study of what
there is.” [2]. It deals with philosophical problems of (non-)existence of things
or entities. The latter could be considered as a concrete instance of this
metaphysical study. Gruber (1993) in [3] provides the following definition:
“An ontology is an explicit specification of a conceptualization. The term
is borrowed from philosophy, where an ontology is a systematic account of
Existence. For knowledge-based systems, what exists is exactly that which
can be represented.” Those two notions can be distinguished from each other
grammatically as well2 – the philosophical notion is a mass noun and thus
will appear without an article, the one used in computer science is a regular
noun and can have a plural form. [4] There is only one philosophical ontology,
in contrast to many kinds of scientific ontologies, which are usually named by
the domain they describe. The thesis makes use of the enterprise ontology,
which will be addressed later in section 1.3.

In the field of the enterprise engineering (see section 1.4), ontology is a
cornerstone – allowing engineers to conceptualise entities, their properties and
connections between them, leading to better understanding of a given problem.
Proper utilisation of the ontology discipline enables an abstraction of domains
and in turn an emergence of patterns, a simplification of complex systems and
provides a base for means of automation.

1.3 Enterprise ontology

Dietz in [5] declares that: “An enterprise ontology is a formal and explicit
specification of a shared conceptualization among a community of people of an
enterprise (or a part of it). It includes static, kinematic, and dynamic aspects.

2Although many authors do not use the terms correctly, as can be seen in the provided
definitions.

6

1.4. Enterprise engineering

Figure 1.1: Classification scheme for enterprise engineering theories [6]

In particular, an enterprise ontology satisfies the next five quality requirements
(C4E): Coherence, Comprehensiveness, Consistency, Conciseness, Essence.”
The PSI theory underlies the notion of enterprise ontology, as presented by
Dietz.

1.4 Enterprise engineering

Enterprise Engineering is an emerging discipline that consists of many the-
ories (an overview can be seen on figure 1.1). The two main concepts used
by Enterprise Engineering are the Enterprise Ontology (see section 1.3) and
Enterprise Architecture (which, according to [5], “guides the (re)design and
(re)engineering of an enterprise such that its operation is compliant with its
mission and strategy, and with all other laws and regulations.”)

Enterprise engineering may appear abbreviated and referred to as EE in
the following text.

1.5 PSI Theory

In this main section of the chapter the foundation of the thesis is presented:
the ψ-theory. The section is divided into three parts - the first one generally
describes the basic notion of what the theory is and why it exists. The second
part is focused on the general ψ-theory and its axioms. This part is a staple
of the thesis and an application of concepts depicted in it is the main aim of
the whole work. The third and last part of this section is about the special
ψ-theory which addresses the consequences of the general ψ-theory for the
systemic ontology of organisations [7].

7

1. Theory

1.5.1 What is the ψ-theory

The abbreviation PSI in the PSI theory stands for the “Performance in Social
Interaction”. As with all of the other major enterprise engineering theories,
the abbreviation is commonly replaced by the Greek letter with the same pro-
nunciation, in this case the letter ψ [”psi”]. Before proceeding to the definition
of the scope of the theory, the clarification of the distinction between words
enterprise, organisation and business is needed. Perinforma3 in [8] defines
them as:

• Enterprise: the general term to refer to any kind of col-
laborative activity by human beings. Examples: companies,
governmental agencies, health care institutions, sports clubs,
and building projects. Every enterprise has a business and
an organisation.

• Organisation: term to refer to the construction perspective
on an enterprise. The organisation of an enterprise consists
of a network of actor roles and transaction kinds4.

• Business: term to refer to the function perspective on an
enterprise, in particular the function as perceived by the con-
sumers of its services.

The theory focuses on construction and operation of organisations [6] and
consists of two branches – a “general ψ-theory” and a “special ψ-theory”.
The former defines four axioms revolving around the social aspect of organ-
isations, claiming that “the human communication is the root of information
and (social) action, and subsequently of organisation” [6]. It is the front side
of the complete ψ-theory, while the latter represents the system side and the
influences of the general ψ-theory on the conceptual modelling of systems.

“The ψ-theory is one of the currently eight theories that constitute the the-
oretical foundations of the discipline of enterprise engineering, as envisioned
by the Ciao! Network.” [9] Proponents of the theory claim that by applying
this theory along with a few supporting theories (which are together known
as the enterprise ontology presented in section 1.3) we can achieve a goal of
intellectual manageability when modelling, (re-)developing and implementing
an enterprise. This claim is leveraged by the DEMO methodology (see sec-
tion 1.6).

3Alicia P.C. Perinforma is the author of “The essence of organisation”, but is in fact a
pseudonym of professor Jan L.G. Dietz, one of the most prominent people in the field of
enterprise engineering.

4Actor roles and transaction kinds are explained later in the chapter in sections 1.5.2.1
and 1.5.2.2, respectively.

8

1.5. PSI Theory

1.5.2 General ψ-theory

Allowing a simplification, the following can be stated: When devising a new
theory, methodology, or ontology, one will usually start with discovering ele-
ments and patterns connecting them. After the initial discovery, those ele-
ments and patterns are matched against entities of a researched domain to
uncover the set common among all the entities. This set is then used as a
framework for the said domain and a basis for the theory, methodology, or
ontology. From here it is implied that the knowledge of core elements and
patterns is crucial in creating an intrinsic model of a domain and those core
features must be presented when one aims to provide theoretical description
of a domain.

The organisation is the domain of the general ψ-theory. Dietz and Hooger-
vorst in [6] establish the following: “The general ψ-theory explains that human
communication is the root of information and (social) action, and subsequently
of organisation. This basic understanding makes organisations primarily social
systems, of which the elements are human beings, bestowed with appropriate
authority and bearing the corresponding responsibility.” This quote summar-
ises the idea behind the general ψ-theory – it identifies human beings as the
core elements of enterprises and their communication as the base of operation
and cooperation. The pattern of the communication and with it the whole
general ψ-theory is primarily based on the Theory of Communicative Action
by Jürgen Habermas ([10], [11]) and on Speech Act Theory ([12], [13]).

The general ψ-theory consists of four axioms:

1. Operation axiom defines the basic notions of an actor, a C-act/fact
and a P-act/fact.

2. Transaction axiom presents a general pattern of communication between
actors - a transaction.

3. Composition axiom regards relations between transactions.

4. Distinction axiom pertains the communication abilities of actors.

These axioms will be explained in more detail in their own subsections. To-
gether they act as a framework upon which the ψ-theory stands and cover the
essential social aspect of enterprises.

Following subsections are based on the primary bibliographical resource -
the “Enterprise Ontology - Theory and Methodology” by professor Jan L.G.
Dietz [14].

9

1. Theory

Figure 1.2: Representation of a coordination act [14]

1.5.2.1 Operation axiom

“The first axiom of the ψ-theory states that the operation of an enterprise is
constituted by the activities of actor roles, which are elementary chunks of
authority and responsibility, fulfilled by subjects. In doing so, these subjects
perform two kinds of acts: production acts and coordination acts. These acts
have definite results: production facts and coordination facts, respectively.
The axiom is commonly referred to as the operation axiom.” [14]

The operation axiom defines two distinct areas (‘worlds’) in which the the-
ory takes place. Those areas are the production world (‘P-world’) and the
coordination world (‘C-world’). The two worlds have a clearly defined state
in every point of time - the state is a set of every production (or coordination,
respectively) fact created before the said point of time. It is worth noting that
facts cannot be deleted once created, they can only be cancelled by creating
a so-called ‘anti-fact’. This guarantees the consistence of the worlds and en-
sures that the knowledge of the current state is sufficient to have complete
information of those two worlds.

Every enterprise operates by having its subjects (human beings) take part
in activities based on actor roles, performing acts in both of these worlds. By
successfully performing an act, a corresponding fact comes into existence.

Coordination acts (or ‘C-acts’) are acts taking place in the C-world. As a
quote from Perinforma in [15]: “A coordination act is the focal point of every
communication [. . .]”. A C-act is defined as: “An act performed by one actor,

10

1.5. PSI Theory

Figure 1.3: Standard notation of a coordination act [14]

called the performer, and directed to another actor, called the addressee.” [14]
The C-act can be distinguished from general communication act by having two
important parts - the intention act and the proposition act, both contained
within the single C-act. The intention part is expressed by the performer using
an adequate social construct, i.e. a request, promise, question, assertion. The
proposition part always concerns a production fact (which ensues that every
C-act must have a corresponding P-fact, although possibly non-existing) and
a time specification. This time indicates when the P-act/fact should occur.

Figure 1.2 shows a representation of a generalised coordination act. To
represent a C-act, one can use a ‘standard notation’, depicted on figure 1.3.
This notation makes it simple to identify all the necessary parts of a C-act
and is more suited for automated systems than the natural spoken form.

Production acts (or ‘P-acts’) are acts taking place in the P-world. The
quote about C-acts from Perinforma in [15] in the previous section continues
as: “[. . .] a production act is the crucial core of every transaction.” [15] It
was stated that every C-act is bound to relate to a P-fact, which can be either
existing or desired to exist. While the coordination acts are about discussion
and specification of P-facts, the P-act’s purpose is to bring the P-fact itself
into existence.

There are two kinds of P-facts, material and immaterial [14]. Although
they are clearly different from each other in the real world, they behave sim-
ilarly in the P-world, which is shown on the following two examples:

• Example 1: An immaterial P-fact A verdict in the case #123 has
been delivered.

• Example 2: A material P-fact A yellow wooden chair has been sold
to the customer5.

In the first example, the verdict is initially stated by the executor (i.e. a judge).
If the initiating actor (which would be the state in this case) accepts the verdict
(as lawful), the immaterial P-fact is created. In the second example, it may

5P-facts are usually more specific than this because they must be uniquely identified,
but for the sake of the illustrative example the author of the thesis used a simplified form.

11

1. Theory

Figure 1.4: Actors and their responsibility, authority, and competence [14]

seem that the P-fact came into existence when the yellow chair was built. But
in reality, the desired outcome for the initiator is not the fact of the chair being
built, rather it is the change of ownership of that particular chair [13]. The
craftsman states the chair is ready, the customer confirms it is the product
he wanted (and not for example a red table) and accepts it. Only after the
acceptance – which is a result of a cooperation act between the actors – is the
material P-fact deemed existing.

Actors Every act is brought about by actor roles. These are “the essential
units of authority and responsibility” [14]. An actor role is an abstraction from
the subjects performing the role – thus the organisational model can declare
authorisations and responsibilities without knowledge of the actual fulfilment
of the roles, which is a matter of implementation. This brings clarity to the
distribution of competences and flexibility during (re-)design of an enterprise’s
structure.

When performing an act, the roles are filled by subjects who become actors.
An actor has a number of activities on his agendum and commits to dealing
with them. An actor has to satisfy three conditions to be able to justly carry
out the acts, which are featured on figure 1.4:

• Responsibility means that during the performance of an act, the actor
will uphold values and norms as is expected of him for being a member
of both an enterprise and society.

• Authority means that the actor has been permitted by the necessary
laws to be able to perform the act.

• Competence means that the actor has the knowledge and expertise to
be able to successfully finish the P-act and corresponding C-acts.

12

1.5. PSI Theory

Figure 1.5: The basic transaction pattern [6]

1.5.2.2 Transaction axiom

Dietz and Hoogervorst in [6] claim that “C-acts and P-acts appear to occur in
universal patterns, called transactions. A transaction involves two subjects,
one in the role of consumer (initiator) and the other one in the role of producer
(executor).” The transaction axiom postulates that the patterns are universal
enough to encompass all the different processes, which can be “considered as
paths through a generic coordination pattern” [14].

Transaction is a chain of coordination acts and at most one production
act. It can be divided into three phases, the order phase (‘O-phase’), the
execution phase (‘E-phase’) and the result phase (‘R-phase’). It is strictly
between two actors – the actor who starts the transaction and expects a P-
act/fact to be created is the initiator. The second actor who is supposed to
produce the P-act/fact is the executor. Every actor role can be an initiator of
multiple transactions, but is an executor of exactly one transaction kind. The
transaction kind is a set of transactions creating the same product kind.

There are three transaction patterns distinguished from each other by com-
plexity. The basic transaction pattern is contained within the standard trans-
action pattern, which is incorporated in the complete transaction pattern.

Basic transaction pattern is the simplest version of the three. It shows
only the ‘happy path’ where the consumer (initiator) requests a proposition.
The producer (executor) promises he will fulfil the proposition, produces a
result and states the result. The transaction is concluded with the consumer
accepting the stated result (see figure 1.5). The basic pattern presents the
four elementary C-acts and facts:

13

1. Theory

Figure 1.6: Formal notion of the basic transaction pattern [14]

1. Request (C-fact: P is Requested)

2. Promise (C-fact: P is Promised)

3. State (C-fact: P is Stated)

4. Accept (C-fact: P is Accepted)

The patterns are usually presented in formal notion, depicted in figure 1.6.
This model shows scopes of interest for both actors, mapping of acts to afore-
mentioned three phases, and relations between C-act/facts and P-act/fact.
Acts are represented by squares, facts by circles. Gray fill is the P-world part
of the transaction. Elements with special meaning have thick border: thick
border on C-act marks an initiating act while thick border on C-fact signs a
terminal fact for the transaction.

Standard transaction pattern is the common version of the three pat-
terns. As shown on figure 1.7, it extends the ‘happy path’ with means of
expressing dissent. Instead of promising, the executor can perform the C-act
of declining. Likewise, instead of accepting, the initiator can perform the C-
act of rejecting the stated product. Both those acts present a new type of a
C-fact called a discussion state (the double disks). In these states, the actors
can try to come to a mutual agreement on how to proceed with the transac-
tion. The ultimate decision in the case of decline is on the initiator, who can
either retry the request (possibly changed) or quit the transaction, moving the
flow to a terminal state. Accordingly in the case of reject the executor decides
whether to state the product again, or stop the transaction.

14

1.5. PSI Theory

Figure 1.7: The standard pattern of a transaction [14]

Complete transaction pattern is considered the universal type of the
patterns [6] and is represented by figure 1.8. This model adds four smaller
subpatterns called the revocation (cancellation) patterns. Those side steps are
present in case one of the actors regrets performing a step. The actor can use
the revocation pattern and demand the transaction to move back before the
revoked step. If the other actor allows it, the transaction continues from the
new step. If he refuses, the transaction continues from the state it is currently
in. Clearly, one can only revoke the steps that have been already performed.

Two things are worth mentioning regarding the transactions. The first is
a tacit performance of C-acts. This enables some C-acts to be concluded
automatically (tacitly) without the expressive consent of the actor. These
acts may prove useful in case the explicit performance would only hinder the
transaction flow and is of no significance. But even when performed tacitly, it
is always there. The second thing is that not all of the transaction paths are
always applicable in a particular process, it always depends on the context
of a domain. But they are usually at least worth considering when model-
ling the domain as they can provide important insight on the workings and
shortcomings of organization.

15

1. Theory

Figure 1.8: The complete transaction pattern [6]

Figure 1.9: The composition pattern [14]

16

1.5. PSI Theory

1.5.2.3 Composition axiom

The composition axiom addresses the fact that many products in the real
world are not atomic and require more than one production step to be com-
pleted (for example, a material P-fact of creating a car needs the parts to be
ready before the final assembly, or an immaterial P-fact of obtaining a building
permit requires a number of approvals before it can be issued). The composi-
tion axiom enables connections between transactions. The connections are of
two types: an initiation connection will issue one or more requests to other
transactions after reaching some state in a transaction flow. The second type
is a wait connection which blocks the flow of the transaction until the linked
transaction reaches the desired state. Both are depicted on figure 1.9, where
the actor A1 performs the request of T2 after the T1 is promised. He then
waits with the P-act until the T2 is accepted.

The composition links are drawn from any of C-facts and either link to the
request C-act of another transaction (in case of an initiation link) or any act
(C or P) of another transaction (in case of a waiting link) [16]. Theoretically
the source can be any of the C-facts, but commonly the terminating facts are
used to avoid issues with consistency6.

The composition axiom also presents the only three ways how the transac-
tions can be started:

1. External initiation (the black dot on figure 1.9) enables actors from
outside of an enterprise to request transactions. This usually covers the
services and products offered by an enterprise to external customers.

2. Enclosed initiation (the composite request of T2 on figure 1.9) hap-
pens inside an enterprise and is started as a reaction to another trans-
action.

3. Self-activated initiation (the backward arrow of T1 request on fig-
ure 1.9) covers the periodic and control activities [14]. After the trans-
action reaches the self-initiating state (the request in the provided ex-
ample) it issues a request to itself.

The composition axiom allows the definition of the business process
in [17]: “A business process is a collection of causally related transaction
types, such that the starting step is either a request performed by an actor
role in the environment (external activation) or a request by an internal actor
role to itself (self-activation). Every transaction type is represented by the
complete transaction pattern.” (as quoted from [14])

6Naturally, if one can find the reaction to, for example, the state fact instead of the usual
accept fact desirable, he can do so.

17

1. Theory

Figure 1.10: The self-activation [14]

Figure 1.11: Summary of the distinction axiom [14]

1.5.2.4 Distinction axiom

“The fourth axiom of the ψ-theory states that there are three distinct human
abilities playing a role in the operation of actors, called performa, informa,
and forma. These abilities regard communicating, creating things, reasoning,
and information processing. Because this axiom serves, in particular, in neatly
separating our diverse concerns, it is called the distinction axiom.” [14]. It is
summarised on figure 1.11.

18

1.5. PSI Theory

Figure 1.12: The process of performing a coordination act [14]

• Forma is a human ability to perceive/store/retrieve information. It
encompasses formulation of sentences in languages and syntactical side
of the communication. Forma means form.

• Informa is a human ability to communicate thoughts between people, to
remember and recall knowledge. It concerns the content of information.

• Performa is a human ability to create new original things through the
communication - commitments, decisions. It is considered the essential
ability for doing business [14].

These three items are the basis for two important things - during co-
ordination, they are all preconditions to a successfully performed act. During
production, they can be used to create a distinction between three types of
transactions.

The figure 1.12 shows the process of a coordination act. The performer
and addressee must meet on four levels to be able to bring about the C-act:
The physical layer requires the actors to (somehow) exchange the information.
It may be in the form of direct speech, writing, or any other communication

19

1. Theory

Figure 1.13: Summary of Habermas theory of communicative action [14]

technology. The forma condition is satisfied by the performer’s usage of such
a form that is comprehensive for the addressee (i.e. using a language that both
parties speak). The informa condition necessitates the addressee to under-
stand the meaning of the commitment. And the final level of understanding,
the performa condition, signifies that both subjects reach social understanding
– the intent of the commitment.

The production part of transactions (and subsequently the whole transac-
tion) can be categorised by the ability used to obtain the product. This creates
the three types of transactions:

1. Datalogical transactions regard the storing, recalling, copying, trans-
mitting and destroying data. They are representation of the forma abil-
ity.

2. Infological transactions concern the usage of knowledge – reasoning,
computing, deriving and reproducing. They are representation of the
informa ability.

3. Ontological transactions are the most essential transactions, because
they cover the creation of original things. “[They], together with the
involved (ontological) actor roles, constitute the ontology of an enter-
prise.” [18]. As such, they are representation of the performa ability.

Claims are a part of Habermas’s Theory of communicative action ([10], [11]).
According to Habermas, “three spheres of human existence play a role in or are
affected by communication. They are called the objective world, the subject-
ive world, and the intersubjective or social world.” [14] When communicating,
the speaker raises three validity claims towards the hearer. The communicat-
ive act is successful when and only when the claims are considered fulfilled.

20

1.5. PSI Theory

If the hearer wants to challenge them, he has the right to do so. Each of
the claims belongs to one of the aforementioned spheres and is considered a
dominant one depending on the type of the communicative act, although all
of them are always present. The figure 1.13 summarises the claims. They are
described as follows:

• Claim to truth: Concerns the factual correctness of the communicat-
ive act. The acts where the claim to truth is dominant are called the
constantiva.

• Claim to justice: Concerns the social authority and responsibility to
fulfil the act. The acts where the claim to justice is dominant are called
the regulativa.

• Claim to sincerity: Concerns the the subjective, inner meanings of
the act. The acts where the claim to sincerity is dominant are called the
expressiva.

In the enterprise ontology, the primary role is led by the claim to justice which
means most of the acts are from the category of regulativa.

1.5.3 Special ψ-theory

While the general ψ-theory concerns the front (human) side, the special ψ-
theory represents the back side. As described in [6]: “”PSI” is read as ”ISP”.
It has two meanings: Intelligent System Partitioning and Integrated System
Perspectives. [. . .] In addition, the formalisation of the special ψ-theory (is)
the so-called CRISP model”. In this section, all the three meanings will be
briefly described.

1.5.3.1 Intelligent System Partitioning

In the section 1.5.2.4 three types of transactions were described. “Based on
this distinction, the network of transaction kinds and related actor roles that
constitutes the complete ontological model of an organisation can usefully be
partitioned in three subnetworks: one containing the original transaction kinds
and actor roles, one containing the informational ones, and one containing the
documental ones.” [6]. Naturally, the original transaction kinds and actor roles
are the ontological transactions from the axiom, informational ones are the
infological and documental ones are the datalogical. From this networks three
parts of organisation can be derived, as seen on figure 1.14: The B(usiness)-,
I(nformational)- and D(ocumental)-organisation. The pyramid shape of the
figure shows that the I-organisation supports the B-organisation, and in turn
is supported by the D-organisation. While the D- and I-organisations contain
only the appropriate transaction kinds, the B-organisation may sometimes
comprise of not only the original transaction kinds, but some informational

21

1. Theory

Figure 1.14: Intelligent System Partitioning [6]

and documental ones as well – “this is the case if the business of the enterprise
is (also) to provide informational and/or documental services.” [6]

The so-called essential model of the enterprise is a notion used for the
ontological model of the B-organisation in which the supporting services from
the I-organisation are modelled as information links. Every enterprise has
exactly one essential model and it represents its core functionality abstracted
from implementation.

1.5.3.2 Integrated System Perspectives

“The complete ontological model of an organisation is divided into four sub
models, each representing a particular perspective or view on the complete
model: the construction model (CM), the process model (PM), the Fact Model
(FM), and the Action Model (AM)” [6]. Those partial models are different
views upon one main model in which all of them are entwined.

• CM: The construction model lists all the identified transaction kinds
and the corresponding actor roles.

• PM: The process model maps the transactions using the composition
axiom into the business processes.

• FM: The fact model contains business object classes, their properties,
and business laws.

22

1.6. DEMO

Figure 1.15: Integrated System Perspectives [6]

• AM: The action model is a collection of business rules and work in-
structions.

1.5.3.3 CRISP model

“The CRISP model is a formalisation of the special ψ-theory, in which the
intrinsic connection of the four sub models, as presented [on figure 1.15], is
claried.” [8] Crispies are a ψ-theory based automata.

1.6 DEMO

DEMO is an acronym for ‘Design & Engineering Methodology for Organiz-
ations’. It is a methodology based on principles of Enterprise Engineering,
especially the Enterprise Ontology and ψ-theory. DEMO gives an insight in
organisations by mapping them using the four basic models, depicted on fig-
ure 1.15.

23

Chapter 2

State of the art

2.1 Chapter introduction

This chapter briefly explores the state of the art in the field of messaging and
task management applications. As there is a great number of such programs,
the author chose four representatives of major approaches.

2.2 Trello

Trello (on the figure 2.1) is a lightweight dashboard application. It tracks tasks
using a system of pins and dragging them from one notice board to another.
Favoured by many programmers for its nice and clean interface.

Figure 2.1: Trello [19]

25

2. State of the art

Figure 2.2: Google Inbox [20]

Figure 2.3: Asana [21]

2.3 Google Inbox

Google Inbox (on the figure 2.2) is an application built by Google on top of
Gmail. It adds different view upon the user’s emails and turns them into tasks
with advanced sorting and grouping methods. Although the direct integration
may seem promising, the whole application feels like a reskined email client.

2.4 Asana

Asana (on the figure 2.3) states in its motto: “Responsibilities and next steps
are clear, so you can shoot for the moon and get there.” [21] In the field of task

26

2.5. Wunderlist

Figure 2.4: Wunderlist [22]

management and collaboration apps, Asana seems like one of the real state-of-
the-art representatives. Rich in features, it leans towards being a workplace
issue tracker rather than a personal application.

2.5 Wunderlist

Wunderlist (on the figure 2.4) started as a personal task tracking application.
Now acquired by Microsoft, Wunderlist added support for collaboration, but
lacks the clear distribution of responsibilities.

2.6 Chapter conclusion

The selected examples are just a tip of an iceberg and task management
applications are plentiful. But after doing the research, there are two things
to note:

• As the supply of both the free and commercial applications is high, one
can assume the demand is matching.

• Although the ψ-theory directly describes the mechanics of commitment
in the enterprise domain and is a great basis for the task management,
there are no major applications utilising it.

This may present an opportunity for the development of such application.

27

Part II

Practical part

29

Chapter 3

Analysis of requirements

3.1 Chapter introduction

This chapter analyses the presented theory and explores requirements needed
for the application of the theory. The aim of the thesis is to apply the trans-
action axiom, but the remaining three axioms are an integral part of the
ψ-theory and their impact is analysed as well. The analysis method is to focus
on the important concepts of each axiom and extract their importance for the
functionality of the application. The key thing to note is the scope of the
analysis - it aligns with the intention of creating a simple task management
application for everyday use with a low learning curve. The requirements are
brought about to support this goal.

3.2 Operation axiom analysis

The first axiom declares basic entities used by the other axioms. Important
concepts of this axiom are:

• Actors

• Coordination world, coordination acts, coordination facts

• Production world, production acts, production facts

• Responsibility, authority, competence

3.2.1 Actors

Actors are the core part of the ψ-theory. Every coordination act requires
exactly two of them, the performer and the addressee. The theory states
that actors are subjects taking on the actor role belonging to the currently
performed transaction. By becoming the actor, the subject binds himself with

31

3. Analysis of requirements

the responsibility of carrying out the actor role. All currently active roles of
a subject represent the acts he needs to deal with – the agendum.

Requirements

• The user can take an actor role, thus commit himself to perform an
act.

• The user can see his agendum. This allows user to carry out his acts.

3.2.2 C-world

The C-world contains all the C-acts and facts. They always concern a P-fact
in the form of a proposition part and an intention regarding the proposition.
The C-acts are carried out by two actors.

Requirements

• The user is aware of the C-act he is performing, having the required
knowledge about the C-act and corresponding P-fact. He knows what
his role in the act is.

• The user can perform all the active acts on his agendum. Active
act is an act not waiting on another fact due to the composition axiom.

3.2.3 P-world

In the P-world, the performer of the P-act creates a new P-fact. Every C-
act and fact is tied to a P-fact, making the P-world the core part of every
transaction and transitively the core part of the application. One must realise
that while the application is P-world centred, the P-world itself exists outside
of the application and P-facts are only referenced in the transactions.

Requirements

• The user has the ability to reference (describe) the P-fact of the
transaction. This enables the specification of every transaction.

3.2.4 Responsibility, authority, competence

These conditions are required of every actor during the performance of an act.
The responsibility is a social construct rather than being something quanti-
fiable and poses no functional requirement. The other two conditions may
be theoretically transformed into functional constraints, but this inherently
strays from the goal of simplicity. All of them should rest upon the user’s
judgement.

32

3.3. Transaction axiom analysis

Requirements

• The user decides whether the responsibility, authority or compet-
ence conditions are met.

• The user can challenge the responsibility, authority or compet-
ence of the other actor during a transaction.

3.3 Transaction axiom analysis

The transaction axiom orchestrates communication between two actors, the
initiator and the executor. It presents a pattern of this orchestration with
three varying levels of complexity – the application should implement the
most advanced of the patterns as it covers all of the interaction possibilities
for the actors. Important concepts of this axiom are:

• External initiation

• Movement through the pattern

• Production

• Revocation

• Tacit acts

3.3.1 External initiation

This is the common form of the initiation in the scope of the application.
The initiator desires something to become existent therefore he chooses an
appropriate executor and creates a request. There is one major issue to be
addressed: transactions classified by the author of the thesis as the ‘ad hoc
transactions’. In the enterprise ontology, each transaction is of some transac-
tion kind (depending on the corresponding product kind). This is manageable,
because the EO maps the domain of one particular enterprise at a time, so
the set of product and transaction kinds is finite. The application that is de-
veloped in this thesis behaves differently - for the sheer number of production
kinds it can cover is infinite. It must be able to handle the ad hoc transactions
by allowing the specification of product during runtime, but provide means to
predefine product kinds as well.

Requirements

• The user can create ad hoc transaction by requiring a newly
described P-fact. He is responsible for choosing the right executor for
this transaction (but in the case of misjudging, the executor can decline
the request).

33

3. Analysis of requirements

• The user can offer transactions based on predefined product
kinds.

• The user can request a predefined transaction from the offering
actor.

3.3.2 Movement through the pattern

The most important part of the application is realising the transaction pattern.
The theory provides rules on what can happen depending on the set of existing
C-facts in the transaction.

Requirements

• The application provides the actors with eligible actions based
on the transaction state.

• The application handles the logic after the user performs actions.

3.3.3 Production

As stated before, the production part of the pattern is out of the application
scope.

Requirements

• The application takes into account the external production of
P-facts.

3.3.4 Revocation

Revocation patterns are an important part of the complete transaction pat-
tern.

Requirements

• The user can ask for a revocation of any finished C-fact. The
ruling of the theory applies with all its implications (e.g. returning to a
different transaction state in the case of successful revoke).

3.3.5 Tacit acts

The transaction axiom also contains the tacit acts. These are acts performed
automatically, which means they are essentially skipped on the process level
(but the actor is still deemed responsible for them and they are considered
to be performed, resulting in the C-fact creation). The author of the thesis
decided to omit them from the functional requirements for two main reasons:

34

3.4. Composition axiom analysis

1. They hold no value for the ad hoc transactions, because one must know
the consequences of performing an act tacitly before it is skipped. This
knowledge requires the understanding of the transaction kind and ad
hoc transactions don’t have specific kind before they are created.

2. The setting of tacit actions expects the user to be familiar with the
axioms, but the application is meant for users with no prior knowledge
of the ψ-theory.

Tacit acts may be added later in the future when the user experience with the
theory and patterns grows.

3.4 Composition axiom analysis

The composition axiom allows the linking of transactions and forming more
complex processes. The main concepts of the axiom are:

• The waiting link

• The initiation link

• Self-activated initiation

3.4.1 The waiting link

The waiting link enables blocking of C-acts before a particular fact is created
in another transaction.

Requirements

• The user can link a transaction to another one by adding an
association. The association is a non-blocking informational link.

• The user can link a transaction to another one by adding a
waiting link. The waiting link is blocking.

3.4.2 The initiation link

The initiation link holds value for prepared transactions as it allows the cre-
ation of simple processes.

Requirements

• The user can link a prepared transaction to another one by
adding an initiation link. This will start the linked transaction when
the parent transaction reaches specified state.

35

3. Analysis of requirements

3.4.3 Self-activated initiation

Self activated initiation adds the capacity to build periodic and control activ-
ities. While this certainly has a business value for enterprises, it may become
a tool that clogs the application (the author wants every promise in the ap-
plication to hold meaning and users tend to lose focus when overwhelmed with
many recurring tasks), so it is omitted for now.

3.5 Distinction axiom analysis

While the distinction axiom proves useful for the enterprise ontology and the
essential model of organisation, the application strives to cover all the types
of transactions and not limit itself to the ontological ones. Thus the claims
are the only relevant concept.

Requirements

• The user can challenge the claim to truth, justice or sincerity of
the other actor during a transaction. The user has the responsib-
ility to decide whether the claims were upheld and ultimately it is his
decision on how to proceed with the transaction.

3.6 Functional requirements not tied to the theory

There are some functional requirements not directly tied to the theory, how-
ever, important for the operation of the application itself.

Requirements

• The user can create virtual actors. They are used as a substitute to
the people outside of the application. The user can then track transac-
tions without the need of the other party to join the application.

• The application will manage user identity. Every participating actor
has an account which stores his information and agenda.

3.7 Non-functional requirements analysis

Apart from the functional requirements stemming from the theory, there are
non-functional prerequisites that ensure good practices and usability of the
application.

36

3.8. Requirements summary

Requirements

• The application is available to a wide range of platforms.

• The application is simple to use.

• The application can be easily extended or modified.

3.7.1 Academic environment

The following non-functional requirements spring from the fact the thesis is
created in an academic environment.

Requirements

• The application is available as an open source. The aim is to present
the ψ-theory to a wide range of users so the base version should not be
proprietary.

• The application can be used and extended as a part of future
academic works. The scientific benefits of the thesis may be leveraged
as well.

3.8 Requirements summary

3.8.1 Functional requirements

The table 3.1 contains the summary of the basic functional requirements
gathered from the analysis of the theory.

3.8.2 Non-functional requirements

The table 3.2 lists the non-functional requirements based on good practices
and academic environment.

3.9 Chapter conclusion

The requirements defined in this chapter cover the theory in regard of the
thesis’s goal. They serve as a basis for the application design and a benchmark
of the application capabilities.

37

3. Analysis of requirements

Table 3.1: Functional requirements

Code Short description of the requirement

FR-1 The user can take an actor role

FR-2 The user can see his agendum

FR-3 The user is aware of the C-act he is performing

FR-4 The user can perform all the active acts on his agendum

FR-5 The user has the ability to reference (describe) the P-fact
of the transaction

FR-6 The user decides whether the responsibility, authority or
competence conditions are met

FR-7 The user can challenge the responsibility, authority or com-
petence of the other actor during a transaction

FR-8 The user can create ad hoc transaction by requiring a newly
described P-fact

FR-9 The user can offer transactions based on predefined product
kinds

FR-10 The user can request a predefined transaction from the of-
fering actor

FR-11 The application provides the actors with eligible actions
based on the transaction state

FR-12 The application handles the logic after the user performs
actions

FR-13 The application takes into account the external production
of P-facts

FR-14 The user can ask for a revocation of any finished C-fact

FR-15 The user can link a transaction to another one by adding
an association

FR-16 The user can link a transaction to another one by adding
a waiting link

FR-17 The user can link a prepared transaction to another one
by adding an initiation link

FR-18 The user can challenge the claim to truth, justice or sincer-
ity of the other actor during a transaction

FR-19 The user can create virtual actors

FR-20 The application will manage user identity

38

3.9. Chapter conclusion

Table 3.2: Non-functional requirements

Code Short description of the requirement

NFR-1 The application is available to a wide range of platforms.

NFR-2 The application is simple to use.

NFR-3 The application can be easily extended or modified.

NFR-4 The application is available as an open source.

NFR-5 The application can be used and extended as a part of future
academic works.

39

Chapter 4

Used technology

4.1 Chapter introduction

The chapter overviews all major technologies and external libraries used in de-
velopment in the application prototype. Each technology is briefly introduced
and described, with some non-obvious7 decisions explained. The importance
of the chapter lies in the fact that the technologies shape the architecture of
the app and directly or indirectly influence choices made during design and
implementation time.

4.2 .NET

The Microsoft .NET platform [23] was created as a successor to the COM
(Component object model) programming model in 2002. It was intended
to provide a more powerful, flexible, and simpler programming mode than
COM [24]. The .NET evolved from the Windows-only tooling to a platform
capable of running on many operational system families, including the ma-
jor Unix/Linux distributions and Mac OS X. It supports many programming
languages, such as C#, Visual Basic, F#.

The .NET platform consists of three basic building blocks:

• CLR: Common Language Runtime is the runtime environment for all
the .NET objects. It manages memory, hosting, threading, security, and
serves various other purposes between the hosting system and .NET
based application.

• CTS: Common Type System is a specification that describes all the
data types and constructs supported by the runtime.

7The author chose the .NET based C# language implementation as advised by the thesis
supervisor Ing. Robert Pergl, PhD., and the consultant Ing. Marek Skotnica.

41

4. Used technology

Figure 4.1: .NET Standard library [25]

• CLS: Common Language Specification is a set of features that all the
.NET languages can agree upon. If an application is compliant with
CLS, it can be consumed by other .NET languages.

4.2.1 .NET Core

.NET Core [26] is a new branch of .NET platform. Developed by the .NET
Foundation (“An independent organization to foster open development and
collaboration around the .NET ecosystem. It serves as a forum for com-
munity and commercial developers alike to broaden and strengthen the future
of the .NET ecosystem by promoting openness and community participation
to encourage innovation.” [27]), it is an open-source implementation of the
.NET platform. As it conforms to the .NET Standard (illustrated on the fig-
ure 4.1), it is built upon the common infrastructure as the .NET framework.
The main difference is in its openness and native support of cross-platform
programming.

.NET Core version 1.0 was released on June 27, 2016. It is not a mature,
rigid platform, but rather a constantly developing ecosystem – with a strong
advantage of being based on the .NET platform and supported by major
companies (for example Microsoft and Red Hat). The key reasons why the
author chose the .NET Core as a main technology for the development of the
application are:

• It is open-source which aligns with the idea of the app being available
to broad public.

• It has extensive tooling for the development of standalone web applica-
tions.

42

4.3. C#

• It is modular and new functionalities can be added quickly.

• It is new and emerging – as such it may not be ready yet for a corporate
environment, but it is suited well for smaller apps exploring modern
technologies.

4.3 C#

C# is a programming language, member of the C family (others being, for
example, C, Objective C, C++, Java). The C# was created as a part of
the first version of the .NET platform and has evolved substantially since
then (current major version is 6.0, released in July 2015, version 7.0 is in
development). It is a hybrid of other languages and incorporates concepts
found in different programming paradigms - i.e. features found in functional
languages (such as LISP or Haskell). It has a clean syntax, is simple, but
yet powerful and flexible. According to [24], the most important part to
understand about the language is that “it can produce code that can execute
only within the .NET runtime [. . .]. Officially speaking, the term used to
describe the code targeting the .NET runtime is managed code. The binary
unit that contains the managed code is termed an assembly. Conversely, code
that cannot be directly hosted by the .NET runtime is termed unmanaged
code.”

4.4 ASP.NET Core

The description of the ASP.NET Core from the official announcement states
the following: “ASP.NET Core is an open source web framework for build-
ing modern web applications that can be developed and run on Windows,
Linux and the Mac. It includes the MVC framework, which now combines
the features of MVC and Web API into a single web programming frame-
work. ASP.NET Core is built on the .NET Core runtime, but it can also
be run on the full .NET Framework for maximum compatibility.” [28] The
framework provides middleware needed to build up web-based applications,
such as hosting, configuration, identity management (both authentication and
authorisation) and telemetry.

4.4.1 ASP.NET MVC

ASP.NET MVC, namely the most recent ASP.NET MVC 6, is a presentation
layer framework based on .NET platform. As of the Core version, it was
merged into the ASP.NET Core framework and is now an integral part of it.
The MVC stands for the Model-View-Controller pattern (see the figure 4.2).
This pattern separates the business logic (found in the Model part of the
pattern) from the presentation logic (the View part). The Controller serves

43

4. Used technology

Figure 4.2: The MVC pattern [29]

as an entry point for application users, providing them with requested views
of data and delegating inputs further into the application core. In ASP.NET
Core, another level of abstraction is present in the form of a View models,
resulting in the following four parts of the ASP.NET Core application:

1. Model is the domain logic of the application. It stays on the backend
side and is not exposed to users.

2. View model represents one or more domain models, specifically their
attributes that are of interest for users. The view model does not usually
contain business logic apart from validation logic.

3. Controller handles user requests. Based on requested resource, it in-
vokes application logic and maps results to a view model. It does not
contain any business logic itself, with the exception of validation.

4. View is a web page based on one view model. It presents the view model
to user and routes any interaction to controllers. Again, it does not
contain any logic apart from the front-side validation (which is inherited
from the view model)

The addition of view models allows proper separation of concerns – the domain
model does not depend on the presentation layer of ASP.NET MVC. User
interaction is handled through the views, view models and controllers and the
logic is routed to the business layer of the application.

4.4.2 ASP.NET Identity

ASP.NET Identity provides an out-of-the-box solution for managing user ac-
cess to web applications. It brings the necessary database model and basic
views and controllers to enable user management (i.e. registrations, logins),
authorisation environment (restricting access to parts of the application based

44

4.5. LINQ

on roles) and usage of third party authentication services (e.g. the authentic-
ation from Google or Facebook).

4.4.3 Razor markup language

ASP.NET Core comes with its own markup language for the Views called
Razor. From W3schools: “Razor is a markup syntax that lets you embed
server-based code (Visual Basic and C#) into web pages.

Server-based code can create dynamic web content on the fly, while a web
page is written to the browser. When a web page is called, the server executes
the server-based code inside the page before it returns the page to the browser.
By running on the server, the code can perform complex tasks, like accessing
databases.” [30]

Razor is a powerful tool used to minimise code repetition when developing
the Views.

4.5 LINQ

LINQ stands for ‘Language Integrated Query’. It is an extension of the C#
language, natively available within the .NET platform. LINQ brings the ad-
vantages of functional programming to the objective-oriented C# easing many
common tasks and reducing the ‘boilerplate’ code8. Mukherjee in [31] makes
case for LINQ by presenting the following five benefits of using functional
programming9:

• “Composability lets you create solutions for complex problems easily.
It is based on the divide and rule principle, reducing complexity of the
code.

• Lazy evaluation is a concept that provides the results of queries only
when you need them. LINQ allows deffering execution, for example of
SQL queries.

• Immutability lets you write code that is free of side effects.

• Parallelizable – functional programs are easier to parallelize than their
imperative counterparts because most functional programs are side-effect
free (immutable) by design.

• Declarative – declarative programming helps you write very expressive
code, so that code readability improves. Declarative programming often
also lets you get more done with less code.”

8The boilerplate is a part of code that needs to be repeated without many changes and
is usually difficult or impossible to omit.

9The quote is rephrased.

45

4. Used technology

Figure 4.3: The Entity Framework architecture [32]

4.6 Entity Framework

Singh in [32] provides the following description for the Entity Framework (EF):
“Entity Framework is an Object Relational Mapper (ORM) from Microsoft
that lets the application’s developers work with relational data as business
models. It eliminates the need for most of the plumbing code that developers
write (while using ADO.NET) for data access. Entity Framework provides a
comprehensive, model-based system that makes the creation of a data access
layer very easy for the developers by freeing them from writing similar data
access code for all the domain models.”

The Entity Framework’s architecture is depicted on figure 4.3. It shows
it as an abstraction layer upon the ADO.NET database access. Using EF
enables programmers to employ one of three development styles when creating
the data layer and modelling the database:

• The Database First approach – used when developing a database-
centric application, or already having a legacy database, or the database
design is done by another team.

• The Code First approach – helpful when the database is used just
as a persistence mechanism to a domain and contains no logic itself.

• The Model First approach – the least used approach utilising Visual
Entity Designer tool to model and create the database.

The EF that is a part of the .NET Core platform is called Entity Framework
Core. It is still under development and lacks some functionalities the version
for standard .NET has.

46

4.7. Web-specific tools and libraries

Figure 4.4: The AdminLTE Dashboard [34]

4.7 Web-specific tools and libraries

The application makes use of third-party javascript and CSS libraries men-
tioned below to support the presentation layer.

4.7.1 jQuery

“jQuery is a fast, small, and feature-rich JavaScript library. It makes things
like HTML document traversal and manipulation, event handling, animation,
and Ajax much simpler with an easy-to-use API that works across a multitude
of browsers. With a combination of versatility and extensibility, jQuery has
changed the way that millions of people write JavaScript.” [33] jQuery enables
to use plugins to further enhance its functionalities.

jQuery validation is a plugin that adds client-side validation of user inputs.

jQuery autocomplete is a plugin that enriches text inputs by adding the
option of asynchronous API calling and presenting the results to the user.

4.7.2 Bootstrap

Bootstrap10 is a library containing HTML, CSS and javacript code. It focuses
the responsiveness of the web application – scaling, ordering and appearance
of elements based on the device the web page is viewed on. Responsive web
pages bring comfort to users and allow developers to have a single code base
for wide range of possible display devices.

4.7.3 AdminLTE

AdminLTE11 is a theme built upon Bootstrap. It adds new responsive widgets
and tools to build a dashboard-styled responsive web pages. Figure 4.4 is an

10Bootstrap is licensed under MIT license.
11AdminLTE is licensed under MIT license.

47

4. Used technology

illustrative example of the styling and elements provided by the AdminLTE
library.

4.8 Dependency management tools

These tools enable the distribution of applications without the external de-
pendency libraries. Those dependencies are restored upon migrating the pro-
ject to a new place.

4.8.1 Npm

The Node Package Manager (npm) is a part of the Visual Studio IDE. It
provides the majority of package dependencies for projects.

4.8.2 Bower

“Bower is a package manager designed for web libraries. If multiple packages
depend on a package - jQuery for example - Bower will download jQuery just
once. This is known as a flat dependency graph and it helps reduce page
load.” [35]

48

Chapter 5

Application design

5.1 Vocabulary specification

The terminology of the ψ-theory can be slightly overwhelming for the general
population. The main weakness as perceived by the author of the thesis is the
word transaction. While it is a common term for people with knowledge and
background in information technology, it may be too abstract for the target
audience of the application. The author proposes usage of three expressions
depending on what state the transaction is in:

1. A promise is a default naming convention used for the transactions
in the application. It was chosen because it implies certain ownership
of responsibility. Also the transaction becomes ‘official’ only after the
executor promises to deliver the P-fact. A promise is always created
from a request.

2. A request is a transaction before the promise state. The initiator has
specified the desired P-fact and requested it of the executor, but may
still be declined. A request can be created as an ad hoc transaction or
from an offer.

3. An offer is a prepared transaction with specified product kind. An offer
can be turned into a request (and then into a promise).

For the state C-act, the author uses the term ‘Done’12 as in ‘Mark the
promise as done’. It is a bit more natural to non-English speakers and aligns
with the aim of the application to be easily accessible for everyone.

12On the front-end. In the specification the term state is still used.

49

5. Application design

Figure 5.1: Actor hierarchy

5.2 Use case diagrams

The application use cases are defined in this section. It starts with presenting
the actors (users) eligible for the application usage. Then the use case dia-
grams per every type of the actor are shown and described. Use case diagrams
are based on the functional requirements declared in the chapter 3.

5.2.1 Actor hierarchy

On the figure 5.1, the following user roles are defined:

• Anonymous user – a basic user who has not yet registered or logged
in. This user’s use cases are the most limited.

• Application user – a common user. One becomes an application user
by registering and logging in.

• Business user – a special sort of user with access to the predefined
transaction creation. Extends the application user.

• Initiator role – application user interacting with a transaction where
he assumed the initiator role.

• Executor role – application user interacting with a transaction where
he assumed the executor role.

50

5.2. Use case diagrams

Figure 5.2: Anonymous user use cases

5.2.2 Anonymous user use cases

The figure 5.2 depicts the use cases for the anonymous and freshly logged in
users.

• Access application – any user can reach the front page of the applic-
ation. The front page enables register of new users and logging in for
existing users.

• Register as a new user – an anonymous user can fill the registration
form, which creates an account for him. He is then automatically logged
in on the newly created account.

• Login – registered, unauthenticated anonymous users can use their ac-
count’s credential to authenticate and gain access to the application and
their data.

• Logout – a logged in application user can use the logout option to leave
the application.

• Manage account – an application user can change settings on his ac-
count.

51

5. Application design

5.2.3 Application user use cases

Application user uses cases are illustrated on the figures 5.3 and 5.4. The first
figure shows use cases regarding the promises, the second contact handling.
The promise use cases are divided depending on the role required (common
tasks are performed by an application user, role-specific are marked by the
corresponding role).

5.2.3.1 Common promise use cases

• View promises – lists all the promises currently available to the actor.
This use case represents the agendum part of the ψ-theory.

• Filter promises – allows the filtering of promises. For example filters
out the promises in terminal states, so the user can focus on the present
agendum.

• View details of a promise – displays the promise. If the current
status of the promise allows an action to be performed by the viewing
actor, it is presented to the actor and he can take the action.

• Browse the promise hierarchy – displays promises related to the
currently viewed one.

• Fill in for the other user – if the other actor of the promise is marked
as virtual (created by the current user), the user can perform his actions
as well.

• Link promises – the user can add links between promises such as as-
sociation links and waiting links.

• Revoke previous step – the user can revoke performed steps as allowed
by the complete transaction pattern.

5.2.3.2 Initiator role use cases

• Request something – the initiator creates a new request.

• Provide clarification – the initiator can react in a discussion regarding
promise, generally to clarify his intentions and desires.

• Accept finished promise – the initiator can accept a P-fact stated by
the executor.

52

5.2. Use case diagrams

5.2.3.3 Executor role use cases

• Promise something – the executor can react to a request by promising
it, thus creating a promise.

• Request clarification – the executor can react by further discussing
the promise, generally to require clarification of initiator’s intentions and
desires.

• State the promise is done – the executor states the P-act is completed
and P-fact is created.

Common contact use cases

• View contacts – user can view his contacts and contact groups.

• Manage contacts – user can add or remove contacts from contact
groups.

• Search for user – user can add a new contact by searching for an
existing user in the application.

• Create virtual contact – user can add a virtual contact for whom he
will manage actions. Virtual contacts are private and can be seen only
by their creator.

5.2.4 Business user use cases

User classified as a business user can create offers, which are transactions with
predefined product kind. The use case diagram is depicted on figure 5.5

• Create predefined promise – business user can create an offer by
declaring its production kind.

• View predefined promises – business user can list all his offers.

• Manage predefined promises – business user can manage his offers,
changing their definitions.

• Link with other predefined promises – business user can add links
between offers such an association links and initiation links.

5.2.5 Basic transaction use case

The last use case illustrated on 5.6 displays the interaction between the two
actor roles. It is a basic use case for the complete transaction pattern, listing
the action possibilities without showing any constraints.

The figure 5.6 shows the basic transaction use case. It is derived from the
basic transaction pattern

53

5. Application design

Figure 5.3: Application user use cases - promises

Figure 5.4: Application user use cases - contacts

54

5.2. Use case diagrams

Figure 5.5: Business user use cases

Figure 5.6: Basic transaction use case

55

5. Application design

Figure 5.7: Basic conceptual model

5.3 Conceptual model

The bare conceptual model on figure 5.7 shows the basic classes needed for
the operation of the application. Their brief descriptions follow:

• BasePromise is an abstract class from which promises and offers inherit.

• Offer is a class representing offers - prepared transactions.

• Promise is a class representing instantiated transaction.

• State is a status (corresponding to the last C-fact) of a transaction.

• Association represents links - initialisation, waiting, and non-blocking
association.

• Tag A nice-to-have feature allowing the classification of promises based
on added labels.

• Message A message, a part of a discussion about a promise.

• Notification A notification class adding various informative messages for
users.

• Actor The application user.

• ContactGroup A class aggregating contacts.

• Contact A class representing a contact.

56

5.4. Required views

5.4 Required views

The application is web based and needs a specification of views that it consists
of. From the theory, requirements and the conceptual model, the following
views are considered core:

5.4.1 User management

This view contains all the interaction logic needed to manage user accounts.
The operations are delegated to following subviews:

• Log in view – allows the users to log in

• Register view – allows the registering of new users

• Manage account view – for settings

• Log out – Ends the current user’s session

5.4.2 Promises

This view contains all the transactions of the current actor - his agendum.

• View all – shows all the promises.

• View specific – shows the detail of a promise along with actions, should
the actor be eligible for any

• Create new – creates a new request

5.4.3 Offers

This view contains all the prepared transaction kinds of the business user.

• View all – shows all the offers current user has

• Manage – allows the management of offers

• Create new – creates a new offer

• View offers for current user – when accessed through the user’s
contact list, shows all the offers selected contact has for the current user

57

5. Application design

Figure 5.8: Basic state machine

5.4.4 Contacts

This view contains all the user’s contacts and groups.

• View all – shows all contacts and groups

• Add new contact – adds a new contact

• Add new group – adds a new group

• View offers of the selected contact – navigates to the View offers
for current user subview

5.5 State machine

The state machine is the core application logic. It is derived from the transac-
tion pattern and handles the flow of C-acts and facts. The basic state machine
on figure 5.8 shows the paths reachable via normal execution (= without the
revocations).

The figures 5.9 and 5.10 present the revocation patterns from the scope
of the initiator, respectively executor role. The non-standard notation in the
diagrams adds the “return to previous state” element. This element keeps the
diagram compact and consolidates multiple revoke states.

On figure 5.11 the complete state machine is viewed. This is the state
machine that needs to be implemented for the application to work properly.

The last figure 5.12 depicts the extension possibility for the state machine.
It adds saving, which is not something derived from the theory but naturally
a useful part of client applications.

58

5.5. State machine

Figure 5.9: Initiator revokes state machine

Figure 5.10: Executor revokes state machine

59

5. Application design

Figure 5.11: Complete state machine

Figure 5.12: State machine extension - save

60

5.6. Transaction chaining

Figure 5.13: Simple chaining of transactions

5.6 Transaction chaining

The second concept apart from the base state machine is the requirement
of transaction chaining as part of the composition axiom. The chaining is
modelled by links, which modify the process flow - a conceptual example is
shown on figure 5.13.

5.7 Application prototype

This section outlines the architecture of the application prototype. Because
the application is under constant development even out of the thesis’s scope,
only key features are shown.

5.7.1 Architecture overview

The author intended to use the onion architecture (see the figure 5.14) for the
application to neatly follow the separation of concerns principle. Currently
the majority of the application conforms to the onion architecture (the com-
ponents fit in layers), but the new .NET Core identity proved to be difficult
to separate from the Entity framework and data layer. For this reason the
prototype is nested in one project.

61

5. Application design

Figure 5.14: Onion architecture [36]

5.7.2 Dependency injection

The integral part of the architecture is the usage of dependency injection. It
provides an abstraction of the data layer - the domain exposes interfaces of
the persistence services that the data layer must implement. Those services
are then registered from the assembly during runtime (with the option of
controlling their lifespan) and injected into constructors of other classes.

5.7.3 Database

Database schema (shown on the figure 5.15) was created using the Entity
Framework Core code-first approach. This allows the application designer to
focus his mind on the domain object model and then let the persistence layer
to generate itself. Although this may not result in the optimal schema, the
speed of this method proves invaluable for a fast application prototyping. The
schema becomes basically a 1:1 model, with a few exceptions – from which
the most notable is the implementation of inheritance. As can be seen on the
schema, the abstract class of BasePromise and its children Promise and Offer
are merged into one table with the addition of a discriminator column. Cur-
rently, this is the only supported way of modelling inheritance (older Entity
Framework versions allowed two more methods, EFCore is limited to just this
one)

62

5.7. Application prototype

Figure 5.15: Database schema (with ASP.NET Identity tables omitted)

63

Chapter 6

Test scenarios

6.1 Chapter introduction

This chapter presents four test scenarios based on real life situations. Those
scenarios were picked as a showcase of the intended scope covered by the
application. The scenarios are described and then walked through from the
application’s point of view.

1. Scenario 1 – the Book: Adam is writing a diploma thesis. He lacks a
certain theory book that Eve has. Adam uses the app to track his tasks,
Eve is not a user.

2. Scenario 2 – the Teacher: Mark is teaching a course at university. His
students want to create appointments with him to consult his subject.

3. Scenario 3 – the Middleman: Hansel needs to insure a car, so he
asks Derek the lawyer for legal advice. Derek does not have time, so he
delegates the request on his articled clerks.

4. Scenario 4 – the Business: George needs to borrow money. Harry
owns a fair money lending company.

6.1.1 Scenario 1 – the Book

In the most basic scenario, the user Adam wants to use the app to track his
responsibilities, but the other person of the transaction is not a registered
user. Adam can perform the following steps to deal with the situation:

1. Adam creates an ad hoc request to himself with the P-fact described as
‘My diploma thesis is written’, with the time part of the proposition set
to the deadline. This will help him track the associated promises, should
there be any.

65

6. Test scenarios

2. Adam realises he lacks a theory book. He knows Eve has it, but she
is not willing to join the application. Adam asks for the book and Eve
promises she will lend him the book next week. Adam navigates to his
contacts in the app and creates a new virtual contact named ‘Eve’. This
contact will track his interactions with Eve.

3. Adam issues a new request to the virtual Eve with P-fact of ‘The book X
is lent’.

4. Adam opens the detail of the new request and presses the promise action.
He can do so, because Eve is his virtual contact.

5. Adam opens the main request of ’My diploma thesis is written’ and adds
a blocking association with the new request.

6. Adam now has the two transactions tracked. He waits until Eve lends
him the book. He has the promise displayed on his agenda, so he knows
she has promised him the book.

7. When Eve lends him the book, Adam states and accepts the second trans-
action. He can now continue with the first transaction. The scenario is
resolved.

6.1.2 Scenario 2 – the Teacher

In the second scenario, the common app usage is shown. This one makes use
of the predefined transactions – offers.

1. Mark and his students use the app to track their promises. He wants to
simplify the process of students requesting consultations.

2. Mark navigates to the ‘Contacts’ part of the app.

3. Here, he creates a new group called ‘My students’ and adds his students
to the group.

4. Then he navigates to the ‘Offers’ part of the app.

5. Mark creates a new offer. He sets the offer target to the newly created
group ‘My students’ and the P-fact kind to ‘A consultation is booked’.

6. After saving, students whom he put in the group can display his offer
and create a new request, which copies the P-fact.

66

6.1. Chapter introduction

6.1.3 Scenario 3 – the Middleman

The middleman scenario uses ad hoc requests to delegate production, while
maintaining the responsibility.

1. Hansel navigates to the ‘Promises’ part of the application and issues a
new request to Derek, described as ‘Legal advice regarding my car insur-
ance is given’.

2. Derek does not have time for producing the P-fact himself. But he knows
that one of his clerks could produce the P-fact.

3. Derek promises Hansel.

4. Derek then creates two new requests to his articled clerks. He copies the
P-fact.

5. Derek associates the new requests with a promise to Hansel. He marks
those associations as blocking.

6. Lets assume both the clerks promise. Derek waits until one of them
produces the legal advice and states the fact.

7. Derek accepts the fact. He then navigates to the other request he made
and revokes it.

8. After the revocation is allowed, Derek states the legal advice back to
Hansel. For Hansel, this means that Derek is still responsible for the
stated fact.

9. Hansel accepts, concluding the transaction.

6.1.4 Scenario 4 – the Business

The seemingly most complicated scenario presents the application’s capability
of simulating a simple process and serving as a front for businesses.

1. Because Harry is a business owner and wants to be forthcoming towards
his customers, he registers as a new user called ’Harry’s money lending
company’, HMLC for short.

2. He then logs in as his new user and navigates to ‘Offers’.

3. In ‘Offers’, he sets the entry point of the composite transaction - an offer
with P-fact kind ’Money is lent’ offered to Public.

4. He then creates a number of hidden offers. In them he describes what he
needs before he can lend someone money (i.e. ID card, account balance
sheet. . .).

67

6. Test scenarios

5. Harry then links the entry point offer to those hidden offers using an
initiation link that triggers on ‘promised’ state.

6. His business is now set.

7. George adds the HMLC user to his contacts and displays his offers. He
sees the entry point offer only.

8. George requests the offer.

9. Harry promises. This triggers the hidden offers and George receives
multiple requests that he needs to fulfil.

10. George now knows what he has to do to conclude business with Harry.

6.2 Chapter summary

In the chapter the test scenarios have been shown and walked through. The
scenarios cover basic usability of the app and were chosen to show the most
of the features the prototype contains. The important part is that the actual
wording of the scenarios does not matter – the application supports the defin-
ition of any P-fact, so the only thing that will stay the same is the pattern
used by all these transactions.

68

Conclusion

Evaluation of functional requirements

The table 6.1 contains the fulfilment status of functional requirements. All
the functional requirements have been fulfilled by the application prototype,
although an extensive user testing is required to confirm the coverage is good
enough to deliver pleasant experience for the users.

Evaluation of non-functional requirements

The table 6.2 contains the fulfilment status of non-functional requirements.
The more complex answers are below:

1. YES. It is hosted in the cloud and working on a wide range of devices
thanks to the usage of responsive design.

2. This can’t be answered because no extensive user tests were performed.
They are the next step.

3. YES, at “https://github.com/r-l/ciaoapp”

Opportunities

This section presents the opportunities for the application in the near future.

• User tests The application is now ready for release to a wider range of
users. The user tests will tell whether the concept is well devised and
understandable for people from non-IT areas.

• Presentation to CIAO! Community The application can be presen-
ted in the CIAO! community. The author recommends that the present-
ation is done after the user tests are over to gather more data and debug
potencial issues.

69

Conclusion

Table 6.1: Evaluation of functional requirements

Code Short description of the requirement Fulfilled

FR-1 The user can take an actor role YES

FR-2 The user can see his agendum YES

FR-3 The user is aware of the C-act he is performing YES

FR-4 The user can perform all the active acts on his
agendum

YES

FR-5 The user has the ability to reference (describe)
the P-fact of the transaction

YES

FR-6 The user decides whether the responsibility, au-
thority or competence conditions are met

YES

FR-7 The user can challenge the responsibility, author-
ity or competence of the other actor during a
transaction

YES

FR-8 The user can create ad hoc transaction by requir-
ing a newly described P-fact

YES

FR-9 The user can offer transactions based on pre-
defined product kinds

YES

FR-10 The user can request a predefined transaction
from the offering actor

FR-11 The application provides the actors with eligible
actions based on the transaction state

YES

FR-12 The application handles the logic after the user
performs actions

YES

FR-13 The application takes into account the external
production of P-facts

YES

FR-14 The user can ask for a revocation of any finished
C-fact

YES

FR-15 The user can link a transaction to another one
by adding an association

YES

FR-16 The user can link a transaction to another one
by adding a waiting link

YES

FR-17 The user can link a prepared transaction to an-
other one by adding an initiation link

YES

FR-18 The user can challenge the claim to truth, justice
or sincerity of the other actor during a trans-
action

YES

FR-19 The user can create virtual actors YES

FR-20 The application will manage user identity YES

70

Thesis conclusion

Table 6.2: Non-functional requirements

Code Short description of the requirement Fulfilled

NFR-1 The application is available to a wide range of
platforms.

See 1.

NFR-2 The application is simple to use. See 2.

NFR-3 The application can be easily extended or modi-
fied.

YES

NFR-4 The application is available as an open source. See 3.

NFR-5 The application can be used and extended as a
part of future academic works.

YES

• Implementing a consumer to the API The API is currently con-
sumed only by the application’s frontend services. To reach maturity, a
different project should use the API.

• Exploring the business opportunities The app is meant to be open-
source and free, but an extended, more feature-rich business version
could be developed.

Thesis conclusion

The aim of the thesis was to analyse the ψ-theory and create a prototype of
a messaging and task management application based on the said theory. The
author of the thesis thinks that although with some minor imperfections, the
goal of the thesis was sufficiently reached. The weaker point of the work is
the documentation of the application itself. This is because the development
was strongly based on the extreme programming and other agile methods and
the application changed very fast. This is at least partially balanced by the
application being open-source and still in development outside of the thesis’
scope, so the documentation can be added directly to the repository and kept
up-to-date.

The core value of the thesis lies the theoretical part and the exploration of
requirements based on the ψ-theory, together with the technological overview.
It firmly sets the application foundations and can be leveraged during further
development.

The application itself proves useful and it seems worth to take on the next
step – presenting the application to the public. With some enhancement and
extensions it could fare well against similar applications in its category.

The author thus regards the thesis and the assignment fulfilled.

71

Bibliography

[1] Lofaro, R. J. Knowledge Engineering Methodology with Examples. In En-
cyclopedia of Information Science and Technology, Third Edition, 2015,
pp. 4600–4607, doi:10.4018/978-1-4666-5888-2.ch451.

[2] Hofweber, T. Logic and Ontology. In The Stanford Encyclopedia of Philo-
sophy, edited by E. N. Zalta, Metaphysics Research Lab, Stanford Uni-
versity, fall 2014 edition, 2014.

[3] Gruber, T. R. A Translation Approach to Portable Ontology Specifica-
tions. In Knowledge Acquisition, Computer Science Department, Stanford
University, 1993.

[4] Oxford Dictionaries. https://en.oxforddictionaries.com.

[5] Dietz, J. L. G. Enterprise Engineering. 2016, [Cited 2017-02-12].

[6] Dietz, J. L. G.; Hoogervorst, J. The ψ-theory v2 [online]. [Cited 2017-02-
07]. Available from: http://www.ciaonetwork.org/uploads/eewc2014/
EE-theories/TEEM-5%20PSI%20v2.pdf

[7] Bunge, M. A. Treatise on Basic Philosophy, vol.4. D. Reidel Publishing
Company, Dordrecht, The Netherlands, 1979, ISBN 978-3-540-33149-0.

[8] Perinforma, A. P. The essence of organisation. Sapio Enterprise Engin-
eering (www.sapio.nl), second edition, 2015, ISBN 978-90-815449-4-8.

[9] Dietz, J. L. G.; Hoogervorst, J.; al. The Discipline of Enterprise Engineer-
ing. In International Journal of Organisational Design and Engineering,
volume 1, 2013.

[10] Habermas, J. The theory of communicative action. Beacon Press, 25
Beacon Street, Boston, Massachusetts 02108, third edition, 1981, ISBN
0-8070-1506-7.

73

http://www.ciaonetwork.org/uploads/eewc2014/EE-theories/TEEM-5%20PSI%20v2.pdf
http://www.ciaonetwork.org/uploads/eewc2014/EE-theories/TEEM-5%20PSI%20v2.pdf

Bibliography

[11] Habermas, J. The theory of communicative action. Beacon Press Boston,
third edition, 1981, ISBN 0-8070-1400-1.

[12] Austin, J. L. How to do things with words. Oxford University Press, 1962.

[13] Searle, J. R. Speech Acts. Cambridge University Press, 1969.

[14] Dietz, J. L. G. Enterprise Ontology - Theory and Methodology. Springer-
Verlag Berlin Heidelberg, first edition, 2006, ISBN 978-3-540-33149-0.

[15] Dietz, J. L. G. Red garden gnomes dont exist. Sapio Enterprise Engineer-
ing (www.sapio.nl), third edition, 2015, ISBN 978-90-815449-2-4.

[16] Dietz, J. L. G. DEMOSL-3. 2015, [Cited 2017-02-12]. Available from:
http://www.ee-institute.org/download.php?id=165&type=doc

[17] Dietz, J. L. G. Generic recurrent patterns in business processes. In Busi-
ness Process Management, edited by W. van der Aalst; A. ter Hofstede;
M. Weske, Springer-Verlag, 2003.

[18] Dietz, J. L. G. System Ontology and its role in Software Development. In
CAiSE05 workshops, Lecture Notes in Computer Science, Springer, 2005.

[19] Inc., T. Trello [online]. [Cited 2017-02-15]. Available from: https://

trello.com/

[20] Inc., G. Google Inbox [online]. [Cited 2017-02-15]. Available from: https:
//www.google.com/inbox/

[21] Asana. Asana [online]. [Cited 2017-02-15]. Available from: https://

asana.com/product

[22] Corporation, M. Wunderlist [online]. [Cited 2017-02-15]. Available from:
https://www.wunderlist.com/

[23] Corporation, M. .NET [online]. [Cited 2017-02-15]. Available from:
https://www.microsoft.com/net/

[24] Troelsen, A. Pro C# 5.0 and the .NET 4.5 Framework. Apress, sixth
edition, 2012, ISBN 978-1-4302-4234-5.

[25] Corporation, M. Introducing .NET standard [online]. [Cited 2017-02-15].
Available from: https://blogs.msdn.microsoft.com/dotnet/2016/09/
26/introducing-net-standard/

[26] Corporation, M. .NET Core [online]. [Cited 2017-02-15]. Available from:
https://www.microsoft.com/net/core/platform

[27] Foundation, N. About the .NET Foundation [online]. [Cited 2017-02-15].
Available from: https://dotnetfoundation.org/about

74

http://www.ee-institute.org/download.php?id=165&type=doc
https://trello.com/
https://trello.com/
https://www.google.com/inbox/
https://www.google.com/inbox/
https://asana.com/product
https://asana.com/product
https://www.wunderlist.com/
https://www.microsoft.com/net/
https://blogs.msdn.microsoft.com/dotnet/2016/09/26/introducing-net-standard/
https://blogs.msdn.microsoft.com/dotnet/2016/09/26/introducing-net-standard/
https://www.microsoft.com/net/core/platform
https://dotnetfoundation.org/about

Bibliography

[28] Corporation, M. Announcing ASP.NET Core 1.0 [online]. [Cited 2017-02-
15]. Available from: https://blogs.msdn.microsoft.com/webdev/2016/
06/27/announcing-asp-net-core-1-0/

[29] Corporation, M. MVC Pattern [online]. [Cited 2017-02-15]. Avail-
able from: https://msdn.microsoft.com/en-us/library/dd381412(v=
vs.108).aspx

[30] w3schools.com. Razor markup [online]. [Cited 2017-02-15]. Available
from: https://www.w3schools.com/asp/razor_intro.asp

[31] Mukherjee, S. Thinking in LINQ. Apress, 2014, ISBN 978-1-4302-6844-4.

[32] Singh, R. R. Mastering Entity Framework. Packt Publishing Ltd., 2015,
ISBN 978-1-78439-100-3.

[33] jQuery Foundation, T. jQuery [online]. [Cited 2017-02-15]. Available
from: https://jquery.com/

[34] Studio, A. AdminLTE Dashboard [online]. [Cited 2017-02-15]. Available
from: https://almsaeedstudio.com/

[35] Inc., T. Bower [online]. [Cited 2017-02-15]. Available from: https://

bower.io/

[36] slideshare.net. Onion architecture [online]. [Cited 2017-02-
15]. Available from: https://image.slidesharecdn.com/
2014march-applicationarchitecture-140322071318-phpapp02/

95/application-architecture-58-638.jpg

75

https://blogs.msdn.microsoft.com/webdev/2016/06/27/announcing-asp-net-core-1-0/
https://blogs.msdn.microsoft.com/webdev/2016/06/27/announcing-asp-net-core-1-0/
https://msdn.microsoft.com/en-us/library/dd381412(v=vs.108).aspx
https://msdn.microsoft.com/en-us/library/dd381412(v=vs.108).aspx
https://www.w3schools.com/asp/razor_intro.asp
https://jquery.com/
https://almsaeedstudio.com/
https://bower.io/
https://bower.io/
https://image.slidesharecdn.com/2014march-applicationarchitecture-140322071318-phpapp02/95/application-architecture-58-638.jpg
https://image.slidesharecdn.com/2014march-applicationarchitecture-140322071318-phpapp02/95/application-architecture-58-638.jpg
https://image.slidesharecdn.com/2014march-applicationarchitecture-140322071318-phpapp02/95/application-architecture-58-638.jpg

Appendix A

Acronyms

DEMO Design & Engineering Methodology for Organizations

PSI Performance in Social Interaction

EE Enterprise Engineering

EO Enterprise Ontology

C-act Coordination act

C-fact Coordination fact

P-act Production act

P-fact Production fact

rq request

pm promise

st state

ac accept

API Application interface

77

Appendix B

Contents of enclosed CD

readme.txt the file with CD contents description
src.......................................the directory of source codes

application................................implementation sources
thesis..............the directory of LATEX source codes of the thesis

text..the thesis text directory
DP Lansky Roman 2017.pdf............the thesis text in PDF format

79

	Introduction
	Aim of the thesis
	Key points
	Structure and methodology outline

	Theoretical part
	Theory
	Chapter introduction
	Ontology
	Enterprise ontology
	Enterprise engineering
	PSI Theory
	DEMO

	State of the art
	Chapter introduction
	Trello
	Google Inbox
	Asana
	Wunderlist
	Chapter conclusion

	Practical part
	Analysis of requirements
	Chapter introduction
	Operation axiom analysis
	Transaction axiom analysis
	Composition axiom analysis
	Distinction axiom analysis
	Functional requirements not tied to the theory
	Non-functional requirements analysis
	Requirements summary
	Chapter conclusion

	Used technology
	Chapter introduction
	.NET
	C#
	ASP.NET Core
	LINQ
	Entity Framework
	Web-specific tools and libraries
	Dependency management tools

	Application design
	Vocabulary specification
	Use case diagrams
	Conceptual model
	Required views
	State machine
	Transaction chaining
	Application prototype

	Test scenarios
	Chapter introduction
	Chapter summary

	Conclusion
	Evaluation of functional requirements
	Evaluation of non-functional requirements
	Opportunities
	Thesis conclusion

	Bibliography
	Acronyms
	Contents of enclosed CD

