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Abstract

This thesis contains an approach to do research on mobile connectivity data for the use
in traffic modeling, while such data is not available yet. It describes the generation of
synthetic Call detail records (CDR) from the vehicle trajectories of a microscopic simula-
tion study. It investigates in how far it is possible to observe changing traffic conditions
and route choices from these records. The simulation includes a highway stretch and
residential roads in Solna, Stockholm and is carried out using the software Aimsun. The
demand data is derived from sensors fixed along the highway stretch. A python script for
the Aimsun advanced programming interface (API) is used to extract the vehicle trajecto-
ries from a running simulation. Mobile connectivity and call generation models translate
the trajectories to CDR. Several data sets that differ in the underlying traffic demand and
the grouping of regarded road stretches are generated. The data sets are analyzed in
terms of total system load, average cell size, average cell dwell time and repeated con-
nection sequences. Additionally, two ways to extract demand in origin-destination pairs
from the data are compared. The first recognizes travel directions from the position of
the subscribed cells and the second utilizes connection sequences. It is observed that it
is possible to select traveling subscribers from the data by filtering them for large cells
and connection patterns. Algorithms need to be trained to recognize those specific re-
gional patterns that consist of cell sequences. Based on the load in these cells, changing
demands in the network are identified. By analyzing the cell dwell time of subscribers,
arising congestion in the simulated network is recognized quickly. It is concluded that
route choices can effectively be identified by using connection patterns.

1ii



Acknowledgments

First, I want to express my gratitude to Clas Rydergren, who supported me from the very
beginning of my work on this thesis. He helped me to find a topic and took a great effort
to respect my own preferences regarding its detailed outline. For the time of more than
one year he was quick to respond to any of my questions and always provided help in a
way that showed his deep understanding of my work. First he did all this without any
obligation and later continued as my official examiner. Next to him, Nikolaos Tsanakas
stood by my side as my supervisor and patient lector of all my writing. I am grateful
for his help with gathering input data and for all the helpful comments that greatly im-
proved the quality of my report. Furthermore, I want to thank David Gundlegard for his
voluntarily shared expertise in cellular networking. Special thanks go to Johanna Galarza
Monta, who actively accompanied me during the work on this project. I cannot highlight
enough, how important her enduring, daily support was to me.

Apart from being an academic work, this thesis also marks the completion of my
education. In this context I would like to show my gratitude to all staff of Linkdping uni-
versity. Many times, they have aided me outstandingly and thus enabled my success in
studying. However, most importantly I want to use this opportunity to thank Walburga
and Berthold Schlagheck. Without their tireless support and continuous reassurance, the
education that I was permitted to receive would not have been possible. I will be forever
deeply grateful to them.



Contents

Introduction
1.1 Motivation . . . . . . . . . e e
1.2 AIM . . o

1.3 Methodology . ... ... ... . .. .. ...
1.4 Limitations . . . . . . . . . o e e e e
1.5 Outline . . . . . . . e e

Theoretical background

2.1 Modelling of trafficsystems . . . .. .. ... ... ... ... .....
211 Simulationapproaches . . . ... ... ... ... . L.
2.1.2 Models for microscopic simulation . . . . ... ... ... ... ...

22 Cellularnetworks . . . . . . . . . e
2.2.1 Cell structures based on population density . . .. ... ... ...
2.2.2 Signaling data in cellularnetworks . . . . . .. ... ... ... ...
2.2.3 Network design for mobileusers . . . . ... ... ... .......

2.3 Datacollection . . . . . . . . . . .. e
2.3.1 State of the art in traffic data collection . ... .. ... . ... ...
232 CDRdatain trafficmodeling . . .. ... ... ... ... ......

Experimental procedure

3.1 The microscopic simulationmodel . . . .. ... ... .. ..... .. ...
3.1.1 Choice of the geographical researcharea . ... .. .. ... .. ..
3.1.2 Buildingthemodel . . . . ... ... ... ... ... . ... . ...
313 Demanddatainput. ... ......... ... .. ........
3.14 Model parameter estimation . . .. ... ... ... ... ... ..

3.2 The representation of the cellularnetwork . . . . .. .. .. ... ... ...
3.2.1 Importing the cellular network overlay . . ... ... ........
3.2.2 Mobile connectivity model . . . ... ... ... 00

3.3 Generating the connectionrecord . . . . .. ... ... ... ... ...
3.3.1 Basics of the Aimsun advanced programming interface . . . . . . .
3.3.2 Calllikelihood model . . . ... ... ... .. ... .. ......
3.3.3 Vehicle trajectory extraction . . . . . .. ... ... 0L,
3.34 Implementation of the mobile connectivity model . . . . .. .. ..

vii

N U1 W IN P =

O O ©



4 Results

41 Structure of theoutputdata . . .. .. ... ... ... ... .. L.
42 Outputdataanalysis . . ... ... ... ... . ... .. o ..
421 Totalsystemload . .. ... ... ... ... .. ... .........
422 Averagecellsize ... ... .. ... ... .. ... .. ...
423 Celldwelltime . .. ... ... ... .. ... e
424 ODestimation. . . . . . . . . . . . i e e
425 Connectionpatterns . . . ... ... ... .. ... ... ...

5 Conclusion
5.1 Discussion . .

5.2 Recapitulation of the research questions . . . . . . ... ... ........

5.3 Future outlook
Bibliography

Appendix

viii

45
45
47
48
49
51
53
54

58
58
61
62

64

70



List of Figures

1.1
1.2

2.1
2.2
2.3

3.1
3.2
3.3
34
3.5
3.6
3.7
3.8
3.9
3.10
3.11

4.1
4.2
4.3
44
4.5
4.6

Al

Interaction of methods in the experimental procedure . . . . .. ... ... 5
Outline . . . . . . . .. 6
Logical steps of the model building process . . . . .. ... .. ... ... .. 10
Classification of the Fritzsche car following model . . . . . ... ... ... 12
Transmission spectrum of mobile phone antennas . . . . . ... ... ... 15
Map of Solna in the north of Stockholm . . . . ... .. .. ... .. ... .. 25
Detailed view on the modeled centroid in "Solna center" . . . ... .. .. 27
Comparison of data collected by one sensor on different days . ... ... 28
Development of highway flows during the simulation . . . . . ... .. .. 30
Map of Stockholm including the Telia GSMcells . . . ... ... ... ... 34
Voronoi cell structureinSolna . . . . .. ... ... ... oo 0oL 35
Multi-layer cell network in Stockholm . . . .. .. ..... ... .. ... .. 36
Communication between Aimsun and the API during a simulation . . . . 38
Process flow diagram of the call likelihood model . . . .. ... ... ... 40
Process flow diagram of the mobile connectivity model . . . . . ... ... 42
Development of the cell choice formula . . ... ... ... ... ...... 44
Capture of the network summary from the Original Scenario . . . . .. .. 46
Comparison of plots for the total number of connections . . . ... .. .. 49
Comparison for the average size of serving cells in the Free flow Scenario . 50
Comparison of the average size of serving cells for highway traffic . ... 51
Comparison of dwell time and number of records for one dataset . . . . . 52
Popularity of free flow related connection patterns in the Highway data sets 56

The whole network as it is modeled in Aimsun . . . . . ... ... ... .. 73

ix



List of Tables

2.1 Signaling data collected during a handover . . . . ... .. ... ...... 16
3.1 Sample OD matrix [Veh/h], used from 6:30-6:45am . . . . ... ... ... 29
32 OpenCellIDdatastructure . . ... .. ... ..... .. .......... 33
4.1 Excerpt from the Congestion everything CDR dataset . . . .. .. ... ... 47
4.2 Number of entries in each generated dataset . . . ... ... ... ... .. 47
43 CDR based OD estimation for the Original Everything dataset . ... ... 54
4.4 Occurances of connection patterns in the Original Scenario . . . . . . . . .. 55
A.1 OD matrix [Veh/h], used from 6:45-7:00am . . . ... ... ......... 70
A2 OD matrix [Veh/h], used from 7:00-7:15am . . . ... ... ... ...... 70
A.3 OD matrix [Veh/h], used from 7:15-7:30am . ... .. ... ... ...... 70
A.4 OD matrix [Veh/h], used from 7:30-7:45am . . .. .. ... ... ...... 71
A5 OD matrix [Veh/h], used from 7:45-8:00am . . . ... ... ... ...... 71
A.6 OD matrix [Veh/h], used from 8:00-8:15am . . . ... ... ... ...... 71
A.7 OD matrix [Veh/h], used from 8:15-8:30am . . .. ... ... ... ..... 71
A.8 OD matrix [Veh/h], used from 8:30-8:45am . . . .. ... ... ....... 72
A9 OD matrix [Veh/h], used from 8:45-9:00am . ... ... ........... 72
A.10 OD matrix [Veh/h], used from 9:00-9:15am . . . ... ... ... ...... 72
A.11 OD matrix [Veh/h], used from 9:15-9:30am . . .. ... ... ... ..... 72



Chapter 1

Introduction

1.1 Motivation

Traffic models are an important tool for engineers to estimate the current state of a road
network. Based on them, experiments with new links or changed demands can be made.
They also allow experiments on changes of the network before a decisions about invest-
ments have to be made. Modeling software includes advanced algorithms to compute
realistic behavior of travelers. At the same time, it is possible to influence the behavior
with many different variables. Mostly, the aim of setting a model’s variables is to repro-
duce the traffic situation as closely to reality as possible. Therefore, precise and extensive
knowledge of the traffic system is crucial. The knowledge is transferred into the model
as input data. Without the right input, there can never be an appropriate representation
of reality in the model. This would make the experiments performed with it and the con-
clusions drawn useless. For that reason, the collection of traffic data is a field as old as
the centralized planning of road networks. Gathering data is a complicated topic, since
traffic is the sum of the travel paths of many individual travelers. All of them have their
own trip motivation, route choices and driving preferences, which results in a specific
behavior. Thus, to be able to reproduce a realistic traffic situation, a high number of de-
tailed data sets about travelers is necessary.

To include both, a high level of detail and a big sample size, is not completely possi-
ble. Throughout the time, different approaches have been developed to generate usable
input data from the available sources. The classical way is to do surveys and to ask peo-
ple from where to where they will travel each day. With the ongoing computerization of
our civilization, other data sources became available that can be passively used as input
for trip models. One example is the tax records of residents in the geographical research
area. They contain information about the home and workplaces addresses as well as the
number of cars per household. From that information, the most likely daily trip distribu-
tion can be computed and used as input data for traffic models.

This thesis focuses on a source for traffic data, that has become interesting due to the
increasing use of cellphones. Along with massively increased spread of these devices,
text messages and phone calls have become an important part of our communication
within the last decade. Many people also communicate through their cellphones while



traveling. Additionally, cellphones receive text messages and periodically connect to the
internet. For each of these tasks, the cellphone establishes a connection to the cellular net-
work. For billing purposes, the network providers keep a record of all communication
made with their customers’ devices. This data is called call detail record (CDR). It con-
tains a unique user id, a time stamp and the id of the cell, the cellphone is connected to.
The cell id identifies, which base station is handling the connection. The location of the
base station is known by the providers as well. Thus, a rough localization of a cellphone
based on the cell ID in its CDR is possible. Furthermore, a CDR with several records for
the same user can be used as a travel log. This makes it very interesting as input data for
traffic models. It is not only cheaply available in a huge sample size, due to its simplicity
the data can also be computed easily.

Research institutions are currently in a process of negotiation with network providers
to gain accessibility to their network layout and their records. This process is slowed
down by issues of privacy protection that forbid any third party use of user data com-
pletely. However, the process is on the way and the data is expected to be available in
some form within the next years. To be able to make efficient use of it though, experience
is needed with how to filter and interpret it. This thesis therefore suggests the use of syn-
thetic call records to help understanding the correlations between traffic and CDR better.
The data can be generated based on modeled vehicle trajectories. The precise locations of
the base stations and thus the shape of the cellular network is not yet known. Neverthe-
less, there are publicly available location estimates of mobile phone cells. The thesis uses
such public data for the generation of synthetic records. With these means a large data
set that will be available for research purposes can be created with a low computational
effort.

1.2 Aim

The aim of this research project is to evaluate the usability of mobile phone data as in-
put for traffic models. While this mobile phone data is currently not available from the
network providers, it has to be generated first. In order to support future projects, the
methodology of the data generation is to be made reproducible. Therefore, the project
intents to present a reusable way to generate CDR from a source that supports as many
different road networks and traffic states as possible. Furthermore, the applied tools
should be available to as many people as possible. This way, the methodology can be
reused and improved by a wide range of researchers. The procedure is to be kept as easy
and transparent as possible and at the same time lead to the generation of meaningful
results. Several scenarios are to be investigated during the experiments. Based on the
analysis of the different scenarios, conclusions about understanding CDR data as input
for traffic models are drawn. This is crucial for being able to use the data effectively
once it is available to researchers. The project specifically aims to answer the following
research questions concerning the correlation of traffic situations and CDR:



e To what grade is it possible to distinguish a fast from a slow traveler in a synthetic
CDR?

e How is a changing density in a traffic system visible in a synthetic CDR?

e In how far is it possible to distinguish travelers’ origins and destinations or to iden-
tify specific route choices from synthetic CDR on a suburban scale?

All research questions target to improve the understanding of the correlation between
road traffic and call records. Finally, the gained knowledge is intended to direct and mo-
tivate future research.

1.3 Methodology

The process towards the generation of synthetic CDR data in this thesis needs to be
reusable, flexible and able to create meaningful results. These specifications imply com-
promises that have to be regarded when choosing methods and tools to proceed. A high
flexibility of the methods is reached when they accept a wide range of different input.
The wider this range is, the less the underlying model will be able to consider specific in-
formation that may be available in some cases. All data needs to be simplified to a bring
it to a common denominator. At the same time, the quality of the output is decreased,
the more the input data is simplified. Great care has to be taken find a satisfying com-
promise between flexibility through simplification and a high output quality. A similar
trade-off occurs when the reusability is taken into account. By using tools that are pub-
licly available, maybe even as open source, the process can be repeated by a high number
of people. Thus it is preferable to apply such tools in general. Nevertheless, it is impor-
tant not to rely on the compatibility of different software. The more programs that are
involved in the process, the higher the risk that a future version of one of them will not
work appropriately with the rest anymore. Thus, it would negatively influence the qual-
ity of the results. Finding a small number of specialized tools that are easily accessible
can be a difficult task. The choice of methodology for this thesis is done bearing the three
priorities reusability, flexibility and output quality in mind.

As a base for the data generation, a high number of vehicle trajectories need to be ob-
tained. These trajectories can either be simulated or recorded from real vehicles. Chapter
2.3.1 describes ways to get a large number of real-world trajectories. Some providers of-
fer such data almost worldwide and thus provide a large flexibility. Due to realistic route
choices and demands, real trajectories have a positive impact on the quality of the results.
However, the obstacles to buy the data each time it is needed makes the process less ac-
cessible. Furthermore, the project intends to avoid a violation of privacy by creating syn-
thetic data. From an ethical perspective, it is better to avoid the use of personal location
data in the first place. Thus, a simulation approach is preferred. Therefore, a microscopic
simulation software is an appropriate tool. A traffic simulation software is specialized
on generating a realistic representation of traffic. The underlying route choice models
ensure a high entropy and due to the changeable parameters, different scenarios can be
considered. Further motivation for the choice of a microscopic simulation approach is
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given in chapter 2.1.1. Alternatively, manually generated routes from a navigation soft-
ware could be used. By calculating a large number of routes, different scenarios could
be examined. Geographical information software to do this is available as open source.
However, it is not possible to realistically represent changes in traffic situations in this
way. Furthermore, a study using this approach will always be more limited than with a
microscopic simulation.

The microscopic simulation model used in this thesis exclusively includes motorized
vehicle traffic. Since the input data does not include a separation of vehicle classes, all
traffic is represented as private cars. Not including pedestrians, cyclists and stationary
users in the model abstracts the results. They are not as divert as a real data set. In re-
gard of the underlying research questions of the project, this simplification is accepted.
At this stage of the research the focus lies on finding differences between the motorized
travelers themselves. Additional information about the travelers, like their origins and
destinations, is not used for the the result analysis either. The study intentionally nar-
rows down the time of data collection and the geographical area. This way, the real time
evaluation of connection records can be tested. An extension of the personal informa-
tion to the travelers home or work places would simulate a knowledge that cannot be
expected in reality. The simulation study is run over a time period of three hours from
6:30 until 9:30am with the averaged demand data of a regular workday. This time period
includes the whole morning peak hour as well as the times around it with less demand.
Choosing this time enables the simulation of different traffic states within the scope of a
single simulation study. Additionally, the morning peak hour is of a great interest regard-
ing demand and flow estimation. Thus it offers a good precondition to find meaningful
answers to the research questions. The geographical research area needs to be one that is
effected by the morning peak hour.

To represent a cellular network digitally, geographical data about the cell locations is
needed. Additionally, as much meta data as possible can help representing the network
realistically. Even though the network providers do not share such data, it is available
from several sources. Decentralized data bases of old cellular network data are hosted
by the government for some regions. These layouts are outdated enough, not to be con-
sidered company secrets any longer. However, they still contain realistic and detailed
representation of typical cellular networks. More recent data can be obtained from on-
line platforms that calculate the network layouts based on collected user data. A com-
munity of voluntary users saves and shares their mobile connection records through a
smartphone application. Algorithms are applied on the raw data, to estimate the serv-
ing cells” location and meta data. The biggest community and thus the largest data base
is provided by opencellid.org. Their network representation is chosen for this project.
The big community generates a precise and up to date network representation through a
large number of samples. It makes data with the same structure available for countries
all around the world on an open source base. Thus the Open Cell ID data satisfies all
main requirements of the project.

By correlating the vehicle trajectories with the cellular network layout, the cellular
connection records are generated. The most commonly used and most available format



of such records are call detail records (CDR). This format is hence used as the structure
of the experiment’s results. To generate CDR from the input, a programming interface
is needed that accepts input from a microscopic simulation and from Open Cell ID. This
programming interface is found in the microscopic simulation software Aimsun. It of-
fers a way to run scripts during an ongoing simulation. The scripts are thus enabled to
extract data and to manipulate the simulation in real time. Additionally, Aimsun allows
to import the Open Cell ID data as a spatial layer into a traffic model. It thus covers all
the required tasks of the project. Handling many steps of the project within one software
lowers the risk of incompatibility and hence increases the reusability. Figure 1.1 displays
how the chosen methods interact in the experimental procedure.

Road sensor data

@

Open cell ID data Traffic Data PYthon script interacting
’ with the simulation
Collection

Cellular ' ' Traffic

¥

Synthetic call detail records

Figure 1.1: Interaction of methods in the experimental procedure

1.4 Limitations

This thesis is part of ongoing research in this wide and vivid field, the borders and inter-
action points need to be defined. This is important in order to place it within the scientific
framework and identify its role in it.

The input used for the microsimulation model is highway sensor data. It is drawn
from a database supplied by trafikverket in Stockholm. Previous projects have been done
based on this data and helped understanding it as input for traffic models. Furthermore,
these projects have generated tools to access the data base and extract clearly defined sets
from it. These tools are being used to extract the input data for the traffic model in this
project. Based on this input, the thesis conducts research on how to generate synthetic
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CDR data. Data sets are created for one specific area using different traffic states. The
project exclusively focuses on private car traffic. The generation of data for other modes
of transport are left for future projects. One result of the thesis are the sample CDR. They
can be used as input data to another micro-simulation model of the same area to try and
match the results of the initial one. This is also left to do for future research. Within this
thesis the generated data is analyzed on a basic level and some general conclusions from
it are drawn. These conclusions are a result of the work as well.

On the side of mobile communication network modeling, the thesis relies on publicly
available data, gathered by a large community of voluntary users. The applied network
structure and radio resource management are as advanced as seen possible under the
current conditions. Nevertheless, improvements on these models are subject to continu-
ous projects with different scope and focus.

1.5 Outline

The generation of synthetic mobile phone data from a micro-simulation model requires
the combination of different fields. A project with this extend and complexity needs a
well formulated structure to remain understandable. This chapter describes structure of
this thesis and thus helps the reader following its common theme. A visualization of the
thesis’s argumentative framework can be found in figure 1.2.

Introduction

Motivation Aim Methodology Limitations

Theoretical Background

Traffic data collection Traffic modeling Mobile networks

Experimental Procedure

Model building Cellular network overlay Data generation

Results

Presentation Sensitivity analysis Analysis approaches

Conclusion

|¢

Discussion Recapitulation Future outlook

Figure 1.2: Outline



In chapter two, the Theoretical Background of the project is presented. The chapter
hereby focuses on research specifically related to the topic and presents it in a brief and
understandable way. Since the project intersects different research areas, this chapter con-
sists of three pillars. The first of these pillars is about traffic modeling techniques. First it
presents an introduction to the most important modeling approaches in traffic planning
and therewith motivates the choice of microscopic simulation in the current case. The sec-
ond section then describes the structure of microscopic traffic models. It is a preparation
to understand the estimation of the model in the experimental part. A second major area
of the thesis is mobile network design. The realistic representation of a mobile commu-
nication cell network has a big impact on the validity of the synthesized data. Therefore,
it is important to understand the logic that modern cell networks are based on. This in-
cludes the distribution of cell towers and cell sizes as well as the administration of users
that travel through the system. This section introduces the basic knowledge to under-
stand how the subscription to the cell towers is decided in the experiment. The first two
pillars, traffic modeling and cellular communication, intersect in the special approach of
traffic data collection used in this thesis. The third section covers traffic data. It initially
gives an overview of the currently and former applied data sources, and then focuses
on the experienced use of CDR data in traffic modeling. On the one hand, this helps to
understand what kind of data structures can be used as model input and how the CDR
data may be translated to be applicable. On the other hand, it gives an understanding of
the advantages and disadvantages of the new approach and points out how it can add
value to the currently used ways.

Chapter three steps through the experimental procedure. It points out the single
steps towards the generation of the data set. The three main parts of the experiment are
explained. The first of them is to build a microscopic traffic traffic simulation model. This
includes choosing an appropriate research area, representing this area in a software and
finally choosing the correct input data for the different scenarios. As a second part, a rep-
resentation of the cellular network is imported into the model and made usable during
simulation studies. Once the model is set up, the third part of this chapter describes the
process of generating the synthetic CDR data set from it. It includes a description of the
Python extension in Aimsun that is used to extract and translate the vehicle trajectories.
Further it explains how the theory of mobile network design and administration influ-
ences the way the cell distribution is performed. Additionally, a call likelihood model is
introduced to simulate realistic mobile phone usage profiles.

Chapter four regards the work on the experiment’s results. First the generated output
is presented and its structure introduced. In the following analysis different approaches
are evaluated. Some simply focus on the data sets as collection of records and analyze the
system load or the number of records per vehicle. Other approaches utilize the common
measures for cellular networks like the average dwell time or cell radius. Finally a more
specialized learning algorithm is presented that relates connection patterns to both, spe-
cific route choices and traffic situations. Throughout the whole analysis procedure, three
different scenarios with different demand backgrounds are applied. They are compared
to evaluate the sensitivity of the output towards the change of conditions.



The conclusion of the project is presented in chapter five. In a first part, the results
are discussed and summarized. The basic specifications of the project are recaptured
and its performance put in relation to them. A review of the initial research questions
recapitulates to what extend they have been answered by the experiments. The future
outlook concludes what can be gained from the conducted research. Based on this, ongo-
ing research projects are recommended and the possible scope of these projects described.



Chapter 2

Theoretical background

Understanding the project in detail, requires a certain level of background information
about the topic. This information is presented in the following sections. Due to the high
complexity, the information provided is largely focused on the current project. For more
in depth information about the different fields, literature recommendations are provided
in place. The thesis covers three research areas. Each of them is presented in one section.
The topic of traffic data collection is central for the project. To understand the require-
ments to input data posed by traffic simulation, the modeling techniques are introduced
first. Next, a section on cellular communication networks introduces the mobile phone
records that are proposed as alternative input data. Both areas are intersected in the final
section about traffic data collection.

2.1 Modelling of traffic systems

The first section frames the basics of traffic modeling and focuses on the microscopic sim-
ulation approach chosen for this project. The backgrounds of this modeling technique are
presented to explain how it works and what requirements are to be regarded during the
experimental procedure.

2.1.1 Simulation approaches

Traffic simulation is used to monitor current state traffic demand and predict future be-
havior. The discipline has its origin in the 1950s’, when Lighthill and Whitham described
traffic as an analogy for the flow of solid particles in a fluid in [42]. From then until now,
in the face of constantly increasing demand on the road network, an efficient use and an
appropriate extension of the existing network has become more and more crucial. Es-
pecially the introduction of computerized modeling tools has given the opportunity to
simulate systems with high complexity.

The base of every simulation is a set of models. This mainly involves mathematical
models that describe the connections between the acting parts of the system. Thus it is
important to keep in mind the basic steps involved in modeling as can be seen in Figure



2.1. As Mitchell describes one of the principles in Operations Research in [46]: "Model
building implies making a statement of some or all the beliefs about the real world that the model
builder thinks are relevant to the problem at hand. Using the model is viewed as the logical ma-
nipulation of these beliefs equally or more relevant to the problem’. Thus it is vital to choose the
most adequate model for each situation, since there is more than one way to model the
same system. A clear description of the intention behind the modeling is a central part of
this.

Translation
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MODEL = (Error MODE.
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SYSTEM ANALYSIS
« Data Collection
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Acquisition Calibration
« Abstraction d
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REAL SYSTEM |<< | | Analyze the
Results

Figure 2.1: Logical steps of the model building process [6]

This section focuses on the appropriate choice of modeling technique. However it is
important to keep the other arches of Figure 2.1 in mind, too. The result of a model can
never be seen as a copy of the reality, but always has to be interpreted in an appropriate
way. Further a well calibrated model for one research case might need to be adjusted to
work for other projects too. When it comes to traffic simulation there are three mainly
used strategies which are macro-, meso- and micro-simulation. For an overview of a re-
cent state of the art in traffic simulation, [29] and [36] can be recommended.

Macro-simulation involves only the flow and speed on the monitored links. It re-
gards the aggregated traffic on a link as one stream of travelers. A common analogy to
describe how traffic is seen in these models is the flow of gases or liquids in motion as
described in [60]. The mainly used mathematical parameters are speed, density, flow-rate
and velocity. A macroscopic model may for example assume that the capacity of a multi-
lane link is given by a fixed parameter and the speed of travelers on it will derive directly
from the basic specifications. By simplifying the traffic on this high level, it is possible to
model networks of a great extension without exceeding the limits of computational costs.

Meso-simulation involves a slightly higher level of detail. Still, single vehicles are
neither distinguished nor traced. However, the groups that are regarded as one entity
are chosen to be smaller in this case. To stick with the initial example, each lane could
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be seen as one entity and the difference in density on the lanes are the trigger for lane
changes of a group of vehicles. This way, the traffic is regarded more as the result of
numerous individual decisions while still keeping the computational cost low.

Micro-simulation finally includes modeling of every single vehicle. This moves the
focus of the model away from the specification of link parameters and speed-density
functions. Microscopic models, rather rely on the precise reproduction of driver behavior.
According to [9], this includes car-following, lane changing and gap acceptance models.
Thus, the lane change example would be described as a chain of drivers’ decisions in this
case. Micro-simulation follows a much more natural approach to describe traffic. Nev-
ertheless, such models are costly to compute and complicated to adjust. An even higher
level of detail is regarded in sub-micro-simulation approaches. Those models even in-
clude the processes inside the vehicle, like driver-car interaction and driver distraction.
In these models the required gap to perform a lane change could for example be influ-
enced by the necessity of a change of gears. An introduction to sub-micro-simulation can
be found in [29].

All given examples are mainly implemented to describe motorized road traffic. How-
ever, an extended use to describe pedestrian or bike traffic is possible as well. In that
scope the models can even be applied to evaluate the functionality of escape plans in
buildings or the capacity of a race track for a marathon event. For the research conducted
in this thesis, micro-simulation is the appropriate tool. The objective to create CDR data
from traveler routes requires the creation of personalized trajectories for those travelers.
Thus only a microscopic simulation method can be valid. However, the level of detail of
the trajectories does not need to be especially high. Cell triangulation, which is used for
the positioning in these data sets is not that precise anyway. A sub-microscopic simula-
tion approach hence is not necessary. To keep the computational costs as low as possible
while providing the necessary output, micro-simulation is the tool of choice. In the fol-
lowing paragraph the underlying models of this simulation approach and its varieties
are presented.

2.1.2 Models for microscopic simulation

A simulation of any scale is a combination of models, each of them describing parts of
the behavior of the traffic system as a whole. The kind of the applied models depends on
whether it is a macroscopic, mesoscopic or microscopic simulation. Within microscopic
simulation the models focus on the interaction of single vehicles. Just as in a real traffic
system, the sum of reactions of vehicles to each other results in the traffic state.

The core model used in a microscopic traffic simulation is the car following model.
The basic assumption of this model is that speed and acceleration of a vehicle depend
on the vehicle ahead. A driver’s choice of speed is assumed to be determined by two
objections. First to avoid a collision with the proceeding vehicle and second to travel at
the driver’s personally desired speed. It can be formulated in numerous ways like for
example a mathematical equation, a set of rules or even fuzzy logic. A general version of
a car following model can be written as:
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Reaction(t 4+ T) = sensitivity * stimulus(t) (2.1)

Whereas t names the current time step and T denotes the following vehicles reaction
time. The reaction within this model can be a deceleration or acceleration. This depends
on the stimulus which typically can be the gap to a proceeding vehicle or the difference
between current and desired travel speed. The sensitivity is a factor that determines the
extend of the reaction [33]. The behavior and the complexity of a car following model
is mainly influenced by its definition of these parameters. Advanced models include a
classification of situations that cause adjustment of reaction and sensitivity. An example
for this can be seen in Figure 2.2.
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Figure 2.2: Classification of the Fritzsche car following model [23]

In the diagram, the choice of reaction is influenced by both the difference in speed and
linear position of two vehicles. In combination these two values result in the theoretical
time headway. It can be seen that everything undeneath a minimum distance is pre-
sumed as dangerous and will lead to more severe reactions than a "closing in" situation
with more distance between vehicles. In the Free driving area the proceeding vehicle is of
little importance to the follower, thus the sensitivity factor is close to zero. An overview
of popular car following models can be found in [14] and [50] give a comparison of their
specific behavior.

The micro-simulation software Aimsun that is used in this thesis relies on a car fol-
lowing model based on the one introduced by Gipps in 1981 [26]. Despite being more
than 30 years old, it is still one of the widely used models for computerized traffic sim-
ulation. Its major advantages are the clear physical reproduction of drivers” attempts to
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"smoothly reach the desired speed or to safely proceed behind his leader", as formulated
by [19].

Another model, used within microscopic simulation is the gap acceptance model.
This model is used whenever a vehicle attempts to join an existing traffic stream and
thus is waiting for an appropriate gap. The first major situation, when the model is ap-
plied, are give way intersections including roundabouts. A car waiting to enter will make
the decision to enter or not depending on the gap to the next upcoming car. Gaps are typ-
ically calculated in the predicted time until the crossing vehicle reaches the intersection.
[2] presents and compares several kinds of gap acceptance models. A second common
application of these models are highway mergings and lane changing. In these cases, the
classic gap acceptance models often fail to reproduce realistic driver behaviour. On an
acceleration lane for example, drivers tempt to accept smaller gaps and greater changes
in their own speed in order to enter a highway. To represent this in the model, some
parameters have to be adjusted, as proposed in [35].

On the contrary to the previously presented models, the route choice model does not
directly affect the traffic flow. It merely distinguishes the path, a single vehicle chooses to
get from it’s origin to the destination. The major parameter distinguishing these models
is whether they are static or dynamic. According to [10], static models work in two steps.
First they distinguish a set of possible routes that connect the traveler’s origin and des-
tination. Second, they rate every possibility based on its costs. The costs are a fictional
value, generated by a formula that uses the routes’ given parameters. In combination
with the traveler-specific preferences (e.g. value of time) the most appropriate alterna-
tive is chosen. This process is repeated for every vehicle, entering the simulation area. On
the contrary, dynamic models add a third step at the end of each loop that updates the
routes” parameters based on the changed traffic load. This influences the route choice of
following vehicles. Some dynamic models even update the route choice due to changed
traffic conditions, while a vehicle is in the simulation.

The formulation of route choice models can be classically deterministic with consider-
ation of cost minimization and entropy maximization alike. Alternatively, a logit model
approaches are popular, since they model human decision making especially well. [39]
presents advantages and disadvantages of such models and suggests C-Logit nesting of
similar routes as an improvement. An extensive overview of route choice models can be
found in [12].

2.2 Cellular networks

The second section gives an overview of mobile communication network design and its
functionality. First, a brief introduction of basic cell layouts is given. The spotlight in
this section is put on the signaling data that occurs during wireless communication, since
it will be reproduced as a result of the experiments. Further, the network specifications
for traveling users are presented to motivate the later applied algorithms regarding cell
changes.
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2.2.1 Cell structures based on population density

Mobile communication has become a part of everyday life all around the world. The
market is constantly growing and replaces more and more of the traditional wired con-
nection. Especially in developing countries intensive mobile phone use has become part
of the culture. Next to voice and text communication, internet access has become one of
the key functions of the networks. As the demands for velocity and capacity grows, new
network generations have been implemented to cover more and more traffic. Chapter 1.3
of [25] provides an overview of the development.

As a first globalized network, the global system of mobile communication (GSM)
defined common standards that enabled unbounded roaming. Although the more ad-
vanced network types like 3G and 4G gain importance as mobile internet demand grows,
GSM systems still offer the backbone of every mobile network. They contain the biggest
infrastructure and ensure basic provision in almost every populated area around the
world. GSM systems are found operating in frequency bands around 900 MHz, 1.8 GHz
or 1.9 GHz. The lower frequency bands serve as macro cells with large size and high
power transmission towers, whereas the higher bands are operating as micro cells [69].
Macro cells are used to offer a wide range coverage in rural area without much traffic.
There, one single cell can reach a cell radius of up to 35km. So-called mega cells are
offering basic coverage in very remote areas and can even reach radii up to 500km. In
urban areas, macro cells are also used for travelling subscribers. This avoids an unnec-
essary high number of handovers and thus lowers the risk of a dropped call. Micro cells
in the higher frequency bands can exist parallel with the others and provide extra capac-
ity for stationary users. Their cell radius typically does not exceed 1km as is stated in [70].

Mobile phone networks that are based on coverage or capacity also differ in the shape
of their cells as can be seen in figure 2.3. The first kind uses one omni-directional antenna
to cover a circle around the base station. In this way, one frequency is used for the whole
area and only a low number of base stations is needed. For large cells this layout provides
the best signal strength even at the cell borders. Capacity oriented cells usually work with
sectored antennas as can be seen in the right half of figure 2.3 that shows an example of
a 3-sector antenna. Here, one base station includes several cells that each cover 120° of a
circle. This way, every base station can use multiple frequencies and hence offer a higher
capacity. Additionally, a lower transmission power can be used which is good for the
mobile stations’ battery lifetimes [56]. A major advantage is that the shape of the cells is
better adjusted to an urban street pattern what avoids shadowing effects from buildings.
Actually, the shadowing can in this case be used to avoid interference with other cells.
More information about cell layouts can be found in chapter 5.5 of [25] and in [21].

How well a signal can be transmitted within different areas is described by propaga-
tion models. An overview of them can be found in Chapter 3.9 of [25]. One of the widely
used models is the Stanford University Interim model implemented by the Institute of
Electrical and Electronic Engineers (IEEE) presented in [55]. It is designed for the GSM
frequency bands between 800 and 1900MHz and includes three different parameter sets
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Figure 2.3: Transmission spectrum of mobile phone antennas [37]

for urban areas, suburban areas and open terrain. The models structure is based on the
physical boundaries of radio wave propagation, whereas its parameters have been esti-
mated empirically. Propagation models play an important role in establishing handover
algorithms and in designing the layout of the overall cell structure of a network. They
can help deciding where to put physical cell borders and how to position the antennas to
reach maximum coverage.

2.2.2 Signaling data in cellular networks

Wireless connection in a cellular system consists of a standardized communication be-
tween the network’s base station controller (BSC) and the mobile unit. [64] provides
several examples of the two-way connection. For example, the signaling during the mo-
bile unit’s start up process or while a call is being placed. In addition to this, the two
counterparts frequently exchange measurements to verify the mobile unit’s location or to
adjust the cellular power level. Exemplary, table 2.1 shows an extract from the communi-
cation during a handover process. Apparent is the Change in cell-ID in the beginning of
the process and the message "Handover Complete" in the end. The process is supported
by continuous signal measurements of both sides. Depending on the network protocols,
the mobile unit can monitor several base stations at the same time. The data has been
captured by using the TEMS investigation tool by Ericsson. A summary of all signal-
ing information exchange that is covered by the software can be found in [8]. The most
important measures of a mobile network are the received signal strength (RxLev)/, the
received signal quality (RxQual) and the timing advance (TA).

This kind of in-depth data collection just happens for diagnostic purposes. Normally,
only some summarizing data sets are being stored by the network providers. As listed
by [71] these sets contain the call detail records (CDR), cell change updates (CCU) and
network measurement reports (NMR).

CDR data is stored by the provider for billing the customers. Hence, it contains all
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Table 2.1: Signaling data collected during a handover

Time MS Direction Message Type All-Cell All- All- All- All- | All- Distance Dwell
Id BSIC) | RxLev | RxQual TA MS time
Sub Sub Power
11:59:08.93 MS1 DL Channel Information 29090 16 -84 0 1 30 71,63 17,39
11:59:08.95 MsS1 DL I-CMD 29090 16 -84 0 1 30 71,63 17,40
11:59:08.95 MsS1 DL Handover Command 28001 25 -84 71,63 17,40
11:59:08.96 MS1 UL Handover Access 28001 25 -84 71,63 17,41
11:59:08.96 MsS1 Internal MPH State Report 28001 25 -84 71,63 17,41
11:59:09.04 MS1 Internal PH Block Report UL 28001 25 -84 71,63 17,86
11:59:09.04 MS1 Internal PH Block Report DL 28001 25 -84 71,63 17,86
11:59:09.04 MS1 Internal MPH Channel 28001 25 -84 71,63 17,86
11:59:09.04 MS1 Internal RR State Report 28001 25 -84 71,63 17,86
11:59:09.07 MS1 28001 25 -84 71,63 17,87
11:59:09.07 MS1 Internal PH Block Report UL 28001 25 -84 71,63 17,87
11:59:09.07 MS1 DL Channel Information 28001 25 -84 71,63 17,87
11:59:09.07 MS1 DL Physical Information 28001 25 -84 71,63 17,87
11:59:09.07 MS1 Internal MPH State Report 28001 25 -84 71,63 17,87
11:59:09.17 MS1 Internal Channel Mode Report 28001 25 -84 71,63 17,93
11:59:09.17 MS1 UL Handover Complete 28001 25 -84 0,00 0,00
11:59:09.18 MS1 Internal RR State Report 28001 25 -84 0,00 0,01

information about established connections, may it be for internet access, texting or a call.
It contains an anonymous user ID as well as the ID of the serving cell and a time stamp.
Handovers that happen during an active call are not included in the CDR. The cell ID
column only contains the cell that initially established the connection. The CCU is used
by the provider in order to keep track of mobile units within the network. This is crucial
to keep the costs low, when the device has to be contacted by a base station. In most
networks, several cells are combined as location areas. In this way, there is no update
needed for every cell change, but only when entering a new Location Area. The size of
these areas is a trade off between the signaling costs for one update and for finding the
phone when needed. Due to this, the cell data from the CCU is not as precise as in the
CDR. However, it also contains idle users, which offers a much larger sample size. Idle
mobile units that don’t move across cell borders are still listed in the NMR. This data
set is generated by frequently exchanged measures for important network variables, like
they were listed before. It is only collected occasionally, but offers the most detailed in-
formation. On the contrary to CDR, CCU and NMR are not stored in specific data bases,
what makes them harder to access. Thus, it is the most realistic approach to focus on
CDR, when using signaling data records for extended purposes.

2.2.3 Network design for mobile users

Traveling users pose specific challenges to mobile communication networks. For them,
big cells have to offer coverage over long distances, while at the same time the network
has to offer capacity. Further the inevitable scenario of a cell change during a connection
is a demanding procedure for the radio resource management. A general evaluation re-
garding these effects and their related parameters is given in [73]. One important part
of designing networks appropriately for mobile users is to organize multiple neighbor-
ing cells in one location area. In this way, the paging costs can be balanced against the
call receiving costs. The location areas’ borders are to be chosen in a way that the intra
area traffic is much bigger than the inter area one [70]. However, it is not only the min-
imization of costs that has to be regarded. Every time an active mobile units crosses a
cell border, the connection has to be reestablished to a new base station. As [48] states:
"The major parameter in any network is defined by its Quality of Service (QOS) and
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handoff decision scheme plays a major role in QOS." To create a seamless handover from
one cell to the other, handover algorithms follow specific rules to decide whether to stay
connected to the previous or switch to a new cell. Their decisions are supported by the
constantly taken measures of either the base station, the mobile unit or both.

The complexity of a handover algorithms task can be seen by the large number of dif-
ferent approaches that are continuously developed and improved by researchers. Related
information can be found in chapter 3 of [7] and in [3]. Most Handover algorithms mainly
use the received signal strength and the received signal quality as measures. These algo-
rithms typically have to handle a trade-off between a fast handover decision and a desir-
ably low number of handovers. The longer it takes to make the handover decision, the
lower the received signal strength becomes before it is performed. This lowers the call
quality and even increases the risk of a dropped call. On the other hand, [43] describes
the risk of a so called ping-pong effect for too quickly taken handover decisions. This
means that multiple handovers between the same cells in a short time can occur only
due to signal fluctuation. According to [45] a maximum threshold of signal strength or
quality is a first step to avoid unnecessary handovers. In combination with a minimum
hysteresis between the values of two different cells, ping-pong effect and handover deci-
sion delay can be effectively balanced.

Ongoing research in this topic mainly focuses on the utilization of positioning data,
like done in [34] and [44]. In this way, algorithms can learn from the effects of past de-
cisions taken for users in the same places. Over time, cell borders can be developed that
help to decrease the handover decision delay significantly. A crucial part in these algo-
rithms however is the availability of precise location data that can be hard to obtain in
traditional GSM networks.

Another dimension to handover algorithms is added by the modern multi layer net-
works. A typical structure for those can be seen in [24]. For different kinds of users,
multiple cells are available at the same place. Each of them designed to serve for specific
purposes. Next to the previously regarded horizontal handovers, also vertical handovers
can be performed. This term for example, describes the migration from a macro to a
micro cell and is based on different decision parameters as described in [8]. Vertical han-
dover algorithms need to distinguish the user’s purposes to find the best fitting cell layer
for his demands. One approach to do so is presented in [53] and focuses on the residual
time as most important indicator.

2.3 Data collection

Collecting traffic data of high quality in a large scale is the far side aim of this and ongo-
ing research projects. The third section of this chapter is about traffic data collection in
all its forms. The focus lies on the advantages and disadvantages of common methods as
well as the use of mobile connection records. It is aimed to help the reader understand
all crucial points in this topic and the opportunities that are connected with the new kind
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of data.

2.3.1 State of the art in traffic data collection

This thesis aims to generate mobile phone connection data in order to train computerized
models to use it as an input. To understand the opportunities offered by this procedure,
however it is important to see where the advantages in comparison with other data gath-
ering techniques lie. This chapter provides an overview of classic data collection tech-
niques including their advantages and disadvantages.

One of the oldest, but still applied techniques is the vehicle owner interview. Ques-
tionnaires are given out to inhabitants of a research area and they’re asked about travel
specific details. These procedures are rather labour intensive and costly per dataset ob-
tained. Furthermore, they are not popular amongst participants, since they require a
lot of effort from them. Common procedures are mailed questionnaires, telephone in-
terviews or even face to face interview and travel diaries. All techniques suffer from a
typically low response rate of less than 60%. Nevertheless, they can deliver in depth
information that pure traffic counts cannot. This includes trip purposes, car ownership
rates and frequent habits according to [13]. By choosing samples from different demo-
graphic, racial and social groups, even rather small data sets can be used to calculate a
representation of the whole population. Maybe the biggest disadvantage of this method
however, is the long friction between the collection and the availability of the data. It
typically takes several years until a nationwide travel survey is evaluated and its results
can be utilized.

Stationary road sensors are another classic technique of traffic data collection. Within
this group, many different technologies are regarded and continuously being developed.
Some of the most important road sensor technologies are be described here. A more com-
plete list can be found in [5]. A group of sensors detects the passing vehicles based on the
pressure they put on the road’s surface. Amongst them, bending plates, pneumatic road
tubes and piezo-electric sensors are popular. Since a vehicle’s weight is carried by its
axles, all these sensors are regarded as axle sensing technologies. Next to the pure num-
ber of axles, they can also measure the weight passing over them. Based on these two
measures a vehicle classification is possible as it can be found in [22]. Presence sensing
techniques on the other hand, only detect the existence of a vehicle. Common technolo-
gies are inductive loops and magnetic sensors. These devices sense cars based on the
metal they are made of. They can only differentiate based on the length, which is not as
meaningful as the advanced axles sensing classification. As road sensors are commonly
applied in many road networks there is a lot of experience regarding their usage. Further
their constant presence at the same place allows highly comparable data collection over
long time periods. Their fixed position on the other hand also makes them inflexible.
An additional issue, especially for the weight sensitive axle sensing technologies is their
vulnerability. This is an especially sensitive disadvantage regarding the large effort it re-
quires to replace or repair them.
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Roadside cameras offer a more flexible alternative to static sensors. Since they are
not embedded in the roads’ surface, temporary installation is easier. Sometimes they are
also referred to as non-intrusive road sensors. Next to film cameras, radar, ultrasonic or
infrared technology can be used. In combination with a software, reliable traffic counts
can be performed. Modern software cannot only differentiate between different modes
by measuring the extent of a moving object. By recognizing and reading a car’s license
plate, vehicles can even be tracked along their path as stated in [58]. For studies in greater
detail, lane wise counts and even vehicle occupancy as done in [18] is possible too. The
latter is especially interesting for the enforcement of the correct use of carpooling lanes.
However, the required cameras get vastly expensive, if detection at high speed is re-
quired. The camereas are easlily getting confused by pets, dummies or large pictures in
the seats. Newly developed cameras avoid this weakness with advanced image taking
techniques. The detection is done by taking pictures while exposing the car to short wave
infrared light. The light is reflected by iron carrying blood cells and thus detects humans.
Recent trials described in [15] conclude that the technology only works at 87% efficiency
so far and especially still has issues with back seat detection.

Bluetooth and wi-fi devices are nowadays present in many cars and on pedestrians.
Most common are smartphones running on one of the two big operating system iOS or
Android. These devices are as default set to scan continuously for available networks
and thus can be identified by their MAC (Media Access Control) address. The address is
unique for every device and enables the device to be re identified reliably. This enables
the creation of movement patterns of users by installing detectors in a certain area. To
detect a device with this technique, it does not have to be in use, only the wi-fi or blue-
tooth connection has to be activated. An example for the commercial application of this
technique is provided by [41]. The detectors are rather cheap. High speed identification
however, does not work reliably. Currently at a speed of 100 km/h an average of 80%
of the devices is detected. A precise location can be achieved by measuring the received
signal strength of the devices, which gives an estimate of their distance to the detector.

All the traffic data collection methods presented so far rely on stationary detectors
that recognize and identify bypassing vehicles in some way. Thus, the obtained data will
be a spot study of the traffic state at one specific position. An alternative approach is
given by global positioning system (GPS) devices carried on board of vehicles. These de-
vices continuously elaborate a vehicle’s current location based on satellite signals. This
way, detailed trajectories, not limited by the position of roadside sensors can be obtained.
The principle is known as floating car data collection and described by [54]. A big ad-
vantage of this approach is the freely usable satellite infrastructure with a high precision
in positioning. [38] estimates the location error as typically less than 30m. Furthermore,
the receivers are rather cheap and already installed in many vehicles as navigation sys-
tems or for fleet management. Few vehicles however, are equipped with technology to
forward the GPS data. This is not done automatically, since GPS works with a signal
being broadcasted by the satellites and simply received by the on board unit. Additional
technology is necessary to share the location data such as portable hard drives or general
package radio service (GPRS) uplinks. The second option is the only possibility to gather
real time floating car data in this way. GPRS makes it possible to transfer data packeges
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over cellular networks and thus enables uploads from almost any place. A chance to get
a high number of data samples especially in big cities is the cooperation with taxi com-
panies. They often have their vehicles equipped to allow efficient ride distribution and
driver monitoring. The rate of equipped vehicles compared with the whole traffic load
will always be low using this technique. Based on the taxis” speed however, conclusions
about the current density on the links are possible. An example for traffic control based
on this data can be found in [32].

2.3.2 CDR data in traffic modeling

Traffic models are an essential tool for urban planners and transportation engineers to
plan and evaluate necessary investments in infrastructure. Since every project requires a
different focus on details or totality, the models can be shaped in many different ways.
Especially for large scale models that are used to evaluate the traffic inside a whole re-
gion or city, origin-destination (OD) matrices are of great importance. These matrices
show how frequently journeys have been started or finished in one place. Hereby the
focus is set on trips from and to work. Those are expected to be frequent and to have
an impact on the morning rush hour. For the data to be meaningful, the monitored notes
have to be of an appropriate size. Most important it is however, to provide a high number
of observed trips to achieve a good representation of the real commuting situation. This
is a crucial point in traffic modelling, since it is generally hard to grasp satifying input
data. A classical way of gathering it is to perform a household survey. This way, a high
detail level for relevant trips can be achieved. However, surveys are also expensive, slow
to be evaluated and only offer a small data sample. Another regularly used way of data
collection are roadside counts. These can either be performed by persons or by automatic
sensors mounted in the pavement. Here again the collection is quite costly and can only
be done on a limited number of links [52].

An alternative way of input data collection could be provided by a recently developed
method. The use of passively collected mobile phone connection data can be utilized to
create a movement record of the users. Mobile phones connect to their provider’s anten-
nas when a call is made, a message is sent or the internet is used. The collected data is
called call detail record (CDR) and is used and saved by the provider for billing. Typi-
cally, it contains a timestamp for each connection establishment of a cell phone, a unique
but anonymized caller ID and the cell phones current location in latitude and longitude.
The position is estimated by using either standard triangulation algorithms or the serv-
ing cell towers locations as stated in [4]. A sample of such data can be found in [31] and
its specifications are further explained in chapter 2.2.2. Extracting regular travel routes
from these records is a comparably cheap way to obtain an OD matrix. Thanks to the
popularity of cell phones, a big and representative data base can be achieved. [66] sees
opportunities especially in developing countries, where more than 90% of the travellers
carry a phone. Thus it can be a great alternative to installing costly roadside sensors
in those countries. There have already been several successful approaches using CDR
type data in real world OD estimation. Examples can be found in [16],[67] and [59]. In
[30] the regions passed along the travelers” way were evaluated as well and have been
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added as extension of the classical OD matrix. Commercial projects to utilize the data
are currently exclusively existent in the United States, since there the privacy laws allow
the spread of anonymized mobile phone records. Several communities have obtained
internal and external trip matrices. In Moore County, North Carolina for example, [57]
uses CDR to differentiate between local and non-local travelers on a stretch of highway
running through the county. As reported by [17] the same company, contracted for this
project was also most recently hired to monitor the movement of people related to the
50th super bowl match in San Jose, California.

Despite of all promising research, it has to be kept in mind that nobile phone records
have originally not been intended for the use of movement monitoring. The phones lo-
cation is just collected as a side product of its communication with the base tranceiver
station. Thus it is not focussed on accuracy and an adequate localization precision has to
be assumed. On the one hand in order to get as good results as possible and on the other
hand, to avoid the generation of fake trips due to imprecise localization as discussed in
[31]. A typically achievable localization error using the classical localization approaches
is between 200 and 300 m. However, [20] argues that the increased spread of mobile
phones including a GPS receiver could lower this error in the future significantly. Fur-
thermore, the usage of the data requires assumptions like defining what to interpret as
work or homestay. This is for example done by the commercial provider of mobile phone
record based commuting studies AirSage in [1]. For them a regular extended stay at on
location during the night defines one person’s home and a likewise pattern during the
day defines a work place.

CDR data offers a big chance to obtain more recent trip data and a higher number
of probes to estimate OD matrices with comparably low costs. The method has already
been validated by several studies and its results hold in a comparison to traditionally
estimated models. Additionally, know-how in analysing CDR data can be applied for
more than just the creation of traffic models. As an example, [11] describes an applica-
tion that can recommend extensions to a city’s public transport network based on CDR
data automatically. Alternatively there has been research about predicting the next out-
break of a disease based on CDR data in [65]. This shows how widely CDR data can be
used. Especially in a future perspective, when an increased precision can be expected
and experience about its application has been gained, this data offers big opportunities.
To stick with an example of traffic planning, [27] shows how GPS tracks can automati-
cally be analyzed to identify the mode of transport used. A similar approach on a bigger
scale is possible with CDR data too, once the precision is improved.

Nowadays there are still some obstacles to overcome, before the data’s full potential
can be utilized. In many parts of the world including Europe, CDR data cannot be used
yet, since the privacy protection of the mobile phone users is not solved convincingly.
The policy and law about privacy rights differ from continent to continent. An overview
about the current state is given in [40]. However, there will always be some effort have
to be put in the anonymization of the records before they’re ready to be used. Since user
mobility patterns are rather specific, even slightly anonymized data can often be allocated
again. [47] shows that the use of just anonymized caller IDs is not enough to avoid the
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identification of specific subscribers in many cases. Further, the initial purpose of mobile
phone records is neither the users’ precise localizations nor the use as travel log. Hence,
there will always be noise that has to be filtered out and assumptions regarding the trips
to be made. A basic example for this is the expected rate of travellers actually carrying
a mobile phone that is turned on as stated in [72]. On the contrary to classical travel
surveys, the motivations for trips and the used modes are also not included in the raw
data. This requires further assumptions.

22



Chapter 3

Experimental procedure

The theoretical knowledge presented previously is put to use during the experimental
procedure in this chapter. It leads step by step from initializing a microscopic simulation
model, preparing the demand data and applying the mobile connectivity model on it. A
lot of attention is also paid on the details of the script to generate the connection records.
The description is aimed to explain the details of the experiment and to help understand
its specifications. The basic experimental process is summarized in figure 1.1 in section
1.3. It visualizes the procedure described in the text step by step.

3.1 The microscopic simulation model

The data generated during the experiment can only be as good as the model at use.
Hence, the implementation of the microscopic simulation in Aimsun is an important part
of the procedure. This section guides the reader through all parts of the model’s setup
and motivates important decisions like the choice of the research area and of input data.

3.1.1 Choice of the geographical research area

The choice of a geographical area for the research has a major impact on the utility of the
generated results. The target of the project is to perform research on the effects of traf-
fic situation on CDR data sets and to evaluate their usability to determine route choices.
Therefore, the geographical area of choice needs to fulfill certain criteria in order to en-
able the generation of valuable results. This section names this criteria and therewith
motivates the choice of a specific region to work with.

First, a large number of cells is needed to have the chance to follow the travelers along
their path. This can be achieved by either simulating a large network or one in a region
with small cell sizes. Simulating large areas is troublesome in microscopic simulation
studies, since the model’s complexity grows fast in a bigger network. A compromise to
avoid this conflict is to include a highway in an urban area. Due to the limited number of
on- and off-ramps, the model does not become too complex for a longer stretch of high-
way. At the same time, the average cell size in urban areas is smaller, since the network is
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designed for high capacity instead of large area coverage. Another advantage of choos-
ing an urban area, is a better network coverage. It does not make sense to pick a region
where cell phones are without reception regularly. In terms of utility of the generated
data set, small cell sizes help increasing the precision of the localization. A multi-layer
network with macro and micro cells helps estimating a travelers speed based on their
connection record. Both these prerequisites are mainly present in urban areas as well. To
include these effects in the model, it further is important to regard a wide range of road
classes from small residential streets to highways. Finally, the availability of input data is
crucial. The better the input data is, the closer the model’s results can represent the reality.

Following these requirements, the neighborhood Solna in the north of Stockholm is
chosen. A map of the region can be seen in figure 3.1. The suburban region contains a
stretch of the highway E4, connecting the center of Stockholm and Arlanda airport. It
is one of the main routes for commuters in the greater region of Stockholm. The high-
way is equipped with a high number of road sensors to count the vehicle flow once per
minute. At the same time, a relatively high number of exits results in a parallel arterial
road with a lower speed limit. The whole geographical area is fenced by train tracks in
the west and the lake Brunnsviken in the east. This keeps the number of origins and
destination for the model low. The neighborhood Solna includes urban roads with speed
limits of 30 or 50 kilometers per hour. These roads offer a contrast to the highway section.
Several dense residential buildings in the neighborhood generate demand for its streets.
The extend that is shown in figure 3.1 covers the greatest part of the geographical areaof
research. Only the E4 highway is continued for 2 more kilometers in the north. This
highway stretch does not include any additional exits. Only roads that can be used by
motorized traffic are part of the model. Pedestrian areas that can be seen on the map are
hence excluded from it.

The chosen geographical area includes the main requirements for the research in this
project. The different road classes with their distinct traffic structure offer a base for eval-
uation regarding the research question in how far it is possible to filter CDR data. The
numerous route choice possibilities are crucial for examining in how far an OD estima-
tion is possible under real conditions. The E4 highway bypassing Solna is an important
connection of Stockholm and its surroundings. It thus is hugely affected by the morn-
ing rush hour. This ensures a wide range of traffic conditions within the simulation time
frame. an important precondition to examining in how far a changes in traffic are appar-
ent in CDR data. Furthermore, due to Solna’s natural limitation, the model can be kept
relatively simple. This enables the microscopic simulation of such a large area, without
raising the complexity too much. A trustworthy base of input data is given by the sen-
sors on the highway stretch. As part of the densest metropolitan area in Sweden, Solna
is of major interest for traffic planners and thus its choice makes the projects results more
valuable.
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Figure 3.1: Map of Solna in the north of Stockholm [28]
3.1.2 Building the model

The first step of the experimental procedure is to build the microscopic simulation model.
For this task, the traffic simulation software Aimsun of the Spanish company TSS is used.
The software offers a wide range of modeling functions that are helpful for the project,
including an easily understandable environment for network building. Further, the im-
plementation of a two way system for user built applications is crucial. Such an applica-

tion will later be created in order to create the CDR data set from the simulated vehicle
trajectories.

As a basic part of traffic modeling, the road network has to be rebuilt within the
software. The representation has to be done in a way that represents the real area in

the necessary level of detail, to use the input data effectively and to obtain meaningful
results. At the same time, due to the limitation of computational resources simplifications

have to be made. At this point it is of importance to keep the model’s purpose in mind.
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Since it cannot perfectly recreate the whole environment, the focus has to be on those
parts that matter most regarding the output. In the current case these are:

o Differentiating between road classes

e Covering a large area

e Creating free flow and congested traffic
e Including route choices

e Simulate commuting trips during the morning rush hour

In Aimsun road stretches are called sections and created by dragging and dropping
them across the screen. To rebuilt an existing traffic system, a background map is needed.
In this case, since the trajectories of the model are to be exported, the background map
has to include correct geographical information. In the project a sample network pro-
vided by the Stockholm traffic authority is used. It represents each road as a poly-line in
an Esri shape file, a format that can be imported into Aimsun. Hereby it is important to
use a proper map projection technique that matches with the one used for the cell towers.
For this project the projection "WGS84" is used.

By default, all modeled roads have the same meta data. To adjust parameters like
the number of lanes, speed limit or capacity the program offers road classes. Most infor-
mation is drawn from the background map. The sections are modeled as four different
road classes including freeway, on-/off ramp, arterial and urban street. For more de-
tailed information about the shape of intersections and links, online Satellite pictures
from Google are used. However, in some cases the network’s shape is adjusted due to
the requirements of the simulation software. The simulated vehicles struggle for example
with highway on-ramps without acceleration lanes. These are added to mirror the correct
driving behavior rather than the exact layout. Due to simplicity, all urban intersections
are modeled non-signalized. Either they are designed as roundabouts or as yellow-box
intersections. These are described in [63] as follows:

"A vehicle approaching a Yellow Box Junction will avoid entering the junction area
whenever the preceding vehicle is moving at a speed below a specifically set speed"

The intersections can well be seen in figure 3.2. The figure also shows how sections
are modeled in Aimsun as one way roads. Even small residential streets have to be built
as separate sections for each direction. Thus overtaking on these roads is not possible in
the model. Parking along the road is not regarded in the model either. Traffic is exclu-
sively originated and destinated in centroids. In general the layout of roads within Solna
is simplified. This simplification helps avoiding some small intersections and thus low-
ers complexity. These intersection are crossing paths for pedestrians or streets only used
for parking. Since parking on the road is not regarded in Aimsun, it represents reality
closer to replace the intersections by centroids. Some of these streets generate so little
traffic that they have absolutely no effect on the models results.

Centroids are represented in Aimsun by circles that are connected to loose ends of
sections as can be seen in figure 3.2. One centroid can be used as source and sink for any
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Figure 3.2: Detailed view on the modeled centroid in "Solna center"

number of sections. The percentages of how much traffic is guided to a specific section
is stated by a table in the centroid’s menu. In the project several sections are connected
to the same centroid to keep the demand matrix simple. The detail of provided input
data does not cover each origin in Solna. Thus it makes sense to simplify the model this
way. Generating traffic with origin and destination in the same centroid is not possible.
Short distance traffic is excluded from the simulation for that reason. Coming back to
the model’s purpose, the focus is on work based trips that typically do not stay in one
neighborhood. In total there are 6 centroids included in the model. One is placed at the
north and south end of E4, as well as the west and east end of the crossing E18. One
more covers all Solna and the last one covers Frosundaleden, an arterial road south of
the neighborhood. Figure A.1 in the appendix shows the whole network as it looks in the
model. The demands between the centroids are given by an OD matrix that is estimated
based on road sensor data from the highway. There are 28 sensors installed on the sim-
ulated stretch. Twelve of them are positioned on the north bound lanes and sixteen in
southbound direction.

3.1.3 Demand data input

The simulation software Aimsun accepts two different kinds of input data for a traffic
model. The first one is an OD matrix, stating how much traffic is originated and desti-
nated in each centroid. The second option are traffic states on the links leading into the
simulation area in combination with turning proportions for each intersection. For the
project, OD matrices are more fitting, since the available sensor data does not cover all
links and especially the turning proportions are not well visible from it. Further, the OD
matrices can serve as samples for later comparison. The research question, whether it is
possible to reproduce demands from CDR requires such a comparable structure.
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The input for the used OD matrix in this simulation study is sensor data collected
from the highway stretch. The Swedish highway authority "Trafikverket" uses these sen-
sors to monitor traffic situations in real time and to adjust variable speed limits according
to the demand. For research purposes, the collected data is stored in a data base that is
accessible after requesting an account. The sensors are installed on each lane and count
every passing vehicle. They do not differentiate between vehicle classes. The data set pro-
vided from these sensors contains measurements of flow in vehicles per hour once every
minute. The values for different lanes on one highway direction are averaged. As repre-
sentative days, the five Tuesdays between the 26th of April and the 24th of May 2016 are
chosen. Tuesdays are commonly chosen to reflect typical working commute situations. It
is insured that no public holiday was among these days. The three dimensional matrix
resulting from the data extraction contains sensor counts for each minute in the morning
rush hour on the regarded Tuesdays. The covered time is from 6:30 until 9:30am. Thus,
the morning rush hour and the more calm hours around it are covered by the data. It
is transformed using a Matlab script that can be found in the appendix. First, the script
filters the data for those sensors that are of current interest. It then takes the counts from
all Tuesdays for one specific daytime and averages them. Thereby, it eliminates both the
highest and the lowest value to keep the result from being overly influenced by stochastic
phenomena. The necessity for interpolation can be seen in figure 3.3. Mainly due to mal-
functions, there are valleys and peaks in single sensor counts at many times. Those are
eliminated before calculating the average. Finally, the script averages the counts within
an interval of 15 minutes. In the model, one OD matrix is used to represent the demand
during this time period. On the one hand, this reduces the number of different matrices
to twelve for the three hours of simulation. On the other hand, it also ensures a proper
representation of short term changes during the period as can be seen in figure 3.3.
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Figure 3.3: Comparison of data collected by one sensor on different days

Sensor data is only available for the highway and does not necessarily provide in-
formation about the OD pairs for single travelers. Especially for the residential area of
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Solna, the data can only be derived from the differences between the highway counts
before and after an exit and from experience about the typical traffic generation of this
kind of neighborhood. Table 3.1 represents the initial demand at the beginning of the
simulation at 6:30am. The OD pairs that include at least one of the ends of the highway
can thus be derived from the sensor counts. The rest of the demands has been assumed.
However, the demand trends from the Sensor data can still be applied to the rest of the
traffic as well. The whole region is under the effect of the morning rush hour. Therefore,
even the assumed demands can be scaled based on the fluctuation of the highway sensor
counts. To do so, the resulting matrix is further processed with Excel as described in the
following paragraph.

Table 3.1: Sample OD matrix [Veh/h], used from 6:30-6:45am

O/D | E18 west Solnacenter Frosundaleden E4south E4north El8east | Totals

E18 west 0 24 6 133 122 178 463

Solna center 25 0 21 51 51 25 173
Frosundaleden 9 22 0 18 18 9 76
E4 south 133 30 9 0 390 133 695

E4 north 141 26 8 390 0 141 706

E18 east 178 103 5 141 141 0 568

Totals 486 205 49 733 722 486 2681

To help understanding the temporary trends in demand, three indexes are introduced,
each set to 100 for the first 15 min interval. They are displayed in figure 3.4. The indexes
use the sensor data as input and translate the absolute differences of the highway flow
into relative changes in traffic demand. Oscillations of the curves can be interpreted as
relative changes in the flow. The peak of the "Northbound" curve at an index value of 123
for example represents a flow that is at 123% of the initial level. The first of the curves
regards the overall traffic flow on the highway, measured by all sensors. The second one
only includes those sensors in the northbound direction of the highway, as does the third
one for the southbound direction. Since the flow is mainly generated by work commutes
there is a significant difference regarding both directions as can be seen in figure 3.4. The
indexes are used to adjust the twelve OD matrices. Demands that are assumed initially,
get scaled by the index later. This way, the effects of the rush hour can be considered even
for them. All OD pairs that are clearly directed in either the north or the south direction
are scaled by the corresponding index. For the rest, the omni-directional index is used.
All OD matrices can be found in the appendix. The peak demand is presented in table
A.6. Between 8:00 and 8:15am, the time represented by the matrix, the highest demand
is entering the simulation. The last OD matrix of the simulation covers the time from
9:15 to 9:30am. It is displayed in table A.11 and shows a decreased demand compared
to the previous one. Finally the twelve calculated matrices are put into Aimsun as one
combined traffic demand consisting of several scheduled matrices. The distribution of
the demand within one period of 15 minutes is set to be uniform.
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Figure 3.4: Development of highway flows during the simulation

3.1.4 Model parameter estimation

One of the most complicated procedures when implementing a traffic simulation is the
correct estimation of parameters. Especially in a microscopic simulation, the correct re-
production of the original traffic can be complicated. The simulation is based on the
reproduction of human behavior in traffic and this is hardly understood enough to en-
sure a proper initial choice of parameters. Hence, the validation of a simulation model
usually ends up to be a sequence of trials and errors. Which parameters to manipulate in
what way is mainly judged based on the experience of the engineer at work. Further it is
crucial to have an understanding, which is the physical interpretation of the parameters
that are used during the simulation. The Aimsun modeling handbook [63] gives an ex-
planation what behavior each of them is supposed to represent. Furthermore, knowledge
about the background models introduced in chapter 2.1.2 is helpful to estimate a model
effectively. However, since even the best model can never be a precise representation of
the reality, the purpose of the simulation study has to be kept in mind at this point. The
estimation must be focused on the areas of main interest.

The microscopic simulation is, as introduced in chapter 1.3, the appropriate tool to
generate a high number of vehicle trajectories. The specific application of the software
requires a different approach to model estimation. It relies on direct observations dur-
ing a running simulation. First, these observations are used to adjust some simulation
parameters in several iterations. A Capacity of 2000 vehicles per hour on the highway
is set to ensure realistic congestion conditions in the main peak hour and more free flow
around it. Apart from that, the reaction time at stop is changed to 1.35 seconds. This helps
solving unrealistic behavior of vehicles entering the highway. The simulated vehicles pri-
marily use the rightmost lane of the highway and do not change lanes before an on-ramp
to allow others to entry. Thus, the on-ramps tempt to get overly congested. The effects
of this phenomena are lowered by the changed reaction time and a higher "Maximum
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speed difference on ramp" of 70km / h for the two lane car following model. Setting these
parameters results in visible changes of traffic flow during the simulation. The procedure
is very focused on the intention behind the study. The complicated and time consuming
process of validating the model with given traffic counts is not performed. The estima-
tion of the previously presented parameters is done on the base of observed changes of
the traffic situation during interactive simulations.

In addition, a lot of attention has been paid on the route choice of travelers. By ex-
amining numerous vehicle trajectories through the animated simulation, it could be ob-
served that many of them used the bypasses of highway exits and crossings as additional
lanes to go straight. Normally these are only intended for exchanging leaving and ar-
riving traffic. To avoid this behavior, the crossings had to be redesigned different from
their original appearance. Further, it was observed that many vehicles took unnecessary
detours to reach their destinations. As it is typical for urban highways with many exits
on a short distance, the traffic guidance was quite complicated. Often the vehicles had to
choose an appropriate lane long ahead in order to proceed to their turning. This was ob-
viously too complex for the route choice model and resulted in the preference of a longer
way using simpler highway exits. Hence, the corresponding exits were redesigned to fit
better with the requirements of the route choice model.

The validation based on a real data set is skipped. The model includes urban arterial
roads, residential streets and a highway. Only for the latter, traffic counts are available.
Attempting to validate a model based on this does not necessarily increase its quality.
Especially regarding the models purpose it is not helpful to spend time on the valida-
tion. For the intended research, the relations between local and highway traffic in terms
of speed and traffic load should rather be correct. Furthermore, there should be different
situations of free flow and congestion recognizable. To achieve this, mainly the demand
proportions need to be represented correctly. By monitoring the traffic during several
runs of the simulations, it can be confirmed that all cases are present in the study. An
ongoing validation based on real traffic counts is complex for a study like this. Changing
one parameter influences the traffic in such a diverse network in many ways. It can eas-
ily lead to unintended results and only a careful balance of many parameters leads to a
real validation. Due to the limited resources available for a master thesis, the procedure
is regarded as too time consuming. Furthermore, even with a validated model, a high
number of replications would have to be to be simulated to get representative results.
However, by running multiple replications, the actual trajectories of the simulated vehi-
cles would be lost. They are different for each replication and thus only one can be used
for the extraction. Stochastic influences prevent reliable results in one single simulation,
even for a validated model. The whole output of the study depends on only one repli-
cation. For that reason, the traffic in the interactive view of the simulation is monitored
closely, while running the study. It is ensured that the expected variety of traffic situa-
tions is present in the simulation run that the trajectories are extracted from.
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3.2 The representation of the cellular network

Next to the simulation of traffic, there is another simulation of a cellular communication
system included in the study. As the traffic model, it consists of infrastructure and a be-
havioral model. First, a representation of the system is imported to Aimsun. Second, a
customized mobile connectivity model is developed. Based on this model, the cellular
network is connected to the rest of the simulation.

3.2.1 Importing the cellular network overlay

Next to the classical parts of a microscopic simulation model, a representation of the cel-
lular network is included into Aimsun. Including the network overlay directly in Aimsun
simplifies the project significantly. Instead of first creating detailed trajectories for each
simulation vehicle and exporting them to another program for generating the CDR data
from them, both steps can be performed inside Aimsun. The level of detail in the final
output is a lot lower than in the initial trajectories and thus a handover of large files can
be avoided. Furthermore, the procedure is kept simpler and easier to reproduce by just
using one software. However, before the cell towers can be imported into Aimsun as a
layer, they must be prepared.

The source for the cellular specifications of the network is data from the website open-
cellid.org. This website offers location and specification data of mobile network cells that
were collected by a community of users. The network providers consider their network
infrastructure as a company secret and are not willing to publish the meta data of their
antennas. However, every time a cellphone is connected to an antenna, the correspond-
ing connection data is available on the device. Users who have an application of Open
Cell ID installed automatically store and share meta data about their connection with the
community. On the one hand this raw data can be downloaded from there. On the other
hand, an algorithm combines all records related to one cell ID and estimates the locations
of the cell’s center along with its range from them. On an online map, the resulting posi-
tions of each cell are presented. Additionally, the processed database of cell locations is
available as a download, too. The initial structure of the data set is presented in table 3.2.

The website only provides one database for the cell records all around the world. This
results in a huge table that can only be handled by database tools like Microsoft Access.
Filtering it for the relevant cells can easily be done by a simple SQL (Structured query
language) statement. The data set includes the mobile country code (mcc) as a parame-
ter. This way, it is possible to filter all cells from Sweden. Furthermore, the Location area
code (LAC) stored in the area parameter helps to select all data from the region of Stock-
holm. To make a more individual selection of regional data, the data base can be filtered
for a range of latitude and longitude values. Open Cell ID collects data for all network
providers. However, for the project only one network is used. Connection records are
collected from the providers and thus each of them provides a different data set in real-
ity. Thus it is a reasonable approach to select one provider’s network for the study. This
network needs to provide a good coverage in the area and should preferably be used by a
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Table 3.2: Open Cell ID data structure [51]

Parameter Data type | Description
radio string Network type. One of the strings GSM, UMTS, LTE or CDMA.
mcc integer Mobile Country Code, for example 260 for Poland.
net integer Mobile Network Code (MNC) for GSM, UMTS and LTE networks. The
System IDentification number (SID) For CDMA networks.
area integer Location Area Code (LAC) for GSM and UMTS networks.

Tracking Area Code (TAC) for LTE networks.

Network IDenfitication number (NID) for CDMA networks.

cell integer Cell ID (CID) for GSM and LTE networks. UTRAN Cell ID / LCID for
UMTS networks, which is the concatenation of 2 or 4 bytes of Radio Net-
work Controller (RNC) code and 4 bytes of Cell ID. Base station IDentifier
number (BID) for CDMA networks.

unit integer Primary Scrambling Code (PSC) for UMTS networks.
Physical Cell ID (PCI) for LTE networks. An empty value for GSM and
CDMA networks.

lon double Longitude in degrees between -180.0 and 180.0

changeable=1: average of longitude values of all related measurements
changeable=0: exact GPS position of the cell tower

lat double Latitude in degrees between -90.0 and 90.0

changeable=1: average of latitude values of all related measurements
changeable=0: exact GPS position of the tower

range integer Estimate of cell range, in meters.
samples integer Total number of measurements assigned to the cell tower
changeable integer Defines if coordinates of the cell tower are exact or approximate.

changeable=1: the GPS position of the cell tower has been calculated from
all available measurements

changeable=0: the GPS position of the cell tower is precise - no measure-
ments have been used to calculate it.

created integer The first time when the cell tower was seen and added to the Open Cell
ID database. A date in timestamp format: number of seconds since the
UTC Unix Epoch of 1970-01-01T00:00:00Z

updated integer The last time when the cell tower was seen and update.

A date in timestamp format: number of seconds since the UTC Unix
Epoch of 1970-01-01T00:00:00Z

averageSignal integer Average signal strength from all assigned measurements for the cell.
Either in dBm or as defined in TS 27.007 8.5 - both is accepted.

high number of users. That way; it is more likely that there is well funded data about the
network available on the website. Therefore, the Telia GSM network has been chosen. It
is identified by a value of one for the net and by the radio parameter. The result is a table
with 1576 rows, small enough to open it with a GIS (Geographical Information System)
Software or Aimsun. To evaluate the data it has been examined with the open source
software QGIS. A map of the north of Stockholm, including the cells represented as dots
can be seen in figure 3.5.

As expected, the density of cells is the highest in the city center. This represents a
smaller average cell size in highly populated areas to increase the network capacity. Most
dots are located on the big roads bypassing the center. This is mainly caused by the al-
gorithm used by Open Cell ID to locate the cells centers. It takes all the measurements
collected for one cell and locates the cell center in their middle without weighing them.
Major roads with many travelers thus influence the position majorly and are more likely
to be close to the estimated cell center. This phenomenom has recently been described
by [49], who proposed an enhanced algorithm for future use. However, partly it makes
sense to have a majority of cell centers on roads, since especially tri-sector antennas ori-
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entate their cells along streets to avoid shadowing. It is important to understand that the
dots in the maps do not represent the position of antennas, but of the estimated center of
a cell. That way it is possible to have some of them in the water, without errors in the data.

The cellular network is imported as dots on a map into Aimsun. An example of its
representation is shown in figure 3.5. The attributes of each cell are included as meta-
data automatically. While importing the location data to the program, it is possible to
chose one parameter as "External ID". For the script to work properly, the range parame-
ter should be selected as such.
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Figure 3.5: Map of Stockholm including the Telia GSM cells

3.2.2 Mobile connectivity model

The connection of the vehicles in the microscopic simulation and the cellular network
overlay is handled by a mobile connectivity model especially designed for the project.
The model follows the principles of network engineering that are introduced in chapter
2.2. At the same time, the requirements of the project are considered. The mobile con-
nectivity model does not have to be applicable to real world networks. It merely has
to mirror the behavior of cell choice algorithms given the preconditions of the project.
The cellular overlay, as described in chapter 3.2.1 is a representation of a real network.
The algorithms are especially designed to work with this representation. Additionally,
the mobile connectivity model does not have to include the full functionality of its real
world counterparts. Only a simulation of realistic decisions within the limited project
environment is needed.

The baseline of the connectivity model is a cell choice following a voronoi logic. This
logic is based on the distance between subscriber and cell center. A vehicle will, depend-
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ing on its position, connect to the cell with the closest center. Thus, the research area
is basically divided by discrete cell borders and the cells have a rather untypical poly-
gon shape. A visualization of the voronoi polygon overlay in the research area is shown
in figure 3.6. The map covers all cells that are relevant for the simulation area. Since the
logic always establishes a connection with a nearby cell, the group of relevant cells can be
easily determined. However, a strict voronoi logic neither provides realistic cell change
behavior, nor does it consider the multi layer architecture of a typical mobile network.
Therefore additional rules are applied.
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Figure 3.6: Voronoi cell structure in Solna

Two different cases are regarded in the model. The first one applies for all vehicles
entering the simulation and connecting to a cell for the first time. In this case, the voronoi
logic is followed. However, the group of feasible cells is filtered before based on the ve-
hicle’s speed. Fast moving vehicles are connected to bigger cells that offer coverage over
a long distance. Slow travelers get connected to smaller cells that offer a higher capac-
ity. This way, the multi layer architecture of cellular networks is taken into account. The
second case includes those vehicles that already have been assigned to a cell and only
change to another one when it becomes necessary. Especially in the case of cell change
evaluation, a voronoi logic does not represent mobile network behavior well. An idea
about how unrealistic the voronoi cell borders are, can be given by comparing figure 3.6
and figure 3.7. All over Stockholm there are multiple layers of cells on top of each other
and not separated by discrete borders. A cell change will only be performed when poor
signal reception makes it necessary and not as soon as there is a closer cell center avail-
able. Thus, limiting the relevant group of cells is a lot harder than in a voronoi logic. The
cells presented in figure 3.7 are the subset of the Telia network that is used during the
experimental procedure.
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Figure 3.7: Multi-layer cell network in Stockholm

To represent the more reactive behavior that cell changes are based on, the model
includes an additional first step. Each cell has a range attribute assigned to itself that
represents its theoretical radius. As long as the distance between vehicle and cell center
is smaller than the radius, a new call will automatically be handled by the previously
subscribed cell. Only when the vehicle is outside the radius, a new cell is found based on
the voronoi logic.

3.3 Generating the connection record

On top of the microscopic simulation model and the cellular network representation, a
Python script is used to generate mobile connection records and export them from the
study. This process includes several steps from the extraction of the vehicles” position,
over the mobile connectivity model and the likelihood that a call is established. All of
them are attended to in this section. Additionally, the general requirements of the Aim-
sun API regarding the structure of scripts are introduced.

3.3.1 Basics of the Aimsun advanced programming interface

The Aimsun API (Advanced programming interface) has been activated for the simula-
tion and is an essential part in generating the CDR data set. The API makes it possible to
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write extensions to the simulation in the programming languages Python and C++. The
scripts contain predefined functions that are called by the software during the simula-
tion. Further, Aimsun offers a library of predefined functions for both languages. These
functions can be used to read and update all relevant simulation parameters. A list of
all functions comes with each copy of the program and can be viewed and searched by
using an internet browser. Since Aimsun is programmed in an object oriented way, there
are classes and and sub-classes that inherit each others functions. Classes are the most
basic form of of a definition for objects. All objects belonging to the same class will share
the same attributes and functions. An example in Aimsun is the inheritance tree for a
simple point, used for decoration in an Aimsun model. The point as an object belongs to
the GKDPoint class for drawable points. It inherits from the classes for all graphical ob-
jects with a representation in 2D and/or 3D views (GKGeoObject). GKGeoObject inherits
from GKODbject that almost all Objects derive from. The Initial class is GKBaseObject that
includes drawable and simulated objects. All functions for one of these classes can be
used on any GKDPoint object as well.

A guide to get started with programming in Aimsun is provided in [62]. It includes
all possible ways of coding in Aimsun and thus does not go into any details. It merely fo-
cusses on introducing the necessary tools and the programs internal data structure. The
latter has to be known to call variables in a code. A more in detail introduction to the
Aimsun micro-simulator API that is used in the current project, is given in the conferring
manual [63]. It includes a wide range of functions and explanations to perform the most
common and basic operations during a running microscopic experiment.

The basic structure of every script for the API is sketched in figure 3.8. The left half
of the figure shows the steps during a simulation. The right half contains the functions
contained in an API script and at which point in time they are automatically accessed
by the program. Hence, this set of functions has to be part of every API and all code
that should be executed during the simulation must be written inside one of them. The
default return value of every function is 0 which has to be kept in order to acknowledge
that the function has been executed. In the preamble, the AAPI library must be imported.
It contains all Aimsun specific functions and objects.
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Figure 3.8: Communication between Aimsun and the API during a simulation [63]

3.3.2 Call likelihood model

The complete script used in the project is attached in the Appendix. As a programming
language, Python has been used. The main purpose of the script is to translate data into
a specific format. In many places this means to abstract the data in a certain way. In
some points the user can influence the degree of data scrambling, in others it happens
automatically due to program requirements.

In the Preamble, the datetime library is imported in addition to the default. Its meth-
ods are needed to add the time stamps in the output file. The rest of the code that is
placed on top of the functions is used to declare variables. This is done to make them
globally available during the whole simulation. Basically all variables in the script can
be set by the user to balance the level of output detail with the required processing com-
plexity. A trade off that is critical, since Aimsun tempts to crash when the computers
capacity is exceeded. For that reason, Cycle determines the time gap between two data
extractions. This means that positions are not extracted at every simulation step. Cycle
stands in direct correlation to relative. This variable determines the relative amount of
users establishing connection during one time step. Relative should typically be lower for
a smaller cycle time. Since the script is used to gain experience in working with different
CDR data sets, the setting of both variables is left to the user. In this project a cycle time
of 17 seconds and a relative call likelihood of 0.2 are applied. These values are aimed to
represent real driver behavior and to generate an average number of 2 connections per
vehicle in the simulated network. Experiments with different values are not the focus of
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this research project. The two variables SG and PG refer to groupings created in the Aim-
sun simulation. SG is a grouping of sections and specifies the research area. It enables to
pick only a sub area of the whole model for data extraction. This way, one model can be
used for several different experiments. PG defines a sub set of cell towers to use in the
experiment. Reducing the number of towers increases the scripts performance. Further-
more, experiments with different network providers in the same model become possible.
The values stored inside SG and PG are the groupings” automatically assigned IDs.

In addition, an empty .csv file is created to store the results in. Within the script it
can be accessed by the variable filename. To refer to the active model from the script, it is
assigned to the variable model. The model with all its parameters is stored as a GKModel
object. Hence, model is more than just a single value and several functions can be used on
it.

Within the first function AAPILoad() that starts in line 17 and is called in the very be-
ginning, the headline of the output file is generated. Therefore, python opens the file in
write mode. CDR data typically consists of 3 columns: User ID, cell ID and time stamp.
In the output file a fourth column with the previously connected cell ID is added for di-
agnostic purposes. In order to save the changes made to the file, python requires to close
it after use. It is crucial to close all used files before finishing the script. Thus a command
in this regard should be added in the end of each function that accesses one.

The rest of the program is written inside the AAPIPostmanage function starting in line
29. Hence, it will be executed repeatedly, directly after every step of the simulation. A
process flow diagram of the following steps taken within the call likelihood model can
be found in figure 3.9. All global Variables are made available for reading and writing.
Next to them, some automatically by Aimsun generated variables are handed over to
the function by default. time is the current duration of the simulation in seconds starting
from 0 whereas timeSta transforms the simulation daytime into seconds. timeTrans and
acycle are parameters stating the duration of the warm up period and of one simulation
step respectively. As first action, an if statement is executed in line 31. It affects the whole
following code inside AAPIPostmanage. The statement puts the Cycle variable to use and
checks whether it is time to extract data or not. If yes, a time stamp for all outputs is
generated and the output file is opened again in line 33.

The second if statement in line 42 applies the overall likelihood of a connection for
each user. This statement is positioned inside a loop through all vehicles, since it is de-
cided for every single one of them. A random number between 0 and 1 is generated for
the vehicle in line 41 using the AKIGetRandomNumber function of Aimsun. Only if this
number is smaller than the relative variable defined by the user before, the record is gen-
erated. Otherwise, the break statement in line 43 skips all the rest of the indented code
and continues with the next vehicle. Unaffected by this term is of course the closing of
the file in line 77.
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Figure 3.9: Process flow diagram of the call likelihood model

3.3.3 Vehicle trajectory extraction

Reading the location data of each vehicle is the first step towards generating the mobile
phone connection record. By saving detailed trajectories first, several experiments can be
run on the same data. Those trajectories are then to be transformed using a mobile con-
nectivity model in a second independent step. This procedure keeps the data to compare
the record with the actual path and to find connections between both. An example how
to export the trajectories is given in [61]. The script presented there, utilizes the simulated
vehicles to get a position in geo coordinates. In an Aimsun microscopic simulation each
vehicle is represented by two identities. One is the identity inside the model. It contains
all parameters and the background models are applied to it. The other identity is the
vehicle’s optical representation that can be seen on the screen during a simulation. This
identity consumes a lot of processing power and is only generated, when an interactive
simulation is performed or if it is specifically requested by a script. The vehicle posi-
tions in geo coordinates are only available from the simulation vehicle. With those geo
coordinates the distance between vehicle and cell tower can be calculated more precisely.
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Although it would therefore be preferable to use the simulated vehicles, it leads to insta-
bility of the program and can hence not be done. Without utilizing the simulated vehicles
it is possible to get the positions relative to the borders of the research area. These are not
a valid reference for other programs, but can still be used inside Aimsun. To do so, first
the vehicles of interest have to be selected.

The process of extracting the vehicle trajectories from the simulation requires a lot
of transition of data types in the script. This chapter explains the procedure in detail to
enable the reader to understand all steps taken in the script. In terms of logical steps,
the trajectory extraction simply takes those vehicles as input that were determined by
the proceeding call likelihood model. It then browses the models catalog for them and
looks up their positions inside the research area. This position is used in the following
mobile connectivity model to motivate the decision for which cell tower to connect to.
The following paragraphs point out how this is achieved in the script. Initially the sec-
tions variable is declared in line 34. Therefore, the GetCatalogfunction is called on model.
The catalog contains all parts of a model, like for example the groupings that have been
created before. By using find(SG) on it, the corresponding section grouping can be found.
The grouping is not identically to its ID stored in SG, but is rather a shell for all its contain-
ing objects. Finally, the GetObjects functions opens this shell and returns the sections as a
list. In Python it is possible to loop through a list. The loop through sections commences
in line 37. From there on the currently regarded section is represented by i. Calling the
function getld on it returns the sections ID as a number and stores it in id. This is needed
as input for the next function AKIVehStateGetNbVehiclesSection. It finds the section in the
current simulation’s data base and returns the number of vehicles currently present in it.

This number provides the input for the next for loop. Since such loops only work
with lists, the range function is called to turn vehicles into a list of numbers from 1 until
vehicles. After the following if statement that is part of the call likelihood model, the cur-
rent vehicle is looked up using the section id and its number j inside this section. The
function AKIVehStateGetVehiclelnfSection is included in the Aimsun library for that pur-
pose. The result probe is saved as a vehicle object and thus can have functions called on it.
probe.idVeh that is called in line 45, returns its ID. probe.xCurrentPos and probe.yCurrentPos
return the vehicle’s current position. Since probe is not a simulation vehicle, the position
is expressed in a 2 dimensional coordinate system with the origin in the bottom-left cor-
ner of the research area as it is displayed on the computer screen. Based on the x and y
position, Aimsun can create a GKPoint object and save it as a reference position. Since
this procedure is repeated for every simulation step, the sum of points creates a trajec-
tory. The loops through all sections and vehicles ensure a high number of trajectories.
However, since the positioning data cannot be displayed on a map, it is useless outside
the program. Thus, it is further processed by using the mobile connectivity model, before
it is saved.
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3.3.4 Implementation of the mobile connectivity model

The mobile connectivity model is applied on the vehicle’s location starting in line 47 of
the Python code found in the appendix. Before, an empty dictionary Connectionrecord is
created. A dictionary assigns values to keys. The values can be looked up by providing
the corresponding key. It is used in the model to store the previously assigned cell for
each vehicle. Further the variable PG represents the ID of the grouping of active cells in
the current simulation. A process flow diagram of the mobile connectivity model can be
found in figure 3.10. The left half of the diagram represents the connection to a new cell,
while the right side covers the continuous connection to the previous one. The diagram
is intended to help understanding the logical steps of the program, while its details are
explained in the following paragraphs. All references to the script concern the Python
script for CDR generation that can be found in the appendix. While the theory behind
the model is described in chapter 3.2.2, its implementation in the script is described in
the following paragraphs.

Vehicle ID and
position

Is it the vehicle's
first connection?

Check the vehicle's
Select the next cell distance to the center of
the previous cell

Does the cell size fit
the vehicle's speed?

No Is the distance
smaller than the
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Check the distance to the
cell center

Is it the smallest
distance so far?

Store the current cell
ID and distance

Are there more
cells to check?

I

Save the stored cell ID
in the connection

Append an entry in
the CDR output file

Figure 3.10: Process flow diagram of the mobile connectivity model
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The mobile connectivity model regards two cases. The first concerns new subscribers
that establish a connection for the first time. The second case regards those that were
already connected to a cell while being in the geographic research area. The decision,
which off them applies is made by the if statement in line 48. It distinguishes whether
the ID stored in probeld already has an entry in the dictionary Connectionrecord. Since
the ID of modeled vehicles is unique, it can be used to make this decision. The code is
wrapped by two loops and thus executed for every vehicle in every section that is part of
SG.

Within the first case, another loop iterates through the list points. points has previ-
ously been generated in line 35 by extracting all objects from the grouping identified by
PG. Thus it represent the collection of all active cells. The loop is used to find the most
appropriate cell to establish a connection with. First the radius of the currently regarded
cell k is extracted. It has been assigned as the points external Identifier when importing
the points into Aimsun. Hence, it can be called by the function getExternalld. The fol-
lowing if statement is used to apply the multi-layer network theory, presented in chapter
2.2.3. It does so, by comparing the size of a cell with a vehicle’s current speed in km/h. A
cell is only applicable if the following expression is true:

0.7 < (speed* +500) /radius < 1.3 (3.1)

This formula has been scaled to include all available cell ranges in the typical range
of speeds between 0 and 120km /h. Figure 3.11 visualizes the selectable range of cell sizes
for each speed. It also includes a plot of the sorted cell sizes that are available in the cel-
lular network. This plot is scaled to the same x-axis. The formula is developed specially
for the present mobile connectivity model. Powering the speed by 2 in the calculation en-
sures that the biggest cells are not prioritized by the choice algorithm. Generally adding
500 to the result ensures that slower travelers still find valid cells to connect to. As fig-
ure 3.11 shows, the feasible cell sizes represent the distribution of radii in the cellular
network. The tolerance for the result between 0.7 and 1.3 represents a trade-off between
avoiding unnecessary handovers and effective cell filtering. The boundaries are set to
reproduce realistic Cell dwell times of 3 to 7 minutes when traveling at constant speed.
This way traveling users can have a call, without experiences many handovers while it
lasts. Even though the handovers are not part of the model itself, a realistic cell choice
has to take some handover balancing into account. At the same time the boundaries en-
sure that every vehicle within the simulation is able to find a feasible cell to connect to.
The parameters of the equation are scaled regarding those two objectives. All valid cells
are hereafter compared by the voronoi approach. Line 54 assigns poinPos the cell center’s
position as a GKPoint object. Since pointPos and probePos are both available in this format,
Aimsun’s distance2D function can be used to determine their two dimensional distance
in meters. It is checked whether this distance is smaller than to any other valid cell center
so far. If yes, k is saved as Celltower. Since the procedure is repeated for all cells, Celltower
will be updated until the best candidate is found. Once the loop has ended, the vehicle’s
ID, the time stamp and the Name of the closest cell are stored in the Results file. This
represents the creation of one entry in the CDR data set. At last, an entry in the Connec-
tionrecord dictionary is created, assigning the key probeld to Celltower. Ergo a record will
be found next time and the second case of the mobile connectivity model executed.
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Figure 3.11: Development of the cell choice formula

Starting from line 61, it is checked whether the vehicle is still within the radius of the
previous cell. If so, a cell change is prevented by setting the distance to the cell center to
0. That way the following voronoi logic cannot find a better solution. At this point the
model profits from its Open Cell ID input data. There, the cell radius is estimated by the
furthest distance of any mobile unit that was reported to be connected to the cell. Hence,
this value ensures that a connection is realistic within the radius. In case the previous cell
is out of range, the same procedure as in the first case is applied to find a new one. The
two presented cases are the only ones relevant regarding a generation of CDR. Handovers
during an active call do not need to be regardedby the model, since only the first cell of
each connection is stored in the data set.
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Chapter 4

Results

As result of the experiment, synthetic CDR data sets are generated. This chapter focuses
on the data itself and evaluates its characteristics. A first part describes the data’s struc-
ture and lists all the files that are available. Knowing, what is the shape of the input,
several approaches are conducted in the following sections. Each of them runs a differ-
ent analysis and evaluates its results. All investigations are related to traffic analysis and
how CDR data can be used for it. Since the current data sets are only synthetic samples
that cannot represent reality, the analyses are performed in a way that keeps possibly
more randomized input in mind.

4.1 Structure of the output data

In this chapter the files are presented that are at the same time output of the experiment
and basis for the following analysis. The files are generated using the tools and tech-
niques presented in chapter 3. The simulation is performed in interactive mode, includ-
ing simulated vehicles, in order to more realistically capture the actual traffic situation.
In total, the study is run three times using different OD matrices. First, the set of matrices
as it was estimated based on the road sensor data in chapter 3.1.3 is used. This scenario
is hereafter addressed as the Original Scenario. Additionally, the Free flow Scenario applies
demand matrices that share the same weighting between the OD pairs as the original
one. The total demands however, are lowered by 20%. As the scenario’s name suggests,
this results in free flow conditions for almost all parts of the simulation area. The third
scenario on the contrary deals with a 20% increased demand throughout the whole sim-
ulation. In this Congestion scenario all major roads face seriously increased travel times in
the later parts of the study. An example for the traffic situation in the simulation study
is given by figure 4.1. It displays the average flow per hour on every link during the
simulation period. The coloring marks how the flow is related to the sections’ capacities.
As expected from the input data, the highest numbers are reached on the southbound
highway.

Within each of these scenarios, four scripts run simultaneously. They all generate

CDR data as presented in chapter 3.3. The difference between them is the group of sec-
tions that is regarded. The first script includes all sections within the whole research area.
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Figure 4.1: Capture of the network summary from the Original Scenario

It provides the biggest number of samples for analysis and is the closest to a real data set
as possible in this project. The other scripts only generate data from parts of the network.
One of them includes all residential streets inside Solna. They are all characterized by a
low capacity and slowly moving traffic with a big diversity in movement direction. An-
other script on the opposite regards all sections of the highway and its ramps. The traffic
included in this script is typically moving at high speed and is limited to the north and
south direction. An even more focused view on the highway gives the fourth data set
that only includes the highway itself. Due to the unified traffic and its narrow specifica-
tion, this data set is good to observe highway specific connection characteristics.

All generated tables are stored automatically as .csv files by Aimsun. A sample of one
of the files can be seen in table 4.1. It is filtered to show the records of five randomly
selected vehicles. Each of them has created either two or three entries. The column Ve-
hicle ID represents the anonymous caller ID. Thetime column provides the time stamp
with a precision of one second. Cell ID is the identifier for the currently connected cell.
The column origin is not included in real CDR data sets. It is added here to visualize
the cell change process. Whenever the value for origin is Error, the vehicle just entered
the simulation and has not been connected to any cell before. The size of the data sets
varies between 2000 and 15000 entries as can be seen in table 4.2. Typically, the sets from
the Congestion scenario contain most entries compared to their counterparts. While the
difference is significant for most data sets, it is only marginal in the case of the highway
table. However, the sizes give a first idea, how different densities affect a CDR data set
and why it can be useful for traffic planners.
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Every further analysis of the results is done with the help of Matlab. Thus, the files are
imported into the software using the Matlab data importer. For the software the files con-
tain different data types, as datetime for the time stamp and String for the origin column.
It therefore can only be imported as a table. The headlines, found in the first column
serve as variable names. Tables only allow very few operations and therefore have to be
transferred into column arrays for any kind of analysis. However it is helpful to have
each data set stored as one file in the beginning.

Table 4.1: Excerpt from the Congestion everything CDR data set

Vehicle ID | time | origin | Cell ID
2112 06:41:56 | Error | 23052
2112 06:43:21 | 23052 | 13232
5731 07:08:00 | Error | 13200
6755 07:09:25 | Error | 13200
6755 07:09:59 | 13200 | 13160
5731 07:10:50 | 13200 | 44961
6755 07:12:32 | 13160 | 13160
18332 07:41:26 | Error | 13200
18332 07:45:41 | 13200 | 44961
34410 09:06:26 | Error | 45700
34410 09:06:43 | 45700 | 43093

Table 4.2: Number of entries in each generated data set

Scenario
Original | Free Flow | Congestion
Everything 11973 9019 14392
Highway 2204 2172 2201
Data Set I d Ramps 5554 4769 5627
Residential 3653 2234 4471

4.2 Output data analysis

In order to discover relations between the CDR and the traffic situation it is based on,
the data sets are evaluated from different perspectives. Each of the following sections
regards one analysis approach and evaluates its meaningfulness. The comparison of rel-
evant data sets from all scenarios give an estimate of the results’ sensitivities towards
changing traffic conditions. The analysis is carried out using Matlab scripts that are de-
signed to work for any kind of data set generated with the method presented in chapter
3. Thus they can be conveniently reused for ongoing research.
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421 Total system load

From a mobile networking perspective, the research area can be described as a set of cell
towers that are used by the travelers during their commute. The multi layer design of
cellular systems is introduced in chapter 2.2.3. This paradigm results in cells that are pri-
mary used by traveling subscribers. It is assumed that the subset of these cells is directly
affected by a changing traffic load and hence can give an estimate of it. Every vehicle
has a relative chance of receiving a call as long as it is inside the simulation. Thus, the
total number of records in the system gives an estimate of how many vehicles are located
inside the area. It is therewith related to the density of the traffic on the sections. The
more records are produced, the higher is the density and vice versa. This theory is put
to a test by plotting the total load of the cells used during the simulation. Since the cell
choice algorithm is well known for this project, the results could easily be improved by
just applying the same algorithm again. However, that would undermine the meaning-
fulness of the results. Thus, the analysis is limited to what can be directly observed from
the data sets.

Figure 4.2 presents the results of the analysis. It compares two graphs. The first one
regards the data sets Everything and the second one specifically the highway and ramps.
As for the first graph, a clear difference between the curves can be seen. As expected, the
number of records and thus the density the biggest in the Congestion scenario, followed
by the Original and the Free flow one. It can even be observed, how the curves spread
more as time passes and congestion builds up differently. However, while only regarding
the highway and its ramps, the picture is not as clear. A separation of the curves like
in the first plot cannot be observed here. Since we see that some connection between
density and number of connections exists the reason must be that the jam density on the
highway is not significantly bigger than during dense, but flowing traffic. This theory is
supported by the previously discovered effect, that the highway data sets have almost
the same number of records in all scenarios. From the simulation it can be observed
that the bottlenecks are the intersections between on ramps and the highway. Before
those spots, the traffic gets jammed first. However, many spots on the highway remain
deserted during these times. Thus, the overall density on the simulated highway stretch
is probably not bigger during congestion. This phenomena cannot be taken as a general
rule though, it may as well just be related to the limited area of the model or the behavior
of the simulated vehicles. In how far the number of connections can help identifying
different traffic situations, depends on the shape of road at hand and requires experience
with its bottlenecks.
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Figure 4.2: Comparison of plots for the total number of connections

4.2.2 Average cell size

Cell sizes differ in a wide range and each kind of cell serves a specific purpose inside a
network. The cell sizes are basically a trade of between capacity and coverage. The cov-
erage of a large area can be important to avoid a high number of handovers for traveling
users. Thus, handover algorithms are commonly programmed to connect those users to
big cells, while stationary ones are assigned to smaller cells with a focus on capacity. The
ways, how handover algorithms detect the movement differ widely, but the strategy be-
hind them is the same. Following this model, the assumption for this analysis is that the
radius of the currently connected Cell is dependent a vehicle’s speed due to the choice
pattern of the handover algorithm. As long as most traveling users are connected to large
cells, the average speed of vehicles is expected to be high. As soon as the algorithm starts
to assign smaller cells, this means that the vehicles” average speed has dropped. This
way, the average size of cells that are used by vehicles in the simulation at every time can
contain information about the traffic conditions. To support the thesis, several data sets
are compared regarding the average size of their providing cells.

An overview of this comparison is presented in figure 4.3. The graph visualizes the
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average cell radius of connections from the Free Flow Scenario. Due to the constantly non
congested conditions there, a good sample for the typical radius bands for each road type
can be observed. The plots for the different data sets are clearly separated and all remain
leveled throughout the whole study. It can be observed that cell sizes above 9000 are
primary used by vehicles traveling on the highway. It also appears that the average cell
size even for urban traffic does not drop under 2000. The third curve for highways and
ramps shows that even a less homogeneous data set fits in the picture. It includes the fast
highway traffic and slower one from the ramps. The average of this stays somewhere
below the pure highway data.
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Figure 4.3: Comparison for the average size of serving cells in the Free flow Scenario

The graph in figure 4.4 is used to observe the effect of increasing traffic on the aver-
age size of active cells. It compares the Highway data set of all three scenarios. While
all curves begin at a radius around 10000, the Congestion scenario’s quickly decreases to
values around 6000. The Original curve shows a similar, but less strong reaction and lev-
els around 8000. This curve even raises again in the end, a behavior that fits quite well
with the expected amount of congestion. Since the simulation period regards the morn-
ing peak hours, the traffic load is expected to decrease at its end.
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Figure 4.4: Comparison of the average size of serving cells for highway traffic

Finding these patterns in a more randomized data set that does not only include high-
way traffic is hard. When the travelers on a highway only count for a small part of the
entries, it should be impossible to identify congestion only based on the change of the
curves. However, this analysis can be very useful to filter the highway data out from
all the rest. Since there is no mode that allows a comparable high number of people to
travel at high speed, all the biggest cells should serve mainly highway travelers. Con-
gestion can hence be identified by monitoring the biggest cells. They are only used by
fast highway travelers and the number of those massively decreases when the highway
is congested. The slowed down vehicles will hence rather subscribe to smaller cells. The
more idle the biggest cells hence become, the more congested the highway is. For this
method to work, a multi-layer cell network is required. Therefore it is mainly applicable
for urban highway stretches.

4.2.3 Cell dwell time

The time, a subscriber is connected to one cell is an important measure to evaluate han-
dover algorithms. For the purpose of traffic planning it can be helpful regarding the
traffic conditions on a road network. The faster a subscriber is traveling, the sooner he
will be out of one cell’s range. Hence, the cell dwell time becomes shorter. The multi
layer network in the geographical research area is not helpful regarding this analysis.
since faster cars are connected to bigger cells and their dwell times are increased by that.
However, a relation is still likely. Especially traffic jams with almost no progress should
be possible to identify.

A similar approach to conduct this analysis is to simply count the number of connec-

tions per car as long as it is in the simulation. It is less transferable to a real scenario, than
the dwell time approach, because a limited geopgraphical area is needed to get compa-
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rable numbers for total counts. The sum of connections is only used as a comparative
value to the cell dwell time. What becomes apparent while running the analyzes, is that
the likelihood of an established connection is quite small to deliver meaningful results in
most cases. In the Free flow and the Original Scenario, cars often don’t spend enough
time inside one cell to generate more than one record. This is crucial though, to calculate
the dwell time. For the scale of this project, the analysis is hence focused on the Conges-
tion scenario and the data set including all links. By regarding all links, the time inside
the area is maximized. Since the average speed in the congestion scenario is the lowest,
also the time in one cell is longer. A plot comparison for the average dwell time and the
number of records per car for this scenario can be found in figure 4.5. The blue curve
shows the average number of records of each car for every minute during the simula-
tion study. The red curve shows the cell dwell time respectively. It is clearly visible how
both, the connection count and the dwell time rise significantly as soon as the peak hour
begins. The data is jumpy, but still the difference between the un-congested beginning
and end period and the peak hour is evident. The sensitivity of the cell dwell time to
traffic changes appears to be higher than of the connection counts. Both values are listed
at the time of the first occurrence, this can hence not be the reason for the typically earlier
oscillation of the dwell time curve.

Data set: Congestion Everything
T T T T T

127 T T T 3000

Records per car
avg. Dwell time

[l
10F I Il 2500

g
H“‘ | il
' f“ I
8 i \ -{ 2000
2 ‘\"t | HH‘ _
S ij,\‘ml H “ 3
2 I [ I \“\ I 2
£ Lhe TR T =
S 6 10 \mﬂ\“rm Nl -1500 §
2 I Y A g
5 [ ‘ ﬁ‘w‘wh [\ ‘\ 1 i \\4 H M I 3
=z |

|
N A ‘\/\\H [ ‘W\ H‘\\‘v | Ih |
' AT LN Tt 1000
T \W ' LT L N

| | SO Th
= o \ I \ -
2 ¥ Jv‘t v (aPLi I fr /1 [U | 0
P, AN, I [
o Y A2 | L“ ] “ rhn
i Ml I I I I I I I L e L N O Ve WO
06:30 06:45 07:00 07:15 07:30 07:45 08:00 08:15 08:30 08:45 09:00 09:15 09:30

time
Figure 4.5: Comparison of dwell time and number of records for one data set

The part of the plot up to minute 40 in figure 4.5 gives a hint about how the other data
sets appear when being analyzed. The average number of connections for both the Free
flow and the Original scenario remain at 1.5 the whole time. The average cell dwell time of
these scenarios lies at 74 and 98 seconds respectively. A slight difference between the two
can hence be observed. For comparison, the average number of records in the Congestion
scenario is 2.2 and the average cell dwell time 672 seconds. Again, the difference is more
obvious by the dwell time curve. This makes it a very promising approach to follow for
bigger data sets. Especially in rural areas, where the cell sizes are bigger, it can deliver
meaningful results.
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4.2.4 OD estimation

One of the most common applications of CDR data in traffic models so far is to generate
OD matrices from it. Through long term monitoring of the users, their daily commuting
behavior can be observed. An overview of the most common approaches can be found
in chapter 2.3.2. The data sets in other studies focusing on OD matrix generation usu-
ally include much bigger areas. This lowers the drawbacks resulting from the imprecise
localization. However, even from a small data set, it might be possible to conduct some
travel directions. The rather simple shape of the road network in the simulation study
is an advantage for this analysis. The highway runs along the north-south axis and the
other major road E18 along the east-west one. Therefore it is assumed that all traffic that
clearly goes in one of these directions is based on those roads. In the simulation, there are
centroids placed at all four ends and the demand data hence is known and can be seen
in the referring cells of table 3.1. The experiment is limited to only these two OD pairs,
since the rest of them does not infer a simplified travel direction. The more centroids are
included in such an experiment, the more complicated it becomes to address the records
to the right OD pair. Therefore, a first attempt shall focus on the presumably most easy
situation of traffic on E4 and E18. In case this succeeds, further OD pairs can be included
in the experiment.

The localization of the records is based on its related cell ID. For each ID, a location is
stored in the Open Cell ID data base. Following the path of a vehicle thus means to fol-
low the connected dots of cell centers. For the OD generation the first and the last entry
of each vehicle is utilized. The longitude and latitude of both connections are subtracted
from each other. This is possible only if the vehicle is connected to at least two different
cells during the simulation. This is not the case for most vehicles though. It means that
a driver has to establish at least two connections while being in the simulation area and
that the phone has to change cells in between. Since the overall likelihood is low, a big
data set is preferable for the analysis. The more roads that are included in the data set,
the longer an average vehicle will stay inside its range. Furthermore, a high number of
samples increases the chance of repeating unlikely cases. The cell tower locations are
provided in terms of longitude and latitude. The distances between the towers hence has
to be converted. The longitudinal meridians move closer together while approaching the
earth’s poles. Since Stockholm is positioned at 59° north, the effect is considerable. The
distance between two meridians is a lot smaller here, than it would be on the equator
level. The scaling factor to convert longitude difference to meters here is 0.0435, while it
is 0.1115 for latitudes [68]. The resulting distances are compared and the bigger absolute
of them determined as the vehicles movement axis. Whether the distance is positive or
negative decides its boundary direction.

Table 4.3 shows the results of an OD estimation based on the Original Scenario in-
cluding all links. The column CDR includes the total count of vehicles traveling in each
direction. As a comparison, the Sensor column provides the related values from the orig-
inal OD matrix based on sensor data. Each value pair has a theoretical scaling factor that
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would be required to scale the CDR count to the sensor values. Some scaling must be car-
ried out for the CDR values anyway, since not all simulated vehicles generate connection
records. Looking at the scaling factors however, shows that there is no linear relation be-
tween the two arrays. While the gross of traffic should travel on the north - south axis, the
highest count in the CDR data occurs in west - east direction. The range of the theoretical
scaling factors is too big to assume a meaningful scaling possibility.

Table 4.3: CDR based OD estimation for the Original Everything data set

Sensor [Veh/h] | CDR [Veh] | Theor. Scaling Factor

North - South 408 28 43.755
South - North 476 86 16.606
East - West 178 38 14.053
West - East 185 107 5.184

Further trials with other data sets do not lead to more convincing results. Two of
them are presented in this paragraph, first an OD estimation of the highway data sets and
second of the residential ones. The highway sets are very linear on the north - south axis.
Their OD pairs are thus expected to be focused on these directions. This is not the case
though. Since most vehicles that stay on the highway only connect to one cell during
their commute, a direction cannot be identified for them with this technique. The resi-
dential data set on the contrary, includes slower vehicles that connect to several smaller
cells. However, the precise OD generation fails simply because the movement directions
are more randomized and the possibly involved centroids numerous.

4.2.5 Connection patterns

Regarding the long term use of CDR in traffic analysis, learning algorithms are of great
importance. Apart from the standardized measurements that have been investigated
in the previous algorithms, individualized patterns hold big potential. An algorithm
that knows the shape of a data set during free flow conditions, will be able to recognize
changes to this state better. Such algorithms need to be trained for a specific region. In
the project, only one day is simulated and the learning effect hence is limited. Thanks
to the different scenarios, it is still possible to gain and apply knowledge while analyz-
ing. The part of the network mainly influenced by changing traffic conditions is the cell
change procedure. The underlying algorithms for this process react to changed travel be-
havior. It is likely, that the same cell assignment is repeated for travelers under the same
condition. This way, for one region, specific connection patterns can be linked to traffic
conditions or even to road stretches. A pattern in this case means that vehicles connect
to specific cells or to a sequence of cells. As soon as a certain cell choice becomes more
popular in the region, the trained algorithm will know what traffic situation is the cause
for this. It does so, by comparing the cell choices with its previously estimated patterns.

In a first analysis, it is examined in how far it is possible to determine the road choice

of a vehicle based on its cell subscription. The Matlab function written for this purpose re-
turns a matrix with one row for each existing pattern. The rows consist of the contained
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Cell IDs and the sum of occurrences. This function is run with the Original Everything
data set as input. In this case the Original Scenario is preferable, because it represents the
most realistic traffic conditions. Thus, it is best to evaluate the potential of connection
patterns for traffic research. In total, there are 113 different connection variations. They
all consist of either one or two Cell subscriptions. The most commonly used patterns can
be found in table 4.4. The first column of the table shows the ID of the cell related to
each. The most popular connection patterns only consist of one cell subscription inside
the simulation area. Thus, the pattern can be clearly identified by a single cell ID. The
table is ordered by the number of occurrence within the Everything data set. It lists the
most popular connections sequences in a descending order.

Table 4.4: Occurances of connection patterns in the Original Scenario
Pattern | Everything | Highway | ... and Ramps | Residential
Cell ID Count Count Count Count

13232 2688 77 1084 484
50292 1511 44 178 1424
44923 387 0 94 86
13190 366 374 387 4
47822 356 40 142 197
13161 280 45 286 0
47920 248 1 72 85
23050 242 320 0 0
23052 231 70 155 25
43093 212 143 252 0
13200 207 28 127 0
13251 188 25 19 225
44961 165 97 195 0
13420 160 87 134 40
13192 155 158 153 0
45131 137 26 168 0
23001 118 10 128 0
13402 114 121 92 0
45660 105 0 27 0

Next, the function is run again for all other data sets of the Original scenario. In the
resulting matrices, some of the patterns from the first run are present again. Table 4.4
cross references the related counts with the previously identified common patterns. This
way the counts for the same pattern can be compared in different data sets. It can hence
be identified how big a part the single groupings play in each pattern. An outstanding
example is the pattern in row 2 including cell 50292. It is the second most common con-
nection for the whole area. The other counts show that this popularity almost exclusively
results from residential travelers. Vice versa, any subscriber connected to 50292 can be
assumed to drive on a residential road. The opposite can be seen from cell 23050 in row
8. The cell has the only high counts in the Everything and the Highway data set, while
the rest of the counts are 0. Thus, it can be assumed that in both data sets, it has all its
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subscribers from the highway.

In general, it can be concluded that an identification of the used link is possible in this
simplified simulation environment. Once this is done, the investigation may be contin-
ued in greater detail for the single link. The application for connection patterns in the
CDR data of single roads is to identify changes in the traffic situation. When the popu-
larity of subscription patterns changes, a change in average speed of the travelers can be
assumed. A relation between the vehicles” average speed and the cell choice has already
been implied by the results presented in chapter 4.2.2. Thus, changed connection se-
quences can be used to spot congestion when compared with known patterns. Therefore,
an initial state for comparison is needed. The best scenario to provide such is the Free flow
scenario. Due to its uniform traffic movement, the highway data set is chosen as a sim-
ple example. In this data, the cell connection sequence for each vehicle is extracted. The
results show that the vast majority of the connections is handled by the two cells 13190
and 23050. The first one takes most northbound travelers and the second the southbound
ones. Their range is big and hence no further handovers are performed during the sim-
ulation. Those are the most important patterns for identifying free flow highway traffic.
Figure 4.6 presents a plot of the sum of connections to those cells over time from the Free
flow Highway data set.
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Figure 4.6: Popularity of free flow related connection patterns in the Highway data sets

Figure 4.6 also includes the corresponding plots for the other scenarios. From them
it can be seen how the cells are equally popular in the beginning, but decline as traffic
becomes more dense. While the Original curve recovers in the end, the Congestion plot
stays on a low level. This represents longer lasting and more severe congestion in the
latter scenario. Again the assumed potential of connection patterns can be approved
even in such a limited environment where most of them only consist of one cell.

56






Chapter 5

Conclusion

A discussion of the results and the project specification gives a summary of what has
been done. Furthermore, the chapter justifies the procedure and names its limitations.
Answers to the research questions, presented in chapter 1.2 are given and the extend of
their clarification discussed. All knowledge that is gained on the topic and all new re-
search that can be based on it, is summarized. It is used to motivate a future outlook on
upcoming and recommended research in the area of CDR data in traffic planning.

5.1 Discussion

This thesis describes the generation of synthetic mobile phone connection records from a
microscopic simulation model. It follows a step by step approach throughout the whole
process that is necessary to fulfill this task. Initially, an appropriate simulation area that
contains a wide range of infrastructure and has available input data, is selected. Next,
a simulation tool is chosen and the model to represent the geographical research area in
it, built. Due to the software’s specifications, simplifications of the reality are necessary.
The focus therewith is kept on the project’s requirements and the modeling parts that are
crucial to them. A similar proceeding is applied regarding the input data for the simu-
lation. Sensor data is only available for parts of the network and contains several errors
and wrong counts. Regarding what is important for the experiments output, the input
data is adjusted in details and partly assumed to make the simulation perform well. The
cellular network overlay that is imported as simplified dots into the simulation relies on
open source data of cell location estimates. However, the data is generated by a big com-
munity and contains a lot of samples. It is more focused on how a mobile network is
perceived by the users than how it is actually constructed. This perspective has advan-
tages regarding its application. The estimated cell ranges for example, are verified by
users who were connected to cells in this distance.

While the model is running, an addition to the standard procedure is executed. By
using the Aimsun API, the extension can interact with the current simulation in both
directions and hence collect data about the simulation vehicles’ trajectories. Within the
API extension, the positions of a pre-selected group of vehicles are extracted on a regu-
lar basis. These positions are used as input for a mobile connectivity model that assigns
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each of them to an appropriate cell. The range of existing algorithms to assign cells to
subscribers is huge and they vary greatly in complexity and in the parameters they are
based on. The algorithm used in the project does not attempt to be applicable in reality,
but rather aims to simulate a valid cell distribution within the scenario. To some degree,
the data is actively scrambled to mirror the structure of records generated through ran-
dom calls. All valid steps of the experimental procedure are carried out using Aimsun.
To reproduce the data with specifications, no other tool is necessary. This approach raises
the utility regarding a reuse of the developed procedures. The representation of the cel-
lular network in the program is rather simple. Models of propagation and advanced cell
shapes are some parts of cellular networks that can not be represented in the project, as
it was designed.

Throughout the data generation, simplifications and assumptions have to be made
and there are a lot of different models involved in the process. However, the procedure is
at every point focused on the study purpose and ensures that the models deliver mean-
ingful results. All parts of the study are based on the knowledge gained through scientific
literature research and work experience. Debugging and fault analysis have been carried
out all along. Thanks to this effort, the data sets show a realistic behavior when being
analyzed, as was done after their generation. Three different scenarios are implemented
and thus three different series of data sets are produced. They differ in the demand input
and either cause free flow conditions, congestion or an intermediate, as can be observed
in reality. The different results for those scenarios are helpful to evaluate the results’ sen-
sitivity regarding traffic changes. Besides, additional data sets in each of the scenarios
include only a selection of links to generate data from. This way, the influence of differ-
ent road types on the results can be evaluated.

The applied evaluation approaches on the one hand attempt to verify the results by
reproducing the conditions as implied by the simulation’s demand input. On the other
hand the algorithms themselves are being investigated to find out which measure is best
to deduct information from the call records. The first conducted analysis regarding the
total system load at each time of the simulation, unveils some differences between the
scenarios. It is focused on the density of traffic and thus supposed to react on congestion.
However, this approach only works for parts of the data sets and hence is not reliable.
Furthermore, the total system load under real world conditions can be influenced by
many factors. A fluctuation in its value does not necessarily have to mean an increase
in vehicle traffic. The next two algorithms are more related to typical measurements for
cellular networks. The data sets and scenarios are compared regarding the average ra-
dius of the subscribed cells. Network architecture causes faster travelers to connect to
bigger cells, thus conclusions about their speeds can be drawn from the average cell size.
A comparison of the different data sets within one scenario shows that this assumption
holds. Cars on the highway are evidently faster than those on residential streets. Their
average cell size is notably bigger, too. Traveling users can, following this approach, be
separated from the noise data existing in real data sets. Specifically, the fact that cells of a
radius over 9000 meters are primary used by highway travelers is of particular interest.
In this way it is possible for the highway data to be filtered from the rest. Furthermore,
by monitoring when those cells become more idle, congestion on the highway can be
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spotted. This analysis however is limited to urban areas with multiple cellular layers.
Additionally, the data sets are evaluated regarding the cell dwell time. This measurement
targets the vehicles” speed. The slower a traveler becomes, the more time he spends in-
side the same cell. The analysis proofs that increased traffic in the Congestion data set can
be effectively spotted. The dwell time is fast in its reaction to changes, since vehicles that
are connected to a big cell and then have to slow down due to arising congestion spend
especially much time in their cell. Later, when they are handed over to smaller, better
fitting cells, the dwell time normalizes again.

A rather common implementation of CDR data in traffic engineering is to use it for
generating OD matrices. The OD pairs are deducted from the vehicles’ movement di-
rections. Those directions can be obtained by following the travel routes based on the
centers of the cells they are assigned to. For this study however, the attempt to reproduce
the OD matrix from the data was not successful. The fact that many vehicles are just
connected to one cell during the simulation, makes it hard to follow a route. Even for
the rest, the localization is not precise enough for the small simulation area to generate
meaningful travel directions from it. One approach that could potentially lead to a suc-
cessful OD matrix estimation is through connection patterns. Two vehicles on the same
route with the same traffic situation will most likely be connected to the same cells. Thus,
common movement corridors can be identified from the specific sequence of cells they
are connected to. The potential of this approach is proven by the successful separation
of the main traffic streams in the Original Scenario. Connection pattern based algorithms
are even able to learn over time. This has been simulated by identifying connection se-
quences on the highway under free flow conditions first. The most common sequences
are then used as patterns. When monitoring these patterns under more congested condi-
tions, a clear decline in their popularity can be observed. The longer an analysis like this
is run, the more individual patterns can be recognized. Hence, more traffic situations can
be identified.

Many of the algorithms tested here in a simple form, have the potential to create valu-
able traffic monitoring data. Since they all rely on different relations between cellular
signaling and traffic situation, a combined application of them adds additional precision.
To evaluate the algorithms closely, the procedures presented in this thesis are a good
way to create more samples of connection records. The big advantage of those is, that
the traffic condition they were created under are perfectly known and can be adjusted as
desired. A compromise of CDR generation from microscopic simulation models is the
size of the geographic area. Generally, bigger areas have advantages regarding the possi-
ble applications of the generated data. However, microscopic models are limited in size.
Complexity and computational effort starts to grow significantly with increasing size of
the model. This trade of will always limit the usability of synthetic CDR data.
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5.2 Recapitulation of the research questions

Before starting the work on the project, its aims have been specified. One of them was to
find a way to generate synthetic, standardized CDR from microscopic simulation mod-
els. To increase the reusability of the approach, as many parts of the procedure were to be
standardized and applicable for multiple scenarios. This requirement has been achieved
by several means. The experiment can be repeated for any microscopic simulation model
created with the software Aimsun. The design of the model does not influence the ex-
tensions made. Different vehicle classes and public transport plans can be handled by
the model as well. From the database of Open cell ID, it is possible to import cell center
locations from all around the world. The community offers the widest range of differ-
ent cell locations available. Thus, the models adaptation to input data from that source
makes it widely usable. The procedure how to correctly filter the relevant cells from the
worldwide data set is given in the report. Cell data from other sources may be used for
the data generation as well. However, it will require some transformation to make it fit
the requirements. The script used to extract the CDR from the simulation can be run in
Aimsun directly and thus is not influenced by compatibility to other software. It is not
possible to use it with another software or with a macroscopic/mesoscopic simulation
study. The first intention of the project, to create a general approach for the generation of
CDR from a microscopic simulation has been achieved.

Along with it, research questions concerning the analysis of the created output of the
experiment have been formulated. It was intended to investigate how CDR data, col-
lected in an urban region, can give information about the current traffic state on its road
network. The first sub question emerging from this, was in how far a fast traveler could
be distinguished from a slow one. This topic is addressed by chapter 4.2.3. It compares
the two indicators of cell dwell time and number of records per vehicle. It is concluded
that the cell dwell time gives a faster and stronger indication of a change in traveling
speed. In addition, the size of the cells travelers are subscribed to gives an indication of
their speed. Chapter 4.2.2 describes this relation on a system wide scale. Finally, con-
nection patterns can be applied as described in chapter 4.2.5 to recognize traffic states
that have been observed in the past. The size of the subscribed cell and the recognition
of connection patterns can also be used to filter traveling users from a diverse CDR data
set. This either works by selecting only the users connected to large cells or by following
their movement through the sequence of their connections. By combining the previously
mentioned techniques, traveling users can first be identified and later examined regard-
ing changes in their behavior.

Chapter 4.2.1 examines the question, how to observe a changing density from CDR
data. The approach to count the generated CDR entries within the research area makes
changing density visible in the synthetic data set. Real data will though first have to be
filtered for traveling users by the previously described means. In how far it is possible to
directly derive demand changes from unfiltered CDR cannot be found out with the given
data. Finally the project investigated the opportunities given by CDR data to distinguish
OD pairs and route choices. This experiment has been conducted for bigger areas before,
but not for an area as small as the modeled region of this project. Two approaches have
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been compared in the chapters 4.2.4 and 4.2.5. The first of them attempts to distinguish
some of the model’s travel directions by the positions of the subscribed cells along a ve-
hicle’s path. The second assigns connection patterns to major links and recognizes them
in other data sets. The results obtained in chapter 4.2.5 are much more promising. Based
on such learning algorithms it is possible to read OD matrices from CDR data, even in a
small geographic area.

5.3 Future outlook

The project in this thesis is a step towards understanding the structure of CDR data and
its relation to traffic situations better. It has profited from the knowledge about numer-
ous applications of such data in earlier research projects and some commercial purposes.
At the end of the project, more projects can utilize the outcomes of this work and con-
tinue the research. There are several ways that the work can be carried on from here
and a selection of them is to be presented. There is more room for experiments using the
tools developed for the project. The time and resources of a university thesis are limited
and so the efforts had to be focused. The possibility to test different research areas and
more microscopic simulation models are numerous. Thanks to Open Cell ID, there is
cellular network layouts available for most regions of the world. Of special interest will
be to try a large stretch of highway in a rural area. The different shape of the network
will require new means of analysis. Furthermore, a more simply structured network can
be modeled in a wider range. This way, more advanced connection patterns should be
observable. Thanks to a better quality of the cell location data in the United States of
America, experiments in one of their urban regions are of interest too. The American net-
work providers publish the locations of their antennas and their specifications. This can
increase the precision of the research and lead to new conclusions. In order to make the
models work under those new conditions, adjustments to them are recommended. More
detailed cell tower location data, requires a more advanced mobile connection model. It
may for example pay more attention to the shape of sectored cells or include the possibil-
ity of vertical cell changes during the simulation. Apart from this, different parameters
for the call likelihood model can be tested and the effects evaluated. Later versions of
Aimsun include the possibility to model pedestrian traffic. Including pedestrians in the
models opens up a new challenge to filter the data and to identify specific travel modes
and route choices. Additionally, a large number of pedestrians would generate a big
amount of noise data that brings the synthetic data sets closer to real conditions. How-
ever, pedestrian models are hard to handle and typically include only small areas, too
small to cause cell changes. Future research will have to find a way to overcome this
problem. A smaller effort to extend the model is set by adding public transport lines to
the system, as is also supported by Aimsun. A large number of people traveling together
in one vehicle, will generate very similar connection patterns that might be identifiable
from the whole.

Next to these extensions of the projects model, ongoing research also means to use
the results generated by the project. A selection of data analysis methods has been pre-
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sented. However, that selection is not exhausting the possibilities for more advanced and
diversified approaches. Further research can utilize the tools and results of the project
to motivate extended analysis of the results. Especially the topic of learning algorithms
based on pattern recognition is believed to hold greater potential. On a long run perspec-
tive, testing the assumptions and theses on a real world data set is desirable. Synthetic
data can never claim the same level of detail and advanced entropy as real one. The chal-
lenges for the algorithms will hence increase and will lead to their further improvement.
Along all ongoing research the aim of the project has to be kept in mind. It is focused
on producing CDR data samples and its models are exclusively adjusted to this purpose.
Any future researcher has to bear this in mind when utilizing its tools for his/her own
projects.
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Appendix

Table A.1: OD matrix [Veh/h], used from 6:45-7:00am

O/D | El18west Solnacenter Frosundaleden E4south E4north El8east | Totals

E18 west 0 25 6 140 123 185 480

Solna Center 26 0 22 54 52 26 179
Frosundaleden 9 23 0 19 18 9 79
E4 south 135 30 9 0 395 135 703

E4 north 149 27 8 411 0 149 745

E18 east 185 107 5 149 143 0 589

Totals 504 213 51 773 731 504 2775

Table A.2: OD matrix [Veh/h], used from 7:00-7:15am

O/D | El18west Solnacenter Frosundaleden E4south E4north El8east | Totals

E18 west 0 24 6 133 126 180 469

Solna Center 25 0 21 51 52 25 175
Frosundaleden 9 22 0 18 19 9 77
E4 south 137 31 9 0 401 137 715

E4 north 141 26 8 390 0 141 706

E18 east 180 104 5 141 145 0 575

Totals 492 208 50 733 743 492 2718

Table A.3: OD matrix [Veh/h], used from 7:15-7:30am

O/D | E18 west Solnacenter Frosundaleden E4south E4north El8east | Totals

E18 west 0 26 7 141 137 193 503
Solna Center 27 0 23 54 57 27 188
Frosundaleden 10 24 0 19 20 10 83
E4 south 149 34 10 0 437 149 779

E4 north 150 28 8 414 0 150 750

E18 east 193 112 5 150 158 0 618

Totals 529 223 53 779 809 529 2921
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Table A.4: OD matrix [Veh/h], used from 7:30-7:45am

O/D | E18 west Solnacenter Frosundaleden E4south E4north El8east | Totals
E18 west 0 26 7 141 140 195 509
Solna Center 27 0 23 54 59 27 190
Frosundaleden 10 24 0 19 21 10 84
E4 south 153 34 10 0 448 153 798
E4 north 150 28 8 414 0 150 750
E18 east 195 113 5 150 162 0 625
Totals 534 225 54 778 829 534 2955
Table A.5: OD matrix [Veh/h], used from 7:45-8:00am
O/D | E18 west Solnacenter Frosundaleden E4south E4north El8east | Totals
E18 west 0 26 7 138 145 195 511
Solna Center 27 0 23 53 61 27 191
Frosundaleden 10 24 0 19 21 10 84
E4 south 158 36 11 0 464 158 828
E4 north 146 27 8 404 0 146 731
E18 east 195 113 5 146 168 0 627
Totals 536 226 54 759 860 536 2971
Table A.6: OD matrix [Veh/h], used from 8:00-8:15am
O/D | El18west Solnacenter Frosundaleden E4south E4north El8east | Totals
E18 west 0 27 7 139 149 198 520
Solna center 28 0 23 53 62 28 195
Frosundaleden 10 24 0 19 22 10 85
E4 south 162 37 11 0 476 162 848
E4 north 148 27 8 408 0 148 739
E18 east 198 115 6 148 172 0 638
Totals 546 230 55 768 881 546 3025
Table A.7: OD matrix [Veh/h], used from 8:15-8:30am
O/D | E18 west Solnacenter Frosundaleden E4south E4north El8east | Totals
E18 west 0 26 7 137 146 195 511
Solna Center 27 0 23 53 61 27 192
Frosundaleden 10 24 0 19 22 10 84
E4 south 159 36 11 0 467 159 832
E4 north 146 27 8 403 0 146 729
E18 east 195 113 5 146 169 0 628
Totals 537 226 54 757 865 537 2976
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Table A.8: OD matrix [Veh/h], used from 8:30-8:45am

O/D | E18 west Solnacenter Frosundaleden E4south E4north El8east | Totals
E18 west 0 26 6 134 142 190 497
Solna Center 27 0 22 51 59 27 186
Frosundaleden 10 23 0 18 21 10 82
E4 south 155 35 10 0 453 155 808
E4 north 142 26 8 392 0 142 710
E18 east 190 110 5 142 164 0 610
Totals 522 220 53 737 839 522 2893
Table A.9: OD matrix [Veh/h], used from 8:45-9:00am
O/D | E18 west Solnacenter Frosundaleden E4south E4north El8east | Totals
E18 west 0 23 6 118 132 172 451
Solna Center 24 0 20 45 55 24 169
Frosundaleden 9 21 0 16 20 9 74
E4 south 144 33 10 0 423 144 753
E4 north 125 23 7 347 0 125 628
E18 east 172 99 5 125 153 0 554
Totals 474 199 48 652 782 474 2630
Table A.10: OD matrix [Veh/h], used from 9:00-9:15am
O/D | El18west Solnacenter Frosundaleden E4south E4north El8east | Totals
E18 west 0 22 5 111 125 161 424
Solna Center 23 0 19 43 52 23 159
Frosundaleden 8 20 0 15 18 8 70
E4 south 136 31 9 0 398 136 710
E4 north 118 22 7 326 0 118 590
E18 east 161 93 5 118 144 0 521
Totals 446 187 45 612 737 446 2473
Table A.11: OD matrix [Veh/h], used from 9:15-9:30am
O/D | E18 west Solnacenter Frosundaleden E4south E4north El8east | Totals
E18 west 0 22 5 111 127 163 429
Solna center 23 0 19 43 53 23 161
Frosundaleden 8 20 0 15 19 8 71
E4 south 139 31 9 0 407 139 726
E4 north 118 22 7 327 0 118 592
E18 east 163 94 5 118 147 0 527
Totals 451 190 45 614 754 451 2506
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Python script for CDR generation

#For the Code to work the cells should be imported to Aimsun as Points. An
External ID for each cell containing its radius is required. It is
recommended to use Input Layer generated from OpenCellld—data.

from AAPI import x*

import sys

from PyANGKernel import x*
import datetime

Cycle=17 #Distinguish the timesteps for retreiving data from the
simulation

relative=0.2 #the relative number of users receiving a call

5G=41692 #ID of the Grouping of sections

PG=41689 #ID of the Grouping of Cell towers

filename =’ProbeData_everything.csv’ #Filename of the output file

model = GKSystem. getSystem () . getActiveModel ()
Connectionrecord ={}

def AAPILoad():
global filename

Results = open(filename, "w"
Results . write (" Vehicle_ID , time, origin ,Cell-ID \n") #Headline for the
Output file
Results. close ()
return 0
def AAPIInit():
return 0
def AAPIManage(time, timeSta, timeTrans, acycle):
return 0

def AAPIPostManage(time, timeSta, timeTrans, acycle): #time=time elapsed
during current Experiment; time Sta=time+Start time; acycle=time difference
between simulation steps

global Cycle, relative, filename, SG, PG, Connectionrecord #Global
variables that have been defined in the root
if time%Cycle<acycle*0.9: #time is almost evenly dividable
by the cycle
timeformatted = str(datetime.timedelta(seconds=timeSta)) #display the
time in a nice way
Results = open(filename, ’a’) #append new results to output
file
sections = model. getCatalog () .find (SG).getObjects () #get all Objects
from the sections grouping
points = model. getCatalog () . find (PG) . getObjects () #get all objects from

the pointsgroup as GKDPoint
Celltower = points[1]
for i in sections:
id = i.getld ()
vehicles = AKIVehStateGetNbVehiclesSection (id , True)
for j in range(vehicles): #loop to generate records for
cars on the section
random = AKIGetRandomNumber ()

74



42
43
44
45
46
47
48

49
50
51

52
53

54
55

56
57
58

59
60
61
62
63
64

65
66

67

68

69
70
71

72
73
74

75
76
77
78
79
80
81
82
83
84
85
86
87

if random>relative: #represents the call likelihood
break

probe = AKIVehStateGetVehicleInfSection(id, j)

probeld = probe.idVeh

probePOS = GKPoint(probe.xCurrentPos, probe.yCurrentPos)

speedfactor = (probe.CurrentSpeed xx2)+500

if probeld not in Connectionrecord: #if the vehicle is
regarded for the first time
dist = 999999.9 #very high value
Connectionrecord [ probeld] = "Error’
for k in points: #loop checks all celltowers to find

the closest
radius = k.getExternalld ().tolnt ()
if 0.7<speedfactor/radius <1.3: #cell choice based on multi
layer network model
pointPOS = k. getPosition ()
if pointPOS.distance2D (probePOS)<dist: #if this is the
closest tower so far
dist= pointPOS. distance2D (probePOS)
Celltower = k
Results . write("%1i,%s,%s,%s \n"%(probeld, timeformatted,
Connectionrecord [ probeld], Celltower.getName()))
Connectionrecord [probeld] = Celltower
else: #if there has been a connection to another Cell before
former = Connectionrecord[probeld]. getPosition ()
dist = former.distance2D (probePOS)
Celltower = Connectionrecord[probeld]

if dist<Celltower.getExternalld ().tolInt(): #If the former cell
is still in range, prevent Handover
dist =0
for k in points: #loop checks all celltowers to find
the closest
radius = k.getExternalld (). tolnt () #gets the curent
cell ’s range
if 0.7<speedfactor/radius <1.3: #cell choice based on multi

layer network model
pointPOS = k. getPosition ()
pointPOS = k. getPosition ()
if pointPOS.distance2D (probePOS)<dist: #if this is the
closest tower so far
dist= pointPOS. distance2D (probePOS)
Celltower = k
Results . write("%1i,%s,%s,%s \n"%(probeld, timeformatted,
Connectionrecord [ probeld]. getName () , Celltower.getName()))
Connectionrecord[probeld] = Celltower

Results. close ()
return 0

def AAPIFinish () :
return 0

def AAPIUnLoad() :
return 0

def AAPIEnterVehicle( idveh, idsection):
return 0

def AAPIExitVehicle( idveh, idsection):
return 0
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88 def AAPIPreRouteChoiceCalculation(time, timeSta):
89 return 0
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Matlab script for sensor data extraction

%This script is used for averaging the flow and creating traffic states in 15
min intervalls. The input flow is a 3D matrix created from the MMS Matlab

tool by Rasmus Ringdal

clc;

a=0;
columnaverage=zeros(28,182);
rowaverage=zeros (28 ,14);

N=length (flow) ; %up to the highest number of sensor (1206)
for i = 1:N
if sum(flow (:,i,:))>0 %check if there is data for this sensor
a=a+1; %start a new row
b=1; %reset the counter for averaging

used =squeeze(flow (:,i,:)); %2D matrix for the current sensor
columnaverage(a,1)=i; %write the sensor ID in the first column

rowaverage(a,l)=i;

Me=length (used); %The no. of counts per day for one sensor (181)

for j = 1:M
u=used (:,j); %monthly data for one sensor and one minute
v=sort(u(u~=0)); %sort all values !=0 from small to big
w=v(2:end—1); %delete the smallest and the highest value
columnaverage(a, j+1)=round (sum(w) /length (w) ) ; %put the average of
the remaining values as result
if j/b > 15
b=b+1; %Every 15 steps, b is increased by 1
end

rowaverage(a,b+1)= rowaverage(a,b+1)+columnaverage(a,j+1); YSum up

15 averages each time
end
end
end

rowaverage=rowaverage (: ,1:13); %Cut the matrix to the correct size
rowaverage (: ,2:end)=round (rowaverage (: ,2:end)./15); %Create the average flow

per hour

%The scripts results in a 2D matrix (rowaverage) with one row per used sensor

and one column per 15 min interval
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