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Abstrakt

Táto práca použ́ıva jednoduché techniky NLP pre natrénovanie modelu schopného
predpovedať rozhodnutie pŕıpadu vypočutého Najvyšš́ım Americkým Súdom
na základe analýzy ústneho pojednávania súdu. Pokúša sa ukázať, že jedno-
duché techniky dokážu poskytnúť relevantné výsledky na komplexných problémoch.
Preto oba modely vyvinuté v tejto práci ich preferujú.

Prvá časť práce sa zameriava na natrénovanie jednoduchého doménovo
nezávislého modelu detekcie sentimentu na úrovni jednotlivých viet. Model
je natrénovaný na korpuse MPQA, pretože obsahuje dokumenty z rozličných
domén. Vety boli označkované hodnotiacim algoritmom vyvinutým v tejto
práci.

Druhá časť práce sa zameriava na explorat́ıvnu analýzu pojednávańı súdu
a následný výber atribútov modelu. Na základe jej výsledkov sú trénované
modely využ́ıvajúce jeden z troch odlǐsných klasifikátorov a niektorú z podmnož́ın
možných atribútov modelu. Následne sú navzájom porovnávané, aby sa skúmal
dopad jednoduchých NLP techńık na ich výsledky.

Kĺıčová slova NLP, Najvyšš́ı Americký Súd, Analýza sentimentu, Synonymá
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Abstract

This thesis uses simple NLP techniques to train a model that is capable to
predict outcome of a case heard in the US Supreme Court based on analysis of
its Oral Argument. It attempts to demonstrate that simple NLP techniques
perform comparatively well when used on complex tasks. Therefore, models
in both parts of the thesis prefer them.

The first part of the thesis focuses on training a simple domain-independent
sentence-level sentiment model. This model is trained on MPQA corpus, be-
cause it contains manually annoted documents from multiple domains. The
dataset is ranked by custom ranking algorithm developed in the thesis.

Second part of the thesis focuses on exploration analysis of the Oral Ar-
guments and feature selection. Based on its results, models using one of the
three different classifiers and several feature sets are trained. They are com-
pared against each other to assess effect of the simple NLP features on their
performance.

Keywords NLP, US Supreme Court, Sentiment Analysis, Synonyms
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Introduction

NLP (Natural Language Processing) ca be used to harvest the vast knowledge
in written materials available on the Internet. To cope with this situation,
countless number of techniques designed to analyze a structured text were
devised. However, there is also an indisputable number of other forms of
text having different structures which are waiting to be analyzed. Among
the datasets with exotic structures, there is a group of datasets - discussions
forums, chat bots, messengers or dialogues - that share common traits. All of
them require a different type of analysis - Discourse Analysis.

In comparison to an ordinary written text like article or novel, its rules are
more relaxed. The used language may be more informal, abstract and may
not be grammatically correct. Even body language of participants matters.
Thus, when a verbal dialog is transcribed to a text form, it is a writer’s job
to capture all the circumstances relevant to the discourse too.

A great example of discourse are Oral Arguments at US Supreme Court.
The court publishes the transcripts of every Oral Argument. They contain one
hour long dialog between Justices, petitioner and/or attorney. Their analysis
can provide everybody closer look on court’s decision making process.

The goal of this work is to provide perspective on US Supreme Court
through behavioral analysis of all actors in the discourse leveraging simple
NLP techniques and their validity for such a complex task. We examine to
extent a model that can predict ruling of the court can be created. The rest
of this thesis is separated into the following chapters.

The later sections of this chapter emphasis author’s motivation to work on
the topic. It also highlights the pitfalls of this topic which have to be dealt
with in detail in other chapters. Lastly, it states the hypothesis which this
thesis is trying to study.

Chapter 1 explains how US Supreme Court works and what documents
were available and used during the analysis. The reader is informed about
consequences which the court’s ruling present to public. Also, the reader
learns about examples of rulings which affected a major group of people or
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Introduction

their outcome was unexpected or controversial to some degree. Lastly, all
data sources available for a case are mentioned and materials important for
the thesis are described in detail.

Chapter 2 lists all the NLP techniques proposed in the work. Plus, it
explains models used for sentiment analysis and ruling prediction. This over-
view is enriched with their technical explanation. Also, the author reasons
why some of the popular techniques were not used.

Chapter 3 introduces the sentiment model created in this work. The
chapter opens up with a brief explanation of different types of sentiment ana-
lysis. This is followed with overview of current state of the art approaches
to the problem. Then, it presents datasets used to train, test and validate
the sentiment model along with necessary data preparation steps. Lastly, it
provides a closer look at data itself and how the final sentiment model is
created.

Chapter 4 focuses on applying techniques introduced in Chapter 2 and
sentiment model developed in Chapter 3 on analysis of transcriptions of the
Oral Arguments. It begins with data extraction and exploration of the text.
This process is used to identify relevant features for the ruling prediction
model. Next, these features are tested on potential models to find out which
model makes the most reliable predictions. All relevant results are presented
in the chapter to provide overall view on behavior of the models.

Finally, the last Chapter draws a conclusion based on the findings from the
previous chapter. Then, the author points out several possible improvements
which can be considered for the future work on this topic.

Motivation

Studying a discourse between multiple individuals can provide insight into
numerous aspects of social interaction in groups. For example, a degree of
disagreement between the parties or their attempts to influence each other
can unveil inner-social dynamics inside the group. Or, basically in any online
interaction between people (for example in discussion forums). So, the results
may be applied to enhance user experience when talking to chat bots on social
media (e. g. automatic detection when customer is hostile or evaluation of
customer’s interest in the offer) or to implement automatic advanced governing
policies on discussion forums (like preventing bullying members or stopping
flame wars at their beginnings).

In real world, there is one particular set of individuals who bear a very
important role in the US society as their decisions affect the lives of every US
citizen, Justices of the US Supreme Court. It probably sparks every-
body’s curiosity to see, if their decisions can be predicted to any extent.

2016 is the right time to study and question how the US Supreme Court
makes its decisions. A newly elected US president is in a unique position.

2



Goal

Having only 8 Justices in Supreme Court after Justice Scalia passed away in
February 2016, there is a vacancy that needs to be filled by the US President
[2]. Both political views being in equilibrium at the time, the choice of Scalia’s
successor poses a great deal of controversy. Plus, there is an expectation that
another 3 Justices may be replaced in the next 4 years. This assumption
only highlights the importance to understand and uncover any bias among
the Justices with a certain political view.

There is several distinctive groups who are eager to gain any edge they
can on Justices. The first group are petitioners who are about to submit their
case to the Court. Having 7,000-8,000 petitions to go through each Term
(8 months) and selecting only approximately 80 cases for hearing fuels peti-
tioner’s effort to learn as much about the Court as they can beforehand [3].
Another group are law students who want to get insight on Court’s ruling
process. Many of them aspire to be a judge at point in their carer, so under-
standing the dynamics between Justices is highly relevant for them. Then,
there are attorneys who are about to argue a case in front of the Court. Ac-
quiring tips on how to manipulate the Court or read Justice’s tells during the
Oral Argument is invaluable for them.

By successfully using simple tools to explore Court’s arguments in detail,
we will try to take a peak at minds behind US Supreme Court.

Goal

The goal of this thesis is twofold.
The main goal of this thesis is to evaluate behavior of simple NLP tech-

niques when applied on a complex problem in discourse analysis. They are
used to analyze the Oral Arguments in US Supreme Court and to create a
novice approach to predict outcome of cases from period of years 2013-2015.

The secondly goal is to create a simple domain-independent sentiment
model to support the prediction model created as the main goal. The senti-
ment model is capable of detecting positive, negative and neutral sentiment
on sentence level. In order for the model to work, it depends upon a specific
training set created by customized ranking algorithm.

3





Chapter 1

US Supreme Court

This chapter summarizes relevant information about the US Supreme Court.
It gives a glimpse of the Court’s history and how it works nowadays. Plus,
there is an emphasis on the impact of the Court’s ruling with examples of
peculiar cases which had wide-spread consequences on US society. Then, it
describes the format and source of datasets used in this thesis, namely tran-
scripts of the Oral Arguments1 and meta data on cases collected by University
of Washington.

1.1 Overview

The US Supreme Court is th highest law institution in the USA. According
to the Constitution, there can be only one Supreme Court [4]. Even thought
there are no formal requirements to become a Supreme Justice, its members
are carefully selected by the US Senate. The potential nominees are picked by
the US President. While there is no official term limit for a Supreme Justice,
they can be impeached, if convicted in a Senate trial. This occurred only once
in history of the US Supreme Court in 1805 [5] and was stopped by the Senate
in the end.

Historically, the US Supreme Court first convened on February 2 1790 [6]
in New York City. Nowadays, they meet in Washington DC. Initially, there
was 6 Justices – one Chief Justice and five Associate Justices. Later, their
number was increased to 10 and, recently, the US Congress decreased their
number down to 9 [4]. This odd count allows them avoid any potential ties
in their ruling. Each term starts in October and ends in July. Typically,
decisions in all the argued cases are announces by end of June [7].

The US Supreme Court procedure for a case is following: [8]

1. Firtly, Justices select a case using writ of certiorari

1Oral Arguments are publicly available for free at https://www.supremecourt.gov/oral_
arguments/argument_transcript.aspx

5
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1. US Supreme Court

2. Then, relevant parties (petitioner and respondent, if there is any) are
asked to write their briefs

3. They are basis for the Oral Argument which occurs between the pe-
titioner, respondent and/or their attorneys and Justices (this part is
the focus of this thesis)

4. Afterwards, the Court votes on the case during Conference

5. Lastly, opinions on Justices ruling are written

1.2 How US Supreme Court works

The US Court system is split into two parts – State/Local Courts and Federal
Courts. Figure 1.1 shows this split. Courts on the left side represent Federal
Courts. Consequently, courts on the right side represent State/Local Courts.
Their areas of interest and competence are fundamentally different from each
other. For the most part, US Supreme Court as a Federal Court, handles only
a few types of cases such as [9]:

• Disputes between two or more states

• Cases involving violation of federal laws or the US Constitution

• Cases in which the United States is a party

• Bankruptcy, copyright or patent infringement

Being the highest legal body in the country, the Court has power to over-
rule any decision made by any other court. In general, its goal is to take
cases with legal issues which will affect as much US population as possible.
The Court’s ruling usually impacts the Constitution or its outcome affects the
whole nation. [4] Nevertheless, there is no way for the Court to enforce their
decision upon the nation except for declaring or changing the law. Therefore,
it is not in its power to physically see to it that its ruling is implemented all
across the nation wherever it is relevant.

There are many ways a case is picked up by the Court. Around 90 % of
the cases are hand-picked by Justices themselves exercising writ of certiorari
[10]. This prerogative allows them to review cases which otherwise would not
be entitled to review. Once selected for review by one Justice, others typically
read it as well and discuss it. If only four Justices vote to hear the case in front
of the Court, Rule of Four2 applies. The Rule of Four prevents a majority of
the Court to control Court’s docket.

2Rule of Four means that if four Justices vote to hear a case then the case is taken to
the Court
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1.2. How US Supreme Court works

Figure 1.1: US Court system

Before the Oral Argument starts, the petitioner writes a brief stating his
grounds for the case. Then, the opposing party (respondent) writes a brief
from their point of view. If there are any other parties interested in the case,
they can write amicus curiae3 briefs offering their opinions on the matter.
These briefs are evaluated by Justices and their clerks before the Oral Argu-
ments starts.

The date of the Oral Argument is set in advance when the case is picked by
the Court. Studies shows that importance of the Oral Argument should not be
underestimated. [11]. The hearing usually takes place on Monday, Tuesday or
Wednesday every week of the Term (unless the Court says otherwise). Mostly,
they last 60 minutes and are divided into several sections. Each party is given
approximately the same amount of time to present their case. But, each party
can be represented by multiple speakers. [11]

Generally speaking, Justices vote to affirm or reverse the lower court’s
decision). The voting takes place during Conference either on Wednesday
or on Friday, of the given week. Only Justices of the Court are allowed to
attend it. The first order of business at the Conference is to decide what
cases to accept next. Then, they move on to discuss the cases of the given
week starting with the most senior Justice and continues in descent order of
their seniority4. No Justice gets interrupted. Their voting follows the same
ordering pattern and starts with the Chief Justice as well. In case of a tie,
decision of the lower court remains. [8].

3”amicus curiae” is Latin for ”friend of the court”
4Seniority of a Justice is given by number of years in the US Supreme Court
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Figure 1.2: A snippet of an opinion written on a US Supreme Court case

After the decision is made, several types of opinions may be written –
concurring, dissenting and plurality opinion. The senior Justice in the major-
ity group assigns the job to write the majority (concurring) opinion on the
case (Figure 1.2). This opinion explains rationale behind the court’s decision.
Even thought this task can be carried out by a Justice, studies show that in
30 % cases it gets assigned to a Supreme Court clerk. These clerks are usually
graduates from Ivy League schools in their mid-to-late 20s. [12] Therefore,
the views in them might not 100 % match Justice’s reasons for the voting. In
some cases Justice in the majority group may have different reasons to vote
in the same way so multiple concurring opinions may be written. In this case,
the concurring opinion joined by the greatest number of judges is referred to
as plurality opinion. On the other hand, dissenting opinions may be written
by judges in the minority group. There is no rule which dictates that the
opinion has to be written. In its nature, a dissenting opinion does not have
any binding nature for the Court. It only written by one or more Justices to
express their disagreement with the majority opinion.

1.2.1 Impact of rulings

Recent history of the US Supreme Court ruling demonstrates the broad spec-
trum of different topics to dealt with. [13] [14] Most of them had a controversial
tone.

8



1.3. Available sources of data

For example, in 2016 Abigail Fisher 5 sued University of Texas for rejecting
her admission application. She claimed the rejection was race motivated –
less-qualified minority students were accepted instead of her. The university’s
defense is based on its effort to keep its student body as diverse as possible.
This case initially appeared on the Court’s radar in 2013. The lower court’s
decision sided with the university. Back then, they sent the case back to the
lower court to review the case. When revisited in 2016, the US Supreme Court
ruled in favor of the university again. Implication of their decision is that
taking race into consideration during the admission process is constitutional.

Another example is case ”Elonis vs. United States”. In short, Anthony
Elonis posted explicit posts on Facebook publicly threating his wife. Initially,
Anthony was sentenced to 44 months behind the bars. The lower court’s
ruling was based on a federal law that it is a crime to communicate ”any
threat to injure the person of another”. Later, the US Supreme Court can
reverse this decision. In this case, Justices claimed the prosecutors did not do
enough to prove Anthony’s intent. Because of their decision, it is now harder
to prosecute people for making threats on social media.

The next controversial case at the Court was ”Obergefell v. Hodges” in
2015. Same-sex marriages were legal in more than 30 US states already. How-
ever, this was not true for Ohio. James Obergefell had a life-partner who was
terminally ill. Since they wished to get married, they decided to travel to
Maryland to get wedded. Unfortunately, the ceremony had to take place in
the airport because of the illness. Despite being properly married, state Ohio
refused to list James as his surviving spouse. This case provoked demonstra-
tions in front of the Court house (Figure 1.3) and encouraged couples in many
other states to challenge their bans on gay marriages. Thus, Justices decided
to look at all these cases and consider them as part of the Obergefell’s case. In
the end, they ruled in favor of same-sex marriages. The result of their ruling
made same-sex marriages a national wide right backed by the Constitution.

This is not, by all means, a complete list of all important decisions made
by the Court in a couple of last years. However, it clearly demonstrates the
diversity of topics that Justices handle and their indisputable importance.

1.3 Available sources of data

As mentioned above, there is numerous data sources available for every case:
[15]

• Briefs All briefs written for cases since October 2003 (with some ex-
ceptions since October 1990) can be found on sites linked from the US
Supreme Court site6. There are also amicus curiae briefs, if written for a

5Case ”Fisher vs University of Texas”
6https://www.supremecourt.gov/oral_arguments/briefsource.aspx
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Figure 1.3: Demonstrations in front of the US Supreme Court supporting
same-sex marriages

case. These text are highly opinionated and are written by the interested
parties, not Justices. Therefore, they do not provide any additional clues
about Justice’s impressions of the case.

• Docket Information For every case, there is several other documents
filed in the case and information about status of the case. They can be
accessed via Court’s automated docket system7. Only docket information
since January 2000 are currently available.

• Oral Argument Almost every case argued at the US Supreme Court
gets to be heard by Justices during 60-minute long Oral Argument.
Transcript of the argument along with its audio recording are publicly
released8 since October 2006. They are not videotaped.

• Opinions After the decision is made, Justices can write their opinions to
rational their votes (more information in section 1.2). They are available
in limited manner in printed version in libraries nationwide. Or, they
are released in PDF format on US Supreme Court site9.

• Speeches Justices may hold a speech on a subject related to the case
afterwards. Their transcripts are also available online in PDF format 10.

7https://www.supremecourt.gov/docket/docket.aspx
8https://www.supremecourt.gov/oral_arguments/availabilityoforalargumenttranscripts.aspx
9https://www.supremecourt.gov/opinions/opinions.aspx

10https://www.supremecourt.gov/publicinfo/speeches/speeches.aspx
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Figure 1.4: Snippet from one Oral Argument; each turn is visibly separated
for demonstration

These speeches can be considered extended versions of their opinions
and are not in any way regular.

Since this thesis is focused on analyzing only materials directly related
to Justices and their decision-making process, it puts its focus only on the
Oral Argument as its primary source (more information in section 1.3.1).
There is also several materials concerning each Justice’s biography which are
available online, but provide no relevant insight on their decision-making chain
of thoughts.

Also, there are other publicly accessible data which provide concentrated
information about every case. One of the most popular sources is The Supreme
Court Database accessible on University of Washington sites (more informa-
tion in section 1.3.2). It describes background of the cases. All this data can
be collected before the decision on a case is made and it directly relates to the
Oral Argument and Justices decision process. Thus, it is used as a secondary
data source in this thesis.

1.3.1 Oral Arguments

Procedure during the Oral Arguments is strict. Always, Chief Justice in-
troduces the case by its number and its name. Only the Chief Justice is
called ”Chief Justice”. Other Justices are called by their names, for example
”Justice Scala” or ”Justice Breyer”. Then, petitioner or its attorney have the
word and may give a short opening statement. This statement is followed
by a dialog with Justices (see Figure 1.4 for an example of the dialog dur-
ing the Oral Argument). After this part is over (typically, after 30 minutes),

11
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Then, the Chief Justice thanks the petitioner and their attorney and allows
respondent to present their opening statement. As with the petitioner, the
opening statement is followed by a dialog with justices. Again, this part takes
approximately 30 minutes.

There is several essential aspects related to the Oral Argument. Here is
how they are captured in PDF format of the transcript (more information
about the actual format is in Section 4.2):

• Actors of speech Whenever somebody in Court says something, it is
transcribed word by word. Whatever they say is prefixed with actor’s
name. In case the actor is a Justice, the prefix says ”JUSTICE *NAME*”.
Otherwise, it simply says ”MR./MRS. *NAME*”.

• Turns in discourse Even though the transcript of the Oral Argument
evokes assumption that participants take turns when talking, it is not
true. For sake of simplicity, this thesis considers every remark a separate
turn. Therefore, when somebody is interrupted, its speech is represented
by two turns. This matches the real world observation of the case in the
court room.

• Interruptions When somebody is interrupted, the transcript tries to
capture this event using two consequent hyphens at the end of their
turn. If the actor tries to finish their thought after the interruption,
their next turn starts with two hyphens. (see Figure 1.5). Needless to
say, respondent and petitioner have respect for Justices so they rarely
interrupt them. In contrast, Justices do not hesitate to interrupt attor-
neys or petitioner/respondent, if they deem it necessary.

• Pauses in speech Whenever somebody makes a pause in speech during
their turn, it is captured by two consequent hyphens. This pause can
mean, either hesitation in their speech, or they need a bit of time to
collect their thoughts.

1.3.2 Meta data

This dataset was created based on suggestion from professor Harold Spaeth
from Washington’s Law University in St. Louis about three decades ago. In
its first version, it contained record for every vote by Supreme Court justice
covering all cases over period of five years. During the initial research phase,
he performed reliability checks to maintain integrity of the final dataset and
then made it available for public. [16]

Since its first version, more contributors joined the effort. Together, they
created the most extensive database of all votes made by Supreme Court
justices since establishing the institution of Supreme Court. At the same
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Figure 1.5: Example of interruption of a speech during the Oral Argument

time, they managed to keep the final data consistent by performing extensive
integrity checks before adding records. Their joint effort helped to advance the
whole field around studying decision process of the Court. In case researchers
do not have IT background and want to perform simple analysis on the data-
set, the website provides rudimentary interface to carry out simple analysis
operations.11.

Nowadays, there is 247 pieces of information for each case which can be
split into six higher-level categories:

1. identification variables - citation information, case number and ID,
docket number and vote ID, . . .

2. background variables - information about petitioner, reason why the
Court took jurisdiction, where the case originated, . . .

3. chronological variables - when the case was issued and when the
decision was released, term of Court, . . .

4. substantive variables - legal provision, direction of decisions, . . .

5. outcome variables - winning party, disposition of the case, information
about precedent, . . .

6. voting and opinion variables - how individual justices votes and their
opinions

These records are currently available in two separate versions of the pub-
licly available databases:

• MODERN List of cases handled by the Court during terms 1946-now12.
Using data from recent past, it is able to provide multiple different per-
spectives on the same case.

11Analytics interface is available on http://scdb.wustl.edu/analysis.php
12At the moment of writing this thesis, it covered cases until July 2016
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• LEGACY Collection of historical data about cases from terms 1791-
1946. The data is not well-covered due to its nature. Thus, only list of
votes of each Justice for every recorded case is available. More granular
data might be added later by the university.

Both databases offer two main views on the data – Case Centered Data or
Justice Centered Data – with multiple perspectives. Case Centered Data view
provides case level information. For each case, there is one row with data. On
the contrary, Justice Centered Data view contains Justice level information.
This means that there is information about how each Justice voted in every
case.

Each main view in MODERN database offers four different perspectives
on the data: 13

• Cases Organized by Docket14 One row represents one justice vote in
a docket. Several cases may appear multiple times (for being in multiple
dockets).

• Cases Organized by Supreme Court Citation One row represents
a single dispute. Cases with multiple issues and consolidated cases15 are
included only once.

• Cases Organized by Issue/Legal Provision There is a row for each
issue and legal provision dealt with by the Court for each docket.

• Cases Organized by Issue/Legal Provision Including Split Votes
This perspective is an expansion on Cases Organized by Issue/Legal Pro-
vision. It adds rows with rare instances when the Court has multiple
vote coalitions on a single issue or legal provision.

Since this thesis analyses cases in years 2014-2016 and watches behavior
of Justices, it uses MODERN database with Justice Centered Data. For sim-
plicity Cases Organized by Docket perspective is used. Detailed description of
attributes in the dataset and their selection process is explained in Chapter
4. Although, the dataset is available in number of different formats, CSV16

format is used in scripts in this thesis for convenience.

13Source: http://scdb.wustl.edu/data.php?s=1
14Docket is a list of cases pending the Oral Argument during one day
15Cases with multiple dockets
16CSV - Comma-Separated Values
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Figure 1.6: Example of Supreme Court records from Washington Law Univer-
sity organized by docket

15





Chapter 2

Theoretical Background

This work consists of a great number of basic NLP techniques providing only
partial information. Yet, their strength lies in their combination. Together,
they create a powerful pipeline for analytic model. Having several simpler
features working together means more control over the process. In case any
of them does not perform well enough or there is a significant improvement in
its area, it can be easily replaced. Moreover, it is easier to fine-tune them to
work together. Also, during the analysis phase, it is easy to take them out of
the pipeline, in case they do not provide enough additional information.

This chapter is divided into five sections. The first section introduces
relevant NLP techniques. The second part of the text explains how they are
used in context of this thesis. Then, the third section describes sentiment
analysis, current state of the art approaches in this area and its pitfalls. The
fourth section describes complexity of task of reading text from images and
when it is used in the thesis. The fifth section mentions technologies used
in the process of making this thesis for data preparation, data exploration
and predictions. Lastly, there is a section describing all corpora used in the
experiments in the thesis.

2.1 NLP techniques

All techniques used in this thesis aim to be simple, yet powerful. Two key
elements supporting them are Part of Speech Tagger and Synonyms. Due to
reasons mentioned in the section 2.1.3, Syntax Tree was not used to enhance
analysis. Then, there are two seemingly similar approaches to token normaliz-
ation in NLP solving the same problem - called lemmatization and stemming.
Lastly, there is several other discourse-specific techniques discussed at the end
of this section.
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2.1.1 Basic NLP terms

Here is a list of basic NLP terms used in this thesis:

• Token A single word. For example ”nice”, ”ah”, ”right” and other.

• N-gram It is a contiguous subsequence of length n from a given sequence
(sentence). 1-gram is token. 2-gram (also called bi-gram) is the most
used one. Their main purpose is to help to create small, yet informative
state space for other algorithms to use. When n = 2 or n = 3 there
is usually enough data for algorithms to make an educated guess. Yet,
at the same time, it is not too much data so the state space would be
too sparse. After a certain n, the bigger n-grams are, the less additional
information provide and make the state space more sparse.

For example all bi-grams from sentence ”A dog ran back home.” are (’A’,
’dog’), (’dog, ’ran’), (’ran’,’back’) and (’back’, ’home’)

• Stop word Words which are filtered out during the preprocessing pro-
cess. There is no single list of these words, however, they are commonly
words which occur in a sentence the most often

For example, ”the”, ”a”, ”an”, ”that” and other.

• Noun Phrase It is a phrase in a sentence which plays a role of a noun.
The head word17 is usually either noun, or pronoun.

For example (head words are highlighted), ”I like to make burgers at home.”
or ”My pets finally arrived,”

• Verb Phrase It is a part of a sentence which contains, both a verb, an
object on which the verb directly (or indirectly) depends.

For example ”Sam is going to the movie.” or ”Do you you think it is
really your shirt?”.

• Prepositional phrase It is a phrase that starts with a preposition and
ends with a noun (or a pronoun). The words after preposition are called
object of a preposition.

For example: ”From what she said, this is her new job”.

2.1.2 Part of Speech Tagger

In a nutshell, Part of Speech tagging is a clustering problem. The tagger
assigns a word to a category (POS tag) based on its grammar-based similarity
to words in the category, its usage and function in the sentence. However,

17Head word is a word in a phrase that all other words in the phrase tie their meaning
to it
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Table 2.1: Mapping important Universal tags to Penn Treebank tags

Category Universal tag Penn Treebank tags

Adjective ADJ JJ, JJR, JJS

Preposition ADP IN

Adverb ADV RB, RBR, RBS

Conjunction CONJ CC

Determiner DET DET

Interjection INTJ IN

Noun NOUN NN, NNS, NNP, NNPS

Pronoun PRON PP, PP$

Verb VERB VB, VBD, VBG, VBN, VBP, VBZ,
MD

there is usually more than one possible categories for each word. So the
tagger handles this disambiguation by using additional information about local
context around it.

Application of such a tagger are countless. Knowing the correct POS tag
tells a purpose that each word has in a sentence. Thus, the tags can be used
in speech recognition software to better understand sentences. Or chatbots
can use it for the same reason. Another application is in Speech-to-text18

software. By knowing previous words and their POS tags determines list of
possible POS tags. Based on the current sentence structure, it restricts list
of possible POS tags for the next word. In combination with approximate
spelling of the word, it makes task of finding the correct word easier and more
accurate.

Basic principles of every POS tagger are rooted in grammar of a specific
language. Every one is language-specific. In English, there is eight distinctive
grammar categories (see Figure 2.1). Each category has several subcategories
which better specify the type of information about the sentence. There is a
universal set of POS tags. However, POS tagger used in this thesis works with
Penn Treebank tags which can be easily mapped to universal tags (see Table
2.1).

Commonly, the most interesting categories from context point of view are
adjective, nouns and verbs. In terms of sentence, verbs tend to express
action. The verb itself can bear positive (e.g. help), negative (e.g. accuse) or
neutral (e.g. go) meaning. To certain extend, their meaning is adjusted by
adjectives in the sentence. Lastly, actors of this action is usually determined
by nouns. From word ordering point of view, each language has its specific
rules, thus no generic assumptions can be make (for more information on
English language word ordering see section 3).

18Speech-to-text software is capable of transcription of spoken text into its written form.
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Figure 2.1: Eight basic categories of words used in English grammar

Based on the accuracy achieved by state of the art models (see section
2.1.2.4), it may appear that this task is solved from academic point of view.
However, it is not the case according to [17]. Currently available models tend
to be domain-specific and perform well only on text with similar writing style
as the training set. Also, there is another important metric to be considered
for POS taggers - Sentence accuracy. It states what portion of sentences is
correctly tagged out of all sentences. In order for a sentence to be tagged cor-
rectly, every word in the sentence has to have the right POS tag. The available
models at the moment achieve accuracy around 57 % in this metric while hav-
ing overall accuracy up to 97 %. These results say that in almost every other
sentence the tagger assigns at least one POS tag incorrectly. Achieving such
a high per-word accuracy suggests that it mostly assigns exactly one tag in-
correctly. Importance of this discrepancy in results depends on task the POS
tagger helps out in the application.

In terms of implementation, there are three common ways of implementing
a POS tagger. Each of them solves the ambiguity problem differently and
offers specific trade-offs. In terms of benchmarks of POS taggers of English
language, on one hand, the baseline is 90 %. On the other hand, current state
of the art stochastic models perform at 97 %. To put it into perspective,
it is estimated that a human can reach accuracy 97 % (in cooperation with
somebody else, they can reach accuracy 100 % in rare cases). [18] [19] In
terms of training set, Penn Treebank is popular among researchers, however,
it contains incorrectly assigned tags (see Figure). The errors were not fixed in
the dataset, but maintainers kept them there arguing that the current state
simulates human behavior better.
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Table 2.2: Example of rules for rule-based POS tagger

Rule Description Example

DET ADJ NN S Determiner is followed by ad-
jective and noun

a good job

NN VB Noun is followed by a verb Peter won

ADP DET NN Preposition is followed by de-
terminer and a noun

on the shelf

NN(river) ¬DET NN Noun river is followed by another
noun, not a determiner

river bank

2.1.2.1 Rule-based algorithm

The oldest approach is a rule-based algorithm. It uses a set of explicit rules
defined by a user (see Table 2.2 for example of rules). This set is manually
created based on grammar of the specified language. Ideally, they are created
by a linguistic specialist. Rules itself can be either content-pattern rules or
regular expressions. All of them together form a finite-state automata. Dis-
ambiguation is resolved by creating more robust rules. Due to their nature,
they require significant amount of work for maintenance. On the other hand,
they can be used as a cornerstone to build a syntax tree (more in section
2.1.3).

Being the simplest approach, its accuracy is not high. If the rules are
descriptive enough, they can cover a great number of cases. Implementation
of Taggit tagger by Green and Rubin in 1971 claim to achieve 77 % accuracy
over the Brown corpus (see Section 2.5.1 for more information about Brown
corpus). [20]

2.1.2.2 Transformation-based learning

More advanced approach is using Transformation-based learning. It is an
extension of rule-based algorithms with following description:

• X denotes space of all spaces. Dependent on type of POS tagger, a
sample can be, either a single word, or a group of words (in language)

• C denotes list of all possible POS tags (ADP, NN, DET, . . . )

• S = X × C represents state space

• T is set of all samples from the used set

• π is a predicate defined on the space S+ representing logical part of the
rule (i. e. π(n) = wn−1 ∧ (w1

n ∨ w2
n))

• r is a pair of (π, c), where c ∈ C; A rule r means that if predicate π is
true for a statement s, then the statement gets assigned tag c
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• s is current state which is defined by (x, c), where x is current sample
and c is currently assigned tag

Given a rule r = (π, c) and state s = (x, c′), result of applying rule to the
state is:

r(s) =

{
s , ifπ(s) = true

(x, c′) , ifπ(s) = false

After each iteration, score for every rule is calculated using formula:

Score(r) =
∑

s∈T score(r(s))−
∑

s∈T score(s)

where

score((x, c)) =

{
1 , ifc = truth(x)

0 , ifc 6= truth(x)

The goal of the algorithm is to minimize Score(r) for each rule. As long
as Score(r) > θ, rule should be changed and new rules are derived from it. θ
is an arbitrary small constant. One of the biggest advantages of this approach
is that its results are dependent on its initial set of rules which is curated.

There are relevant works showing a relatively simple transformation-based
algorithms perform comparatively well [21]. This algorithm starts off by cal-
culating occurrences of each tag in train set. As input, it receives manually
created set of rules. Then, it goes in rounds and creates patches. Each patch
is a rule that specifies under what conditions one tag should be replaced by
another one. Basically, it automatically generates rules for rule-based tagger.
During measurements, the corpus was split accordingly - training set is 90
% and test set is 5 % of the corpus. They use stratified sampling from all
genres to diminish overfitting problems. Stated results claim that after about
70 rounds the algorithm achieves only about 96 % accuracy on the Brown
corpus.

2.1.2.3 Stochastic approach

The most advanced approach is using stochastic models for the task. Princip-
ally, it is an extension of transformation-based learning. The initial set of rules
is modified using statistical models. In comparison to the previous approach,
the initial set may not be a manually created set of rules. Instead, it may be a
random set of rules which is be gradually improved. Very popular approaches
for the task were using Maximum Entropy model and Hidden Markov model
(HMM) - both of them falling into the category of supervised learning.

The concept of Maximum Entropy Model tries to maximize entropy of a
distribution within certain constraints. It works with a list of possible orders
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Figure 2.2: Example of HMM implementation of POS tagger for sentence ”Fed
raises interest rates.”

of words hi and their POS tags ti. Thus, probability that the list of words hi
have POS tags ti is:

p(hi, ti) = πµ
k∏

j=1

α
fj(hi,ti)
j

In the formula, π is a positive normalization parameter which is set manu-
ally. On the contrary, αj are positive parameters set by model itself to max-
imize entropy of the model. Then, fj(hi, ti) (known as features) represents the
generated rule an its value is either 0 (when the rule is not true) or 1 (other-
wise). Rules are generated using multiple templates like detection of suffixes
(e.g. ”-ing” or ”-ed”) or basic grammar rules. The output of the model for
each word is tag with the highest probability. Often, the model returns the
probability as well. Implementation of this model usually use Beam search to
keep n most likely tags for each word to speed up the tagging process. [22]

In comparison, Hidden Markov model is based off Markov model with hid-
den states (see Figure 2.2). It is a tool for representing probability distribution
over sequence of observations. In Markov model, all states are visible to the
observer. In contrary, HMM contains several hidden states forming a Markov
chain which directly influence output of the model. Consequently, each output
state is visible. In MM, transition from xn’th state to state xn+1’th state is
affected only by xn’th state. Whereas, in HMM the transition can be also
affected by a latent state. In a simplified view, it can be understood as having
Markov chain inside any state of main Markov chain. Detailed description of
HMM is beyond scope of this work.

2.1.2.4 State of the art

At the moment of writing this thesis, Stanford POS Tagger19[23]. Soft-
ware we will use in this thesis provides implementation of this model via
nltk.tag.stanford. According to the paper, it uses Cyclic Dependency Network
with surrounding words as features. In short, it generates directional graph
during training phase. Edge between two nodes in one direction are denoted

19Source of Stanford POS tagger: http://nlp.stanford.edu/software/tagger.shtml
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by probability of making a jump from node to another. The model uses max-
imum likelihood estimation to find the correct tag. Since the model uses a
huge number of features (more than 460,000), it uses quadratic penalization
to prevent overtraining. In this setup, the model achieves 55.31 % sentence
accuracy.

However, its implementation is rather slow in comparison to TextBlob’s
POS tagger. The second tagger uses Perceptron model, a type of neural
network, with averaging weights which claims to provide even higher accuracy
than NLTK’s base implementation of POS tagger (98.8 % vs 94 %[24]) and
about the same accuracy as Stanford’s POS tagger. On top of that, it is
significantly faster which is the key requirement when analyzing hundreds of
pages of text.

2.1.3 Syntax tree

Building a syntax tree for a sentence is a popular way to get inside on rela-
tionship between words in the text. The algorithms split sentence into noun
phrases (NP), verb phrases (VP) and prepositional phrases (PP). As a result
of the analysis, the algorithm has to handle and solve a great number of ambi-
guity. Subsequently, the analysis can detect subject or object in the sentence.
Just as POS tagger, it employs a knowledge of language grammar. Applica-
tion of syntax tree analysis are for example chatbots or automatic answering
tools.

There is several strategies to tackle this problem usually using context free
grammar (see Table 2.3). The most fundamental approaches are top-down and
bottom-up strategy to analyze a sentence (see Figure 2.3). Top-down strategy
is expectation-based. It starts from root note S and works its way down. At
every step, it picks a rule that can be added to the current syntax tree until
there are no more rules to us on the tree and each word is in a leaf of th syntax
tree (see Figure 2.3b). In contrary, bottom-up strategy starts applying rules
to words in sentences to create nodes. These nodes can be then connected
together using the same set of grammar rules. This process is repeated until
nodes meet in root node S or no further rules can be applied (see Figure 2.3a).

Both strategies lead to a valid syntax tree. However, their results may not
be equal (see Figure 2.3). Neither of the strategies usually find the correct
result on their first try. Instead, both of them require a certain degree of
backtracking and may end up checking the whole state space defined by their
grammar. This process tends to be rather performance-demanding. Top-down
strategy has a valid syntax tree at all times. However, it wastes a lot of time
on checking trees which cannot match the input sentence. On the other hand,

This kind of analysis has several big drawbacks. Not only its results are
highly ambiguous, it is also rather time demanding. Then, finding a correct
syntax tree is highly dependent on set of grammar rules. There is a huge
difference in used language between public speech, poetry, ordinary discourse
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Table 2.3: Example of rules for syntax tree context free grammar

Rule Description

S → NP VP S (sentence) starts with NP (noun
phrase) which is followed by VP (verb
phrase)

NP → DET N Noun phrase (NP) consists of a determiner
(DET) and a noun (N).

NP VP → DET ADV
NN VB.

Noun phrase (NP) followed by a verb
phrase (VP) consists of a determiner
(DET), an adjective (ADJ), a noun (NN)
and a verb (VB).

among a small group of people or any other literature piece. Moreover, indi-
viduals with different background, social status and age tend to use distinct set
of grammar rules. Supposedly, there is countless unknown factors influencing
one’s use of language. Therefore, the task of creating one universal grammar
capable of accommodate all the above-mentioned factors is an extremely dif-
ficult. On top of that, there can be multiple plausible interpretations of the
sentence so it is hard to pick the correct one (even for a human being).

At the moment of writing this thesis, the state of the art model created
in Stanford [25] uses combination of transition-based approach and neural
networks. The parse occurs in one linear scan over the words of a sentence.
At every step, it maintains partial parse and other relevant information about
its progress. Transition between states is controlled by a neural network.
The model is trained on manually annotated dataset provided by Stanford
University which contains more than 250,000 words. The model excels in
accuracy on Penn Treebank corpus with accuracy of 92 %. At the same time,
it excels in performance as it is able to parse approximately 1000 sentences
per second while other solutions with comparable accuracy can parse only up
to 600 sentences/second.

However, the state of the art model is trained on samples from weblogs,
newsgroups, emails, reviews and question-answers. Due to reasons mentioned
above, using it on analysis of discourse at the Court could provide misleading
results. Since there is no syntax tree parser available for law-oriented English
language and creating a specific model for this purpose is outside of scope of
this thesis, syntax tree analysis is not used.

2.1.4 Lemmatization and Stemming

These popular concepts try to solve the same issue in seemingly the same way.
However, their approach to tackle the issue of token normalization is funda-
mentally different. On top of that, their results usually are rather distinct.
Process of token normalization solves another huge issue in data analysis -
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Figure 2.3: Example of syntax trees for sentence ”I shot an elephant in my
pyjamas”

(a) Bottom-up approach (b) Top-down approach

data sparsity. One particular word tends to have several different inflected
forms (e.g. ”wish/wishes” or ”good/better/best”) in particular languages.
This property negative influences performance of some NLP techniques by
making the state space for them rather sparse. Therefore, these metric prefer
to work with normalized tokens. In theory, a result of token normalization
of any two inflected forms of the same word should return the same normal-
ized token. Unfortunately, this is not the case. Special cases for the token
normalizes are words with irregular forms like verbs with irregular past tense.
Each strategy addresses these challenges differently and has their own pros
and cons. Thus, this thesis uses both approaches. More information on their
usage is available in appropriate chapters below.

2.1.4.1 Stemming

In linguistics, stemming is a process of reducing a word to its stem[26]. A
stem may not be a morphological root of the word or a word at all. At the
moment of writing this thesis, there are two major stemming algorithms -
Porter and Lancaster - both of them are rule-based (see Table 2.4). The
later mentioned is faster in terms of computational speed. However, it often
produces very obfuscated stems. Thus, Porter stemmer is considered the state
of art algorithm.

The newest iteration of Porter stemming algorithm is written in Snow-
ball programming language20 and is ported to other programming languages21.
The first version of algorithm was introduced in the 1980’s. Nowadays, the

20Snowball is a small string processing language designed for creating stemming al-
gorithms

21In NLTK, it is available in package nltk.stem.porter
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Figure 2.4: Measure m calculated on word crepuscular

Table 2.4: Example of rules for a stemmer

Rule Example

(m > 0)SSES → SS caresses → caress

(m > 0)IES → I ponies → poni
ties → ti

(VERB)ED → morphed → morph

(m > 0)IED → y bullied → bully

algorithm itself is divided into 5 steps which are further broken down into
smaller ones. [27] In each pass of the algorithm, a word is processed from
right to left. The first step handles plurality and past participles by detecting
specific suffixes in three substeps. The later steps provide more normalization
rules based on suffixes and measure m from Snowball. The measure m is
defined as (see Figure 2.4 to see how the measure m = 4 is calculated for word
”crepuscular”):

[C](V C)m[V ]

where

• C represents a sequence of one or more consonants. A consonant is
defined as a letter other than A, E, I, O or U and other than Y preceded
by a consonant.

• V is a sequence of one or more letters which are not consonants (such a
letter is called a vowel).

The rules in later steps of the algorithm contain many types of rules com-
bined together into larger conditions. The rules can for example check with
which letter the stem ends or starts, length of measure m or whether the stem
contains a vowel.

2.1.4.2 Lemmatization

In computational lingustics, lemmatization is a process of finding a lemma
for a specific word. [26] In comparison to a stem, lemma is a base form of
a word. Inflicting words (like saw, see, seen) share common lemma (see).
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Also, lemmatizers tend to require more information about the word in or-
der to detect its proper lemma. On top of the word itself, they may take
advantage of several preceding words and/or their POS tags. Together with
a large vocabulary, lemmatization produces more relevant results. However,
this approach cannot handle unknown words, since it is highly dependent on
words in its vocabulary. Also, it is slower in terms of computational speed
than conventional stemmers.

Lemmatizer implemented in NLTK uses WordNet vocabulary (introduced
in Section 2.5.1). Its implementation uses only the word itself without any
additional information. In case the word is not found in its vocabulary, the
algorithm returns the word itself. Otherwise, it returns its lemma.

2.1.5 Synonyms

A synonym is a word or phrase which means exactly the same or has nearly
the same meaning as another word or phrase in the same language. Their
usage can notably help to reduce data sparsity during analysis by replacing
synonyms with a common token. There are is another term closely connected
to synonyms - related words. Any two words may not share the same meaning,
however, they do are related (e.g. ”government” - ”politicians” or ”art” -
”paintings”). In general, there are two fundamentally different approaches to
find a suitable synonym described in the following subsections. [1]

2.1.5.1 Thesaurus-based algorithms

The more straight-forward approach uses large vocabularies with defined re-
lationships between words in order to find the correct synonyms. Sadly, there
is several apparent drawback connected to this approach. To name a few,
the biggest issue is the size of vocabulary needed for this analysis. Since the
algorithms can only work with words available in their vocabularies, unknown
unexpected words tend to lead to unwanted and, potentially useless, results.
Another disadvantage is tied to adjectives and verbs. In dictionaries, they
use to have less structure information about additional relationship relevant
to them. Therefore, the algorithms do find less synonyms for other words
than nouns. [1]. On top of it, the vocabularies do not usually contain words
from all grammar categories (especially for conjunction). This makes them, by
definition, useless for them. Lastly, there is not a thesaurus for every language
rendering the algorithms useless for those.

When working with synonyms, WordNet 3.0[28] is the go-to dataset
among researchers (see section 2.5.1). For simplistic analysis, NLTK offers
access to WordNetś list of synonyms with their POS tags. Here is a sample
output for word ”good” as an adjective (for sake of simplicity, duplicities were
removed in output)22:

22Format of output records is ’{synonym}.{grammar category}.{order of meaning}’
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>> from nltk.corpus import wordnet as wn

>> wn.synsets(’good’, pos=’s’)

[Synset(’good.a.01’), Synset(’full.s.06’),

Synset(’estimable.s.02’), Synset(’beneficial.s.01’),

Synset(’adept.s.01’), Synset(’dear.s.02’),

Synset(’dependable.s.04’), Synset(’effective.s.04’)]

Unfortunately, this simple interface does not provide any information de-
noting to what extend meaning of words in result match the meaning of input
word. This can lead to misleading results. Namely, when looking for synonyms
to word ”pet” one of the provided words is ”positron emission tomography”
which is clearly wrong. The other suggested synonym is ’darling ’ which also is
a relevant option. However, there is a missing word which can be considered
(to some extent) a synonym as well - ’animal ’. Clearly, while synsets provide
an easy and fast access to synonyms, their results are very rudimentary

Fortunately, there are two general extensions to thesaurus-based approach
that helped to produce a measure of similarity between words. Being able to
control this measure enables necessary filtration of distant words23). However,
they are computationally more demanding.

The first extension, path-based similarity, builds a dependency tree (an
oriented graph) describing relations between terms. An edge represents a
relationship between two terms and has the same length (1). This implies
that the higher a word in this hierarchy is, the more generic meaning it
has. On this structure, we can define following metrics based on path length
(pathlen(n1, n2) denotes the number of edges in the shortest path between
nodes n1 and n2 in graph plus 1):

simpath(c1, c2) =
1

pathlen(c1, c2)

wordsim(w1, w2) = max(simpath(w1, w2))

Apparently, these metrics by themselves are not sufficient or reliable enough.
For example, wordsim(budget, currency) = 1

5 and wordsim(budget, standard) =
1
5 . The same irregularity occurs with term medium of exchange for which
terms coinage and scale have the same similarity measure. This issue is caused
by the uniform length of every edge. Because of it, their similarity is the same
despite being in different branches of the tree.

The second extension, information content similarity, solves the issue with
uniform lengths of edges. At first, let’s define probability P (c) and information
content IC(c):

23Words having a rather big difference between their meaning
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Figure 2.5: Example of dependency tree for path-based similarity
with pathlen(nickel, coin) = 2, pathlen(nickel,money) = 6 and
pathlen(nickel, Richterscale) = 8 [1]

P (c) =

∑
w∈words(c)

count(w)

N

IC(c) = −lnP (c)

Random variable P (c) denotes probability that a randomly selected word
in a corpus is an instance of concept c. Concept c is a node in the depend-
ency tree and a word is an instance of a concept when it is its child node (for
example ”grotto” is instance of concept ”cave” 2.6). It is defined that every
word is member of root node P (root) = 1 (thus, creating a tree). Based on its
definition, the lower a word is in hierarchy, the lower probability P (c) it has.
Then, information content IC(c) defines the amount of information contained
in a word. The lower parts of the hierarchy have higher IC and, thus, bear
more concrete information. Lastly, there is another metric, Lowest common
subsummer (LCS), that is known in theory of graph as lowest common an-
cestor. For nodes w1 and w2, LCS is w3 which is the lowest node in hierarchy
(the furthest from the root node), yet its descendants still are both w1 and
w2 (for example, LCS(natural − elevation, coast) = geological − formation
in 2.6).

These extensions are used in Dekang Lin algorithm[29] to address the
issues with simple thesaurus algorithms. The intuition says that similarity
between words w1 and w2 is defined by not only their common features. So,
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Figure 2.6: Example of WordNet hierarchy augmented with probability (pic-
tured is only a part of the tree) P (c) [1]

the similarity between two tokens according to Dekang’s proposition is:

simLin(w1, w2) ∝
IC(common(w1, w2))

IC(description(w1, w2))

The commonality is expressed by formula:

IC(common(w1, w2)) = 2lnP (LCS(w1, w2))

And description of words w1 and w2 is defined as:

IC(description(w1, w2)) = lnP (w1) + lnP (w2)

Dekang Lin algorithm is implemented in NLTK in a dedicated package
nltk.corpus.len thesaurus:

>> from nltk.corpus import lin_thesarus as lin

>> print(sorted(lin.scored_synonyms(’home’,

fileid=’simN.lsp’),

key=lambda row: row[1],

reverse=True)[:5])

[(’house’, 0.254551), (’apartment’, 0.214802),

(’building’, 0.177342), (’hotel’, 0.172639),

(’residence’, 0.161917)]

In comparison to previously mentioned thesaurus-based algorithms, these
results are clearly more relevant and richer in their content. The original paper
was written and validated on Wordnet 1.5 so its results are not relevant at
the moment of writing this thesis any more. However, empirical testing was
carried out with the purpose of proing its validity for this thesis. In the end,
the provided results appeared to be more relevant than output provided by
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other algorithms. Unfortunately, its implementation in NLTK contains only
dictionaries for adjectives, nouns and verbs. Still, other implemented solutions
do not provide dictionaries for other grammar categories either. Plus, even
though simLin(w1, w2) ∈< 0, 1 >, it is not guaranteed that every word has
a synonym with simLin(w1, w2) = 1. So it is harder to determine how many
words from result are relevant enough. This problem is tackled in Chapter 3.

2.1.5.2 Distributional-based algorithms

These algorithms use distributional context around word to find synonyms.
Instead using the word itself, a word is defined by a vector of features. These
features usually describe frequency of occurrence of various words around the
specified word. The algorithm then searches its database to find the closest
match using a similarity measure (e.g. cosine distance or Jaccard distance).
In comparison to thesarus-based approaches, they can handle unknown words
and work well with adjective and verbs. A more detailed explanation of these
algorithms is out of scope of this work.

2.1.6 Discourse analysis techniques

As mentioned previously, discourse analysis require special treatment from a
NLP point of view. There are several metrics which apply to discourse only
or have special meaning in this type of analysis. They focus on unveiling
tendencies of participants in the discourse.

A very basic metric is number of turns (turns). One turn is a consistent
portion of discourse said by one person without being interrupted by anybody
else. There is no time restriction on its length. However, the number of tokens
in one turn is also a relevant information. When a person is interrupted by
anybody else and later finishes their thought, this situation is often considered
as two separate turns of that person. The number of turns can reveal several
interesting information about the speaker. Having a high number of turns with
medium to higher length during a discourse can indicate higher initiative on
the speaker’s and vice versa. On the other hand, several frequent, consequent
and short turns may suggest that the participant is submissive and easy to
interrupt.

Another relevant metric describing the inner dynamics of the group during
a discourse is follow ratio. The metric calculates how often is who followed
using formula:

follow(A,B) =
# of times personA takes a turn after B

# of times personA takes a turn after anybody

The value is in range < 0, 1 >. Higher values may indicate a one-sided
relationship between two participants in the dialog. Due to nature of the defin-
ition, this relationship is oriented and not bidirectional. Thus, it may unveil
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signs of one-sided personal disputes or preferences between certain actors of
the dialog.

Other advance metrics rely on noun phrases and their extraction. This
metric is not discourse-specific, however, it is incredibly relevant to this area.
Because it sheds light on the topic of turns in the dialog. However, detecting
the whole noun phrase properly is rather complex task similar to building
a syntax tree (see Section 2.1.3). Also, there may be adjectives modifying
its meaning in the noun phrase. Thus, considering only nouns themselves as
noun phrases can be considered a good-enough approximation of the problem.
Its additional modification by adjective is supplied by additional sentiment
analysis.

Building on this, there is a metric called topic-chain index (TCI) which
uses extracted noun phrases. The metric itself was devised by Broadwell et al,
[30]. It calculates the difference between the first and the last occurrence of
the same noun phrase in the discourse. The noun phrase might be introduced
by one person and its last mention may be uttered by a different one. The
length of the chain represents the time-frame when object (or subject) of the
noun phrase is most-likely relevant to the discussion. Study of the length and
content of the chains provides clues on direction of the discourse.

Lastly, there is one specific metric which - number of asked questions.
In nutshell, it counts number of question marks (consequent question marks
are counted only once) in all turns per actor. Their number and placement
describe actor’s effort to either gain additional information or to state a ques-
tion to suggest their idea to others. Asking only very few or no question at
all during the discourse may a be rather strong signal suggestive of specific
client’s behavior.

2.2 Sentiment Analysis

Sentiment analysis (some literature refers to it as opinion mining) refers to
a process of identification and extraction of subjective information in source
text. Generally speaking, this process attempts to interpret a sample of text
and detect the subject’s attitude. This analysis is performed by a sentiment
model that takes text as its input and returns sentiment class the text fits the
best. Some models also know the level of certainty for their provided answer.
The basic sentiment classes that most models can detect are positive, negative
and neutral.

Due to nature of this task, sentiment classification is a subjective task with
somewhat vaguely defined correct answers. Hence, the accuracy of models is
measured on datasets with subjectively ranked samples. It is an open question
whether it is possible to create a sentiment classification model having 100
% accuracy. Given that it is a tough task to get many people to agree on
sentiment of larger number of sentences, it is doubtful that any sentiment
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model will be able to. [31]. Therefore, it is more favorable to have reliable
model giving stable results for all classes, than having model with higher
average accuracy skewed toward one (or two) class.

Once created, sentiment models have wide range of applications. Each
application puts different expectations on speed, accuracy of presented results
and source of data. To name only a few interesting use cases for them:

• Opinion extraction on social media This is probably the biggest use
case and driving force for sentiment analysis at the moment. Usually,
text on social media is rather short which makes the machine analysis
harder (see section 2.2.1.2). Typically, sentiment detection is performed
on social interactions containing certain hash tags or belonging to a spe-
cific piece of content (e. g. posts under shared photo, video or status).
Each social interaction may include additional contextual elements spe-
cific to the platform (e. g. number of likes or replies on Facebook, or
number of retweets on Twitter). Advanced sentiment models utilize all
these information to provide more accurate classification of text.

Results of this type of analysis are interesting for several groups of users,
for example:

– Marketers see a huge opportunity to understand the feedback
about their product. Extracting opinions manually is time-consuming
or even impossible task. Modern technology allows them to collect
customer’s interaction from any relevant social network (Facebook,
Twitter, Instagram or other) and analyze them almost in real time.
Therefore, they prefer estimated results with certain degree of error
provided in real time to accurate results available after significant
delay.

– Public opinion analysts study market trends in general and try
to predict public opinion on any matter. Instead of focusing on
one particular brand or product, they are watching wide range of
sources of public opinions. While their mission is to provide rel-
evant information about public opinion on a matter, they sacrifice
utmost accuracy to analysis of more data sources.

– Political analysts are public opinion analysts who specialize in
studying society opinion on political parties. In their effort, they
do not use only data from social media. There are other interesting
sources like blogs or dedicated written materials which provide use-
ful context to on-line discussions. Due to delicate nature of their
analysis, they require more reliable models .

• Analysis of opinionated materials Another big source of opinions are
specialized texts which express author’s opinion on the discussed mat-
ter. Such an article contains author’s opinion backed with an extensive
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explanation. This makes their analysis more straightforward once their
domain is known (see section 2.2.1.1). Typically, sentiment model clas-
sifies the text as whole. In special cases, texts can be split into smaller
parts to provide detailed view on author’s perspective.

Currently, there are two popular types of opinionated materials that
researchers analyze:

– Movie reviews are rather popular for sentiment analysis. Re-
searchers tend to use them as training sets for their models (either
IMDB movie reviews or Rotten Tomatoes movie reviews). One of
the reason for the huge popularity is their availability. Movie sites
allow their users to write their own reviews for movies, so there is
no shortage of ranked reviews available on-line. The range of final
estimation depends on complexity of model. In most cases, the
basic models estimate only sentiment class of a whole review. Ad-
vanced models can also estimate the user-assigned score. Overall
accuracy of those models reaches up to 99 % [32].

– Political materials Another interesting area for researchers are
political materials written by authors with a certain political view.
This area is particularly hard to study, because of its nature. Even
though there are many data sources (e. g. Amici curiae briefs24),
it is hard to work with a legal language (see section 2.2.1.1). Also,
while author’s political view is known, there are other interesting
questions about these materials - for example to what degree two
texts written with the same political view in mind share the same
arguments.

• Discourse analysis This field of linguistic analysis has been recently
popularized and is gaining traction. Technically speaking, it merges
two different fields together - computational linguistics and psychology.
In short, it uses elements of computational linguistics and apply them
to psychology concepts. Result of the analysis attempts to infer par-
ticipants position toward the discussed topic (for more information on
discourse analysis see section 2.1.6).

There is a couple of different types and forms of discourse. There can
be a verbal conversation taking place at one physical place. Another
form of discourse can be an interaction on social media which occurs
in reference to the same piece of content (e. g. conversation under
Facebook post or tweet replies to one tweet). Each form influences the
content and rendering of the discourse.

24For example available at http://www.psci.unt.edu/~pmcollins/data.htm
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Furthermore, there is a number of discourse types. Each type having a
distinct set of rules defined by society or law. Here is a list of interesting
types from research perspective:

– Ordinary dialog between several participants poses a great ex-
ample of the most common analysis (e. g. dialog between friend
on street). Any number of participants engages in an open conver-
sation on a certain topic. The used language may be informal and
may contain a lot of sarcasm (see section 2.2.1.3 on how to deal
with it). All in all, performing sentiment analysis on this type of
discourse is a hard, but expectations on its accuracy tend not to be
high. From researchers point of view, their analysis is not very at-
tractive, because of very little relevant information extracted from
it in form of participant’s opinions.

– Operator-customer dialog that occurs between operator (in sup-
port center or selling merchandise) and a client. In this type of dis-
course, analysis studies customer’s behavior toward operator. The
dialog is mostly semi-formal with almost no sarcasm and usually
revolves around predefined topic. Plus, the dialog occurs over the
phone so there is almost no body language involved in the dis-
course. These features make it easier to examine it with relatively
great accuracy. Since companies always try to improve their cus-
tomer service and upsell methods.

– Legal dialog that occurs between multiple participants (usually
justices, lawyers or government officials) discussing a legal issue (or
a topic related to law) in official manner. Given the strict form
of the dialog defined implicitly by its circumstances, its analysis is
more streamlined. However, participants tend to have long mono-
logue speeches with very long sentences. This feature is given by
nature of the law language and its effort to be comprehensive at all
costs. In terms of accuracy, there is a little bit of pressure on re-
searchers that any results should be reliable. Therefore, it is more
desirable to know limits of respective technologies and adjust the
expectations accordingly, than have overtrained model with high
number of false positives and negatives.

Since this thesis focuses on discourse analysis of legal dialogs at the court-
house, it is hard find a suitable sentiment model. Therefore, a significant
amount of effort is exercised to create a fitting sentiment model (described in
Chapter 3) that can be used in analysis of the Oral Argument (described in
Chapter 4).
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2.2.1 Challenges

Clearly, creating a sentiment model is a complex task with countless of pitfalls.
As mentioned in previous section, each type of sentiment analysis resembles
different set of expectations on it. One of the biggest problems of sentiment
models are ambiguous words and domain dependent. Another problem arises
from the level of detail expected from the model. Examples of other challenges
are given below.

2.2.1.1 Domain and ambiguity

While both problems represent a slightly different issue, they share a com-
mon ground in terms of usage words. Both problems influence participant’s
vocabulary depending on the present situation in a way. An ambiguous word
can have multiple meanings in the sentence and it is not possible to pick the
correct one at the first glance. In contract, when talking about certain do-
main, participants use specific vocabulary that may contain words not used
in other context. x Every language contains ambiguous words. There is no
specific grammar category they belong to. In fact, many words are in multiple
grammar categories and the correct one is determined based on number of ex-
ternal factors (e. g. check or run). Or a word may have multiple different
meanings within the same grammar category. A simple example of ambiguity
in a sentence is:

”Let’s meet next to the bank”.

From this one sentence, it is not possible to decide, whether the bank is
an institution or a river bank. This kind of ambiguity is impossible resolve
without any additional information. Useful context clues may be presented in
surrounding sentences in form of other words giving the original term specific
meaning:

”Let’s meet next to the bank. And do not forget to bring your boat!”

While the following sentence provides clues aiming toward bank being a river
bank, it may as well be a meeting point for an upcoming trip to a river.
There is no general rule saying how far around the sentence to look for useful
clues. Likewise there are no general rules that help to identify the clues either.
On top of that, there may be various idioms or specific phrases established
by the circumstances of the discourse (e. g. talking in movie quotes when
discussing a quality of movie). All this make their detection and handling
clues to disambiguate words a complex problem.

Every topic has its own jargon, domain-dependent words, with very specific
expressions which may have different meaning depending on several aspects.
Here is a great example of domain-dependent vocabulary:
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”You’re killing it!”

Clearly, the expression can have, both positive, and negative connotation.
When talking about somebody’s achievements in any field, it has very positive
meaning. In contract, when discussing somebody’s life or in being in situation
when one’s life is in danger, it has very negative meaning. Apparently, there is
no middle ground so getting the correct domain in this sentence matters a lot.
To make the task even harder, the domain of the conversation can abruptly
change.

2.2.1.2 Level of detail

Opinion mining can be understood as a complex process that is performed
on text as a whole, or on its parts. Also, there is a difference between senti-
ment analysis carried out on a large article, its individual sentences or on a
tweet25. In particular, they differ in access to additional information about
the examined text. Given the extreme variance in expectations on each type
of analysis, it is an elaborate task to create a versatile model.

In particular, there are three dominant types of sentiment analysis, each
requiring a different approach to the classification (see section 2.2.2 for relevant
information on state of the art accuracy):

• Document-level sentiment analysis is considered to be the easiest
one to perform. A document in this representation is a lengthy text
written by one or a group of authors in structured way on one topic (not
as a transcript of discourse). Depending on its length, commonly, there
is enough data to make reasonable accurate estimation of its sentiment.
Occasionally, documents are split into smaller sections (paragraphs) and
then classify them separately in context of the document. Given fixed
domain of analyzes texts, their accuracy is rather decent.

• Sentence-level sentiment analysis is more granular version of document-
level analysis that requires substantially better work with every word.
Due to small number of words, it is harder to extract features necessary
to detect any sentiment. The assumption is that each sentence contains
only one opinion.

• Social-post-level sentiment analysis utilizes techniques for sentence-
level analysis and add additional information from social media (e. g.
likes for each comment on Facebook). Also, models have to deal with
more informal language full of emoji and links to other sites (see Figure
2.7). All things considered, their sentiment classification is a significantly
different process. In addition to the pure text, it also has to consider

25Tweet is a short (maximum length is 140 characters) message posted on social network
Twitter.
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Figure 2.7: Example of Facebook post on Arrow page captured on Dec 17,
2016 at 10:20PM CET

multiple additional data to estimate the sentiment properly. Also, there
is a difference between extracting people’s overall opinion on the post,
or their individual opinions. For the overall opinion analysis may use
additional information about likes and shares (on top of all comments
with their likes).

2.2.1.3 Other challenges

There is several seemingly smaller challenges which should be addressed (or
at least considered) in sentiment models. In spite of them taking up only a
small portion of the actual discourse, they significantly affect outcome of the
analysis.

Namely, sarcasm detection influences polarity of sentence, even though
sarcasm is rarely present in them. Sarcasm is a bitter remark that while
appearing to have one polarity, its true meaning is the exact opposite. Due to
its nature, sarcasm detection adds to subjectiveness of sentiment classification
task. In some texts, sarcasm is signalized by putting the sarcastic part between
double quotes.

Next example is sentence length that complicates its parsing process.
Longer sentences may contain several distinct subsentences which affect each
other. Therefore, it is harder to identify true meaning of sentence. At the
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same time, short sentences do not contain enough information for any further
analysis. This is in particular relevant to analysis of posts on social media.

Another great example is negation detection which requires deeper
knowledge of relationship between words in sentence. When negation is de-
tected in sentence, it is important to know which sentiment-bearing words it
influences. One of the popular approaches is to consider all following words
”affected” until another negation is detected. However, this approximation
of problem fails if the sentence contains complex subsentences. Another pop-
ular approach is to predefine range of influence and mark only following n
words after negation as negated. Either way, their detection is particularly
subjective task, so it is hard to compare results of both approaches reliable.

Last but not least, language vocabulary presents a problem from lin-
guistic perspective. It is a fluid ever-changing body that is hard to freeze in
time. Straightaway, languages contain countless of idioms (e. g. hang out
vs hang on) which can be detected using their dictionary. Furthermore, lan-
guages allow and even support making up new words spontaneously (e. g.
”friend me” - connect with me on Facebook). Guessing true meaning of such
words is a problematic task with no concrete solution. The one apparent fix
for this situation is keeping the model’s vocabularies periodically updated.

2.2.2 Approaches and State of the art

Because it is a rapidly changing field, it is difficult to capture state of the art
approaches. Although, as explained in section 2.2.1.1, each level of sentiment
analysis takes slightly different approach, they share various bits and pieces in
process. Sentiment classification, as any other data analysis procedure, can be
divided into two big parts - feature extraction and modeling. Data preparation
phase differs for every dataset so much that it is not usually covered by any
standardized approach.

While feature extraction is to certain degree common for all models (each
model usually uses a subset of them), their underlying stochastic model is
different. It has been an universally accepted approach by researchers that
only stochastic methods are useful in this field.

2.2.2.1 Feature extraction

Extracted features compose of three main elements (types) - word tokens (or
their n-grams), various language dictionaries and POS tags. Although, there
are other features ready to be extracted (like punctuation), the main elements
convey the most sentiment clues. From a sentence structure point of view,
there are two main approaches to feature extraction - bag of words or syntax
tree26. The selected extraction approach influences the amount of information

26There can be any other interpretation of advanced NLP knowledge about structure of
the sentence
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available to the model for each feature. Additionally, extracted features may
be represented in multiple formats, like pure word tokens or points in vector
space.

Bag of words is a very popular model mainly because of its simplicity.
Instead of focusing too much on structure of the sentence, it only provides
word tokens in arbitrary order. Unfortunately, this approach in its pure form
presents several issues. The most obvious is its inability to distinguish between
following two sentences because of no knowledge of word ordering.

Bus is better than train.

vs

Train is better than bus.

As opposed to bag of words, syntax tree approach (see section 2.1.3)
considers relationship between every word in the sentence. Under the hood,
this approach tries to understand dynamics in the sentence. As explained in
section above, this task is difficult to carry out with reasonable accuracy.

When comparing both approaches [31], syntax tree approach outperforms
bag of words, if carried out properly. For bag of words, any token is taken
as-is without any additional contextual information. Therefore, models using
it require significantly larger training set to learn necessary patterns. On
the contrary, in syntax tree approach tokens already bear basic information
about their meaning in context of the sentence. Hence, significantly smaller
training set is required to learn approximately same patterns. Considering the
complexity of creating a computational model that understands a sentence,
the most favorable approach at the moment is a mixture of both.

With this in mind, n-grams (see section 2.1.1) offer a great compromise.
Since this type of feature has information about words in its near surround-
ings. Some of those words may provide useful information to disambiguate
meaning of the analyzed word (or whole phrase). However, size of the n-gram
matters a lot. Short n-grams (bi-grams or tri-grams) provide only rudimentary
information. These n-grams may be useful when analyzing texts with simple
English. Any complex word structures are going to slip away. But simple and
powerful phrases like ”very good performance” or ”nicely cleaned table” are
still addressed. On the other hand, longer n-grams (e. g. four-gram or longer)
capture a decent chunk of sentence for further evidence. For example a phrase

”fast, yet relatively hated, car”

can be correctly interpreted due to longer n-grams. Unfortunately, this snap-
shot might carry over a great amount of noise to the analysis too. For example
a phrase

”great singer who had terrible performance”
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contains two separate opinions which influence the overall sentiment of the
sentence. Also, longer n-grams introduce a great deal of sparsity to feature
spaces. Hence, the n-gram has to by additionally parsed by advanced NLP
technique to understand its meaning.

Another set of features takes advantage of various dictionaries (e. g.
General Inquirer or Subjectivity Lexicon mentioned in Section 2.5). Each dic-
tionary provides additional facts about every word. Even thought a word is
not included in a dictionary, this information is almost as important as if it
was there. For example, word ”painful” is definitely not in list of positive ad-
jectives. Yet, knowing this indicates that the word is either negative or not an
adjective at all. This ambiguity can be removed by POS tags. However, there
is several serious pitfalls to using dictionaries. Most importantly, there are not
relevant dictionaries available for every language. Obviously their availability
is dependent on amount of research being done on the language. Another
problem is that not all languages share the same grammatical devices. There-
fore, using vocabulary to look for them would fail (e. g. no gender forms in
the Turkish language[33]). On top of these issues, there is a problem with
word morphology. Of course the obvious way to solve it is performing word
normalization (see section 2.1.2), but there are caveats as well. The imple-
mented normalization should match dictionary’s normalization. However, this
makes merging multiple dictionaries together a complex task.

Further, Part-of-speech tags for words in the sentence provide clues to
disambiguate their true meaning. Also, their position helps to create a simple
structure of the sentence. Instead of applying advanced analytics, looking at
their order in sentence may provide enough information to make an educated
decision. For more information how POS tagging works see section 2.1.2.

Lastly, feature representation, word embedding, influences manipulation
with them in stochastic models. Currently, there are two basic forms of rep-
resentation:

• Vector space model representation transform every word to a vector
(see Figure 2.827). The transformation process is customized to the cur-
rent needs of model and preserves internal logic and relationship between
words. Also, there is no restriction on range of values. Due to mathem-
atical properties, vectors then may be added together, subtracted from
each other or compared to each other.

• Token is the word (or phrase) itself in its written form (e. g. ”sun”,
”home” or ”go out”). Admittedly, tokens can be looked at as a special
case of vector space model with vectors of length N , where N is number
of unique words in dataset. Then, every word is represented by sequence

27Image source: http://www.marekrei.com/blog/wp-content/uploads/2014/10/
vector_space_model_multilingual.png
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Figure 2.8: Example of one possible vector space representation of animals

of zeros and a single one uniquely denoting the word in question. How-
ever, this use-case do not allows any mathematical vectors performed on
them.

Considering their merits, it is not possible to say which representation is bet-
ter. Definition of vector space model is a complex model requiring domain
knowledge of the dataset and used words. In some cases, it is impossible to
create a valid transformation for every word in dictionary to uphold internal
validity of mathematical operations. On the other hand, vector space model
allows usage of algorithms like Word2vec created by Tomas Mikolov at Google
in 2013[34]. This algorithm aims to automate generate vector representation
of any word using neural networks. In order to achieve high accuracy, the
algorithm should be train on hundreds of millions of words. In return, the
algorithm preserves with similar content and sentiment closely together. Ac-
cording to [34] it achieves accuracy of predicting correct vector representation
of an unknown word as high as 59 % trained on 100 billion words.

2.2.2.2 Modeling

As presented at the beginning of this section, there is a variety of specialized
use-cases for sentiment analysis with different specific requirements. So it is
hard to find state of the art approach for each use-case. Instead, this section
focuses on a brief overview how sentiment models are typically created and
their most accurate implementations.

The basic stochastic model uses Bayesian Learning with various hypo-
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thesis. It is based on Bayes’ Theorem:

p(Ck|x) =
p(Ck) ∗ p(x|Ck)

p(x)

where:

• x is a sample

• Ck is a classification class k

• p(Ck|x) is posterior probability representing probability that classific-
ation class should be Ck given the sample is x

• p(Ck) is prior probability representing probability that classification
class Ck occurs

• p(x|Ck) is probability (or likelihood) that sample x occurs given that
classification class is Ck

• p(x) is probability that a sample x occurs

The oversimplified approach, Naive Bayes Classifier, assumes that all samples
(or events) occur independently (with the same probability). Given hypothesis
that the process resembles Maximum A Posteriori (MAP) estimation for P (y),
the class y is determined by formula:[35]

ŷ = argmaxyP (y)

n∏
i=1

P (xi|y)

According to recent measurements [36], this model trained on movie reviews
dataset can achieve accuracy up to 81 % using bag of words. Their work
focused on classification entire reviews into three classes. The model uses
individual word tokens (unigrams) as features. To remove useless features, it
only uses tokens that occur in at least five documents in training set. Results
of this model suggest that even simple models can achieve relevant results,
when the right features are extracted.

Another work tried to mine opinions from Twitter tweets [37] and compare
accuracy of SVM28 and Naive Bayes Model in two-class and three-class classi-
fication. In their situation, SVM performed worse, but additional explanation
as to why is not provided. In two-class classification, they claim to achieve 75
% accuracy. But, in three-class classification they accomplish only 60 %. Nev-
ertheless, again, simpler model outperformed more robust stochastic model in
this task.

28Support-Vector machine
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Newer approaches experiment with HMM or deep learning using RNN29 or
LSTM30 networks. Recent breakthrough in deep learning field suggests that
tide is turning. After popularization of TensorFlowTM 31 and Theano Python
library32, researchers started digging around. One Stanford paper [38] pub-
lished comparison between deep RNN and LSTM networks on movie reviews
dataset. While both models reached great accuracy on training set (around
94 %), their accuracy on test set is about 84 % (performed on document-
level). These results indicate that they may not be universal answers to all
the questions. Or, at least, there is a long way ahead for researchers to fully
understand estimation of hyper parameters for these models.

Be that as it may, HMM offers improvement over Naive Bayes model based
on results in [39]. In two-class classification of customer product reviews
(document-level), the model scored 93 % accuracy with 4:1 train-test split
ratio of dataset. However, it is important to realize that this model was
specifically crafted for one only type of product reviews. Its features were
extractd by OPINE 33 that utilized POS tags provided by Amazon with the
dataset. The model considers only opinion-bearing words (mostly adjectives)
for the analysis. Plus, no further sentence analysis is performed to build better
understanding about it. Though, in this case it is not needed.

When looking closely at sentence-level sentiment analysis, available models
do not perform that well. Famous paper [40] from University of Pittsburgh at-
tempts to perform phrase-level analysis. This level of text classification tries to
interpret only sentiment-bearing phrases which may contain only a few words
within context of sentence (e. g. ”good and evil” or ”grave human rights viol-
ators”). Authors split the classification process into two steps - Neutral-Polar
Classification and Polarity Classification. Each step focuses on different set of
features. Number of them is highly dependent on dependency tree that is built
for each sentence. Notably, one of the features determines domain of the ana-
lyzed document which makes the model highly domain-dependent. In terms
of model representation, instead of using a simple stochastic model, authors
decided to combine AdaBoost34 with another stochastic model to improve its
learning properties. Specifically, AdaBoost combines a great number of weak
classifiers and tweaks them to avoid overfitting. In terms of accuracy, the first
step (Neutral-polar classification) and the second step (Polar Classification)
achieve 76 % and 66 %, respectively. However, the presented work has several
issues. Firstly, it is problematic achieve presented accuracy when trying to
reproduce their process. And secondly, annotations in MPQA corpus provide

29Recurrent Neural Network
30Long Short Term Memory
31TensorFlow is available at https://www.tensorflow.org/
32Theano is available at http://deeplearning.net/software/theano/
33OPINE is a unsupervised information extraction system developed in 2005 by a team

from University of Washington
34”AdaBoost” is shortcut for ”Adaptive Boosting”
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more than only three classes for their phrases annotations and the work does
not mention how they prepared the dataset in this fashion.

In terms of domain-independent sentiment models, there is not much re-
search done. Work of Ohana and his team[41] tried to offer a solution to this
problem. Their two-class (positive and negative class) classifier implies that
using multiple different lexicons improve overall accuracy of the model. As
features, their model uses explained scoring system and set of n-grams with
POS tags. Probably in effort to maintain control over the model, they decided
to not use a stochastic model. Instead, they sum up scores of all positive and
negative terms in document individually and then pick the class with higher
total sum. This approach achieves accuracy around 66 % depending on the do-
main. However, recall of those results tend to be imbalanced when comparing
classes leaving space for improvements.

2.3 Optical Character Recognition

Optical Character Recognition task is tries to read any form of text from
an image and transform it into computer-editable form. Its ultimate goal is
being able to reliably read any typed or handwritten text. The concept itself
appears very intriguing since it offers a vast variety of applications. Namely, it
can be used for text-to-speech for blind people or to replace humans repeating
tasks (e.g. sorting letters in post office by deliver address or solving text
CAPTCHA’s).[42]

Even thought the notion of OCR systems has been around for a long time,
the first working OCR solution was created in 1951 by David Shepard. The
first attempts in the area tried to normalize font and paper size and characters
look in order to simplify the algorithms. Current state of the art solutions
are capable of reading almost any kind of typed text. They abandoned the
effort to create an extensive list of rules to detect each character. Rather,
they take advantage of stochastic models trained on a large dataset. MNIST
Database”35 is widely accepted as a gold standard dataset for these models
and contains 60,000 training and 10,000 test samples. The best model achieves
error rate only approximately 0.23 % on this dataset.

Based on this data, it may seems intriguing to create a customized model.
But, it includes dealing with multiple problems at once Probably the biggest
issue is recognizing individual characters in the image. The dataset contains
only images of individual characters so it does not address this problem. In
real-world text, there are fonts of different types (ee Figure 2.9). Hence, it is
recommended to use more sophisticated strategy than fixed-box approach to
find characters. Some of the OCR algorithms are language-dependent and use
vocabularies to improve their accuracy. This adds another layer of complexity,
because the text can contain typos.

35Available at http://yann.lecun.com/exdb/mnist/
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Figure 2.9: Comparison of monospaced and proportional font

To draw a conclusion, the best approach is to use a third-party solution
which handles majority of the complex preprocessing tasks. Tesseract OCR
fits these requirements and allows users to update its trained model to fit their
unique demands.

2.3.1 Reading PDF files

Despite the fact that OCR algorithms are designed to work with images, they
are currently being used to extract text from PDF files as well. In its essence,
PDF format’s main goal is to look exactly the same across different platforms
and the users should be able to print them out. There is no strictly defined
structure. Instead, there is a set of elements which can be freely used in the
file to position text or other components wherever on the page. At the end of
the day, this philosophy makes the format very popular among users. In fact,
many governments picked it as one of the official file formats for their forms
and documents. [43]

However, this flexible structure with very few rules presents a problem for
text extraction algorithms. In many cases, the final position of partial text
blocks is defined in complicated nested tree of components. Therefore, it is
almost impossible to read the text as-is since the text itself is not continuous.
Instead, the PDF file is rendered into a set of images and these are then
transcribed by an OCR algorithm to computer-editable form.

Unfortunately, this process does not guarantee 100 % accuracy of text ex-
traction. Every component can be significantly distorted. Or, any number of
components can be placed over each other. Also, the file can contain exotic
fonts which are rather hard to read, unless the OCR algorithm is trained for it.
Therefore, a direct parser of PDF format may be a desirable solution for the
problem. There is several open source attempts to create such an algorithm
like PDFMiner36 or PyPDF37. But, none of them gives any satisfactory pre-
cision (mostly due to the problems with structure of PDF files mentioned
above).

Currently, there is several available popular solutions which read PDF files.
The most accurate OCR algorithm offers ABBYY FineReader. When tested
on Oral Argument dataset, it showed almost 100 % accuracy even in the most

36PDFMiner can be found at http://www.unixuser.org/~euske/python/pdfminer/
index.html

37PyPDF can be found at https://github.com/mstamy2/PyPDF2
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complex parts of the documents. The only problematic part was Register
(Register contains list of used terms in the hearing with their positions in the
file in format ”page:line” - e. g. ”alive 25:18”) which is not important for the
analysis in Chapter 4. But, this program could not have been used for number
of reasons. The biggest problem is that the program is a commercial solution
so the final analysis would not be accessible to everybody. Another major
issue is a lack of any form of public API to control the conversion. Hence,
the analysis process would require extensive manual work on user part. On
the opposite front, there are open source technologies like Tesseract OCR.
They achieve great accuracy, are for free and have accessible API so they can
be integrated into analysis process.

2.3.2 Tesseract Open Source OCR Engine

Initially, the project was created at Hewitt-Packard Laboratories Co in 1990’s.
It only became open source project in 2005 and is being developed by Google
since 2006.38 Its current version provides support for several other languages.
Under the hood, it uses neural network to classify detected characters. For
character detection, it uses combination of ordinary spacing method and fuzzy
spaces (overview of architecture is outlined in Figure 2.10). [44].

From programmer point of view, it is a C++ command-line utility. There
is several wrappers that allow Python use the library. This thesis uses Tesser-
act OCR 3.1 and Python library PyOCR 0.3.1.

2.4 Technologies

The thesis utilizes only open-source libraries. Anaconda 4.2.0 39 was used to
set up the development environment. In its default installation, it contains
more than 100 packages designated to speed up data analysis process in Py-
thon in three ways:

1. making extraction of the raw data and their subsequent preprocessing
easier

2. handling the data exploration

3. providing tools to prepare stochastic or other models and their simple
evaluation

2.4.1 Programming Language

Source codes of the thesis are written in Python 2.7.12 due to backward com-
patibility concerns. No significant benefit would come from using the most up

38Tesseract is available at https://github.com/tesseract-ocr/tesseract
39https://www.continuum.io/downloads
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Figure 2.10: Overview of Tesseract OCR processing pipeline

to date version of Python. This language was selected as main programming
language for the project because of its philosophy, flexibility and strong sup-
port from data analysis community. For Python relies heavily on indentation
of the code, its scripts tend to be easier on the eyes. At the same time, it
offers basic OOP40 capabilities which help to greatly improve code structure.

As Python is often used by data analysts to explore datasets, the com-
munity created a specialized tool for this purpose – Jupyter41 (see Figure
2.11). The tool extends functionality of basic interactive command-line Py-
thon interpret. Three most useful features in Jypyter are:

• Code Separation Code is divided into cells which may be run in ar-
bitrary order and changed at will. This encourages rapid prototyping
of the cleaning process. However, overusing this approach can lead into
losing track of execution order of cells.

• Table-view Support for Pandas (see section 2.4.2) provides better dis-
playing of data from DataFrames in foldable tables.

• Inline Graphs Support for matplotlib enables inline graphs. They give
the analysis a cleaner look. Considering matplotlib’s direct integration
with Pandas, it makes plotting graphs easy to take advantage of.

40Object-Oriented Programming
41Formerly known as IPython

49



2. Theoretical Background

Figure 2.11: Example of Jupyter Notebook used to clean up data for this
thesis

2.4.2 Python Libraries

While there is a number of very useful libraries for analysis, this thesis focuses
on working with the ones which are easy to set up. Therefore, no library using
advanced parallel distributed systems is used. Also, no cutting-edge databases
are used either for the same reasons. In general, these components tend to be
harder to install on some systems. Thus, instead of spending valuable time
figuring out how to configure them properly, the thesis focuses on leveraging
speed and wit of the simple libraries. Also, there is no apparent aspect of the
thesis which requires their features.

Backbone of the technological stack is NLTK 3.2.1[45]. What started as a
smaller project in 2001 slowly became an industry standard when performing
NLP analysis. The library is used to support basic NLP operations to work
with text and access to WordNet. Namely, Tokenizer provides an easy way to
tokenize sentences into words or create n-grams. Also, it includes providers for
Standford POS tagger (see section 2.1.2) and implementation of Dekang Lin
algorithm to find synonyms (see section 2.1.5). The community around this
library constantly keeps the library updated. Moreover, it provides several
corpora (see Table 2.542 [46][47][48][49][28]) reachable directly from the lib-

42Project Gutenberg includes more than 53,000 free books.
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rary to benchmark created models and NLP techniques. For several of these
corpora, users provided access to manually assigned POS tags in standardized
form (see section 2.1.2).

Majority of the analysis is done utilizing Pandas 0.18.1 library43. It
leverages NumPy library in the background to speed it up. Thanks to its easy
R-like44 interface for working with DataFrames, it is simple to carry out the
usual analytics operations like drill-down, creating aggregations or calculating
statistical information about the data inside. A DateFrame is an immutable
structure emulating R-like data structure. Methods apply and map provide
an easy and fast way to iterate over the dataset and calculate additional
information about it.

Scikit-learn 0.1745 is built on SciPy46. The project was started in 2007
by a student as part of a Google Summer of Code. Since that moment on,
countless of volunteered helped to keep the project updated and added new
features. Currently, it provides tools for data mining and data analysis. As
part of the tool set, there are algorithms for:

• Classifiation For example SVM, nearest neighbor or random forest

• Regression For example logical or linear regression.

• Clustering For example k-Means or spectral clustering.

• Dimensionality reduction For example PCA or non-negative matrix
factorization.

• Model selection For example cross validation.

Tools in each section are implemented so they use identical interface.
This approach makes switching them during analysis process rather easy and
stream-lined. To speed up the training process, models support multipro-
cessing via simple flag n flags.

2.5 Datasets and Corpora

This thesis uses several distinct corpora and datasets beside the Oral Ar-
guments (see section 4.2). Majority of them are in some way connected to
the created sentiment model (see chapter 3). The exceptions are WordNet
and Supreme Court Metadata. Only WordNet is used in both experiments to
determine synonyms in text and assign POS tags to words. Supreme Court
Metadata is describe in detail in section 1.3.2. The rest of datasets is leveraged
to support the sentiment model.

43Source Pandas: http://pandas.pydata.org/
44R is an open-source Statistical Computing software
45Source Scikit-learn: http://scikit-learn.org/stable/
46Source SciPy : https://www.scipy.org/
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Table 2.5: List of interesting corpora included in NLTK

Corpora POS Tags Description

Brown Corpus Yes The corpus was created in first pub-
lished in 1964 and undergone several revi-
sions. Currently, it contains 500 samples
of text (374 informative and 126 imagin-
ary prose samples) containing more than
1 milion words. Each text has at least
2000 words. Texts are written by native
English speakers.

Gutenberg
Corpus

No The library contains only subset of text
from Project Gutenberg. There is only 18
books. However, they are full books which
were proofread in order to catch any typos
in the text.

Penn Treebank
Corpus

Yes This is only a small subset of the whole
Penn Treebank corpus created in Uni-
versity of Pennsylvania. It contains
approximately 40K words. Original cor-
pus includes Brown corpus, Wall Street
Journal article’s and articles from sev-
eral other sources. The variety of art-
icles makes this corpus desirable for re-
searhers. That is why its full version is
under a commercial license.

IMDB Movie
Reviews

No The library includes older version of this
corpora - version 2.0. There is 2,500 pos-
itive and the same number of negative re-
views from users. Except for removing
rating from the review, no additional pre-
processing was performed on the dataset.
Thus, each review consists of its content
and decision whether it was positive, or
negative. This thesis uses newer version
of this corpus (see section 3).

WordNet Yes This corpora provides access to database
of English synonyms. There is also a met-
ric expressing to what extend two words
are similar to each other. More inform-
ation on how this corpora is used in this
thesis can be found in section 2.1.5.

52



2.5. Datasets and Corpora

Table 2.6: Statistics for WordNet

Category # of Unique Strings # of Synsets

Noun 117,798 82,115

Adjective 22,479 18,156

Verb 11,529 13,767

Adverb 4,481 3,621

2.5.1 WordNet

WordNet[28] contains a list of words with additional connection between them
called synsets. In English version47, it contains only nouns, verbs, adjectives
and adverbs (see Table 2.648). They were manually collected by a group of
researchers at Princeton University. Even though it is currently not in devel-
opment, it still proves to be an invaluable data source for researchers. The
additional attributes for each word help to understand connections between
them and find more appropriate synonyms. These connection are called syn-
sets. Under the hood, synsets are linked by means of contextual-semamtic and
lexical relations. The current version contains about 117,000 synsets. Under-
standably, the majority of links is between words having the same grammar
category (POS tag). This way, it lowers the possibility of finding the wrong
synonym for an input word. Plus, NLTK has an API that provides access to
it.[28]

2.5.2 General Inquirer

This dataset provides additional meaning to words created in mid 1990’s. It
basically is an output of a mapping tool that maps input files from researchers
to categories. The dataset was developed for social-science content-analysis
research applications. An impulse to create it came from realization that
it is hard to reach consensus on categorization words in this manner. So,
a complex algorithm that can in somewhat unbiased manner assign words to
selected categories was desired. The analysis is carried out on a large set of
documents focusing on word frequencies. During the analysis, before a word is
assigned to particular category, it removes regular suffixes and performs other
disambiguation operations. Output of the algorithm is controlled to a certain
extent by user input (weights of each category or contrast ratio between word
frequencies).[50]

Currently, it combines 5 different sources to assign words to any number
of 182 categories. The category with the most words in it is ”negative” which

47There is several language mutations of WordNet available online - Arabic, Chinese,
German and others

48WordNet statistics are available at http://wordnet.princeton.edu/wordnet/man/
wnstats.7WN.html
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has 2,291 entries (out of 4,206 words). Here is the list of several interesting
categories which are used in this thesis (more categories was used for sentiment
analysis in section 3):

• positiv A set of words having positive outlook (for example adore, angel
or assist). It contains 1,915 words and ”yes” words are excluded from it.
This category is extended version of ”Pstv” category with 1,045 entries.

• negativ A set of words having negative outlook or connotation (for
example accuse, darken or desert). It contains 2,291 words and ”yes”
words are excluded from it. This category is extended version of ”Ngtv”
category with 1,160 entries.

• active There is 2,045 entities expressing an active attitude or orientation
(for example act, break or control).

• passive There is 911 entities reflecting a passive orientation (for example
inherent, permit or stand).

• strong It includes 1,902 entities implying any form of strength (for
example act, enrich or endure).

• hostile A subset of words which indicate hostility or aggressiveness to-
ward something or somebody (for example anger, betray or combat). It
contains 833 entities.

• yes A group of words indicating agreement (for example agree, right or
sure). There are 20 entries.

• no A group of words expressing ”no” (for example no, nope or wrong).
There are only 7 entries.

2.5.3 Large movie reviews corpora

This dataset[51] is specifically designated for binary sentiment classification.
In its current version, it includes 50,000 IMDB reviews with equal split between
positive (score >= 7) and negative (score <= 4) reviews (classes). Both classes
are further split in half to a train set and a test set. However, there is no expli-
cit note claiming that each review is for a different movie in the same set. On
the other hand, it is guaranteed that reviews from train set are for different
movies than the ones in test set. [51]

Each review is relatively short - containing about 20 sentences. Also,
numbers or other numeric reference that can clearly suggest the final score
have been removed in preprocessing phase. Yet, HTML tags are present.

This dataset is similar to commonly used Movie Reviews corpus available
in NLTK. Since it is used as a validation set in this thesis for created sentiment
model, and due to the nature of the sentiment model, its purpose is to be, as
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different from commonly used dataset, as possible. For a validation set, it is
unnecessarily too large. Considering all reviews, model would have to classify
approximately 1, 000, 000 sentences ever time. This classification would take
a very long time and provided only marginally better results. Because of this
performance issue, only a small, yet carefully selected, portion of the dataset
is sampled for benchmarking (more information in Chapter 3).
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Chapter 3

Sentiment Analysis

One of the goals of this thesis is to attempt to create a domain-independent
sentiment model. The model is later applied in Chapter 4 to examine the be-
havior of justices. Since they cover many different topics during their hearings,
the model needs to be versatile enough to accommodate discourse in multiple
domains. As argued in section 2.2.2, simpler models may offer comparable
accuracy to the complex state of the art algorithms. Indisputably, their ad-
vantage lies with being easy to tweak. Whereas, complex stochastic model
leaves much of the decision behind elaborate hidden structure controlled by
multiple parameters.

In the last section of this chapter, a developed model is trained and tested
on MPQA corpus that contains combination of documents covering distinct
domains (more information in section 3.1). Furthermore, the section explains
what feature are extracted from dataset. Then, it argues how they are selec-
ted for the final model. Lastly, parameters of the selected statistical model
are tweaked to achieve the best trade off between high average accuracy and
balanced per-class accuracy of the model.

In order to verify domain independence of the trained model, it is later
verified on Large movie reviews corpus (see section 2.5.3).

3.1 MPQA Dataset and Ranking Algorithm

This dataset was created in 2002 as part of workshop on ”Multi-Perspective
Question Answering”. The most up-to-date version as of writing this thesis
was 3.0, but the thesis works with version 2.0 because it provides more docu-
ments, yet includes all relevant annotations. In total, it contains 692 manually
annotated documents from five main sources (see Table 3.1). [52] Clearly, the
annotated documents are selected to cover a variety of distinct topic. Granted
the number of documents per topic is not big, it still gives researchers a decent
set of documents to train their models on.

57



3. Sentiment Analysis

Table 3.1: Sources of documents in MPQA 2.0 corpus

Source Description

MPQA Original sub-
set

This subset contains original documents (articles
from various foreign and U.S. newspapers).
Majority of the documents is tied to one of
the 10 main topics such as economy, space or
politics. A smaller subset was randomly selected
from 270,000 documents.

OpQA (Opinion
Question Answer-
ing) subset

It contains 98 documents which were annotated for
the research on opinion answering models. Only
documents that contributed to one of the 30 defined
question are annotated. Out of those questions,
exactly one half is opinion-based and the other part
is fact-based.

XBank This medium-size subset (85 documents) contains
articles from Wall Street Journal included in Penn
TreeBank corpus.

ULA (Unified Lin-
guistic Annotations)

This small subset contains only 48 documents cov-
ering one category (out of six categories which
include travel guides, 9/11 reports or transcrip-
tions of spoken conversation). All documents are
annotated.

ULA-LU (Language
Understanding)

Another small subset that contains only 24 docu-
ments which fall into one of the five distinct cat-
egories (spoken language transcriptions is one of
them)

As a byproduct of [40], the work also created a Subjectivity Lexicon that
contains 8,219 entries. One word may have multiple entries for different POS
tags. Each entry bears four information:

• Type of polarity. It defines strength of polarity determined by the word.
Possible values are either weaksubj or strongsubj.

• POS tag it represents. Some words can have multiple entries for every
POS tag they can be assigned. Instead of using universal set of POS tags,
they stick to their own naming convention which is easy to understand.
One of the possible values is anypos.

• Stemmed denotes, if the entry contains a word that is already stemmed.
Unfortunately, the material does not specified which stemming algorithm
they used in process.
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• Priorpolarity represents the polarity that the entry word evokes. On
top of ordinary values positive and negative, there are two additional
classes - neutral and both - that help to better understand the word.

3.1.1 Ranking Algorithm

The proposed ranking algorithm uses only subset of annotations provided in
MQPA corpus, because many of them have descriptive nature. When devel-
oping the ranking algorithm, only a subset of annotations was used. There is
a simple reason backing this decision. Other annotations provide additional
information about their target or just identify a phrase that annotators feel is
relevant to the sentence. However, they were created manually and it would be
hard to create yet another model that is capable of detecting similar phrases
in documents. Therefore, only these annotation types which bear sentiment
or opinion are used:

• GATE expressive-subjectivity marks words or phrases that indir-
ectly express an opinion about a subject.

• GATE direct-subjective provides information about target’s opinion
(sentiment) on a specific subject in sentence.

• GATE attitude represents attitude of a subject toward a target in
sentence.

Here is an example of one annotation from document ”20010627/23.46.20-
17835 ”49. The phrase is ”is believed”. Every annotation has an identifier that
is unique within the document (first value). In their original form in corpora,
only indexes to beginning and end of the phrase are provided (second pair of
values):

48 1785,1796 string GATE_direct-subjective

expression-intensity="low" attitude-link="a2" intensity="low"

nested-source="w, implicit" polarity="neutral"

The corpus contains 35,359 annotations. Not every sentence or even every
have at least one annotation, though. In fact, out of 15,802 sentences, only
9,785 sentences contain at least one annotation (their frequency is shown in
Table 3.2). When considering distribution of their frequencies, only 1,96 %
of sentences (192 sentences) contains more than 10 annotations. An average
number of words in those sentences is 48 (minimum is 24 and maximum is
161). However, the third quantile of word count in those sentences is 58 which
is rather close to the mean. Therefore, there is only a few sentences (less than

49All documents from MPQA in this section are references following the same naming
convention - set/document name
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Figure 3.1: Final version of ranking algorithm for MPQA corpus

48) having significantly larger number of annotations. This suggest that there
might not be as much information in every sentence from in set, as in other
sentences. Due to their low count in comparison to the rest of dataset, there
is not enough information for any model to reliably learn learn their traits.
Instead, these outliers could cause overfitting of the model for these specific
cases. Therefore, they are excluded from further analysis.

In contrast, an average number of words in sentences with less than 11 is
23 (minimum is 1 and maximum is 136) and its third quantile is 31 words.
When looking at sentences with more than 30 words (2,464 of them), 66
% of them have up to 40 words (see Figure 3.3). Sentences in this subset
have 4 annotations on average and 90-th percentile of number of annotations
is only 8. Considering the ratio, these sentences contain . This suggests
that there may not present enough information to make a precise decision
about their sentiment. The rest of the sentences have wide range of word
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Annots Sents

1 1,256
2 2,864
3 1,757
4 1,342
5 873
6 575
7 401
8 258
9 149
10 118

Figure 3.2: Distribution of counts of annotations in sentence in MPQA corpus

counts and annotation counts which makes data sparse and not useful for
other preprocessing as well.

To sum it up, only sentences with at least one annotation are selected for
sentiment analysis. Out of them, only sentences with maximum of 30 words
are used in the dataset for training and testing of the created sentiment model.
So, 7,113 sentences can be used to train and test the model.

Before the model can be train and tested on MPQA corpus, every relevant
sentence has to be ranked. Initially, the effort was to create a three-step
process with five possible classes, in which each step would provide only partial
answer. Workflow of the initially proposed classification process was following:

• Step 1 determined, whether sentiment can be detected, or not (class
”undetected” or advancing to Step 2 ). This was meant to be a crucial
step as it was meant to lower number of false positives in results.

• Step 2 decided general class of the sentence. Either, it has polarized
sentiment (positive or negative further specified in Step 3a) or mixed
sentiment (neutral or mixed further detected in Step 3b).

• Step 3a classified a sentence into one of the classes - positive or negative
- and assigned it intensity as a number in range < 0, 1 >.

• Step 3b classified a sentence into one of the classes - neutral or mixed -
and assigned it intensity as a number in range < 0, 1 >. Sentences with
mixed sentiment contained dominant traits of both polarized classes.
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Figure 3.3: Frequency of word counts in sentences with at least 31 words

To get the final sentiment classification, all three parts would be evaluated
together. Additionally, the model was meant to estimate intensity of the
detected sentiment as well. This approach followed mindset proposed in [40]
so each step would be implemented as a separate, simple, regression classifier.

However, after extensive work on the ranking algorithm and fine-tuning
its parameters, this path proven to be a blind alley for several reasons. The
biggest problem is the lack of data. Not all annotated documents are written
in English language and in Latin alphabet. So, these sentences are excluded
from the set. 50 Thus, the whole set contains 7,040 sentences. Lets consider
a case, when for each class, there is 10 different values. There are 4 classes
and sentences in each of them should have from 1 to 30 words. In ideal case,
4 or 5 different examples should be sufficient to learn the pattern (preferably
even more, since the effort is to create domain-independent model). Putting
it all together, the model would require 4,800-6,000 sentences.

In theory, the dataset has enough data. Unfortunately, the date is rather
sparse. Figure 3.4 displays distribution of sentiment intensities in dataset after
normalization. The ranking is performed by algorithm described later in this

50Names of documents written in non-Latin alphabet with annotations are
”im 401b e73i32c22 031705-2”, ”IZ-060316-01-Trans-1”, ”20000815 AFP ARB.0084.IBM-
HA-NEW ”, ”NapierDianne”
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section. The graphs clearly demonstrates that even after considerable effort
to separate different levels of sentiment, there is not enough clues. In class
positive, there are two dominant spikes around values 0.7 and 0.8 which cover
majority of positive sentences. Therefore the trained sentiment model would
be biased to estimate a great portion of inputs around these values.

Another problem is in distribution of sentences in classes in dataset. There
is only 364 annotations (out of 35,359) having polarity equal to, either both,
or uncertain-both. Clearly, working with only 1 % of annotations does not
provide enough clues to reliably work with the class. Other combinations of
annotations (e. g. equal number of positive and negative annotations with
similar features) were tried to compensate for this lack with no significant
results. Therefore, class both is not included in the final sentiment model.

Considering all above, the initial idea for sentiment model was abandoned,
so the ranking algorithm had to reflect the change. As it turned out, estim-
ation of the intensity would not be reliable. Thus, even though the final
proposed ranking algorithm gives a score in range < −1, 1 > to every sen-
tence, the score has only informative character. Assigned constants to values
of each possible value of annotation properties were initially given empirically.
Then, after several iterations to achieve cleaner cut of data for each class,
the constants stabilized. After the sentences are ranked, their score has to be
normalized to range < −1.1 > using:

sentimentpos =
value−minpos
maxpos −minpos

(3.1)

sentimentneg =
value−minneg
maxneg −minneg

(3.2)

In order for a sentence to classify as neutral, its sentiment intensity has
to be within interval < −0.1, 0.1 > after normalization. This interval was
deduced empirically after several iteration followed by manual verification of
results on a small representative sample (30 random sentences from each class,
ideally, having various word counts).

The final distribution in classes is shown in Table 3.2. Counts of sentences
are not roughly equal, but, according to distribution of annotations in dataset,
it seems valid. There is only 22 % annotations with some degree of negative
polarity. But, 15,44 % of them have low or neutral intensity. Also, number of
negative annotations is absorbed by neutral class because of being in sentences
with positive annotations. On top of it, negative sentences tend to have more
negative annotations in them.

The complete diagram that shows the final ranking algorithm is pictured
in Figure 3.1. Values for each attributes are listed in Appendix B.
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Figure 3.4: Frequency sentiment intensity in dataset for class positive and
negative

Sentiment # of Sentences

Negative 836
Neutral 2,071
Positive 2,692

Table 3.2: Distribution of sentences into sentiment classes by ranking
algorithm

3.2 Feature extraction

This work proposes a different approach to modeling a sentiment model than
many other works. They work with word tokens themselves or their n-grams.
This work, instead, takes advantage of number of dictionaries. Thus, they can
be later refreshed to update the model without having to retrain it. Extracted
features can be split into several main categories (all words are stemmed with
Porter Stemmer2.1.4.1 before they are extracted):

• Category Counts focuses on counting words which belong to specific
categories defined by vocabularies. This features tells the model general
context of the sentence. There are two special categories in dataset
- priorpolarity and priorpolarity-type - that are set for every word in
the dictionary (see below why) and can be also considered additional
attributes. Strength and polarity of every word in the vocabulary is
further defined by them.
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• Negation-related features shed light on dynamics in the sentence.
Its simpler version define, whether any word from specified category is
in front of (or after) any negation word in the sentence. More complex
version counts how many words from the category there are around
negations.

• N-gram features are related o Category Counts, but are restricted to
neighborhood of only a few words. Therefore, they do a decent job of
detecting local clues for sentiment. Length of n-grams is an important
factor which will be further discussed later..

• POS n-grams further enhance n-gram features by including respective
POS tags to every word. They should help to disambiguate complex
cases. While their length is also important, there are different reasons
behind them being shorter described also later in the section.

• Comparison features indicate which word category dominates in the
sentence over another one. These binary features provide a brief, yet
consistent, view on context in sentences. On its own, the future carry
very little information. But, together with more descriptive features, it
helps to tip the scales when necessary.

• Other features provide meta information about the sentence like punc-
tuation.

Before feature extraction starts, all articles from sentences are deleted,
because they do not convey any relevant information.

As one of first steps in process of feature extraction, General Inquirer and
Subjectivity Lexicon from MPQA dataset are combined together to form one
consistent vocabulary. Since there are several instances of a case when one
word has multiple entries, two situations can happen. Either there is an entry
with ”anypos” POS tag, so that entry is used. Otherwise, the first entry from
the subset is selected.

POS-related features help to approximate syntax tree analysis. In order to
deduct required relationship between words, the n-grams need to be longer.
Based on preliminary tests, n-grams with more than 6 words create very sparse
space which made their usage in models unreliable. In contrast, n-grams with
less than 4 words do not contain enough additional information to be useful
in the models. In the end, tests shown that n-grams with length 4 or 5 offer
a great compromise in this case. Example of one POS feature is:

count how many adjectives or adverbs with attribute priorpolarity=positive
is there before a noun in any 4-gram

Together, 161 features is extracted. For the complete list, see Tables
C.2, C.3, C.4, C.5, C.1 and C.6 in Appendix C. Although, only a subset of
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these features is used in the final sentiment model. Feature selection process
is described in detail in Section 3.3.

3.3 Training and results

Final sentiment model is built on Random Forest Tree classifier51. In
Scikit library, this classifier uses Decision Trees using CART algorithm. How-
ever, several other possible stochastic models were tested in the process and
discharged for various reasons. The selected data samples provided a few
challenges during the training process.

One of the first problems was imbalanced dataset. According to Table
3.2, clearly there is more neutral or positive samples than negative samples
in the dataset. The difference is so significant that any stochastic models
became quickly overtrained during the experiments. All of them tended to
be biased toward the dominant class. This issue was remedied by making a
stratified selection from each class. Thus, each class had the same amount of
data samples in the each set (train or test). In order to keep as many samples
as possible, all negative samples are used and the same amount of positive
and neutral samples are randomly selected from the respective classes. Thus,
2,508 sentences are used for training and testing the model. This approach
also solves the problem how to determine baseline for the experiments. When
each class is evenly distributed in the dataset, then the created model has
baseline accuracy 33 %. In this section, when talking about accuracy,
author always talks about the best achieved accuracy on the given test set.

Another problem was to determine, whether two-step binary classifier
would have better overall accuracy than one-step multi-class classifier. Gener-
ally speaking, two-step binary classifier in this given situation is a variation to
One-to-Rest approach. Early in the process, the idea was to have two separate
classifiers:

• First one having classes Neutral and Non-neutral

• Second one having classes Positive and Negative

In this configuration, each class was classified by the first classifier. If its
class was Non-neutral, second classifier determined its final class. Several dif-
ferent underlying stochastic models were tested with no significant differences
in result on test set. In order to check reliability and stability of the tested
model, 3 and 5 way cross-validation is performed each time with stratified
parts. For both steps, the same statistic models were used at a given time.

51Description of Random Forest Tree implementation in Scikit
can be found at http://scikit-learn.org/stable/modules/generated/
sklearn.ensemble.RandomForestClassifier.html
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3.3. Training and results

Since this approach was inspired by work in [40], AdaBoost boosting en-
semble method was also included in experiments. This algorithm underlines
the philosophy of this work - combines several weak components together to
create more stable and more accurate model. Its components (another clas-
sifiers) are added sequentially and trained separately using weighted data.
Training phase repeats until one of the pre-set conditions is met (e. g. no
further improvements in accuracy were achieved or maximum number of clas-
sifiers defined by user has been reached). Its prediction is made by calculating
weighted average of all the classifiers.[53] One of the drawback of this ensemble
model is its tendency to being easily thrown off by outliners.

During the measurements, models using AdaBoost in combination with
various other stochastic models (SVM, Decision Tree or Naive-Bayes) shown
to perform rather comparably - poorly. For performance-issues, Random
Forest Tree was not tested in combination with AdaBoost, because the train-
ing phase took rather long time. In general, any above-mentioned stochastic
model alone without the AdaBoost performed about 3-4 % better. Unfor-
tunately, the best results provided by Random Forest Tree were still around
70-72 % in 5-way cross-validation in step one and around 67 % in 5-way cross-
validation. For 3-way cross-validation, their accuracy was even lower. Despite
the mentioned individual accuracies being higher than the baseline, the over-
all accuracy was only marginally better than the overall baseline. Also, the
first classifier was biased toward Neutral class which caused large number of
false positives. This behavior suggest that the problem is two-fold. Firstly,
selected dataset do not offer enough samples for the models to train on them
using the mentioned features reliably. Secondly, selected features may not
be descriptive enough for this model. Therefore, two-step model concept was
abandoned and one multiclass classifier was developed instead.

The last outstanding problem was feature selection. Not all extracted fea-
tures are eligible for the model and carry enough information to be important.
Usually, this problem is solved by maximizing Information gain52 which ex-
presses difference between two probability distributions. Its multiclass version
for m classes and feature x is defined by formula:

G(x) = −
m∑
i=1

Pr(ci) ∗ logPr(ci)

+ Pr(x) ∗
m∑
i=1

Pr(ci | x) ∗ logPr(ci | x)

+ Pr(x̄) ∗
m∑
i=1

Pr(ci | x̄) ∗ logPr(ci | x̄)

(3.3)

As discussed in [54], it is a great tool to condense a large number of

52Also known as Kullback-Leibler divergence
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features in dense feature space together. When used on thousands of features,
it produces relatively well results ([54] claims to achieve 98 % precision). This
metric selects features which have their IG above predetermined threshold. In
text classification problems, this metric focuses on finding dominant terms in a
vast set of words (tokens from all documents in training sets). Since this work
approaches to text classification problems differently, IG does not provide
reliable results to select only relevant features. Therefore, a new, simpler,
combined metric called Ratio Occurrence Index (ROI) is proposed to
select only important features. It combines two metrics together for the given
class and feature to express their potential for the model. They are calculated
using following formulas:

ROI(cw, fi)feature−ratio =
countpresent−value(ci, fi)

countdifferent−values(ci, fi)

ROI(cw, fi)total−ratio =
countpresent−value(ci, fi)

countsamples

where:

• countpresent−value(ci, fi) is number of samples having feature fi set to
non-default value and belonging to class ci

• countdifferent−values(ci, fi) is number of different values of feature fi in
samples belonging to class ci

• countsamples is number of samples in dataset

This metric tries to look at each class individually and limit its descriptive
features by detecting very dominant features. In essence, they pose a problem
for model as they tend to make it bias toward their class. ROIfeature−ratio
address this issue. It calculates how often, on average, the same value of
feature fi occurs in samples from class ci. The bigger this number is, the
more descriptive this feature is. In contrast, if the ratio is too big, then values
are too sparse. Experiments provided clues that ROIfeature−ratio value for
samples c̄i

53 holds informative value. In terms of class ci and feature fi, this
value offers an insight on how descriptive fi is for other classes as well. The last
control part of this metric is ROItotal−ratio which makes sure that the feature
fi covers representative portion of dataset. Its value is in range < 0, 1 > and
the bigger its value is, the bigger portion of dataset this feature in class ci
covers. This criteria helps to filter out weak features.

Experiments shown that each class in the sentiment model requires different
thresholds for ROI metric (see Table 3.3). Selected features from each class
are combined together using set union operation. Numbers of selected features
are 86, 73 and 45 for classes Positive, Negative and Neutral, respectively. After
union, model uses 87 features in total.

53Samples in dataset that do not belong to class ci
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Sentiment ROIfeature−ratio(ci) ROIfeature−ratio(c̄i) ROItotal−ratio(ci)

Positive 2.5 No restriction No restriction
Negative 2.2 4.0 No restriction
Neutral 2.5 No restriction 0.05

Table 3.3: Thresholds for feature selection for classes in sentiment model

As mentioned above, created model is also validated against a completely
different set - Large movie reviews (see section 2.5.3 for more information
about the dataset). As opposed to the final sentiment model, this dataset
contains only whole reviews and no reviews from Neutral class. There is no
information about sentiment of every individual sentence in reviews. There-
fore, following approximation of sentiment estimation is used for validation
purposes:

• Each review is split into individual sentences

• Each sentence is assigned to one of the three sentiment classes (Positive,
Negative or Neutral)

• Positive, negative and neutral sentences are counted and the class with
the highest number of sentences is assigned to the review

Since this dataset contains only positive and negative reviews (both classes are
equally represented in the dataset), baseline for any sentiment model is 50%.
Just to make a sanity check on the dataset, another simple classifier is tested
on it. This model extracts only two features (again, all words in dataset are
stemmed by Porter Stemmer - see section 2.1.4.1):

• Number of words in sentence is also in Sentiment Lexicon and have
priorpolarity equal to positive

• Number of words in sentence is also in Sentiment Lexicon and have
priorpolarity equal to negative

The final class of sentence is determined by larger number of featured. If both
features are equal, sentence is Neutral. Then, the same evaluation process is
applied on each review to classify it. For performance reasons, only a subset
of the dataset is evaluated - 1,000 positive and 1,000 negative reviews. Each
rating is represented in the class by equal number of reviews, in order to ensure
proper sampling of the dataset.

Measured average accuracy of the simple model is 52.5 %. Table 3.4 shows
confusion matrix 54 after the classification. Even though average accuracy of
the model performs above the baseline, its per-class accuracy clearly portraits

54Confusion matrix contains information about predicted and actual classifications.
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the fact that this model is highly biased toward Negative class. Around 71
% reviews is classified as Negative. As a result of this imbalance in overall
accuracy, this model is unreliable. However, it demonstrates that the dataset
contains clues to create model which would surpass the baseline accuracy. Yet,
the clues are not so trivial and descriptive that any simple classifier can use
them to reliably classify reviews. Thus, it is possible to use it as validation
set for this experiment.

Final sentiment model uses Random Forest Tree as its underlying stat-
istical model. After experiments with other stochastic models (and simple
feedforward neural network with back-propagation) or their combination with
AdaBoost , it proven to provide the most reliable results. In the final model,
higher accuracy is sacrificed to more balanced results in class accuracy. In real-life
application, model that has statistically almost the same chances to classify
a sample to any given class correctly gives more persuasive outcome. Also, a
slight bias toward Neutral class is more desirable than toward any other class
due its nature.

There are three parameters which need to be optimized for the selected
stochastic model:

1. max features determines strategy that figures out how many features
is looked at when considering the best split

2. max-depth defines maximum depth for any estimator in the forest

3. n estimators denotes maximum number of created estimators in the
forest

Parameters 2 and 3 are closely connected so they cannot be tuned in separa-
tion. Only max features parameter can be taken out and set up individually.
There are three possible strategies - |F |, log2(|F |) or sqrt(|F ) features are
considered, where |F | represents number of selected features. Dealing with
too many of them when considering splitting decision tree makes it harder
for the model to decide (which may lead to undertraining of the model). So
only, either second, or third strategy can be used. When working with a huge
number of estimators, it does not matter which strategy is used in this case.
In the worst-case scenario when all features are used, log2(161) = 7.33 and
sqrt(161) = 12.69 , so there is no significant difference between the numbers
in comparison to 161. On the other hand, when dealing with smaller sets of
features, strategy 2, log2(|F |), is preferred.

Other two parameters are estimated based on series of measurements.
When max-depth is bigger, then estimators tend to overtrain on individual
samples. On the other hand, setting it too low allows the model only to learn
general rules about the training set. These rules proven to not be sufficient
enough to reliably detect sentiment. Not even with a significant number of
estimators (more than 1,000). At the same time, considering large number
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Predicted
Positive Neutral Negative

Actual
Positive 0.247 (247) 0.143 (141) 0.610 (610)
Neutral 0 (0) 0 (0) 0 (0)

Negative 0.103 (103) 0.094 (94) 0.803 (803)

Total 0.175 (350) 0.119 (237) 0.707 (1,413)

Table 3.4: Confusion matrix for simple classifier on Large movie reviews
dataset

Predicted
Positive Neutral Negative

Actual
Positive 0.523 (49) 0.344 (32) 0.129 (12)
Neutral 0.172 (16) 0.634 (59) 0.194 (18)

Negative 0.118 (11) 0.387 (36) 0.495 (46)

Total 0.272 (76) 0.455 (127) 0.272 (76)

Table 3.5: Confusion matrix for trained classifier on MPQA dataset

of estimators with bigger max-depth is also not a good option. The model
reaches a stable state during training phase55 rather quickly when using es-
timators with bigger depths (overtrains), so excessive number of estimators is
not an universal answer. Experiments shown that their number should be in
range < 200, 800 >.

When tested on provided set, the final model performs rather well (see
Table 3.5) with average accuracy 54.8 %. Even though the model is slightly
biased toward Neutral class, it is fine, because neutral sentences do occur more
often in ordinary language. No other class is showing signs dominance over
the other class.

On validation set, the created model performance does not decrease. It
manages to maintain above-baseline accuracy 54.5 % with class accuracies
50.2 % and 58.8 % for Positive and Negative class, respectively (see Table
3.6). The result proves domain independence of the model, as train set does
not contain movie reviews data. Also, in comparison to simple classifier, it is
not significantly biased toward either class. This makes its output even more
reliable.

The created model is stored as model 8 - Random Forest Tree - trained
having best accuracy with parameters max-depth=7, max features=log2 and
estimators=800 using cross-validation = 9.

55When any additional training will not result in any significant improvement of the
model
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Predicted
Positive Neutral Negative

Actual
Positive 0.588 (588) 0.141 (141) 0.271 (271)
Neutral 0 (0) 0 (0) 0 (0)

Negative 0.346 (346) 0.152 (152) 0.502 (502)

Total 0.467 (934) 0.1465 (293) 0.387 (773)

Table 3.6: Confusion matrix for trained classifier on Large movie reviews
dataset

3.3.1 Final Evaluation

The final MPQA dataset (with balanced number of samples in each class)
has baseline for overall accuracy 33 %. Even thought it is lower than
state of the art model developed in [41] with overall accuracy 66 %, this
model is biased toward one class and supports only two-class classification
of sentiment. Therefore, the trained model outperforms it in both overall
accuracy, and accuracy for individual classes. On top of it, validation on
completely different dataset proved its stability on datasets with previously
unseen domain. Consequently, it can be reliably used in Chapter 4 to detect
sentiment of participant turns during Oral Argument.

Table 3.7 shows counts of features in the final model. As expected, ma-
jority of selected features in model (almost 61 % ) are Category Counts and
Negation-related features. Thus, approximated structure of any sentence in the
model is captured in almost 38 % of the features (1 % is reserved for other
feature). Ratio between these two groups of features demonstrates extensive
emphasis of the model on content of sentences.

Observation shows that Category Counts features takes up the biggest
portion of all features. Intuitively, this is correct approximation, as context of
sentence is to most variable element in it and is related to its domain. Also,
higher number of Negation-related features suggests that the model should be
able to learn more complex negation patterns in sentences. They are supported
by the rest of features which add informations about structure of the sentence
to improve disambiguation. Given the number of features in both N-gram
feature categories, the model is able to learn only slightly advanced sentence
patterns. Considering size of the training set, it is more desirable to learn
smaller number of patterns better. There is not enough data in the dataset
to learn complex patterns reliably. Therefore, their number is corresponding
to what their role in the model is.

Only sarcasm detection is not directly covered by any feature. Since it is
very hard to detect and formal nature of Oral Arguments does not allow much
room for using sarcasm, it is allowed.
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Feature Category Count Portion

Category Counts 31 35.6 %
Negation-related 22 25.3 %

N-grams 15 17.2 %
POS N-grams 9 10.3 %
Comparisons 9 10.3 %

Other 1 1.2 $

Table 3.7: Distribution of feature categories in feature set of the trained sen-
timent model
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Chapter 4

Oral Argument Analysis

Second goal of this thesis is to analyze the Oral Arguments from the US
Supreme Court. As a result of it, it should create a model capable of predicting
outcome of a discussed case. This thesis takes a different approach to the
problem than other related works in recent years (see section 4.1). Every
step of the process from data preparation, feature extraction to training and
testing the final prediction model is described in following chapter. First
of all, transformation of PDF file to its text form is explained. Then, the
extracted data are analyzed via myriad of customized reports to gain an insight
on justice’s behavior. This step uses a custom-made sentiment model from
Chapter 3 to extract sentiment from every turn. Also, it uses other simple
techniques described in detail in section 2.1. Lastly, it takes the extracted
features and evaluates them to select only dominant ones to avoid problems
with under/over training.

4.1 Related Works

There is only a few works which cover a similar topic. Probably the most
recent one is CourtCast model developed by Chris Nasrallah[55] that also
uses purely oral arguments features. The model use linear SVM statistical
model to predict outcome of the case (whether the petitioner wins or loses).
The author claims to achieve 70 % accuracy with its predictions. On input,
it receives the text from justices and sentiment for words in turns of the
dialog. Unfortunately, author never explains how to detect sentiment of the
words. Under the hood, model extracts most used words during the dialog
and compares their sentiment with bag-of-words approach. Then, it uses a few
other features like number of times a justices interrupts a lawyer. Considering
its results, the work provides relevant information on possible set of features
which may help to predict outcome of the case. Also, it makes a valid point
that prediction of individual votes of justices does not provide substantial
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4. Oral Argument Analysis

additional value to the outcome. However, development of the model stopped
in May 2015 and is no longer maintained.

Another interesting work is thesis done by Timothy Hawes from Cornell
University[56]. His work examines turn-taking patterns and tries to use them
to predict outcome of the case. While it strongly argues that patterns can be
reliably use in model, their informative value is questionable. For once, it is
highly probable that their turn-taking is influenced by their seniority status in
the group. Therefore, younger justices tend to interrupt senior justices a lot
less and vice versa. This suspicious is partially confirmed by findings in [56].
Author claims to achieve accuracy around 65 %. During the experiments,
author observed that SVM from LIBSVM 56 classifier outperforms Decision
Tree classifier implemented in WEKA 3.6.0 57. This behavior is not observed
during experiments in this thesis.

Last but not least, there is a rudimentary work from Feldman [57] carried
out in 2016 that also uses bag-of-words approach. Instead of making pre-
dictions, it only studies behavior of justices during the oral argument of one
specific case - hole Woman’s Health v. Hellerstedt (No. 15-274). The analysis
also uses sentiment analysis. However, again, the sentiment model is rather
basic - a small sentiment dictionary is used to detect sentiment on per-word
basis. Despite this flaw, the work provides clues on relevant features which
may bear enough information to predict the outcome. Also, as one of the few
works mentioned in here, it splits the oral argument into two parts (petitioner’s
questioning and respondent’s questioning) and analysis them separately. The
author presents that sentiment plays a significant role when predicting out-
come of the case. Another important feature seems to be questions. Their
amount and set-out appear to hint justice’s intentions.

4.2 Oral Arguments Dataset

Basic description and information about this dataset is in section 1.3.1. This
section focuses on how to transform PDF files to clean text. Furthermore, it
explains the process of preprocessing transformed text for later analysis.

There is no complete consistency in format of every Oral Argument PDF
file in the dataset. At the beginning, there may or may not be a cover page
introducing the case. As with the rest of the document, there is no strict
structure of the cover page so it cannot be reliably parsed and used to gain
more features either. Also, there is Index at the end of majority of Oral Argu-
ments with list of words. Any open-source library had a great deal of difficulty
to read it all correctly and reliably (without typos in words). Therefore, only
actual dialog between petitioner, respondent and justices is read from the file.

56LIBSVM is an open-source library that implements SVM classifier in multiple languages
https://www.csie.ntu.edu.tw/~cjlin/libsvm/

57WEKA is an open-source collection of machine learning algorithms written in Java
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Every parsed document from years 2013-2015 is in one of the following
formats:

• bottom-middle signalizes that page number is in the middle of footer
of every page with dialog lines (see Figure 4.2)

• top-right represents pages in which page number is in top right corner
of every page with dialog lines (see Figure 4.1)

After experiments with several open-source libraries, it appeared that it is
rather difficult for them to recognize all text on the page as-is. Hence, only
relevant region containing only dialog of text is extracted from each page.
Unfortunately, some pages contain misplaced words outside of this region. In
current approach, these words are intentionally ignored as they are hard to
recognize them and consolidate them rest of the text accurately. Respective
figures also mention offsets to crop only text part of the page.

During the transformation process, every page is converted to a black-
and-white image with 300DPI58 using ImageMagick library in Python. Even
thought it is computationally more demanding to run text recognition on
image with 300DPI, smaller images do not provide enough information to
recognize every character correctly.

Two other enhancements helped Tesseract OCR to achieve 100 % accuracy
when recognizing text from Oral Arguments. Firstly, a high-pass filter is
applied on every pixel to alter its color and remove noise. A simple threshold
filter following this formula is sufficient for this task:

threshold(x, y) =

{
1 , ifcolor(x, y) > θ

0 , ifcolor(x, y) <= θ

where:

• color is defined in range < 0, 1 > when 0 is complete white and 1 is
complete black

• colorx, y is a function that returns color of pixel at position x and y

• θ is the selected threshold

This filter sharpens edges of characters in order to make them easier to read.
Based on several measurements, Tesseract OCR achieved the best accuracy
with θ = 0.4508.

Second improvement is training Tesseract OCR only to recognize font used
in these files. In order to do so, whole Tesseract OCR model was deleted and

58DPI stands for Dots Per Inch and symbolizes how many pixels is fit on a line with
length 1 inch
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trained on several manually annotated pages extracted from these files. Newly
trained model is enclosed on attached CD.

Even though both of these enhancements greatly improved accuracy of
recognized text, there two lasting problems. The first problem is caused by
hyphens. Since there is several types of hyphens and they are not used consist-
ently in PDFs, the model is not properly trained to recognize them and often
recognizes them as strange hyphen-like unicode characters. Therefore, they
need to be replaced with normal hyphen in post-processing phase of trans-
formation. The other problem is varying line height. Unfortunately, this issue
has not been solved for all documents. On a few occasions, the algorithm does
not place recognized words in the correct order. As a result, a few turns in
the dataset do not contain correct words. Since this problem occurs only in
0.14 % of turns in the dataset, it can be considered as negligible.

After the raw text representation of PDF file content is available, only
dialog is further extracted from it. In order to find beginning of the hearing,
the algorithm looks for line that goes:

P R O C E E D I N G S

This line is always followed by time stamp that declares at what time the
hearing started. Also, it is important to notice that there is a blank line after
every line with text.

Detection of the end of the hearing is slightly more complicated. There is
several variations of phrases that can be uttered by Chief Justice. Experiments
shown that there are two short sentences which reliably signal the end. Either
a variation to:

The case is submitted. (Whereupon ...)

Or:

(Whereupon, at ...)

Afterwards, the dialog text is sent for further processing, such as each
document is split into turns with following attributes using regular expressions:

• Person contains name of the person who speaks during the turn

• Role denotes role of the person in the case (JUSTICE or OTHER)

• Text contains full text spoken during the turn.

• IsInterrupted signalizes, whether the turn was interrupted by some-
body else (ends with ’–’)

• PositionDialog remembers position of the turn in terms of the dialog
and is in range < 0, 1 > (0 being the beginning of the dialog and 1 being
the last turn of the dialog)
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Figure 4.1: Example of one page from
oral argument in ”top-right” mode
with offsets in pixels

Figure 4.2: Example of one page from
oral argument in ”bottom-middle”
mode with offsets in pixels and un-
detected word the outside of reading
area

These attributes are further aggregated and extended in the next section
(Section 4.3).

4.3 Feature Extraction and Selection

This thesis works with 198 cases from terms 2013-2015. Each one of them
has been split into turns. Further, every turn has been split into individual
sentences. Unfortunately, original PDF files contain typos in words and names
of participants. These typos are corrected in merged extracts from datasets
(see Section 4.3)

There is several different ways how to look at this data. First of all, not
every justice has to speak during the Oral Argument. A great example of
”silence” justice is a justice Clerance Thomas who rarely speaks during them
(see Figure 4.3). Since there is only one Thomas’s turn in dataset, as an
outlier, is not being analyzed. Others show approximately the same tend-
ency to mostly engage with either petitioner or respondent during hearings.
Only justice Scalia seems to be significantly less interested in cases than other
justices. However, other two justices, Breyer and Alito, also seem to be no-
ticeably less interested in higher number of cases than the rest of the justices.
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Figure 4.3: Number of dockets each justice speaks up at least once during the
Oral Argument

Therefore, this when either one of those three justices shows interest in the
case, it is most likely somehow different from other cases. So, this becomes a
binary feature Important Case.

Another very interesting, yet rudimentary, view of dataset is number of
turns each justice has in all dockets and their average number (see Figure
4.4). It confirms that seniority of justices affects their willingness to speak
up during hearings. Chief justice Roberts having the highest seniority in
the group speaks the most often out of all of them. Then, the group can
be further split into dominant justices (Roberts, Sotomayor, Breyer, Scalia)
and more submissive ones (Kagan, Kennedy, Ginsburg and Alito) based on
total number of turns they have in dataset. This information is later use in
combination with other metrics to compute Activity Index for the docket (see
Section 4.4).

When looking at somebody’s willingness to speak, it is also important to
consider how much time he spent talking. This information is represented in
Figure 4.5 which shows number of words each justice uttered during hearings
and their average number per docket. Surprisingly, Kagan is in the second
place and Breyer is, by far, in the first place. These observations suggest
that some justices may come to the hearings with clear decision in their heads
(justices on the lower end of the Figure 4.5). Others need to extensively de-
scribe their point of view (higher end of the figure). In combination with their
dominance status inferred from their frequency to speak up during hearings,
it is a part of Activity Index for justices (see Section 4.4). There is not
enough data to calculate the index for other participants in the hearings.

A great indicator of how much a justice may be influenced during the hear-
ing is number of asked questions by individual justices. There are two phases
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Figure 4.4: Number of turns each justice has in all dockets together and their
average number per docket

of the hearing - Petitioner’s and Respondent’s part. Clearly, the amount of
questions asked during either phase is consistent with respect to role of the
participant (justice or other) and winning party. As expected, justices ask a
lot more questions than attorneys. Figure 4.6 also shows that total number
of questions asked by justices when Petitioner party wins the case ia almost
twice as big than when Respondent party wins. This is, however, caused by
larger number of cases in which Petitioner party wins. When comparing their
mean values, justices ask, on average, less question during the hearing, if Re-
spondent party wins (combined for both phases). Even closer look (see Figure
4.7) shows that justice Scalia tends to ask more questions when Petitioner
party wins. This is expected due to his habit to only speak when he is really
hesitant. In the end, both of these attributes are quantitative discrete features
total number of asked questions by justices and number of questions
asked by justice Scalia.

Another indicator of unusual behavior of justices is number of speech in-
terruptions. More interruptions of other participants suggests disagreement
with what they are saying (or defending at the moment). Table 4.1 shows
distribution of difference in number of interruption of both parties per docket
in dataset using formula:

interruptionsdiff =

interruptions∑
i

f(i)

where:

f(x) =

{
1 , ifx = petitioner

−1 , ifx = respondent
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Figure 4.5: Number of words each justice utters in all dockets together and
their average number per docket

Figure 4.6: Frequency of asked questions per different phase and type of dialog;
’res-other-pet’ means that winning party is Respondent, not justice is asking
the questions and it is Petitioner’s part of the hearing
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Figure 4.7: Frequency of asked questions per different phase and type of dialog;
’res-other-pet’ means that winning party is Respondent, not justice is asking
the questions and it is Petitioner’s part of the hearing

Winning Party interruptionsdiff < 0 interruptionsdiff >= 0 Total

Petitioner 42 (33.6 %) 83 (66.4 %) 125
Respondent 35 (47.95 %) 38 (52.05 %) 73

Table 4.1: Distribution of interruptions by justices in dataset

The result suggests that positive interruptionsdiff signals that the winning
party might be Petitioner. If this was a rule, only 38 cases would be incorrectly
classified. As such, the direct link between interruptionsdiff and outcome of
the case is not apparent at first. It comes from expectation that in order for
petitioner to win, the discussion during hearing should be more vivid on their
part (usually, they need to justify their case). Then, if justices have any doubts
they want to clear up (possible misinterpretation of law), they tend do jump
right into other’s turns. Hence, interruption difference interruptionsdiff
is used as a discrete quantitative feature. However, it is questionable, whether
the correlation imply causation. That is why two different set of features
should be tested - the second one without this feature - to see how it affects
results.

Next studied property of dialog is follow ratio among justices. These
metrics aim to identify any relationship between justice interaction between
each other and outcome of the case. Justice A follows justice B, if their turns
are separated by a single turn taken by non-justice participant of the hearing.
If somebody tends to follow another participant often, it suggests that both
of them share the same or have opposite opinion during the dialog. In other
words, they have tendency to influence each other. A quick look at who
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Justice
# dockets being Most Followed
regardless of winning party

Alito (AL)
RO
(47)

SC
(34)

KE
(27)

BR
(25)

SO
(23)

KA
(14)

GI
(11)

Breyer (BR)
SC
(54)

RO
(36)

AL
(29)

KE
(28)

SO
(19)

KA
(13)

GI
(9)

Ginsburg (GI)
RO
(57)

KE
(40)

AL
(24)

SC
(22)

SO
(21)

KA
(17)

BR
(15)

Kagan (KA)
SC
(35)

AL
(33)

BR
(28)

KE
(28)

RO
(26)

SO
(25)

GI
(20)

Kennedy (KE)
RO
(58)

GI
(32)

SC
(30)

AL
(28)

BR
(20)

KA
(13)

SI
(12)

Roberts (RO)
SC
(40)

SO
(33)

AL
(30)

BR
(28)

KE
(26)

KA
(21)

GI
(20)

Scalia (SC)
RO
(55)

BR
(31)

AL
(21)

KE
(17)

SO
(17)

GI
(14)

KA
(11)

Sotomayor (SO)
RO
(69)

BR
(36)

SC
(24)

KE
(24)

AL
(24)

GI
(12)

KA
(8)

Table 4.2: Distribution of Most Followed by in dockets per every justice

is followed the most by each justice (see Table 4.2) confirms the hypothesis
that seniority plays significant role during the hearing. It turns out that
almost every justice mostly follows justice Roberts during Oral Arguments.
The only exceptions are justices Breyer and Kagan. The first mentioned
most often follows justice Scalia regardless of winning party. On the contrary,
justice Kagan likes to follow justice Scalia when Petitioner party wins and
justice Sotomayor, if Respondent party wins. Both of them are respected
justices. Also, Roberts tends to follow after Scalia the most in majority of
cases. This findings confirm the seniority status and of Roberts and Scalia.
Thus, justices can be divided into 3 groups (influence circles) with respective
infidx (influence index) based on how often Roberts follows them the most in
cases:

• infidx = 1.25 justices Roberts and Scalia

• infidx = 1.0 justices Sotomayor, Alito and Breyer

• infidx = 0.75 justices Kennedy, Kagan and Ginsburg

Influence index is part of the Activity index for justices (see Section 4.4).
The index is not determined for other participants in hearings, because there
is not enough data for them to be safely deduced.

More advanced metrics is Topic Chain Index. As explained in Section
2.1.6, it looks for first and last occurrence of a noun phrase. TCI index
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says how many topic chains a docket contains. There are three important
properties of each topic chain:

• Intensity TCIint counts number of occurrences of the phrase in the chain

• Length TCIlen defines normalized distance between first and last occur-
rence of the phrase

• Size TCIsize counts number of characters in the phrase

TCIsize may seem like an odd metric, but it can be understood as a very simple
measure of how interesting the word is. When comparing most occurring
words in the dataset (see Table 4.3), phrases having at least 7 characters are
clearly more interesting. However, there are smaller noun phrases which may
be interesting. But, it is a good approximation of more complex metric to get
rid of ordinary (not most occurring) noun phrases.

TCIsize Count in Dataset Examples

5 17.7 % (2768) union, hours, wagers, peace
6 15.7 % (2462) issue, safety, united, effect
7 14.9 % (2334) respect, program, meeting, concern
8 13.2 % (2068) medicaid, laughter, exercise, fairness

Table 4.3: A few examples for most occurring phrase lengths in dataset

Another important property of TCI is its length TCIlen. Rather short chains
represent only a brief exchange of opinions between participants. Unless their
Intensity TCIint is significantly bigger, they are not relevant (their dynamics
is covered by other, sentiment-based, metric in the model). Distribution of
lengths of chains in dataset (see Figure 4.8). The bins show that 34.7 % of
chains are rather long and first 6 bins (bin 0-5) make up only 9.93 % of chains.
Therefore, the dataset contains many longer topic chains with TCIsize > 6.
So only chains from bins 6-9 are further analyzed.

Experiments did not reveal any apparent relationship between number of
topic chains in individual dockets and winning party. It does not necessarily
imply that there is none, though. Therefore, the feature is tested in modified
form in model to see, if it improves its prediction performance. Since the range
of values is too large (< 21, 87 >), its value is put into one of the 4 equal-width
bins created in the range (starting with 21, ending with 87 and having step
16). This creates a quantitative discrete feature with range < 0, 4 >.

Text-based feature Topic Chain Index groups similar tokes together
before the chains are calculated. The groups are formed by Dekang-Lin syn-
onyms detection algorithm (see Section 2.1.5). As mentioned above, it is a
non-trivial problem to set its parameter correctly. Figure 4.9 shows differ-
ent settings of the algorithm and their respective grouping ratio (what por-
tion of all words is absorbed by their synonyms). Each setting is tested in

85



4. Oral Argument Analysis

Figure 4.8: Distribution of lengths of topic chains in dataset split into 10
equal-width bins

two versions - with and without using lemmatizer (see Section 2.1.4.1). The
test was performed on whole available dataset with 2,114,109 words (27,836
unique words). But, the algorithm is applied only on adverbs, nouns and verbs
(23,230 words). Clearly, lemmatization significantly improves performance of
the algorithm. Naturally, the wider similarity rate for similar words is allowed,
the more words is covered. Similarity rate determines what is the maximum
allowed difference between the most similar word found and another similar
word. As mentioned above, not all provided similar words are true synonyms,
so higher rate provide higher rate of false positives in results. The difference
between coverage rate of simratio = 0.05 and simratio = 0.1 is only 4 % which
is not big enough to compensate for the false positives. Thus, simratio = 0.05
is used to group words together and calculate all TCI.

Another interesting piece of information about attorney is whether he has
any previous experience with arguing in front the Court. Outcomes of their
previous encounters are not that relevant. It is the experience that matters
the most in this case. Given they are more experienced, they tend to focus
only on relevant elements in their turns. So, attorneys like Clement (14 cases)
or Dreeben (11 cases) have better chance to persuade justices about their
intentions. This are two binary features Has Experience for petitioner and
respondent side. Both values are set based on their attorneys and appearances
in cases in dataset so far (see Table 4.4).
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Figure 4.9: Comparison of different settings for algorithm that groups similar
words together

# of Appearances # of Attorneys

3+ 48
2 29
1 171

Table 4.4: Number of appearances of attorneys in front of the Court in dataset

The next, more advanced, step is sentiment analysis of the hearing. It
is done in a similar way that it is mentioned in Section 3.3. Every sentence
in each turn is analyzed separately. Then, sentiment of the turn is defined
by number of positive, negative and neutral sentences in the turn. The most
occurring class in the turn defines class of the turn. Otherwise, sentiment of
the turn is Neutral. Simple counts of turns belonging to each sentiment class
(see Figure 4.10) shows no extraordinary relationship between their number
and the winning party. Albeit, closer look at ordering of sentiment distribu-
tion in dockets provides insight on how often the participants changed tone
of their their verbal speech. So, a different metric called Difference in Sen-
timent Changes sentDocketDiffsent is proposed. It calculates how many
times sentiment changed from one class to another in the dialog in a specific
phase (sentPhaseDiffpet and sentPhaseDiffres for Petitioner and Respond-
ent phases, respectively). Then, the metric expressed by formula:

sentDocketDiffsent = sentPhaseDiffpet − sentPhaseDiffres

Distribution of sentDocketDiffsent (see Table 4.5) shows bigger tendency for
swings of sentiment during Respondent phase in cases, when Petitioner party
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sentDocketDiffsent
Negative Neutral and Positive

Winner
Petitioner 63.2 % (79) 36.8 % (46)

Respondent 43.84 % (32) 56.16 % (41)

Table 4.5: Distribution of Difference in Sentiment Changes in dockets
split by winning party

Figure 4.10: Average numbers of turns per docket split into sentiment classes
(label ’res-pet ’ represent numbers for dialog phase when Respondent wins the
case and the turn is in Petitioner’s part)

wins (or in Petitioner phase when Respondent party wins). This indication can
be interpreted as increased disagreement in opinions in phase of the winning
party. Thus, this is a discrete quantitative feature in the model.

Lastly, metadata about cases provide context to the case (see section 1.3.2
for information about the dataset). Not all attributes for the case bring valu-
able information. One of the first interesting attributes is precedentAlteration
which signalizes that the ruling changes a precedent from past. While this is
very rare, it may help to better predict such cases. However, the subset of
Oral Arguments contains only 1 such case. Thus, this attribute is not reliable
enough.

On the contrary, dataset contains attribute representing direction of rul-
ing from Lower Court (lcDispositionDirection) which appears to be more
helpful when predicting the final outcome. There is no apparent link between
directions of Lower Court’s decision and the final decision of the Court. In
case of both conservative and liberal decisions, Petitioner party has the same
probability of winning (about 63 %) in both of then. However, the ruling of
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the Supreme Court relatively often have the same direction (in 41 % cases).
Now, considering this situation in combination with another attribute, Lower
Court Disagreement (called lcDisagreement) provides interesting patterns
in voting outcomes. If there was a disagreement in lower court and the Su-
preme Court’s final ruling has different direction than lower court’s decision,
then there is 91 % probability that Petitioner party wins. In case the rul-
ings have the same direction, there is 85 % probability that Respondent party
wins. It is hard to explain the hidden rationale behind this voting pattern.
Nonetheless, both attributes are used in model as binary features. They are
based on prerequisite that outcomes from both courts are the same to certain
extent and known. Even though the decision of the Court is not known during
the hearing (it is estimated after the final ruling by experts manually), other
features in this model can help to detect its direction.

4.4 Training and Results

This section describes how Activity index for justices is determined by cluster-
ing using k-means in order to reduce dimensionality. A few different settings
are compared to achieve the best results. Then, all features are tested in
several combinations to compare their performance in three classifiers - Naive
Bayes Classifier, k-Nearest Neighbor and Random Decision Forest. Tested
classifiers represent three fundamentally different approaches to approxima-
tion of the problem.

At first, Activity index is created by running k-means algorithm on vector
space defined by features mentioned in Section 4.3:

• Influence index infidx of justice

• Number of turns turnsjustice the justice has during the hearing

• Number of words wordsjustice the justice says during the hearing

Definition of the vector space is greatly influenced by the number of samples
in it and their distribution in each docket (winning party) class docketwinner.
The goal is to create two clusters which mimic split of dockets in the dataset.
This way, the clustering may detect patterns that correlate and then cause the
distribution of winning votes in dataset. Number of clusters should be small
because of number of samples in dataset and number of already used features.
More clusters create sparser features space which require more samples to
train on. Furthermore, too many dimensions in the vector space make it
harder for clustering algorithm to find the best decision boundary. So instead
of using 16 dimensional space (2 dimensions per 8 justices), algorithm uses
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only 2 dimensions constructed in following way:

AIcoords(docket) =


∑justices

justice inf justiceidx ∗ turnsjustice
avgTurnsjustice∑justices

justice inf justiceidx ∗ wordsjustice
avgWordsjustice


Criterion for the best clustering is ratio between number of samples in

clusters and how similar it is to ratio between dockets won by Petitioner and
Respondent Given that clusters cannot be implicitly assign to any docketwinner

class, the best clustering has ratio between number of members in both classes
close to one of those ratios in dataset. Ratio of dockets in dataset won by
Petitioner to Respondent party is 1.712 (Respondent:Petitioner is 0.584).

Figure 4.11 shows behavior of k-means algorithm with respect to number
of iterations59. Clearly, the ratio between classes in the dataset or considering
only dockets that belong to certain docketwinner behave similarly. It oscillates
around value 1.038 between local minimum and maximum (and, occasionally,
between global minimum and maximum too), so the algorithm has issue with
converging to a clear split. Also, larger number of samples may be switching
from one cluster to another back and forth while trying to converge. In this
case, the ratio is not oscillating, but improving. Several runs showed that
global maximum is 1.357 and global minimum is 0.737. Obviously, global
minimum is closer to one of the above-mentioned ratios, so the last clustering
with this ratio is used to determine the index for prediction model. Number
of cluster is coded into k binary features. For a given value, all features are 0
except for the one at position of cluster number.

Baseline for the prediction model on selected subset of Oral Arguments
is 63.13 % (125 cases out of 198 won Petitioner party). Apparently, the
dataset is, again, rather imbalanced. Unfortunately, in this case, this problem
cannot be solved by using equal numbers of samples from each class, because
of the size of the dataset. Every sample is valuable. Therefore, bias toward
Petitioner class should be handled by features inside the model. We test
different variants of features to verify their performance. Two metrics are
used to evaluate it:

• Accuracy measures how many true positives and negatives the model
predicts out of total population using formula:

Accuracy =

∑
tp +

∑
tn∑

samples

• F1-score which represents harmonic mean of precision and recall ex-
pressed by formula

59Shown ratio is Petitioner:Respondent
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Figure 4.11: Ratio between numbers of dockets in two classes created by
k-means algorithm split into two groups of dockets by winning party

F1 =
2 ∗ tp

2 ∗ tp + tn + fn

Accuracy does not reflect uneven performance of the model correctly. It
only captures mean of accuracies for each class. Therefore, it is used only as
a secondary metric. Instead, F1-score is used to select the best model. This
metric uses precision60 and recall61 to better follow the effort to find model
providing balanced predictions.

Considering size of the dataset, it is harder to split it into train and test
set so cross-validation is used to find the best one. Table 4.6 shows splits
for popular configurations of cross-validation with ratio of cases won by Pe-
titioner and Respondent party. It is desirable to keep the ratio as close to
1 as possible to achieve balanced sets. This condition is best satisfied with
7-fold cross-validation. To get the best result for given configuration, model
is trained and evaluated three times for each step. In the end, model with the
highest F1 score is considered as the best one for given classifier and para-
meters. Since other related works do not often provide F1 score, results also
state accuracy of the model and best achieved accuracy for given classifier
regardless of any other metric.

60Precision measures what portion of predicted samples are true positives
61Recall measures ratio of true positives to all samples classified correctly
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n-Folds Test set Train set Petitioner : Respondent

3 41 (24) 82 (48) 0.585
4 31 (18) 93 (54) 0.581
5 25 (14) 100 (56) 0.560
7 17 (10) 102 (60) 0.588

10 12 (7) 108 (63) 0.583

Table 4.6: Size of train and test set with different stratified n-folds in cross-
validation with ratio of Petitioner:Respondent samples in set; format is peti-
tioner(respondent) size of the fold

Each classifier is tested on several different subsets of features to evaluate
their impact on overall performance of the model. Even though, each feature
subset gives slightly different view on samples in dataset, parameters of each
classifier are fine-tuned on BASE subset of features and evaluated on all
subsets. This is necessary pre-condition to be able to reliably compare their
results. Selected feature subsets are:

• BASE contains basic features Difference in Sentiment Changes, Import-
ant Case and Has Experience

• BASE + Activity BASE set of features with Activity index

• BASE + LowerCourt BASE set of features with lcDisagreement and
lcDispositionDirection

• BASE + Interruptions BASE set of features with Interruption dif-
ference

• BASE + TCI BASE set of features with Topic Chain Index

• ALL contains all features

4.4.1 Gaussian Naive Bayes

First evaluated model is Gaussian Naive Bayes algorithm for classification as
a simple classifier. It is based on assumption that all classes occur independent
from each other. This implementation of Naive Bayes algorithm also assumes
that likelihood of the features is Gaussian[35]:

P (xi|y) =
1√

2πσ2y

exp

(
−(xi − µy)2

2σ2y

)

Its parameters σy and µy are estimated using maximum likelihood. Prior prob-
abilities are generated by the algorithm itself. No other parameters are set for
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Predicted
Res Pet

Actual
Res 0.2 0.8
Pet 0.059 0.941

(a) BASE features

Predicted
Res Pet

Actual
Res 0.6 0.4
Pet 0.176 0.824

(b) Best subset - BASE + Interruptions

Figure 4.12: Confusion matrix for Gaussian Naive Bayes classifier

Features Best F1 Acc of Best F1 Best Acc

BASE 0.78 0.667 0.704
BASE + Activity 0.78 (+0) 0.667 (+0) 0.667

BASE + LowerCourt 0.78 (+0) 0.667 (+0) 0.667

BASE + Interruptions 0.8 (+0.02) 0.741 (+0.074) 0.741
BASE + TCI 0.78 (+0) 0.667 (+0) 0.704

ALL 0.778 (-0.002) 0.704 (+0.037) 0.704

Table 4.7: Results (F1 score and accuracy) for Gaussian Naive Bayes clas-
sifier with respect to BASE results

the classifier. Table 4.7 shows best results achieved on trained models with all
feature subsets. Surprisingly, all models have better accuracy than baseline.
Their F1 scores are also very similar (except for BASE + Interruptions model)
which indicates that no other additional features provide useful information
to the classifier. Not only the model slightly outperforms BASE model, its
predictions are also less biased toward one class (see Table 4.12). Both ac-
curacy for both classes is above 0.5, whereas model BASE is highly biased
toward Respondent winner class. Model using all features together slightly
under-perform in comparison to model BASE + Interruptions in both cri-
teria. So, the best feature subset for Gaussian Naive Bayes classifier is BASE
+ Interruptions.

4.4.2 k-Nearest Neighbor

Next evaluated classifier is k-NN (k-Nearest Neighbor) algorithm that imple-
ments k-nearest neighbor voting strategy. Instead of making any assumptions
about prior probability of each class, it tries to group similar samples that be-
longs to the same prediction class together. Its strength shines when sample
space is dense and samples from classes are easily separable. Furthermore,
prediction power of the model tend to also rely on the right combination
of multiple parameters (on top of the proper set of features) - k-neighbors,
neighbor metric and nearest-neighbor algorithm. Experiments with different
settings of parameter k-neighbor showed no improvement in F1 score (see Fig-
ure 4.14). Hence, k − neighbor is set to 2. Different settings of parameters
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Predicted
Res Pet

Actual
Res 0.1 0.9
Pet 0.059 0.941

(a) BASE features

Predicted
Res Pet

Actual
Res 0.7 0.3
Pet 0.235 0.765

(b) Best subset - BASE + All

Figure 4.13: Confusion matrix for k-Nearest Neighbor classifier

Features Best F1 Acc of Best F1 Best Acc

BASE 0.762 0.63 0.667
BASE + Activity 0.774 (+0.017) 0.741 (+0.074) 0.741

BASE + LowerCourt 0.731 (-0.026) 0.592 (-0.075) 0.592

BASE + Interruptions 0.769 (+0.012) 0.667 (+0) 0.703
BASE + TCI 0.788 (+0.031) 0.741 (+0.74) 0.741

ALL 0.788 0.741 (+0.037) 0.741

Table 4.8: Results (F1 score and accuracy) for k-Nearest Neighbor classifier
with respect to BASE results

nearest−neighbor−algorithm and neighbormetric also showed no improve-
ment of F1 score. This situation hints that sample space is too sparse or
too dense for this classifier to better approximate it. Table 4.8 show similar
performance to Gaussian Naive Bayes classifier. However, there are some pe-
culiarities. Particularly, the best trained model with BASE + LowerCourt
features performs even below the baseline for dataset. Even model with BASE
features overcomes it in both criteria. Models with other feature sets per-
formed slightly better than BASE set model in terms of F1 score. Surpris-
ingly, two feature sets have the same best F1 score. But, their confusion
matrices showed that model based on BASE + TCI features is significantly
biased toward Petitioner winner class. Thus, model with BASE+All features
makes more reliable predictions. The best k-NN model is BASE + All with
parameters k − neighbors = 2 and the rest of them are default. [58]

4.4.3 Random Decision Forest

This classifier is already introduced in Section 3.3. As mentioned previously,
the classifier creates rules which attempt to approximate the sample space.
It proven to be rather effective when working with text-based features in
Chapter 3. Fine-tuning the algorithm is not easy so only three advanced
parameters maxfeaturs, max− depth and n estimators are selected for tun-
ing. In order to achieve better results, all parameters should be estimated in
two rounds. All three are estimated in round 1 one after each other. Then,
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Figure 4.14: Best F1 score for different settings of parameter k-neighbors for
k-Nearest Neighbor classifier

Figure 4.15: Best achieved F1 score for different settings of n estimators for
Random Forest Tree classifier in round 1
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the same check on every parameter is done again in round 2 to ensure their
optimal performance.

In round 1, we start with parameter n estimators. Figure 4.15 show that
after 70 estimators, the gain in F1 disappears and the models perform worse.
At this value, F1 = 0.757. A quick test with higher number of them do not
yield any improvement at the moment. Next parameter to estimate is max−
depth. It affects complexity of individual trees in the random forest. Figure
4.16 shows an interesting behavior of F1 score. There are three dominant peaks
at values 4, 10 and 12 with F1 = 0.79 (peaks at values 10 and 12 have F1 =
0.789). Comparison of their confusion matrices shows that best model with
parameter max − depth = 10 is more biased toward Petitioner winner class
than model with other two parameters. That is the reason why it is selected for
further testing. The last parameter, max features, poses restriction on inner
structure of each tree. Considering the low number of features, this parameter
does not have such a significant. There is no point in using math functions log2
or sqrt which the algorithm offers, as their results are virtually identical for
small numbers. Simpler measure is ratio that determines portion of features
which can be used. Due to smaller number of features used by these models
(maximum is 11), test shown that best models for each parameter value have
approximately the same F1 score. Given that, it appears that models with
higher values achieve more consistent F1 score results across folds. So, in the
end, all features are allowed to be used in every decision tree in random forest.

Round 2 does not provide any improvement after one of the parameters
is changed. Best achieved F1 score does not get better than F1 = 0.789 for
model with BASE features.

Overall results (see Table 4.9) are very mixed. Clearly, the classifier is
sensitive to selected features. Measured F1 scores suggest that Activity in-
dex,LowerCourt and Interruptions are weak on their own. Both F1 score
and accuracy of these models under-perform in comparison to model with
only BASE features. Even inspection of their respective confusion matrices
shows that these models achieve their relatively good F1 score and accuracy
by focusing solely on Petitioner winner class. The only two models that per-
formed better than BASE model happened to perform equally good having
F1 = 0.83. Also their accuracy is equal (both achieve accuracy 0.741). Given
they performed equally in terms of selected metrics, it is not surprising that
their confusion matrices are exactly the same. Therefore, it cannot be reliably
stated which model is better than the other. However, in long-run, all features
together suggest more stable results (using all available features did not cause
drop in performance). Therefore, the best settings for random forest tree
classifier is a model with parameters n estimators = 70, max − depth = 10,
max features = all that uses all feature set.
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Figure 4.16: Best F1 score for different settings of parameter max-depth for
Random Forest Tree classifier

Predicted
Res Pet

Actual
Res 0.4 0.6
Pet 0.118 0.882

(a) BASE features

Predicted
Res Pet

Actual
Res 0.3 0.7
Pet 0.0 1.0

(b) Best subset - BASE + All

Figure 4.17: Confusion matrix for Random Decision Forest classifier

Features Best F1 Acc of Best F1 Best Acc

BASE 0.789 0.704 0.704
BASE + Activity 0.78 (-0.009) 0.667 (-0.037) 0.667

BASE + LowerCourt 0.769 (-0.02) 0.667 (-0.037) 0.667

BASE + Interruptions 0.78 (-0.009) 0.667 (-0.037) 0.667
BASE + TCI 0.83 (+0.041) 0.741 (+0.037) 0.741

ALL 0.83 (+0.041) 0.741 (+0.037) 0.741

Table 4.9: Results (F1 score and accuracy) for Random Decision Forest
classifier with respect to BASE results

97



4. Oral Argument Analysis

4.4.4 Final Evaluation

All evaluated classifiers managed to perform above the baseline defined by
distribution of samples in classes in the dataset. Their features are derived
from simple NLP metrics. In terms of accuracy, all classifiers achieved the
same level - 74.1 % - which is 10.97 % above the baseline of this dataset.
However, each classifier under-performed in a different aspect. The measured
results should be understood as demonstration of behavior of the models on
given dataset with selected features. Since the dataset is also imbalanced and
relatively small, it is harder to select the best training set to achieve stable
results. Size of the dataset is given by computational limitations of available
working station. Preprocessing of one case file takes between 5-8 minutes62

(so, it took approximately 20 hours to extract relevant data).

In terms of F1 score, the worse model is created by k-NN algorithm for
classification. But, when comparing its confusion matrix to the best model
created by Random Forest Tree classifier (see Table 4.13 and Table 4.17 re-
spectively), k-NN model appears to provide more stable predictions. The lat-
ter mentioned model classifies very few dockets to Respondent winner class.
There are no false positives for this class which is alarming due to higher
number of false positives in Petitioner winner class. Therefore, k-NN model
is considered better model.

This also proves that F1 score is not an ultimate metric that can compare
performance of models from all points of view. Granted, it considers more
angles of a model so it is a fast and cheap way to quickly find top n models.
But, their final evaluation should be manual to focus on important aspects for
the problem at hand.

Comparison of k-NN model and model created by Gauss Naive Bayes al-
gorithm for classification is more straightforward. Again, the latter mentioned
has better F1 score. In this instance, comparison of their confusion matrices
(see Table 4.13 and 4.12 respectively) does not give enough clues to claim one
of them being better than the other, because they are nearly identical. So,
performance of other models (with other subsets of features) is considered (see
Table 4.7 and Table 4.8 respectively). Obviously, models based on Gaussian
Naive Bayes algorithm perform better with given feature sets. Therefore, this
classifier is better in majority of aspects.

The presented results demonstrates that individual simple NLP techniques
alone improve performance of the final model only marginally. Although, there
are exceptions. Features Topic Chain Index and interruption difference tend
to notably balance results of the model and . On top of this, all of them used
together, they rarely worsen performance of a model in a significant way. Only
Activity index seems to provide very little additional and useful information
to model to increase its performance. It is a compound features based on

62CPU: Intel i7 2.4GHz Broadwell, RAM: 8GB DDR3, OS: Windows 10
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several other simple NLP metrics. So, this metric may require more analysis
to increase its informative value.

Classifier F1 score Accuracy

Gaussian Naive Bayes 0.8 0.741
k-Nearest Neighbor 0.788 0.741

Random Forest Tree 0.83 0.741

Table 4.10: Comparison of performance (F1score and accuracy) of best models
for each classifier
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Conclusion

Goal of this work was two-fold. The main goal was to evaluate behavior of
simple NLP techniques when applied on complex problem in discourse ana-
lysis. In order to reliably analyze the dataset, a new domain-independent
sentence-level sentiment model was proposed as a secondary goal in Chapter
3. Together, these techniques were applied on dataset of Oral Arguments in
Supreme Court of the United States to check, if they could be used to create
a reliable model that could predict outcome of a case in Chapter 4.

First two chapters of this thesis covered necessary theoretical background
to understand its content. Firstly, US Supreme Court was introduced as an
institution. The chapter also provided a brief overview of the legal process be-
hind a case and how a case gets heard by the Court. These information helped
to understand domain of the problem for the prediction model developed in
Chapter 4.

The next chapter focused on all tools and datasets mentioned in the thesis.
The first section listed and explained all relevant NLP terms for completeness.
Then, it continued discussing every major tool or technique used in the thesis.
Each one of them was properly explained with current state of the art trends.
It made a case that most of the state of the art approaches are cumbersome
and rather complex. Thus, this thesis defended using their simplified versions
instead.

Since creating a custom model was the secondary goal of this thesis, the
most discussed technology in this section was sentiment analysis. This part
emphasized number of challenges which had to be considered when creating a
customized model (mainly domain dependence and level of detail). The section
also talked over possible ways to overcome them. Their implementation in the
custom sentiment model was further described in Chapter 3. The remaining
sections of the chapter focused on technological part of the thesis. It listed
all used technologies with their respective versions in order to provide all
necessary information for anybody to reproduce experiments in thesis. The
last section in chapter thoroughly described complementary datasets General
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Inquirer, Large Movie Reviews and WordNet used in later chapters in proposed
models (sentiment model and model predicting outcome of the US Supreme
Court ruling).

Chapter 3 described individual steps required to create a stable and reli-
able custom sentiment model. It opened up with section that characterized
the backbone of the proposed sentiment model - MPQA Dataset. Since sen-
tences in this dataset did not contain explicitly-defined sentiment, the chapter
defined key attributes for each relevant sentence in it and developed special
ranking algorithm. Then, it ranked all sentences with enough information to
create dataset to train and test the customized sentiment model. In this state,
the generated dataset contained noise and outliers. There were filtered out in
a series of steps supported by detailed analysis of dataset after each step. Des-
pite all the effort, dataset was very imbalanced at that stage. This proven to
greatly influence of performance of classifiers, so several Neutral and Positive
sentences were removed to achieve equal number of samples in every class.

Afterwards, we identified features in the dataset which potentially can help
to detect proper sentiment in sentence. In comparison to other similar works,
the model did not extract token-based features. Instead, it employed two
dictionaries to extract meaning of the phrase rather than the word itself. Also,
since previous chapter strongly argued that syntax trees are hard to build, it
advocated for using n-grams as an approximation. The section explained
several other approximations necessary to create the final model.

The last section briefly visited the idea of creating two-step classifier. This
idea was quickly abandoned and the section stated reasons why Random Forest
Tree ensemble was picked for sentiment model. Then, it described process
of fine-tuning its parameters via series of steps to achieve the best overall
accuracy and individual accuracy for every class. To prove that final model
was useful, it was evaluated on Large Movie Reviews corpus.

Lastly, chapter shortly mentioned related works in this area. Then, it
stated list of steps to successfully extract text of the hearings from PDF via
series of explained steps. Once created, dataset was thoroughly analyzed to
devise customized features for the problem like difference in interruptions or
difference in sentiment changes. We picked three fundamentally different clas-
sification algorithms to see which approach better handles the simple features
and how it reacts to them.

Each proposed classifier was evaluated individually for multiple feature
sets to see how well it could approximate the sample space. Since each one
of them is based on a different approach, they were fine-tuned separately to
reach their potential and the highest F1 score. These processes were described
step by step with relevant views on metrics to allow anybody to replicate their
results. Results of the best models for each classifier were compared manually
to determine the best fitting model. It turned out that Gaussian Naive Bayes
classifier overcame the baseline by almost 11 % while still providing reliable
results. This result proves that even simple NLP techniques in combination
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with simpler classification algorithms bear enough information to predict out-
come of a case heard by justices of the US Supreme Court.

On top of that, the results also proved that correct combination of simple
NLP techniques was able to improve properties of prediction model. Either
they contributed to increased accuracy of the model, or the model provided
more reliable results when using them. Only in rare cases, the features deteri-
orated the final model.

Applications and Future Work

We prove that simple NLP techniques do in fact help to analyze a discourse.
There several possible applications of the results and extensions to both parts
of this work.

Firstly, the simple NLP techniques mentioned in this work can be applied
on other datasets with, preferably, political discourse, like for example ”Con-
gressional speech data”63. Further progress in this area may generate other,
derivative, metrics. Or, it can just further prove strength of these techniques.

As a matter of fact, the sentiment model can be used for complete different
task not related to discourse. The way it was trained, its results should be
relevant in for problems which require sentence-level sentiment analysis as
well. For example, it may be interesting to see how well it performs on posts
from social networks.

Next extension to the work may be improvements of the proposed senti-
ment model. The simplest improvement may be adding another annotated
dataset (ideally from a new domain) to expand its predictive power. Then,
adding new dictionaries can also add extra information to the model. Or any
internal part of feature extraction process can be replaced, if deemed insuf-
ficient. Great candidates for this experiment are algorithms for detection of
synonyms and noun phrases. Both of them may significantly influence beha-
vior of Topic-Chain index metric.

Another possibility is to completely replace the customized sentiment model
with another model. Currently, there it a number of publicly available sen-
timent models - for example AlchemyAPI 64. They may provide a relevant
benchmark of predictive power for the custom sentiment model. Or, it simply
boosts (or sinks) accuracy of this sentiment-based feature in the prediction
model for Oral Arguments.

For prediction model, processing more PDF files with Oral Arguments
may allow deeper exploration analysis on the dataset to uncover new, relevant,
features. Alternatively, bigger dataset provides means to confirm whether the
proposed model maintains its predictive power.

63Source at http://www.cs.cornell.edu/home/llee/data/convote.html
64AlchemyAPI is part of IBM Watson
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Conclusion

Lastly, replacing Tesseract OCR with another OCR algorithm. Currently,
the biggest bottleneck during the processing a PDF file is transformation of
PDF file to plain text (takes up 30-50 % of time). Different OCR algorithm
may noticeably speed up the preprocessing phase and also increase its overall
reliability.
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Appendix A

Acronyms

CSV Comma-separated values

OCR Optical Character Recognition

OOP Object-Oriented Programming

NLP Natural Language Processing

PDF Portable Document Format

SVM Support-Vector Machine

TCI Topic-Chain Index
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Appendix B

Ranking constants MPQA

Here is complete list of constants used in ranking algorithm for MPQA corpora
in Chapter 3:

Table B.1: ”Intensity” attribute

Annotation Value

neutral 0

low 0.2

low-medium 0.35

medium 0.5

medium-high 0.75

high 1

high-extreme 1.5

unknown 0

Table B.2: ”Expression Intensity” attribute

Annotation Value

neutral 1.01

low 1.25

medium 1.5

high 2

extreme 2.5

unknown 1.0
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B. Ranking constants MPQA

Table B.3: ”Polarity” attribute

Annotation Value

positive 1

negative -1

both 0.9

neutral 0.01

uncertain-positive 0.8

uncertain-negative -0.8

uncertain-both 0.75

uncertain-neutral 0.05

unknown 0

Table B.4: ”Attitude type” attribute

Annotation Value

other 0

other-attitude 0.001

arguing-neg -0.75

arguing-pos 0.75

sentiment-pos 0.5

sentiment-neg -0.5

agree-pos 0.25

agree-neg -0.25

intention-pos 0.6

intention-neg -0.6

speculation 0.01

specilation 0.01

unknown 0

Table B.5: ”Attitude uncertain” attribute

Annotation Value

somewhat-uncertain 0.9

very-uncertain 0.5

unknown 1.0
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Appendix C

MPQA features list

Table C.1: List of extracted features - Comparison features

# Features List of Features

5

• more words with priorpolarity Positive being
strongsubj than words with priorpolarity
Negative being strongsubj

• more words with priorpolarity Positive being
weaksubj than words with priorpolarity Negative
being weaksubj

• more words with priorpolarity Positive than
words with priorpolarity Negative

• more words with priorpolarity Positive than
words with priorpolarity Neutral

• more words with priorpolarity Negative than
words with priorpolarity Neutral
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C. MPQA features list

Table C.2: List of extracted features - Category Counts

# Features List of Features

34 Negations # Negative priorpolarity # Both
priorpolarity # Neutral priorpolarity # Positive
priorpolarity #
Negative priorpolarity with type strongsubj #
Positive priorpolarity with type strongsubj #
Neutral priorpolarity with type strongsubj # Both
priorpolarity with type strongsubj #
Negative priorpolarity with type weaksubj #
Positive priorpolarity with type weaksubj # Neutral
priorpolarity with type weaksubj # Both priorpolarity
with type weaksubj # All words with type weaksubj
# All words with type strongsubj #
Hostile words with type weaksubj # Strong words with
type weaksubj # Active words with type weaksubj #
Passive words with type weaksubj # Positiv words
with type weaksubj # Negativ words with type
weaksubj #
Hostile words with type strongsubj # Strong words
with type strongsubj # Active words with type
strongsubj # Passive words with type strongsubj #
Positiv words with type strongsubj # Negativ words
with type strongsubj #
Hostile words # Strong words # Active words #
Passive words # Positiv words # Negativ words #
Yes words # No words
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Table C.3: List of extracted features - Negation-related features

# Features List of Features

40 Counts number of words, of it the sentence satisfies
following rules:

• Active before negation

• Active after negation

• Passive before negation

• Passive after negation

• Hostile before negation

• Hostile after negation

• Yes before negation

• Yes after negation

• No before negation

• No after negation

• Negate before negation

• Negate after negation

• Negative priorpolarity before negation

• Negative priorpolarity after negation

• Positive priorpolarity before negation

• Positive priorpolarity after negation

• Neutral priorpolarity before negation

• Neutral priorpolarity after negation

• Both priorpolarity before negation

• Both priorpolarity after negation
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C. MPQA features list

Table C.4: List of extracted features - N-gram

# Features List of Features

29

• number n-grams with length 2, 3 or 4 in which
words Negative with priorpolarity positive are
before words positive

• number n-grams with length 2, 3 or 4 in which
words Negative with priorpolarity negative are
before words positive

• number n-grams with length 2, 3 or 4 in which
words Negations before words with positive pri-
orpolarity

• number n-grams with length 2, 3 or 4 in which
words Negations before words with negative pri-
orpolarity words

• number n-grams with length 2, 3 or 4 in which
words Negations before words with neutral pri-
orpolarity words

• number n-grams with length 2, 3 or 4 in which
words Hostile are before words negative prior-
polarity words

• number n-grams with length 2 or 3 in which
words Persist are before words with positive pri-
orpolarity words

• number n-grams with length 2 or 3 in which
words Pleasur are before words with positive pri-
orpolarity words

• number n-grams with length 2 or 3 in which
words Weak are before words with positive pri-
orpolarity words

• number n-grams with length 2 or 3 in which
words Active are before words with positive pri-
orpolarity words
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Table C.5: List of extracted features - POS n-grams

# Features List of Features

52 Number of words before and words after which follow
these rules in n-grams with length 4 or 5:

• Adjectives before Positiv noun

• Adjectives or adverbs before Active noun

• Adjectives before Strong noun

• Adjectives before Negativ noun

• Negation adjectives before words with priorpol-
arity positive

• Adjective or adverbs before words with priorpol-
arity positive

• Adjective or adverbs before words with priorpol-
arity negative

• Adjective or adverbs before words with priorpol-
arity neutral

• Adjective before words with priorpolarity posit-
ive

• Adjective before words with priorpolarity negat-
ive

• Adjective before words with priorpolarity neut-
ral

• Negation adjectives before nouns with priorpol-
arity positive

• Adjective before words Hostile noun

Table C.6: List of extracted features - Other features

# Features List of Features

1 Punctuation
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Appendix D

Command-line script

Standard way to run the script is:

python politics.py -c controller-name -t task-name

Every task may have different set of additional required (or optional) para-
meters.

D.1 Controller - Inquirer

This controller contains task:

• read-corpus-raw which transforms original General Inquirer dataset
to normalized and clean dataset in format known by this script (see
Table D.1 for list of supported parameters)

D.2 Controller - Largereviews

This controller contains two tasks:

• read-raw-corpus which transforms original Large Movie Views dataset
with reviews to a single file in which one line represents one sentence
from a review (it takes no additional parameters)

Parameter Description Required

-f Path to input file (default value is path to
the dictionary)

False

-fout Path to output file (default value is path
to the dictionary ”./corpora/processed/ ”)

False

Table D.1: Parameters for task ”read-corpus-raw” in controller
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D. Command-line script

• read-raw-corpus-overall adds sentiment information from the source
dataset to each sentence in normalized dataset (it takes no additional
parameters)

D.3 Controller - Mpqa

This controller contains four tasks:

• read-corpus-sentences-raw extracts all sentences from MQPA data-
set and puts them into a single file (see Table D.1 for list of supported
parameters)

• read-corpus-annotations-raw reads MQPA dataset and extracts all
annotations with their attributes into a single file (see Table D.1 for list
of supported parameters)

• read-corpus-processed-clues transforms MPQA Subjectivity Lexicon
into normalized format understood by this script (see Table D.1 for list
of supported parameters)

• combine-corpora-clues combines data from General Inquirer and MPQA
Subjectivity Lexicon together into one file (it takes no additional para-
meters)

D.4 Controller - Pdf

This controller contains five tasks:

• read-pdf transforms PDF file into a plain text and produces file with
the same name and extension ”.plain”; then it strips all unwanted
charasters away and produces another file with the same name and ex-
tension ”.clean”(see Table D.2 for list of supported parameters)

• process-pdf reads plain text and strips unwanted characters away (in
case the source file was not produced by task read-pdf ); result is saved
in file with the same name with extension ”.clean” (see Table D.1 for
list of supported parameters)

• extract-parts reads cleaned text and splits it into turns; result is saved
in file with the same name with extension ”.dialog (see Table D.3 for list
of supported parameters)

• generate-sentences reads data split into turns and further splits them
into sentences and the result saves in file with same name and extension
”sentences” (see Table D.3 for list of supported parameters)

122



D.5. Controller - Pipeline

Parameter Description Required

-f Path to PDF file True

-m Type of PDF file (”bottom-middle” or
”top-right”)

False

Table D.2: Parameters for task ”read-pdf ” in controller Pdf

Parameter Description Required

-f Path to input file True

Table D.3: Parameters for tasks in controller Pdf

Parameter Description Required

-f Path to input file True

-m PDF Mode True

Table D.4: Parameters for task all-tasks in controller Pipeline

• generate-pos reads data split into sentences, assigns them POS tags
and the result saves in file with same name and extension ”pos” (see
Table D.3 for list of supported parameters)

D.5 Controller - Pipeline

This controller contains three tasks:

• all-tasks runs all tasks necessary to read PDF file and output its reports
(see Table D.4 for list of supported parameters)

• all-tasks-dir runs all tasks necessary to read PDF file and output its
reports for a given directory - file modes.info is reserved for informa-
tion about format of each PDF file (see Table D.1 for list of supported
parameters)

• all-tasks-dir-no-pdf runs all tasks necessary except from reading PDF
file and output its reports for a given directory; also only a selected step
can be performed on all files in the directory (see Table D.5 for list of
supported parameters)

D.6 Controller - Reports

This controller contains four tasks:
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D. Command-line script

Parameter Description Required

-f Path to input file True

-m PDF Mode False

-s Reuqested step (e. g. ”step-5”) False

Table D.5: Parameters for task all-tasks-dir-no-pdf in controller Pipeline

Parameter Description Required

-f Path to directory with input files True

Table D.6: Parameters for task all-tasks-dir in controller Pipelien

Parameter Description Required

-f Path to input file True

-o Optional output directory for report False

Table D.7: Parameters for tasks nlp-reports and basic-reports in controller
Reports

• nlp-reports takes in name of file in directory containing processed PDF
file and runs all NLP reports on them (see Table D.7 for list of supported
parameters)

• basic-reports takes in name of file in directory containing processed
PDF file and runs all basic reports on them (see Table D.7 for list of
supported parameters)

• merge-preprocessed walks over all files of the same type in subdirect-
ories of directory ”parsed-data”and merges them into a single file with
name being the extension name (it takes no additional parameters)

• merge-reports walks over all files of the same type in subdirectories
of directory ”report-data”and merges them into a single file with name
being the extension name (it takes no additional parameters)

D.7 Controller - Sentiment

This controller contains six tasks:

• prepare-training-data runs ranking algorithm on normalized MPQA
dataset to prepare training data (it takes no additional parameters)

• normalize-values normalizes ranked data in MQPA dataset to values
between < −1, 1 > (it takes no additional parameters)
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D.7. Controller - Sentiment

Parameter Description Required

-fin Input file True

-fout Optional output directory False

Table D.8: Parameters for tasks in controller Sentiment

• extract-features extracts features for each sentence in file with ex-
tension ”sentences” and stores them in file with the same name and
extension ”.features” (see Table D.8 for list of supported parameters)

• calculate-sentiment reads ”.feature” file and calculates sentiment for
each sentence in it; the result is stored in file with the same name and
extension ”.sentiment” (see Table D.8 for list of supported parameters)

• calculate-per-turn reads ”.sentiment” filr and calculates sentiment
per turn by combining sentences in one turn together; as a result file
with same name and extension ”dialog” is updated with the sentiment
of turns (see Table D.8 for list of supported parameters)

• calculate-sentiment-all-files calculate sentiment (run tasks calculate-
sentiment and calculate-per-turn) on all files in given director (see Table
D.8 for list of supported parameters)
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Appendix E

Contents of enclosed CD

readme.txt ....................... the file with CD contents description
src.......................................the directory of source codes

politics..................the directory of source codes of the thesis
tesseract-train...the directory of source codes of the trained OCR
algorithm

thesis..............the directory of LATEX source codes of the thesis
text..........................................the thesis text directory

DP polak lukas 2017.pdf.............the thesis text in PDF format
DP polak lukas 2017.ps................the thesis text in PS format
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