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In this thesis the problem of spacecraft attitude control is investigated. Individual spacecraft dynamics 

are modelled and  controlled with thrusters , reaction wheel ,Gimbaled momentum wheel and their 

coupling effects are analysed. Also controlling during thrust manoeuvres using gimbaled engines, 
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derived and it is conveniently put into dimensionless forms and their corresponding transfer functions 
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1 Motivation 

Modern spacecraft have an attitude determination and control system (ADCS), one of the most 

challenging problems for control engineers is the modelling of the spacecraft. The attitude and 

orbit control subsystem (AOCS) provides attitude information and maintains the required 

spacecraft attitude during all phases of the mission, starting at spacecraft separation from the 

launch vehicle and throughout its operational lifetime. The subsystem consists of redundant 

microprocessor-based control electronics, sun and earth sensors, gyros, momentum wheels 

(MWs), a reaction wheel (RW), magnetic torquers, thrusters, and solar array and trim tab 

positioners.[1] 

1.1. Spacecraft Attitude Determination 

Unlike orbit problems most of the advances in attitude determination and control are recent, 

having happened mostly since the launch of Sputnik on 1954. This can be exemplified by the 

fact that the prediction of the orbital motion of celestial bodies was the initial motivation for 

much of Newton’s work. So while much has been researched and discovered in orbit analysis, 

much of the body of knowledge is centuries old unlike attitude analysis. [2] 

Spacecraft’s attitude analysis can be divided into three main areas: determination, forecasting 

and control. In this thesis attitude determination and control has been discussed briefly. 

Attitude determination is the process of analysing how often the actuators are used to perform 

the desired function.eg: pointing at sun .Attitude control is the process of positioning the 

satellite in a particular direction or spinning the spacecraft at a certain angular velocity around 

a specific axis to achieve the mission requirement. 

1.2. Attitude determination 

The attitude determination of a spacecraft is inherently dependent on its mission profile. A 

spacecraft that is launched into Low Earth Orbit (LEO) does not have the same attitude 

determination system that an exploratory mission to Mars has. The sensors used, their number, 

the algorithms and data processing hardware are all different. 

The accuracy of the determined attitude depends on the sensors, on the attitude determination 

algorithms used and on the hardware capability available. In order to fully determine a 

spacecraft's attitude it is necessary to have at least 2 linearly independent vectors [2]. 

Using just one vector it is not enough as it is not possible to know whether the spacecraft is 

spinning around said reference vector or not. This means that a single reference vector does 

not contain information to determine the spacecraft's rotation around this reference vector. 

Therefore, another reference vector is necessary to unambiguously fix the spacecraft's attitude. 
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2 Attitude Sensors 

There exist many types of sensors to determine spacecraft attitude. Each of these sensors 

determine either angle or angular velocity with respect to a reference frame. A magnetometer 

measures the angle between the spacecraft’s vector orientation with respect to Earth’s magnetic 

field vector. 

2.1 Optical sensors 

A Sun sensor measures the angle between the spacecraft’s vector orientation with respect to 

the vector the points from the spacecraft to the Sun, similarly to Earth sensors, which measures 

the angle between the spacecraft’s vector orientation with respect to the vector the points from 

the spacecraft to the Earth. 

Simplified schematics of an Earth sensor and a Sun sensor can be seen in Figures 1 and 2 

respectively [3]. 

 

 
 

 
Figure 2.1 - Earth Sensor Diagram 

 

 

 

 

 

Figure 2.2 - Analog Sun Sensor 
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A star sensor measures angle with respect to the inertial frame of the universe. A simplify 

schematic of a start sensor can be seen in Figure 3. A CCD or other similar device captures the 

light coming from the stars in its field of view. This image is then amplified and compared with 

preloaded star charts in the memory of the sensor, when a match is found the sensor knows in 

which direction it is pointing. 

 

 

Figure 2.3 - Star Sensor 

2.2 Orbital Gyrocompassing 

Horizon sensors measure roll angle,𝜙 and pitch angle,𝜃, but they obviously cannot measure 

yaw angle, 𝜓.However, if roll-rate and yaw-rate gyros are added (measuring p and r), then it 

is possible to estimate the yaw angle, using the kinematic roll/yaw coupling equations 

𝜙̇ = 𝑝 + 𝑛𝜓,     (2.1) 

𝜓̇ = 𝑟 − 𝑛𝜙     (2.2) 

If the orbit rate, n is known, then 𝜓 is observable from (1)  

𝜓 =
𝜙̇−𝑝

𝑛
     

 (2.3) 

Now, the horizon sensor measurement of 𝜙 is noisy ,so it is not possible to differentiate the  𝜙 

signal to find 𝜙̇.A kinetic estimator, which uses (1) and (2) ,along with the measurements of 

𝜙, 𝑝 and r (call them 𝜙𝑚, 𝑝𝑚, 𝑟𝑚)as follows: 

𝜙̇̂ = 𝑝𝑚 + 𝑛𝜓̂ + 𝐾𝜙(𝜙𝑚 − 𝜙̂),    (2.4) 

𝜓̇̂ = 𝑟𝑚 − 𝑛𝜙̂ + 𝐾𝜓(𝜙𝑚 − 𝜙̂),   (2.5) 

Where (𝜙̂, 𝜓̂) are the estimators of (𝜙,𝜓).This estimator does not require the derivative of  𝜙𝑚. 

The estimate errors,𝜙̃ = 𝜙̂ − 𝜙 and ,𝜓̃ = 𝜓̂ − 𝜓, can be predicted by subtracting (1) and (2) 

from (4) and (5) .If we consider (𝜙𝑚, 𝑝𝑚, 𝑟𝑚) are reasonably accurate ,then 
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     𝜙̇̂ = 𝑛𝜓̃ − 𝐾𝜙𝜙̃,                                    (2.6)

    

𝜓̇̂ = −𝑛𝜙̃ − 𝐾𝜓𝜙̃.     (2.7) 

The characteristic equation of (6)-(7) is 

    s(s+𝐾𝜙)+n(n+𝐾𝜓)=0.      (2.8) 

If we wish the error decay eigen values to be (-n,-n),the desired characteristic equation is : 

(𝑠 + 𝑛)2 ≡ 𝑠2 + 2𝑛𝑠 + 𝑛2 = 0.    (2.9) 

Comparing the coefficients of s in (7) and (8) gives the required gains: 

𝐾𝜙 = 2𝑛,              (2.10) 

𝐾𝜓 = 0            (2.11) 

2.3 Gyro 

The angular velocity of a spacecraft with respect to inertial space can be determined using three 

rate gyros. If the gyros are attached rigidly to the spacecraft, then the three measured angular 

velocities are in body-axis components. Current inertial platforms drift away from their initial 

positions at a rate of .01 to .001 deg/hr. Periodic sightings on celestial objects can be used to 

estimate the platform misalignment; in between sightings the platform provides a good estimate 

of current spacecraft attitude[4]. 

2.4 Inertial Measurement Units 
 

 
Figure 2.4 Aerospace Euler angles (NASA standard) 

 

For this type of inertial measurement unit (IMU) a platform is mounted in gimbals relative to 

the spacecraft. Three gyros and three specific force sensors are mounted on the platform with 

their sensitive axes mutually orthogonal  Using the gyro signals, the gimbals are torqued to 

keep the angular velocity of the platform as close to zero as possible. The gimbal angles are 

then the Euler angles of the spacecraft with respect to inertial space (Figure 2.4) [4]. 
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3 Attitude control with Thrusters 
 

3.1 Fast attitude control vs slow Attitude control 

 
If the desired attitude control bandwidth is large compared to orbit rate (n),then gravity or 

magnetic torques are small compared to the required control torques. Hence it can be used as a 

disturbance torques, using a free space model of satellite dynamics. This is call fast attitude 

control. On the other case if the control bandwidth is comparable to orbit rate, then the gravity 

or magnetic torques can be used with the reaction wheels to stabilize the satellite without use 

of thrusters it is called as Slow attitude control [4]. 

 

3.2 Fast Attitude control using proportional Thrusters 
 

If the available control torques are large when compared to the external disturbance torques 

and wish to stabilize the spacecraft attitude with respect to inertial space, then the attitude 

motion about the three-principle axis may be treated separately as shown in the figure 3.1. 

 

 
Figure 3.1 .Three axis attitude control thrusters,wheels,and sensors 

 

A convenient inertial reference system in interplanetary space is the celestial sphere. 

 

Proportional thrusters are not easy to achieve in practice. It is considered because it is simpler 

than control logic for the on-off thrusters. 

 

If both attitude and attitude rate are sensed (e.g., using a sun sensor, a star sensor, and three 

rate gyros), then stabilization about each principal axis may be obtained by feeding back a 

linear combination of attitude deviation and attitude rate to the torquer. Here, the body y-axis, 

is considered. 

 

𝑄𝑦 = −𝐷𝜃̇ − 𝐾𝜃,      (3.1) 

where 

𝐼𝑦𝜃̈ = 𝑄𝑦.             (3.2) 
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Clearly, for D>0,K>0,the motion is stabilized. 

If only attitude is sensed, then the stabilization about each principle axis may be obtained by 

feeding back attitude deviation with lead compensation to the torque. Considering the body    

y-axis, 

𝑄𝑦 = −𝐾(𝜃 − 𝜉),      (3.3) 

𝜉̇ + 𝑏𝜉 = (𝑏 − 𝑎)𝜃.            (3.4) 

 

In transfer function notation,(2)-(4) become     

                             

𝑄𝑦(𝑠) = −𝐾
𝑠+𝑎

𝑠+𝑏
 𝜃(𝑠),      

  (3.5) 

           𝜃(𝑠) =
1

𝐼𝑦𝑠2 𝑄𝑦(𝑠).                           

(3.6) 

 

Figure 3.2 Attitude control system with proportional thrusters and attitude sensor 

 

The characteristic equation of system (5) and (6) ,in Evans’s form,is  

 

−
𝐾

𝐼𝑦
=

𝑠2(𝑠+𝑏)

𝑠+𝑎
.       (3.7) 

 

3.3 Fast attitude control using On-Off thrusters 

With the complications with the proportional thrusters ,on-off or bang-bang control have been 

developed. Valves can be operated to stay open as little as a few milliseconds and can be fired 

over million times reliably, but the valves has to open for a finite period of time. Hence, there 
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will be a discrete change in angular velocity with each actuation of the valve. To prevent 

opposing jets from firing each other, there must be a dead band in a system using on-off control. 

When the vehicle is in the deadband, no control is taken. When the error signal exceeds the 

deadband, then the gas valves are modulated. [4] 

 

3.3.1 Bang-Off-Bang Control 

To make effective use of a dead-zone we also use hysteresis; dead zone and hysteresis are 

combined in a scheme called a Schmitt trigger, shown in Figure 3.3. It is simple to use the 

Schmitt trigger with a linear switching function as shown in Figure 3.4. 

 

 

Figure 3.3 Output vs Input with dead zone and hysteresis (Schmitt trigger) 

 

 

Figure 3.4 Block diagram of Schmitt trigger used with a linear switching function 

 

This control system cannot bring 𝜃 𝑎𝑛𝑑 𝜃̇ to zero, but at least it can bring them to acceptably 

small values, ending with a low-frequency limit cycle, which does not use as much fuel as the 

bang-bang scheme. It is straightforward to show that the limit cycle period and amplitude are 

given by (figure 3.5) 

Period =4𝜏 (
𝛼1−𝛼0

𝛼1−𝛼0
+

𝛼1−𝛼0

2𝑁𝜏2 ) , 𝑁 ≜
𝑄0

𝐼
,    (3.8) 

Amplitude=
1

2
(𝛼1 + 𝛼0) +

1

8

(𝛼1−𝛼0)2

𝑁𝜏2 .   (3.9) 
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Figure 3.5 Phase plane path; attitude control using deadband hysteresis (Schmitt trigger) 

 

For the fast attitude control, motion about each principle axis is nearly decoupled from motion 

about the other axes. Considering about the pitch (y) axis, and let 𝑞𝑤=angular velocity of the 

wheel with respect to inertial space. The satellite with reaction wheel’s ,equations of motion 

are  

𝐼𝑦𝑞̇ = 𝑁𝑖 + 𝑄𝑓 + 𝑄𝑑𝑦 ,       (3.9) 

𝜃̇ = 𝑞,                     (3.10) 

  𝐽𝑞𝑤̇ = −𝑁𝑖 − 𝑄𝑓 ,       (3.11) 

𝑅𝑖 = 𝑒 − 𝑁(𝑞 − 𝑞𝑤),                                                         (3.12) 

𝑄𝑓 = −𝑐(𝑞 − 𝑞𝑤)                                   (3.13) 

 where 

  𝑄𝑑𝑦 =external disturbance torque, 

𝑄𝑓 =wheel-bearing friction torque, 

𝐼𝑦 = moment of inertia of satellite, 

𝐽 =Moment of inertia of wheel plus motor, 

i =armature current in DC motor, 

e =armature voltage, 

R =armature resistance, 

N = torque per unit current ≡back emf per unit angular velocity, 

c =viscous friction coefficient. 
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For the modelling, the following parameters are considered. 

R=100 ohms 

N=0.1 

c =-0.879*10-4 Nms 

J=4.95*10-3Kgm2 

I=0.1*10-3Kgm2 

 

 

Figure 3.6 Attitude control of Satellite using Bang-off-Bang control 

 

Figure 3.6 shows the attitude control of satellite using bang-off –bang control thrusters as 

actuator. The system is modelled based on the block diagram, figure 3.4. PI controller is 

designed to regulate the changes occurring due to external disturbances. Initially system will 

be in zero initial condition. If any external disturbance enters the system it is sensed by the 

feedback controller, which sends impulse to the jets to bring, back the system to the stable 

normal position. 
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Figure 3.7 Attitude controlled output using bang-off-bang thrusters 

 

Figure 3.8 shows the attitude-controlled output of satellite with reaction wheel using bang-off-

bang control. The first block with blue line is the 𝜃.The second block with black line is 𝜃̇.And 

the yellow line is the disturbance. External disturbance is introduced into the system between 

20 to 40 seconds. Both 𝜃 and 𝜃̇ spikes when the disturbance is given and because of the control 

action of the controller both 𝜃 and 𝜃̇ returns to very low values approximately equal to zero, 

which shows that the attitude is controlled satisfactorily for the applied disturbance.  
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4 Attitude control with reaction wheels 

4.1 Introduction 

Pointing accuracy of the on-off thrusters is limited to 0.1 to 1.0 degrees. In case of the pointing 

a telescope more accuracy is needed. In case of such requirements, reaction wheels are used. 

The main concept in case of using reaction wheels is to put the unwanted spacecraft angular 

momentum caused by the external disturbances into the wheels. This is possible with the 

proportional electromagnetic torquers such as DC motors. Hence, a very precise control of 

satellite attitude is possible. Moreover using thrusters may utilize spacecraft’s fuel to an extent. 

So implementing reaction wheel may help to reduce the fuel consumption. 

The use of a reaction wheel as an actuator in satellite control has gained popularity lately           

[5-7]. Some advantages of this type of actuator configuration over others are shown in [6]. A 

reaction wheel is a device that applies torque to satellite at the control command resulting in 

changed angular momentum (or angular velocity) of the satellite. However, the presence of 

disturbances and uncertainties in reaction wheel itself can significantly deteriorate control 

performance and must be compensated for in the control design [8]. 

 

 

Figure 4.1 DC motor as Reaction wheel 

A reaction wheel (RW) is a type of flywheel used primarily by spacecraft for attitude 

control without using fuel for rockets or other reaction devices. They are particularly useful 

when the spacecraft must be rotated by very small amounts, such as keeping a telescope pointed 

at a star. They may also reduce the mass fraction needed for fuel. This is accomplished by 

equipping the spacecraft with an electric motor attached to a flywheel. When its rotation speed 

is changed, it causes the spacecraft to begin to counter-rotate proportionately 

through conservation of angular momentum. Reaction wheels can rotate a spacecraft only 

around its centre of mass .They are not capable of moving the spacecraft from one place to 

another. Reaction wheels work around a nominal zero rotation speed. However, external 

https://en.wikipedia.org/wiki/Flywheel
https://en.wikipedia.org/wiki/Spacecraft
https://en.wikipedia.org/wiki/Attitude_control
https://en.wikipedia.org/wiki/Attitude_control
https://en.wikipedia.org/wiki/Rocket_engine
https://en.wikipedia.org/wiki/Payload_fraction
https://en.wikipedia.org/wiki/Angular_momentum#Conservation_of_angular_momentum
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torques on the spacecraft may require a gradual build-up of reaction wheel rotation speed to 

maintain the spacecraft in a fixed orientation [9]. 

4.2 Control concept with Reaction wheel and gravity desaturation  

If the wheel angular velocity becomes too large, thrusters are fired to desaturate the wheels. In 

low earth orbit, there are external torques available for desaturation, namely gravity and 

magnetic torques. Magnetic torques are produced by electric currents on the spacecraft 

interacting with the earth's magnetic field .These are both very small torques, and desaturation 

time constants are on the order of an orbit period. To use gravity torque in this manner, the 

spacecraft pitch angle must be perturbed slightly from the desired equilibrium attitude. 

Magnetic torques have the advantage that the pitch angle can be held at zero and the current 

coils must be oriented properly with respect to the earth's magnetic field, which adds some 

complication [4]. 

For fast control, small attitude perturbations about each axis are uncoupled from each other. 

For slow control in circular orbit, the pitch motion is decoupled, but the roll and yaw motions 

are coupled; control of roll/yaw is discussed in this part. 

Roll and yaw motions of an earth-pointing spacecraft are coupled in orbit. While it is possible 

to stabilize both, roll and yaw with only a roll reaction wheel. We consider the case with 

reaction wheels on both the roll axis and the yaw axis; the roll gravitational torque can be used 

to desaturate both roll and yaw reaction wheels. 

4.3 Equation of motion ,Earth-pointing satellite 

Considering the  spacecraft body axes are the principle axis, the moment of momentum of the 

spacecraft is 

 𝐻⃗⃗ = 𝐼𝑥𝑝𝑖̂ + 𝐼𝑦𝑞𝑗̂ + 𝐼𝑧𝑟𝑘̂      (4.1) 

The equations of motion for small perturbations from locally horizontal axes decouple  into 

two sets, one for pitch and one for roll/yaw. 

Roll/yaw set is : 

     𝐼𝑥𝑝̇ = −𝑛(𝐼𝑦 − 𝐼𝑧)𝑟 − 3𝑛2(𝐼𝑦 − 𝐼𝑧)ф + 𝑁𝑥𝑖𝑥 + 𝑄𝑓𝑥 + 𝑄𝑑𝑥   (4.2) 

    𝐼𝑧𝑟̇ = −𝑛(𝐼𝑦 − 𝐼𝑥)𝑝 + 𝑁𝑧𝑖𝑧 + 𝑄𝑓𝑧 + 𝑄𝑑𝑧                (4.3) 

       ф̇ = 𝑛𝜓 + 𝑝,         (4.4) 

       𝜓̇ = −𝑛ф + 𝑅,         (4.5) 
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Where n ≜ √𝑔/𝑅 = orbital angular velocity, (𝑄𝑥, 𝑄𝑧) are the external torques and (𝑁𝑥, 𝑁𝑧) are 

the torque per unit current. The gyroscopic coupling terms , 𝑛(𝐼𝑦 − 𝐼𝑧)𝑟 in (4.3) and 

𝑛(𝐼𝑦 − 𝐼𝑧)𝑝 in (4.4) ,arise from the rotation of the locally horizontal axes at orbit rate n. 

 

𝐽𝑥𝑝̇𝑤 = −𝑁𝑥𝑖𝑥 − 𝑄𝑓𝑥,       (4.6) 

  𝐽𝑧𝑟̇𝑤 = −𝑁𝑧𝑖𝑧 − 𝑄𝑓𝑧,      (4.7) 

 𝑅𝑥𝑖𝑥 = 𝑒𝑥 + 𝑁𝑥(𝑝𝑤 − 𝑝),     (4.8)  

  𝑅𝑧𝑖𝑧 = 𝑒𝑧 + 𝑁𝑧(𝑟𝑤 − 𝑟),     (4.9) 

     𝑄𝑓𝑥 = −𝑐𝑥(𝑝 − 𝑝𝑤),      (4.10) 

      𝑄𝑓𝑧 = −𝑐𝑧(𝑝 − 𝑟𝑤).      (4.11) 

 

Where (𝑒𝑥, 𝑒𝑧) are the armature voltage of the roll, yaw reaction wheel motors, and the control 

variables here  

𝐻𝑥 = 𝐼𝑥𝑝 + 𝐽𝑥𝑝𝑤= total roll angular momentum, and 𝐻𝑧 = 𝐼𝑧𝑟 + 𝐽𝑧𝑟𝑤 =total yaw angular 

momentum, as state variables in place of 𝑝𝑤 𝑎𝑛𝑑 𝑟𝑤 ,which are angular velocities of the roll 

and yaw reaction wheels, so that 

𝑝𝑤 =
𝐻𝑥−𝐼𝑥𝑝

𝐽𝑥
        (4.12) 

𝑟𝑤 =
𝐻𝑧−𝐼𝑧𝑝

𝐽𝑧
,       (4.13) 

Adding the 𝑝̇ 𝑎𝑛𝑑 𝑝𝑤̇ equations and the 𝑟̇ 𝑎𝑛𝑑 𝑟̇𝑤 equations eliminates the internal torques 

𝑁𝑥𝑖𝑥, 𝑁𝑧𝑖𝑧, 𝑄𝑓𝑥, 𝑄𝑓𝑧, giving  

 

𝐻̇𝑥 = −𝑛(𝐼𝑦 − 𝐼𝑧)𝑟 − 3𝑛2(𝐼𝑦 − 𝐼𝑧)ф + 𝑄𝑑𝑥 ,    (4.14) 

𝐻̇𝑧 = −𝑛(𝐼𝑦 − 𝐼𝑥)𝑟+𝑄𝑑𝑧 .     (4.15) 

 

Substituting (8)-(13) into (2)-(3) gives 

𝑝̇ = −𝑎𝑟 − 3𝑎ф − 𝜎𝑥𝑝 +
𝜎𝑥(1−𝜀𝑥)𝐻𝑥

𝐼𝑥
+ 𝑏𝑥𝑒𝑥 +

𝑄𝑑𝑥

𝐼𝑥
       (4.16) 

𝑟̇ = 𝑏𝑝 − 𝜎𝑧𝑟 +
𝜎𝑧(1−𝜀𝑧)𝐻𝑧

𝐼𝑧
+ 𝑏𝑧𝑒𝑧 +

𝑄𝑑𝑧

𝐼𝑧
      (4.17) 
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where times is in units of 1/n,(p,r) in n,(𝐻𝑥, 𝐻𝑧) in (𝐼𝑥𝑛, 𝐼𝑧𝑛),(𝑒𝑥, 𝑒𝑧) in 

(
𝐼𝑥𝑛2𝑅𝑥

𝑁𝑥
,
𝐼𝑧𝑛

2𝑅𝑧

𝑁𝑧
),(𝑄𝑑𝑥, 𝑄𝑑𝑧)in (𝐼𝑥𝑛

2, 𝐼𝑧𝑛
2) and  

𝜎𝑥 = (𝑐𝑥 + 𝑁𝑥
2/𝑅𝑥)(

1

𝐽𝑥
+

1

𝐼𝑥
)/𝑛2, 

𝜎𝑧 = (𝑐𝑧 + 𝑁𝑧
2/𝑅𝑧)(

1

𝐽𝑧
+

1

𝐼𝑧
)/𝑛2, 

 

The motor time constants 1/𝜎𝑥 and 1/𝜎𝑦 will, in general, be much smaller than the orbit period 

2𝜋/𝑛, so two very different time scales to consider. The shorter one corresponds to the time to 

transfer angular momentum to the reaction wheels; the longer one to the desaturation of the 

wheels and the attenuation of the roll and yaw angles to zero. 

 

The equations of motion are given by  

𝜙̇ = [𝑝] + 𝑛[𝜓],        (4.18) 

𝑝̇ = −3𝑎𝑛2[𝜙] − [𝑝] +
𝐼𝑥

𝐼𝑥+𝐽𝑥
[𝐻𝑥] − 𝑎𝑛[𝑟] + [𝑒𝑥],    (4.19) 

𝐻𝑥̇ = −3𝑎𝑛2[𝜙] − 𝑎𝑛[𝑟],           (4.20) 

𝜓̇ = −𝑛[𝜙] + [𝐻𝑧],        (4.21) 

𝑟̇ = 𝑏𝑛[𝑝] + [𝑟] +
𝐼𝑧

𝐼𝑧+𝐽𝑧
[𝐻𝑧] + [𝑒𝑧],      (4.22) 

𝐻𝑧̇ = 𝑏𝑛[𝑝].        (4.23) 

 where 

 𝜀𝑥 = 𝐽𝑥/𝐼𝑥, 

𝜀𝑧 = 𝐽𝑧/𝐼𝑧, 

𝑎 = (𝐼𝑦 − 𝐼𝑧)/𝐼𝑥, 

𝑏 = (𝐼𝑦 − 𝐼𝑥)/𝐼𝑧. 
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then the state space representation of above equations are given by 

[
 
 
 
 
 
 
𝜙̇
𝑝̇

𝐻𝑥̇

𝜓̇
𝑟̇
𝐻𝑧̇]

 
 
 
 
 
 

≅

[
 
 
 
 
 
 
 

0 1 0 𝑛 0 0

−3𝑎𝑛2 −1
1

1 + 𝜖𝑥
0 −𝑎𝑛 0

−3𝑎𝑛2 0 0 0 −𝑎𝑛 0
−𝑛 0 0 0 1 0

0 𝑏𝑛 0 0 −1
1

1 + 𝜖𝑧

0 𝑏𝑛 0 0 0 0 ]
 
 
 
 
 
 
 

[
 
 
 
 
 
𝜙
𝑝
𝐻𝑥

𝜓
𝑟
𝐻𝑧]

 
 
 
 
 

+

[
 
 
 
 
 
0 0
1 0
0 0
0 0
0 1
0 0]

 
 
 
 
 

[
𝑒𝑥

𝑒𝑧
] 

 

Considering the oblate, axially symmetric S/C  where a = b = 1/ 2, with its symmetry axis 

cross-track with 𝜀𝑥 = 𝜀𝑦 = 0.025.This uncontrolled S/C has two undamped oscillatory modes 

with frequencies 1.523n and 0.657n. Since they involve primarily roll and yaw motions 

respectively, it can be called as the roll and yaw modes. 

Considering the performance index 

𝐽 = ∫ [𝐴(𝜙2 + 𝜓2) + 𝑒𝑥2 + 𝑒𝑧2]𝑑𝑡.
∞

0

 

For n = 𝜎/50 , the locus of closed-loop poles vs. A is shown in Figure 4.2. The reaction wheel 

poles are changed only slightly for the range of A used in the plot, while the roll and yaw mode 

poles are changed significantly. 

 

 

 

Figure 4.2 Locus of closed-loop poles vs A for slow roll/yaw control using roll and yaw reaction wheels and 

gravity desaturation 
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Choosing A = .012, for which the corresponding closed loop poles are  

s=−0.037 ± 0.0139𝑗, −0.052 ± 0.0813𝑗 

 and its state feedback control law  

[
𝑒𝑥

𝑒𝑧
] = [

−0.1089 −0.1036 0 −0.006 0 −0.0009
0.0065 0 . 0009 −0.109 −0.104 0

]

[
 
 
 
 
 
𝜙
𝑝
𝐻𝑥

𝜓
𝑟
𝐻𝑧]

 
 
 
 
 

. 

 

 

Figure 4.3 Response to an impulsive roll disturbance for slow roll/yaw control using roll and yaw reaction 

wheels and gravity desaturation 

 

Figure 4.3 shows the response of the closed-loop system to a roll disturbance torque of 

magnitude Ixn. The roll angular momentum is transferred to the roll reaction wheel by       

𝑛𝑡/2𝜋 = 0.13 where ϕ reaches its peak value; then follows the desaturation period, which is 

essentially completed in one orbit (nt = 2𝜋).The angular velocity with respect to roll (p) also 

decreases .Also, the yaw coupling is small but non-negligible. 
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Figure 4.4 Response to an impulsive roll disturbance for slow roll/yaw control using roll and yaw reaction wheels 

and gravity desaturation 

 

Figure 4.4 shows the response of the closed-loop system to a yaw disturbance torque of 

magnitude  𝐼𝑧𝑛 . The yaw angular momentum is transferred to the yaw reaction wheel by         
𝑛𝑡

2𝜋
= 0.2 where ψ reaches its peak value; then follows the desaturation period, which is 

completed approximately in 1.5 orbits. The roll coupling is large, since the gravity torque acts 

only in roll, not in yaw. 

The only disadvantage of the reaction wheel is that it can become saturated, in which case 

momentum dumping would be required. However, this can be compensated by designing a 

wheel with a larger inertia than necessary [10]. 
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5 Spin stabilization  

 

5.1 Introduction 

 

Imparting spin to a body is a simple and a passive method of stabilizing its attitude. A rigid 

body with its angular velocity parallel to its major axis which is the principal axis passing 

through the centre of mass, having maximum moment of inertia will maintain this axis in a 

fixed direction with respect to inertial space in the absence of external torques. Spin 

stabilization is mainly used to position the satellites in orbits.  

 

 

5.2 Nutation 

 

If the angular velocity of a rigid body is not parallel to its major or minor axis, the body is 

considered to be nutating. The angular momentum vector,𝐻⃗⃗  , is fixed with respect to inertial 

space if there are no external torques, but the angular velocity vector, 𝜔⃗⃗ , rotates around the 

angular momentum vector. 

 

 
 

Figure 5.1 Disk-shaped and rod-shaped spin stabilized spacecraft 

 

For axially symmetric bodies, 𝐻⃗⃗ , 𝜔⃗⃗ , and the axis of symmetry are co-planar as in Figure. 5.1. 

The symmetry axis (hence also the 𝜔⃗⃗ , vector) rotates about the fixed 𝐻⃗⃗   vector at a constant 

rate called the nutation frequency. If the axis of geometric symmetry is not a principal axis, the 

body is said to be dynamically unbalanced; even when nutation is absent, such a body will 

appear to vibrate.[4] 
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Let the y-axis be the axis of symmetry which is the nominal spin axis. It is considered because 

the spin axis of most satellites is perpendicular to the orbit plane and the coordinates are  taken 

in  this as the y-axis (pitch axis). Let Is=moment of inertia about the spin axis and IT= moment 

of inertia about the two transverse axes, x and z. Nonspinning body axes are considered as the  

coordinate axes, that is, axes that roll (𝑝 ≠ 0) and yaw (𝑟 ≠ 0) with the body but do not spin 

(pitch) with it; the components of the angular velocity of these coordinate axes with respect to 

inertial space resolved onto themselves is given by 

 

𝜔⃗⃗ 𝑐 = [ 𝑝 0 𝑟]𝑇                                (5.1) 

 

The components of angular momentum, resolved onto these axes, are 

 

 𝐻⃗⃗ = [𝐼𝑟𝑝  𝐼𝑆𝜔𝑠  𝐼𝑇𝑟]𝑇,                                            (5.2) 

 

Where 𝜔𝑠=spin angular velocity .consequently, Euler’s law, 

 

𝐻⃗⃗ 𝐼 ≡ 𝐻⃗⃗ 𝑐 + 𝜔⃗⃗ 𝑐 × 𝐻⃗⃗ = 0,                                               (5.3) 

 

In terms of these components is given by  

 

                                𝐼𝑇𝑝̇ − (𝐼𝑠𝜔𝑠)𝑟 = 0,                             (5.4) 

𝐼𝑠𝜔̇ 𝑠= 0,                            (5.5) 

𝐼𝑇𝑟̇ − (𝐼𝑠𝜔𝑠)𝑝 = 0,            (5.6) 

 

(5) Implies that  

𝜔𝑠 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡,                                            (5.7) 

 

So that (4) and (6) may be written as  

 

 𝑝̇ − 𝜔𝑛𝑟 = 0,     

𝑟̇ − 𝜔𝑛𝑝 = 0,                                                            (5.8) 

 

 where 

𝜔𝑛 ≜
𝐼𝑆

𝐼𝑇
𝜔𝑠.                                (5.9) 

 

is the nutation frequency as observed in these non-spinning co-ordinates. Hence, it is also the 

nutation frequency as seen by an observer at rest in an inertial reference frame. The general 

solution to (8) is  
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𝑝 = 𝜔𝑇sin (𝜔𝑛𝑡 + 𝛽), 

𝑟 = 𝜔𝑇cos (𝜔𝑛𝑡 + 𝛽),                                              (5.10) 

where 

 𝜔𝑇 = transverse component of angular velocity  

   𝛽 =phase angle 

 

For a solid circular cylinder of radius r and length l, 

 

𝐼𝑆

𝐼𝑇
=

𝑟2/2

𝑟2

4
+𝑙2/12

=
2

1+𝑙2/3𝑟2
                                        (5.11) 

 

Thus, for a disk-shaped body (C < √3r), spin is about the major axis, and it follows from (9) 

that𝜔𝑠 < 𝜔𝑛 < 2𝜔𝑠,                                                  (5.12)          

 

that is, the nutation frequency is higher than the spin rate. For a rod-shaped body (C > √3r), 

spin is about the minor axis, and 

 

0< 𝜔𝑛 < 𝜔𝑠,                                                     (5.13) 

 

that is, the nutation frequency is lower than the spin rate. Consequently, to an observer in 

spinning body axes, the nutation of a rod-shaped body appears to be in the opposite direction 

to the spin. 

For small roll and yaw Euler angles (ф,𝜓), of the non-spinning body axes, 

 

ф̇ ≅ 𝑝, 

𝜓 ≅ 𝑟̇                                                             (5.14) 

 

Substituting (10) into (14) and integrating gives 

 

ф ≅ −
𝜔𝑇

𝜔𝑛
cos(𝜔𝑛𝑡 + 𝛽), 

𝜓 ≅
𝜔𝑇

𝜔𝑛
sin(𝜔𝑛𝑡 + 𝛽),                  (5.15) 

 

So, the nutation angle, 𝛾, is approximately 

 

𝛾 ≅
𝜔𝑇

𝜔𝑛
≡

𝐼𝑇𝜔𝑇

𝐼𝑆𝜔𝑠
, 

 

which checks Figure 5.2 since the nutation angle is the angle between 𝐻⃗⃗  and they-axis. 
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5.3 Nutation Damping 

 

If an external arrangement on a spinning spacecraft is arranged such that relative motion occurs 

between the part and the spacecraft when nutation is present in which the angular velocity not 

parallel to angular momentum and no relative motion occurs when nutation is absent, the 

nutation will be damped out if the relative motion dissipates energy, provided that the spin axis 

is the principal axis with maximum moment of inertia.[4] 

 

A damped wheel, pendulum, or spring mass can be used, or a viscous fluid in an appropriately 

shaped container. 

 

 

 

 
Figure 5.2 Spinning spacecraft with nutation damping wheel 

 

 

Considering a damped wheel , where the wheel axis is perpendicular to the spin axis as shown 

in Figure 5.2.In body-fixed (spinning) coordinates, the angular velocity of the spacecraft is 

(𝑝, 𝜔𝑠, 𝑟) and the angular momentum is  

 

𝐻⃗⃗ = [𝐼𝑇𝑝 𝐼𝑆𝜔𝑆  𝐼𝑇𝑟 + 𝐼𝑊Ω],                                                          

 

where (𝐼𝑇 , 𝐼𝑆, 𝐼𝑊) are the principal moments of inertia of the spacecraft including the damper 

wheel at Ω = 0, 𝐼𝑊 = moment of inertia of damper wheel about its free axis (the spacecraft z-

axis), and Ω=angular velocity of damper wheel relative to the spacecraft.  

 

Spacecraft angular momentum is changed only by external disturbance torques so   

   𝐻⃗⃗ 𝐵 + 𝜔⃗⃗ 𝐵 × 𝐻⃗⃗ = 𝑄𝑑
⃗⃗⃗⃗  ⃗  gives 

 

  𝐼𝑇𝑝̇ − (𝐼𝑆 − 𝐼𝑇)𝜔𝑠𝑟 + 𝐼𝑊𝜔𝑠Ω = 𝑄𝑑𝑥,                                           (5.16) 
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               𝐼𝑆𝜔̇𝑠 − 𝐼𝑊Ω𝑝 = 𝑄𝑑𝑦,                                           (5.17) 

𝐼𝑇𝑟̇ − (𝐼𝑆 − 𝐼𝑇)𝜔𝑠𝑟 + 𝐼𝑊𝜔̇ = 𝑄𝑑𝑧 .         (5.18) 

 

 

The components of damper wheel angular momentum in body-fixed axes are 

 

[𝐼𝑤𝑇𝑝, 𝐼𝑤𝑇𝜔𝑆, 𝐼𝑊(𝑟 + Ω)],      

 

and the wheel has a damping torque -DΩ.Thus, about the z-axis, 

 

𝐼𝑊(𝑟̇ + Ω̇) = −𝐷Ω.     (5.19) 

 

The term 𝐼𝑊Ω𝑝 in (17) is usually negligible so that 𝜔𝑆 ≈ constant if Qdy≈ 0.Thus, the system 

equations may be written as 

 

[
1 0 0
0 1 𝜖
0 1 1

] [
𝑝̇
𝑟̇
Ω̇

] = [
0 𝜆 − 1 −𝜖

−(𝜆 − 1) 0 0
0 0 −𝐷

] [
𝑝
𝑟
Ω
] + [

𝑄𝑑𝑥

𝑄𝑑𝑦

0

],     (5.20) 

 

where time is in units of 1/𝜔𝑠 ,(p,r, Ω) are in units  of 𝜔𝑠 ,Dis in units of 𝐼𝑊𝜔𝑠, and  

 

𝜖 ≜
𝐼𝑊
𝐼𝑇

, 

𝜆 ≜
𝐼𝑆
𝐼𝑇

. 

 

Note (𝜆 − 1)𝜔𝑠=the nutation frequency as viewed in the spinning body axes. 

 

The characteristic equation of (20) is written in Evans’s form as 

 

−
𝐷

1−𝜖
=

𝑠(𝑠2+𝑧2)

𝑠2+(𝜆−1)2
,                   (5.21) 

 

where   

𝑧2 ≜
(𝜆−1)(𝜆−1+𝜖)

1−𝜖
 . 
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For disc-shaped spacecraft,𝐼𝑆 > 𝐼𝑇 , which implies (λ-1)2 < z2 that is, the zero of the root locus 

is between the rigid-body pole and the nutation pole ; a root locus versus D (see Fig. 5.3) shows 

that the spacecraft is stabilized, that is, the nutation is damped. 

 

 

 
 

Figure 5.3  Root locus vs damping constant D for disk-like spacecraft with nutation damping wheel 

 

 

 

 
 

Figure 5.4. Response of disk-like spacecraft with nutation damping wheel to an impulsive roll 

disturbance torque 
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Fig. 5.4 shows the response of the system to an impulsive roll disturbance torque for the case 

λ=1.8, 𝜖=.06, D = .5. In which the angular velocity of the damper wheel,𝜔 gets stable after 

certain period of time, which shows that the damper wheel becomes stable. 

 

 

 
Figure 5.5 Root locus vs damping constant D for rod-like spacecraft with nutation damping wheel. 

 

 

For rod-shaped spacecraft, 𝐼𝑆 < 𝐼𝑇, which implies (λ- 1)2 < z2, that is, the zero of the root locus 

is above the nutation pole; a root locus versus D .Figure 5.5 shows that the spacecraft is 

destabilized. As the poles are identified in right hand side of the S-plane. 

 

 
 

Figure 5.6. Response of rod-like spacecraft with nutation damping wheel to an impulsive roll 

disturbance torque 
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Figure 5.6 shows the response of a rod-like spacecraft to an impulsive roll disturbance torque 

for the case λ=.8, 𝜖 = .06, D = .5.In which the angular velocity of the damper wheel,𝜔 keeps 

on oscillating ,which shows that the damper wheel is not stable. 

 

Since no real body is actually rigid, energy dissipation due to structural deformations will cause 

structural damping. Many spacecraft carry liquid rocket fuel, and as this fuel is used up, fuel 

sloshing will occur, which also dissipates energy. It is evident from the preceding discussion 

that single-spin spacecraft can be spin stabilized passively only about a major axis.  

 
 

Figure 5.7 Instability of a spacecraft when spun about its minor axis 

 

From the energy viewpoint, a body spinning about its minor axis has maximum rotational 

energy; energy dissipation causes the total energy to decrease until the body has minimum 

rotational energy, which corresponds to spin about the body's major axis. This is explained in 

Figure 5.7. 

 

Nutation damping is having a constrain. Because with this a satellite can only be operated stable 

in major axis. Even a disc shaped satellite with booster attached will makes a rod-like shape.to 

avoid this a damper has to be placed on a de-spun part of the spacecraft. This enables it to spin 

stabilized passively about a minor axis. For this dual spin stabilization method is preferred. 

 

The advantage of using spin stabilization control is, it is a very simple way to keep the 

spacecraft pointed in a certain direction, which can be used in case of communication satellites. 

The spinning spacecraft resists perturbing forces, which tend to be small in space, just like a 

gyroscope or a top. A disadvantage to this type of stabilization is that the satellite cannot use 

large solar arrays to obtain power from the Sun. Thus, it requires large amounts of battery 

power. Another disadvantage of spin stabilization is that the instruments or antennas also must 

perform “despin” maneuvers so that antennas or optical instruments point at their desired 

targets 
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6 Attitude Control with a Gimballed Momentum Wheel 

6.1.Introduction  

Spin with nutation damping is the easiest way to stabilize the spacecraft attitude, but the 

direction of spin axis shifts when an external disturbance torque acts on the spacecraft. To keep 

the spacecraft attitude in a desired orientation at all times with a greater precision without using 

any fuel, a gimbaled momentum wheel (GMW) can be used. It can be also called as Control 

Moment Gyro (CMG). 

 

CMGs differ from reaction wheels. The latter apply torque simply by changing rotor spin 

speed, but the former tilt the rotor's spin axis without necessarily changing its spin speed. 

CMGs are also far more power efficient. For a few hundred watts and about 100 kg of mass, 

large CMGs have produced thousands of newton meters of torque. A reaction wheel of similar 

capability would require megawatts of power [11].  

 

 

 Reaction wheels SGCMG DGCMG 

Hardware 

complexity 

Simple Complex 

 

Very complex 

Algorithms Simple Very complex Complex 

 

Output torque small Big Big 

Miniaturization Possible Possible impossible 

 
Table 6.1.Comparision of reaction wheels, Single Gimbal Control Moment Gyroscope and Double gimbal 

control moment gyroscope 

 

 

As an actuator of spacecraft attitude control, Control Moment Gyroscope (CMG) produces 

significant output torque and exhibits excellent control linearity, anti-disturbance, and rapid 

response features. Therefore, CMG is the preferred actuator for long-life spacecraft. The CMG 

achieves spacecraft attitude change through the angular momentum change of the flywheel 

which is forced by frame rotation. 

 

 

 

 

 

 

https://en.wikipedia.org/wiki/Reaction_wheel
https://en.wikipedia.org/wiki/Newton_meter
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6.2 Single-gimbal momentum wheel 
 

 
Figure 6.1.Single Gimbal Control Moment Gyroscope 

 

 

The most efficient CMGs only a single gimbal wheel. When the gimbal of this type CMG 

rotates, the change in direction of angular momentum of rotor denotes a torque that reacts onto 

the body to which the CMG is mounted, e.g. a spacecraft. Except for effects due to the motion 

of the spacecraft, this torque is due to a constraint, so it does no mechanical work. Single-

gimbal CMGs exchange angular momentum in a way that requires very little power, with the 

result that they can apply very large torques for minimal electrical input. 

 

6.3 Dual-gimbal 

 
Figure 6.2.Double Gimbal Control Moment Gyroscope with outer and inner servo system 

 

 

Such a CMG includes two gimbals per rotor. As an actuator, it is more versatile than a single-

gimbal CMG because it is capable of pointing the rotor's momentum vector in any direction. 

However, the torque generated by one gimbal's motion must often be reacted by the other 

gimbal on its way to the spacecraft, requiring more power for a given torque than a single-

gimbal CMG. 
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The problem with reaction wheels is that it doesn’t work well with larger spacecraft. A reaction 

wheel has to spin so fast as the mass (moment of Inertia) of the spacecraft increases. In the case 

of massive objects like the International Space Station, the gyroscopic effects from the control 

moment gyros are preferred to control the spacecraft. 

 

A momentum flywheel with the 3-axis controlled magnetic bearing displays good performance 

for attitude control of satellite with biased momentum [12]. 

Unlike reaction wheels, the CMGs already have an initial angular momentum in it, which is 

controlled by the primary motor. The spacecraft is balanced by another CMG in the opposite 

direction, orthogonal to each other. Besides this, the internal setup is quite different from a 

reaction wheel too. The flywheel of a CMG will be inside a gimbal mount, free to be rotated 

about an axis. When a secondary motor is attached to that gimbal axis, one can apply torque to 

the spinning flywheel at a different axis. 

So when the spacecraft needs to be re-oriented to a new attitude, the secondary motors applies 

torque and change the axis of rotation of the flywheel. The gyroscopic effect kicks in and 

applies a torque on the spacecraft at ninety degrees equal to the torques acting on the gyroscope 

[13]. 

6.4 Control Concept : 

In this section, the fast control concept using two-gimbal momentum wheel (GMW), which 

provides 3-axis attitude control has been considered (Figure 6.3).The angular momentum 

imparted to the spacecraft by the external disturbances can be transferred to the GMW by 

torqueing the two gimbals, which changes the direction of the spin axis and the wheel itself, 

which changes the spin rate. 

 

 
Figure 6.3.Spacecraft with gimbaled momentum wheel (GMW) 

https://geekswipe.net/science/physics/why-bike-lean-in-turn/
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The external disturbance torques are counteracted by the internal torques on GMW gimbal 

cause the direction of spin axis of the GMW rotor drift. Thus if the external disturbance torque 

is zero and GMW spin angular momentum is large enough, the GMW spin axis  direction 

deviates only through small angle from its nominal direction. If constant angular momentum 

is transferred to a GMW because of the constant disturbances, the wheel axis gradually lines 

up with the direction of this torque and wheel speed increases steadily. For this external torque 

provided by thrusters must be fired to de-saturate the GMW [4]. 

 

6.4.1 Equations of Motion of the Spacecraft 
 

For the design of attitude control using gimballed wheel, the equations of motion of non-

spinning spacecraft with external disturbances are considered 

 

   𝐼𝑥𝑝̇ ≅ 𝑄𝑐𝑥 + 𝑄𝑑𝑥                (6.1) 

          ф̇ ≅ 𝑝                (6.2) 

                                𝐼𝑦𝑞̇ ≅ 𝑄𝑐𝑦 + 𝑄𝑑𝑦                                     (6.3) 

      Ө̇ ≅ 𝑞                (6.4) 

    𝐼𝑧𝑟̇ ≅ 𝑄𝑐𝑧 + 𝑄𝑑𝑧               (6.5) 

      𝜓̇ ≅ 𝑟              (6.6) 

 

which are reasonable approximations for small angles. Here 𝑄𝑐 is the control torque and 𝑄𝑑 is 

the external disturbance torque.( 𝑄𝑐𝑥, 𝑄𝑐𝑧) are applied to the spacecraft from the inner and outer 

gimbals, 𝑄𝑐𝑦 by a motor on the wheel axis 

 

 

6.4.2 Equations of motion of Gimballed momentum wheel with two gimbals 
 

Consider the Euler angles of the inner gimbal with respect to the inertial space be [ф𝐺 , Ө𝐺 , 𝜓𝐺] 

and let the angular velocity of the inner gimbal with respect to inertial space be 

[𝑝𝐺 , 𝑞𝐺 , 𝑟𝐺].Then the angular momentum of GMW is then  

 

                      𝐻⃗⃗ = [ 𝐽𝑥𝑝𝐺 , 𝐽𝑦𝑞𝐺 − ℎ, 𝐽𝑧𝑟𝐺]             (6.7)

  

 

       where  

  h  = 2𝐽𝜔𝜔𝑠 = spin angular momentum of rotor, 

𝐽𝑥 = 𝐽𝜔 + 𝐽𝐼𝐺𝑥, 

𝐽𝑦=𝐽𝜔 +𝐽𝐼𝐺𝑦+𝐽𝑂𝐺𝑦, 
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𝐽𝑧=𝐽𝜔 +𝐽𝐼𝐺𝑧+𝐽𝑂𝐺𝑧, 

            𝐽𝜔=moment of inertia of inertia wheel about a diameter 

𝐽𝐼𝐺  =Moment of inertia of inner gimbal 

𝐽𝑂𝐺=Moment of inertia of outer gimbal 

 

 

  From Euler’s law, 

 

  𝐻⃗⃗ 𝐼 =  𝐻⃗⃗ 𝐺   + 𝜔⃗⃗ 𝐺 * 𝐻⃗⃗  = 𝑄⃗  ,which is an equation of angular momentum conservation law. 

The torque can be created by accelerating or decelerating the angular momentum.  

 

it follows that  

 

                                                     𝐽𝑥𝑝𝐺̇  + h𝑟𝐺 = -𝑄𝑐𝑥,              (6.8) 

     𝐽𝑦𝑞̇  -ℎ̇ = 𝑄𝑐𝑦,                                           (6.9) 

                                                           𝐽𝑧𝑟̇𝐺-h𝑝𝐺 = -𝑄𝑐𝑧,            (6.10) 

and ,for small angles 

ф̇𝐺 ≅ 𝑝𝐺           (6.11) 

Ө̇𝐺  ≅ 𝑞𝐺            (6.12) 

𝜓̇𝐺 ≅ 𝑟𝐺                                                     (6.13) 

 

Here ,only the coupling actions for roll and yaw motions are discussed, as the pitch motions 

are uncoupled from roll/yaw motions for small angle deviations. 

 

6.4.3 Equations of Roll/Yaw system 

 

The roll and yaw motions of GMW are coupled by the spin angular momentum, h in equations 

(8) and (10). The roll and yaw motions of GMW are coupled to the roll and yaw motions of 

spacecraft by the control torques (𝑄𝑐𝑥, 𝑄𝑐𝑧), since the torque of spacecraft produces an equal 

and opposite torque on GMW: 

 

𝐼𝑥ф̈   ≅ 𝑄𝑐𝑥 + 𝑄𝑑𝑥               (6.14) 

𝐼𝑧𝜓̈   ≅ 𝑄𝑐𝑧 + 𝑄𝑑𝑧                                      (6.15) 

𝐽𝑥ф̈𝐺 + ℎ𝜓𝐺̇ ≅ −𝑄𝑐𝑥                                             (6.16) 

𝐽𝑧𝜓̈𝐺 − ℎф𝐺̇ ≅ −𝑄𝑐𝑧             (6.17) 
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Adding (14) to  (16) and (15) to (17) eliminates the control torques : 

 

 𝐽𝑥ф̇𝐺 + ℎ𝜓𝐺 + 𝐼𝑥ф̇ ≜ 𝐻𝑥                                                  (6.18) 

                                                                            𝐻̇𝑥 = 𝑄𝑑𝑥            (6.19) 

  𝐽𝑧𝜓̇𝐺 + ℎф𝐺 + 𝐼𝑧𝜓̇ ≜ 𝐻𝑧                                                  (6.20) 

                                                                            𝐻̇𝑥 = 𝑄𝑑𝑧                       (6.21) 

 

Equations (18) –(21) imply ,for a stable control (ф̇𝐺 → 0,𝜓𝐺̇ → 0) that impulsive disturbance 

torques yield 

 

                                                                ℎ𝜓𝐺 → 𝐻𝑥              (6.22) 

                     𝐻𝑥 = ∫ 𝑄𝑑𝑥
𝑡

0
𝑑𝑡             (6.23) 

                                                             −ℎф𝐺 → 𝐻𝑧                        (6.24) 

                                                                   𝐻𝑧 = ∫ 𝑄𝑑𝑧
𝑡

0
𝑑𝑡                                                    (6.25) 

 

That is, the roll and yaw components of the total spacecraft angular momentum are transferred 

to the gimbaled momentum wheel. 

 

For the roll/yaw control, an horizon sensor is needed to measure ф, rate gyros to measure (p, 

r), and sensors on the outer gimbal to measure ф − ф𝐺 and  𝜓 − 𝜓𝐺  .Using the ф, 𝑝, 𝑟 

measurements, 𝜓  can be estimated using the “orbital gyro-compassing” 

  

6.4.4 Passive Roll/Yaw stabilization 

 

First the passive stabilization control of yaw and roll motions are discussed in this section. 

 

For passive roll and yaw attitude control, viscous dampers can be used. A general industrial 

and commercial standard for durability and efficiency is to maintain torsional vibration within 

< 0.2 degrees peak twist.  To accomplish this the design is composed of three main 

components: 

1. Outer Housing 

2. Inner Inertia Ring 

3. Viscous Fluid 
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Figure 6.4 Viscous damper 

 

 

 

The outer housing is directly connected to the shaft and moves with shaft rotation.  Inside the 

inner inertia ring freely rotates in a thin layer of viscous fluid.  As a vibration event happens it 

causes the outer housing and inner inertia ring to rotate independently at different speeds.  The 

resulting shear action through the viscous fluid diminishes the vibration by transforming it to 

heat [14]. 

 

The passive stabilization of satellite roll and yaw attitude can be obtained by connecting the 

gimbals to the spacecraft with the viscous dampers  

 

𝑄𝑐𝑥 = −𝐷(ф̇ − ф̇𝐺) 

                                                           𝑄𝑐𝑧 = −𝐷(𝜓̇ − 𝜓̇𝐺)              (6.26) 

 

Equations (19) and (22) are quadratures for finding (𝐻𝑥, 𝐻𝑧). (16) - (20) and (22) are four 

equations for (ф𝐺 , 𝜓𝐺 , ф, 𝜓) given (𝐻𝑥, 𝐻𝑧). The characteristic equation of that damped system 

shows that for  J ≤ 𝐼𝑥𝐼𝑧 , there are two complex modes with Eigen values differ by several 

orders of magnitude. 

 

 

For 𝐽𝑥 = 𝐽𝑧 = 𝐽 the faster set eigen values is 

 

 𝑠3, 𝑠4 ≅
𝐷

𝐽
±

ℎ

𝐽
𝑗                                                      (6.27) 

 

 

Which corresponds to a damped nutation modes. The other mode may be analysed by treating 

the nutation mode as quasi-steady, that is, by putting 𝐽𝑥 = 𝐽𝑧 = 0 in (18) and (19). Thus, if we 
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use time in units of 𝐼𝑥/h,( 𝐻𝑥, 𝐻𝑧 , 𝐷) in units of h,𝐼𝑧 in units of 𝐼𝑥 ,thus we obtain  equations of 

motion as 

 

 

ф̇𝐺 =
𝐷

(1 + 𝐷2)𝐼𝑧
 [ф𝐺] +

𝐷2

(1 + 𝐷2)
 [𝜓𝐺] +

𝐷2

(1 + 𝐷2)
 [𝐻𝑥] +

𝐷

(1 + 𝐷2)𝐼𝑧
[𝐻𝑧] 

𝜓̇𝐺 =
𝐷2

(1 + 𝐷2)𝐼𝑧
 [ф𝐺] +

𝐷

(1 + 𝐷2)
 [𝜓𝐺] +

𝐷

(1 + 𝐷2)
 [𝐻𝑥] +

𝐷2

(1 + 𝐷2)𝐼𝑧
[𝐻𝑧] 

                ф̇ = −𝜓𝐺 + 𝐻𝑥 

                𝜓̇ =
1

𝐼𝑧
[ф𝐺] −

1

𝐼𝑧
[𝐻𝑧] 

 

Consider μ=D/(1+𝐷2).   

Then the state space representation of above equations of motion are  

 

[
 
 
 
 
ф̇𝐺

𝜓̇𝐺

ф̇

𝜓̇ ]
 
 
 
 

≅

[
 
 
 
 
 
 
𝜇

𝐼𝑧
𝜇𝐷 0 0

𝜇𝐷

𝐼𝑧
−𝜇 0 0

0 −1 0 0
1

𝐼𝑧
0 0 0

]
 
 
 
 
 
 

[

ф𝐺

𝜓𝐺

ф
𝜓

] +

[
 
 
 
 
 
 𝜇𝐷 −

𝜇

𝐼𝑧

𝜇
𝜇𝐷

𝐼𝑧
1 0

0 −
1

𝐼𝑧]
 
 
 
 
 
 

[
𝐻𝑥

𝐻𝑧
] 

                              (6.28) 

The characteristic equation of (6.28) is  

𝑠2 [𝑠2 + 𝜇 (1 +
1

𝐼𝑧
) 𝑠 + 𝜇2(𝐷2 + 1/𝐼𝑧)] = 0 

                (6.29) 

For this special case 𝐼𝑧 = 1, eigen values are  

 

 S=(0,0,-μ±𝜇𝐷𝑗) .    (6.30) 

 

The asymptotic response of the damped system to a roll or yaw disturbance torque impulse 

may be obtained from (30):  
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[

ф
𝜓
ф𝐺

𝜓𝐺

]→

[
 
 
 
 
 
1

𝐷
−

1

ℎ
1

ℎ

1

𝐷

0 −
1

ℎ
1

ℎ
0 ]

 
 
 
 
 

[
𝐻𝑥

𝐻𝑧
],      

 (6.31) 

 

Where (𝐻𝑥, 𝐻𝑧) are the roll and yaw disturbance torque impulse magnitudes. Thus the torque 

impulse is transferred to the GMW. 

 

 
 

Figure 6.5. Response of S/C with a GMW with passive control of GMW to impulsive roll and yaw disturbance 

torques with viscous damper between S/C and outer gimbal 

 

Figure 6.5 shows the response to impulsive roll and yaw disturbance torques that produce steps 

in (𝐻𝑥, 𝐻𝑧) of magnitude h for the case D = h, I z = Ix. Hence the impulses of the torque will be 

transferred to the GMW, but (ф,ψ) have the offsets depend on D and h. If D and H are large 

compared to the anticipated values of 𝐻𝑥 𝑎𝑛𝑑 𝐻𝑧 ,then the offset angles are small. This system 

can considered for a backup system.  

 

To bring (ф,ψ) to zero after an impulsive disturbance torque, active control must be considered, 

which requires (ф,ψ) sensors  and torque actuators on the outer gimbal of GMW 
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6.4.5 Active Roll/Yaw control 
 

A Passive gimbal damper has to be used in case of an active roll/yaw control. The passive 

gyroscopic damper (PGD) has a rotor in the gimbal rotating at a constant angular velocity. The 

gimbal is driven by a gyroscopic moment induced by the rotation of the main system, and is 

passively controlled by the torsional spring and the viscous damper around the gimbal axis. 

The gimbal rotation again induces the resistive gyroscopic moment against the excitation. The 

mechanism enables effective vibration control compared with conventional dynamic vibration 

absorbers, while it has a rather simple structure. Design methods for typical design conditions 

are developed that give the optimal gimbal spring and the optimal gimbal damper for a given 

rotor and rotor speed [15]. 

 

These passive gimbal dampers are combined with the active feedback of (ф, ψ) as follows: 

 

𝑄𝑐𝑥 = −𝐷(ф̇ − ф̇𝐺) − 𝐾ф,    (6.32) 

    𝑄𝑐𝑧 = −𝐷(𝜓̇ − 𝜓̇𝐺) − 𝐾𝜓,    (6.33) 

 

 that is, restoring springs are supplied in roll and yaw to the desired attitude. This requires (ф, 

ψ) sensors and torque actuators on the outer gimbal. Again, the damping torques are large 

compared to the D' Alembert torques on the outer gimbal,so we put 𝐽𝑥 = 𝐽𝑧 = 0.Considering 

the same normalization of variables as in (30).the state space equations of motion are 

 

 

ф̇𝐺 =
𝐷

(1 + 𝐷2)𝐼𝑧
 [ф𝐺] +

𝐷2

(1 + 𝐷2)
 [𝜓𝐺] +

𝐷𝐾

(1 + 𝐷2)
[ф] − 𝐾[𝜓] +

𝐷2

(1 + 𝐷2)
 [𝐻𝑥]    

+
𝐷

(1 + 𝐷2)𝐼𝑧
[𝐻𝑧] 

𝜓̇𝐺 =
𝐷2

(1 + 𝐷2)𝐼𝑧
 [ф𝐺] +

𝐷

(1 + 𝐷2)
 [𝜓𝐺] + 𝐾[ф] +

𝐷𝐾

(1 + 𝐷2)
+

𝐷

(1 + 𝐷2)
 [𝐻𝑥]

+
𝐷2

(1 + 𝐷2)𝐼𝑧
[𝐻𝑧] 

ф̇ = −𝜓𝐺 + 𝐻𝑥 

𝜓̇ =
1

𝐼𝑧
[ф𝐺] −

1

𝐼𝑧
[𝐻𝑧] 

 

 

 

 

State space representation of above equation is given by  
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[
 
 
 
 
ф̇𝐺

𝜓̇𝐺

ф̇

𝜓̇ ]
 
 
 
 

≅

[
 
 
 
 
 
 
𝜇

𝐼𝑧
𝜇𝐷 𝜇𝐾 −𝑘

𝜇𝐷

𝐼𝑧
−𝜇 𝐾 𝜇𝐾

0 −1 0 0
1

𝐼𝑧
0 0 0

]
 
 
 
 
 
 

[

ф𝐺

𝜓𝐺

ф
𝜓

] +

[
 
 
 
 
 
 𝜇𝐷 −

𝜇

𝐼𝑧

𝜇
𝜇𝐷

𝐼𝑧
1 0

0 −
1

𝐼𝑧]
 
 
 
 
 
 

[
𝐻𝑥

𝐻𝑧
] 

           (6.34) 

where μ=D / (1+D2) and K is in units of h2/I  .For D=1,Iz=1 are considered  

 

 

                     

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6.1.Normalization 1                             Figure 6.6.2 Normalization 2 

 

 

 
Figure 6.6.3 Normalization 3 

 
Figure 6.6 Locus of closed-loop poles vs K for active control of S/C with a GMW 
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Figure 6.6 is the locus of the closed is a locus of the closed-loop roots versus K for the case D 

= h, Iz =Ix. The two poles at the origin are stabilized while the damping of the other two poles 

is reduced; a good value of normalized K is .25 where the real parts of the two sets of complex 

poles are equal at - .25. Hence, a proportional controller with the K ,gain value of 0.25 is 

designed for the active control of S/C with a GMW  

 

 

 
 

Figure 6.7 Response of S/C with active control of a GMW to impulsive roll and yaw disturbance torques. 

 

 

Figure 6.7 shows the response of the spacecraft with the active control of GMW to impulsive 

roll and yaw disturbance torques. Comparing with the passive control the values of (ф,ψ) are 

returned to zero in active control ; this is done by over-transferring angular momentum to the 

GMW from the spacecraft, then using the excess to bring the S/C attitude back to zero.        

Figure 6.7 validates the attitude control of spacecraft with the GMW. 

 

This system has the advantage that ,even if the active system fails ,the spacecraft will remain 

close to the desired attitude with the dampers alone, which fairly acts as a good back-up system.  
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7.Attitude control during thrust maneuvers 

7.1 Introduction 

Spacecraft attitude has to be controlled during translational thrusting maneuvers in terms of 

accuracy specifications determined by the mission. Desired velocity changes can be realized 

by long burns at low thrust levels or relatively short burns at high thrust levels. Low thrust 

levels generally result in relatively minor additions to the disturbance torques affecting vehicle 

orientation. However, the propulsive force more often is high, and the line of action of the force 

is generally offset from the centre of mass by an amount that is uncertain and changing. 

The result can be a large disturbance torque whose presence is important to and often dominates 

the design of the attitude-control system. The dynamic characteristics of the attitude-control 

system can have a significant influence on the accuracy and efficiency with which thrusting 

maneuvers can be performed [16]. 

The attitude-control system shall be capable of the following: 

1. Sustaining thrust-vector pointing accuracy, in the presence of all anticipated 

disturbances, within the tolerance limit of the mission requirement. 

2. Damping initial transients, which result from off-nominal conditions or thruster 

misalignment without exceeding structural load limits or adding significantly to the 

thrust vector error. 

The thrust misalignment torque is much bigger than that of the external disturbance torque due 

to the availability of solar pressure, earth’s magnetic fields, and gravity. Hence, an attitude 

control system is required. It can be performed using reaction jets, Gimbaled engine and with 

the off modulation of a multi-nozzle main engine.  

Control using the reaction jets usually consists of switching on-off characteristics and the 

synthesis of time-variant control logic is considered more complicated. Reaction jets sized to 

handle disturbances with the main engine off do not have enough torque to overcome the thrust 

misalignment torque. Whereas, using the off-modulation engine with three nozzles, where each 

nozzle is switched on and off for controlled periods. This method is attractive only for the 

unmanned missions as it avoids the engine and an active control system. 

In the section, attitude control during thrust maneuvers using a Gimbaled engine is considered. 

7.2 Attitude control during thrust maneuvers using a Gimbaled engine 

In a gimbaled thrust system, the exhaust nozzle of the rocket can be turned around a point or 

axis  from side to side. As the nozzle is moved, the direction of the thrust is changed relative 

to the centre of gravity of the rocket. Figure 7.1 shows three cases.  

On the rocket at the left, the nozzle has been deflected to the left and the thrust line is now 

inclined to the rocket centre line at an angle a called the gimbal angle. Since the thrust no longer 

https://spaceflightsystems.grc.nasa.gov/education/rocket/nozzle.html
https://spaceflightsystems.grc.nasa.gov/education/rocket/rktth1.html
https://spaceflightsystems.grc.nasa.gov/education/rocket/rktcg.html
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passes through the centre of gravity, a torque is generated about the centre of gravity and the 

nose of the rocket turns to the left. If the nozzle is gimbaled back along the centre line, the 

rocket will move to the left. The middle rocket shows the "normal" flight configuration in 

which the direction of thrust is along the centre line of the rocket and through the centre of 

gravity of the rocket. The third rocket at the right shows that the nozzle has been deflected to 

the right and the nose is moved to the right.[17] 

 

 

Figure 7.1 Nozzle movement with respect to the centre line during flight [2] 

 

Reaction jets assigned to handle the turbulences with the main engine off do not have enough 

torque to overcome the thrust misalignment torque. Hence, a special additional reaction jet 

system is required. To avoid this, some spacecraft launch vehicles have used a gimbaled main 

engine for attitude control. Fig. 7.2 shows a system for controlling pitch motions . 

 

Figure 7.2 Spacecraft with a gimbaled main engine for pitch motion control 

 

To synthesize control logic for this two rigid-body system, we need the equations of motion 

with a control torque on the gimbal axis. Equations are developed using D' Alembert's method. 

Fig. 7.3 shows free-body diagrams of the spacecraft and the nozzle with the internal control 

https://spaceflightsystems.grc.nasa.gov/education/rocket/torque.html
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torque Q and the internal forces X and Z that act on the gimbal axis. Also shown are the D' 

Alembert forces and torques and the thrust force T . 

 

 

Figure 7.3 Spacecraft with a gimbaled main engine 

 

Taking moments about the gimbal axis (A in the diagrams), the equations of motion for the 

spacecraft are  

                                         0 = ∑𝑀𝐴 = (𝐽 + 𝑚𝑙2)𝜔̇ − 𝑚𝑎𝑧𝑙 − 𝑄),                                        (7.1) 

0 = ∑𝐹𝑧 = −  𝑚𝑎𝑧 + 𝑚𝑙𝜔̇ + 𝑍,                                                    (7.2) 

0 = ∑𝐹𝑥 = −  𝑚𝑎𝑥 + 𝑚𝑙𝜔2 + 𝑋.                                                  (7.3) 

 

The equations of motion for the gimbaled engine are 

0 = ∑𝑀𝐴 = (𝐽𝑒 + 𝑚𝑒𝑙𝑒
2)𝜔𝑒̇ + 𝑚𝑒𝑎𝑧𝑙𝑒 cos 𝛿 +𝑚𝑒𝑎𝑥𝑙𝑒 sin 𝛿 + 𝑄,                (7.4) 

0 = ∑𝐹𝑧 = −𝑚𝑒𝑎𝑧 − 𝑚𝑒𝑙𝑒𝜔̇𝑒 cos 𝛿 − [𝑇 − 𝑚𝑒𝑙𝑒𝜔𝑒
2] sin 𝛿 − 𝑍,                  (7.5) 

0 = ∑𝐹𝑥 = −𝑚𝑒𝑎𝑥 − 𝑚𝑒𝑙𝑒𝜔̇𝑒 cos 𝛿 − [𝑇 − 𝑚𝑒𝑙𝑒𝜔𝑒
2] cos 𝛿 − 𝑥,                 (7.6) 

 and  

𝛿̇ = 𝜔𝑒 − 𝜔,                                                                 (7.7) 

 where 

(ω,𝜔𝑒)= angular velocity of (spacecraft, engine), 

(𝑚,𝑚𝑒) =mass of (spacecraft, engine), 



     Sharathkumaar Mohanasundaram 
   Master Thesis 

 
 

41 
 

(𝐽, 𝐽𝑒)= moment of inertia about c.m. of (spacecraft, engine), 

(𝑎𝑥, 𝑎𝑧)= spacecraft body-axes components of acceleration of gimbal axis(point A) 

  Eliminating X between (3) and (6), and Z between (2) and (4), gives the acceleration 

components: 

(𝑚 + 𝑚𝑒)𝑎𝑥 = 𝑚𝑙𝜔2 − (𝑚𝑒𝑙𝑒(𝜔𝑒
2 cos 𝛿 + 𝜔𝑒̇ sin 𝛿) + 𝑇 cos 𝛿),                   (7.8) 

(𝑚 + 𝑚𝑒)𝑎𝑧 = 𝑚𝑙𝜔2 − (𝑚𝑒𝑙𝑒(−𝜔𝑒
2 sin 𝛿 + 𝜔𝑒̇ sin 𝛿) − 𝑇 sin 𝛿).                 (7.9) 

Substituting for (𝑎𝑥, 𝑎𝑧) from (8) and (9) into (1) and (4) and repeating (7) gives the 

following equations of motion : 

𝐽∗𝜔̇ + 𝐽𝑐(𝜔̇𝑒 cos 𝛿 − 𝜔𝑒
2 sin 𝛿) = 𝑄 − 𝑏 sin 𝛿,                              (7.10) 

  𝐽𝑒
∗𝜔̇𝑒 + 𝐽𝑐(𝜔̇ cos 𝛿 + 𝜔2 sin 𝛿) = −𝑄,                                        (7.11) 

                                                                    𝛿̇ + 𝜔 − 𝜔𝑒 = 0,                                           (7.12) 

where 

𝐽∗ ≜ 𝐽 + 𝑚∗𝑙2, 

𝐽𝑒
∗ ≜ 𝐽𝑒 + 𝑚∗𝑙𝑒

2, 

𝐽𝑐 ≜ 𝑚∗𝑙𝑙𝑒, 

𝑚∗ ≜ 𝑚𝑚𝑒/(𝑚 + 𝑚𝑒), 

   𝑏 ≜ 𝑚𝑙𝑇/(𝑚 + 𝑚𝑒). 

 

The equations of motion may be linearized for|𝛿| ≪ 1, 𝐽𝑐𝜔𝑒
2 ≪ 𝑏 and 𝐽𝑐𝜔

2 ≪ 𝑏 .Taking the 

laplace transform of these equations gives 

 

[
𝐽∗𝑠 𝐽𝑐𝑠 𝑏
𝐽𝑐𝑠 𝐽𝑒

∗𝑠 0
1 −1 𝑠

] [

𝜔(𝑠)

𝜔𝑒(𝑠)

𝛿(𝑠)
] ≅ [

1
−1
0

]𝑄(𝑠).                                (7.13) 

 

From (13), we may deduce the transfer function from Q to ω: 

 

𝜔(𝑠)

𝑄(𝑠)
=

𝑝2

𝑏𝑠
 
𝑠2+𝑧2

𝑠2−𝑝2
,                                                  (7.14) 
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where  

𝑧2 ≜
𝑏

𝐽𝑒
∗+𝐽𝑐

,                                                         (7.15) 

                                                            𝑝2 ≜ 𝑏(𝐽𝑒
∗ + 𝐽𝑐)/(𝐽

∗𝐽𝑒
∗ − 𝐽𝑐

2)                                   (7.16) 

 

Since ω-Ө̇(14) may be written as  

𝜃(𝑠)

𝑄(𝑠)
=

1

𝑠2

𝑠2+𝑧2

𝑠2−1
                                                    (7.17) 

 

where time is in units of 1/ p, z in units of p, and Q in units of b. Note the zeros of this transfer 

function on the imaginary axis imply that torquing the engine at this frequency would produce 

no pitch motion of the spacecraft .  

With (ω,𝜔𝑒) in units of p, time in units of 1/p, and Q in units of b, then state equation of (13) 

is given as 

𝜔̇ = −
𝐽𝑒
∗

𝐽𝑒∗ + 𝐽𝑐
 𝛿 + 𝑄, 

𝜔𝑒̇ =
𝐽𝑐

𝐽𝑒∗ + 𝐽𝑐
𝛿 −

𝐽∗ + 𝐽𝑐
𝐽𝑒∗ − 𝐽𝑐

𝑄, 

𝛿̇ = −𝜔 + 𝜔𝑒 

𝜃̇ = 𝜔 

 and the state-variable form is given as 

 

[

𝜔̇
𝜔𝑒̇

𝛿̇
𝜃̇

] ≅ [

0 0 −𝜖 0
0 0 1 − 𝜖 0

−1 1 0 0
1 0 0 0

] [

𝜔
𝜔𝑒

𝛿
𝜃

] + [

1
−𝜆
0
0

]𝑄,                          (7.18) 

            where  

𝜖 ≜ 𝐽𝑒
∗/(𝐽𝑒

∗ + 𝐽𝑐), 

                                                             𝜆 ≜ (𝐽∗ + 𝐽𝑐)/(𝐽𝑒
∗ − 𝐽𝑐) 

 

 

 Considering  𝑚𝑒 =
𝑚

30
,  𝑙𝑒 =

𝑙

10
, 𝐽 =

𝑚𝑙2

3
, 𝐽𝑒 = 𝑚𝑒𝑙𝑒

2/3 ,which gives 
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𝜖 = 0.11851 

        𝜆 = 100.78 

Z =  3.3260 

Using linear-quadric synthesis with performance index 

𝐽 = ∫ (𝐴𝜃2 + 𝑄2)𝑑𝑡,
∞

0
                                                (7.19) 

Weighting factors considered for 1,0.3,0.1,0.03,0.01,0.003,0.001 

 

Figure 7.4 Spacecraft with gimbaled engine; locus of LQ regulator poles vs weighting factor A 

 

Figure 7.4 shows the locus of the closed-loop poles vs the weighting factor A  

Considering A=0.03,the closed loop poles are at  

s = -.4801 ± .8908j , -1.31 ± .3925j 

and the control law, Q= -K x is  

Q= [−0.4362,+0.0312,+0.0613,−0.1732] [

𝜔
𝜔𝑒

𝛿
𝜃

] 
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Figure 7.5 Spacecraft with gimbaled engine; response to initial angular velocity 

Figure 7.5 shows the response of spacecraft with gimbaled engine to the initial pitch rate. It 

also shows that the pitch controlling motions deflecting the other control of yaw motion as the 

forces of pitch and yaw acts on the gimbal axis. The torques about the spacecraft centre of mass 

add up to zero; that is, the control torque and the torque due to engine deflection are just 

balanced by the torque due to the reaction force Z.  

 

Advantages of gimbaled engine  Disadvantages of gimbaled engine 

1. Provides savings in weight of the 

spacecraft. 

2. Eliminates skewed high thrust control 

axes due to thruster location on solar 

panel. 

3. Eliminates reaction control coupling 

with solar panel flexibility. 

4. Eliminates flexible plumbing to panel 

mounted thruster. 

5. Eliminates high level thruster valve 

location problem: 

a) Performance best with thrusters 

on the tip of solar panels. 

b) Solar panel temperatures 

extreme. 

6. Simplifies reaction control system 

mechanization and allows modular 

design. 

7. Makes mission performance less 

sensitive to centre of mass changes; 

relaxes centre of mass control 

requirement. 

8. Better growth capability. 

1. Requires actuator development 

in short time. 

2. Needs structural redesign to 

provide gimbal compatible 

with: 

a. Space environment. 

b. Engine heat soak back. 

3. Introduces actuator development 

and qualifications cost as a 

major addition. 

4.  Introduces thrust vector control 

(TVC) coupling with solar panel 

flexibility. 

Table 7.1 Advantage and Disadvantages of using a Gimbaled engine [18] 
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8  Control of translational motion 

8.1 Introduction 

In general spacecraft will experience two types of motions. They are translational and rotational 

motions. Here, only control of translational motions are focussed. The translational motions 

are controlled by different techniques. The translational motions for a spacecraft with centre of 

mass are projected by the Newton’s equations. 

For a spacecraft the external forces acting on it may be divided as control forces 𝐹𝑐
⃗⃗  ⃗ and other 

forces 𝐹𝑑
⃗⃗⃗⃗ .Usually these other forces are the disturbances which acts on the spacecraft. This 

force is equal to -c𝑚̇ where –𝑚̇ is the rate at which mass is being thrown overboard, and c is 

the velocity of the mass particles with respect to the spacecraft called "specific impulse". If 

|𝐹𝑐
⃗⃗  ⃗| ≫ |𝐹𝑑

⃗⃗⃗⃗ |, then 𝐹𝑑
⃗⃗⃗⃗  may be considered as a small disturbance and it is called as "fast" control. 

If |𝐹𝑐
⃗⃗  ⃗| is comparable to |𝐹𝑑

⃗⃗⃗⃗ |, is called as the "slow" control.[4]  

Slow control in a circular orbit; in-track/radial  is alone considered for thesis purpose. 

 

8.2 Translational motions in space 

The natural motions of the centre of mass of a body in space are described by Newton's 

equations: 

𝑚𝑣 𝐼 = 𝐹 ,                                                                              (8.1) 

     𝑟 𝐼 = 𝑣  ,         (8.2) 

where 

     m = mass of the spacecraft, 

(𝑣 , 𝑟 ) = (velocity, position) of the centre of mass with respect to inertial space  

    ( )I = time rate of change with respect to inertial space, 

      𝐹 =sum of external forces. 

In the absence of external forces, the velocity stays constant, and the position changes 

linearly with time. 
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8.3 Translational Motions in Circular Orbit 

In circular orbit, centrifugal force balances gravitational force. For small deviations from 

circular orbit, the equations of motion of the centre of mass are conveniently written in locally-

horizontal-vertical (LHV) coordinates that rotate with the orbital angular velocity, n (Fig. 8.1): 

 

Figure 8.1 Locally-horizontal-vertical (LHV) coordinates for position deviation from circular orbits 

 

 

δ𝑣 𝐼 ≡ 𝛿𝑣 𝐿 + 𝜔𝐿⃗⃗⃗⃗  ⃗ × 𝛿𝑣 = 𝛿𝐹 /𝑚,              (8.3) 

δ𝑟 𝐼 = 𝛿𝑟 𝐿 + 𝜔𝐿⃗⃗⃗⃗  ⃗ × 𝛿𝑟 = 𝛿𝑣 ,               (8.4) 

where 

δ𝑣  = velocity deviation, 

δ𝑟  =position deviation 

δ𝐹 =force deviation, 

( )L =denotes time derivative of components with respect to LHV axes, 

𝜔𝐿⃗⃗⃗⃗  ⃗ =angular velocity of LHV axes with respect to inertial axes. 

 

Following NASA standard notation, δx is in-track position deviation (positive in direction of 

orbital velocity), δy is cross-track position deviation, and δz is vertical deviation (positive 

down). Thus, 

𝛿𝑣 = 𝑖̂𝛿𝑢 + 𝑗̂𝛿𝑣 + 𝑘̂𝛿𝑤,                                              (8.5) 

𝛿𝑟 = 𝑖̂𝛿𝑥 + 𝑗̂𝛿𝑦 + 𝑘̂𝛿𝑧,                                               (8.6) 

𝜔𝐿⃗⃗⃗⃗  ⃗=-n𝑗̂,                                                                      (8.7) 

 

where 𝑛 ≜ √𝑔/𝑅 =orbital angular velocity and (𝑖̂, 𝑗̂, 𝑘̂) are unit vectors along the (x,y,z)axes.  
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The only force is the inverse-square gravitational force  

 

𝐹 = 𝑚𝑔 (
𝑅

𝑅−𝛿𝑧
)
2

𝑘̂,                                                        (8.8) 

 

where,  

      𝑔 =gravitational force per unit mass at radial distance, R, from the attracting centre.  

Thus the deviation in force is given by 

𝛿𝐹 = 2𝑚𝑔
𝑅2𝛿𝑧

(𝑅−𝛿𝑧)3
𝑘̂ + 𝑚𝑔 (

𝑅

𝑅−𝛿𝑧
)
2

(
𝜕𝑘̂

𝜕𝑥
𝛿𝑥 +

𝜕𝑘̂

𝜕𝑦
𝛿𝑦),                          (8.9) 

and 

𝛿𝑘̂

𝛿𝑥
 = - 

1

𝑅
𝑖̂,                                                            (8.10) 

𝛿𝑘̂

𝛿𝑦
 = - 

1

𝑅
𝑗̂.                                                           (8.11) 

Substituting (5)-(7) and (9)-(11) into (1) and (2), we obtain the equations of motion for small 

deviations from circular orbit. They decouple into a set governing cross-track motions 

 

[
𝛿𝑣̇
𝛿𝑦̇

] = [0 −𝑛2

1 0
] + [

𝑇𝑦/𝑚

0
]                                               (8.12) 

 

and a set governing in-track/radial motions 

 

[

𝛿𝑢̇
𝛿𝑤̇
𝛿𝑥̇
𝛿𝑧̇

] = [

0 𝑛 −𝑛2 0
−𝑛 0 0 2𝑛2

1 0 0 𝑛
0 1 −𝑛 0

] [

𝛿𝑢
𝛿𝑤
𝛿𝑥
𝛿𝑧

] + [

𝑇𝑥/𝑚
𝑇𝑧/𝑚

0
0

]                             (8.13) 

 

where (𝑇𝑥, 𝑇𝑦, 𝑇𝑧)= thrust components 

The characteristic equation of the system (12) is 

𝑠2 + 𝑛2 = 𝑜,                                                    (8.14) 

so there is one purely oscillatory mode at frequency n. The natural motion is of the form 
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[
𝛿𝑣
𝛿𝑦

] = 𝑐 [
𝑛
0
] cos(𝑛𝑡 + 𝛽) − 𝑐 [

0
−1

] sin(𝑛𝑡 + 𝛽),                         (8.15) 

Where c and 𝛽 are arbitrary constants, and the complex eigen vector corresponding to s=nj is 

(n,-j)T. The real part of this eigen vector is the coefficient of cos(𝑛𝑡 + 𝛽) while the imaginary 

part is the coefficient of [− sin(𝑛𝑡 + 𝛽)] . The motion may be interpreted as a slight change in 

orbit plane, so that the spacecraft crosses the reference orbital plane twice per revolution, and  

 

thus appears to oscillate right-left with orbital frequency n .The characteristic equation of the 

system (13) is 

          𝑠2(𝑠2 + 𝑛2) = 𝑜,                                                    (8.16) 

so there is one purely oscillatory mode at frequency n, and two stationary modes. The natural 

motions are of the form 

 

[

𝛿𝑢
𝛿𝑤
𝛿𝑥
𝛿𝑧

] = 𝑐1 [

0
𝑛
2
0

] cos(𝑛𝑡 + 𝛽) − 𝑐1 [

𝑛
0
0
1

] sin(𝑛𝑡 + 𝛽), + (𝑐2 + 𝑐3𝑛𝑡) [

0
𝑛
1
0

] + 𝑐3 [

𝑛/3
0
0

2/3

],   

(8.17) 

 

where c1,𝛽,c2, and c3 are arbitrary constants. The first two column vectors in (17) are the real 

and imaginary parts of the eigenvector corresponding to s = nj ; the third and fourth column 

vectors are the principal and secondary eigenvectors corresponding to s = 0 . The motion of the 

perturbed spacecraft in each of these three modes, as observed from an unperturbed spacecraft 

in the same circular orbit, is shown in Figure 8.2.  

 

 

 
 

Figure 8.2  Modes of translational motion in circular orbit 
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The first mode (c1 ≠0) corresponds to a slightly elliptic orbit so that the spacecraft goes above 

the circular orbit for half a period and slows down, then goes below and speeds up for the other 

half. The second mode (c2 ≠0) corresponds to the spacecraft being in the same circular orbit 

but slightly ahead of (or behind) the reference point. The third mode (c3 ≠ 0) corresponds to 

the spacecraft being in a lower (or higher) circular orbit that has a faster (or slower) orbital 

velocity.[4] 

 

In this section slow control in circular orbit; In-Track/Radial motions are considered. Equations 

of motion were derived in (13). 

 

[

𝛿𝑢̇
𝛿𝑤̇
𝛿𝑥̇
𝛿𝑧̇

] = [

0 𝑛 −𝑛2 0
−𝑛 0 0 2𝑛2

1 0 0 𝑛
0 1 −𝑛 0

] [

𝛿𝑢
𝛿𝑤
𝛿𝑥
𝛿𝑧

] + [

𝑇𝑥/𝑚
𝑇𝑧/𝑚

0
0

] 

 

 It is convenient to put them into dimensionless form by using the following units: time in 

1/n,(δu,δ𝜔) in nR,(δx,δz) in R,(Tx,Tz) in mg, where n=orbital rate(considering n=1),R=orbit 

radius (considering  R=1km),m=mass of spacecraft(considering m=1kg), and g =gravitational 

force per unit at that orbit radius: 

 

[

𝛿𝑢̇
𝛿𝑤̇
𝛿𝑥̇
𝛿𝑧̇

] = [

0 1 −1 0
−1 0 0 2
1 0 0 1
0 1 −1 0

] [

𝛿𝑢
𝛿𝑤
𝛿𝑥
𝛿𝑧

] + [

1 0
0 1
0 0
0 0

] [
𝑇𝑥

𝑇𝑧
].                        (8.18) 

 

The transfer functions from in-track/radial thrust to in-track/radial position deviations are 

readily deduced from these equations: 

 

[
𝛿𝑥(𝑠)
𝛿𝑧(𝑠)

] = 1/𝑠2(𝑠2 + 1) [𝑠
2 − 3 2𝑠
−2𝑠 𝑠2] [

𝑇𝑥(𝑠)
𝑇𝑧(𝑠)

].                             (8.19) 

 

There are pole-zero cancellations in three of the four transfer functions, indicating a lack of 

observability or controllability. Thus we shall choose δx as output (and measurement), and Tx 

as control, since there are no pole-zero cancellations in that transfer function. 

 

8.3.1 Stabilization of In-Track/Radial Motions 

 

Since all three modes are controllable with Tx, consider the LQ synthesis of a regulator using 

full state feedback to Tx using proportional thrusters. We take as performance index 

 

𝐽 = ∫ {𝐴[(𝛿𝑥)2 + (𝛿𝑧)2] + 𝐵(𝑇𝑐𝑥)
2}

∞

0
𝑑𝑡.                                 (8.20) 
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It follows that the symmetric root characteristic equation (SRCE) is 

 

 

𝑌𝑇(−𝑠)𝐴𝑌(𝑠) + 𝐵 = 0,        (8.21) 

 

 where    

 

[
𝛿𝑥(𝑠)
𝛿𝑧(𝑠)

]=Y(s)Tcx(s).                                           (8.22) 

 

 

In this case, the transfer function matrix Y(s) is given by 

 

Y(s)=1/s2(s2+1) [𝑠
2 − 3
−2𝑠

].                                               (8.23)     

          

Thus the SRCE is  

 

[s2-3,2s][𝑠
2 − 3
−2𝑠

] +
𝐵

𝐴
𝑠4(𝑠2 + 1)2 = 0,                                          (8.24) 

 

 

 and Evans’s form is given by, 

 

−
𝐵

𝐴
=

(𝑠2−1)(𝑠2−9)

𝑠4(𝑠2+1)2
                                                         (8.25) 

 

 

Note the "compromise" zeros at s = ±1, ±3. These arise from trying to control both 𝛿𝑥 and 𝛿𝑧 

with only one control, Tx .Symmetric root locus (SRL) versus A/B is shown in Fig.8.3. 
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Figure 8.3 Stabilization of in-track/radial motion using proportional tangential thrusters; locus of LQ regulator 

poles vs A/B 

 

 For A/B = 1, the closed-loop regulator eigenvalues are 

  

s = -.667 ± 1.536j, -.996 ± .279j,                                         (8.26) 

 

and the corresponding state feedback is  

 

𝑇𝑐𝑥 = [−3.32,3.27, −2.27,5.17] [

𝛿𝑢
𝛿𝑤
𝛿𝑥
𝛿𝑧

]                                     (8.27) 

 

 
 

Figure 8.4 Response of controlled spacecraft to an initial in-track error 𝛿𝑥(0)/ R = -.001 with orbital rate n=1 
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Fig. 8.4 shows the time response, using the control law (27), where the spacecraft is initially in 

circular orbit with an orbital rate n=1,but has an in-track error (blue ),  𝛿𝑥(0)/ R = -.001,      

𝛿𝑧(0) = 0, 𝛿𝑢(0) =0, 𝛿𝑤(0) = 0. The error is eliminated in roughly one orbital period (nt = 2n); 

the in-track error overshoots by 70% and returns to zero; the radial displacement (yellow) is 

first down       (𝛿𝑧 > 0) and then up; the thrust is positive to start with 2.265 ×10-3 × mg, and it 

alternates sign about three times in the first orbit. 

 

Similarly for orbital rate ,n=2 

For A/B = 1,  

 

 
 

Figure 8.5 Stabilization of in-track/radial motion using proportional tangential thrusters; locus of LQ regulator 

poles vs A/B 

 

the closed-loop regulator eigenvalues are 

 

s = -.6629 ± 2.359 j, -1.25 ± .66j,            (8.28) 

 

 

 and its corresponding control law is 

 

𝑇𝑐𝑥 = [3.8249 , −2.0787 ,3.154 ,8.237] [

𝛿𝑢
𝛿𝑤
𝛿𝑥
𝛿𝑧

]   (8.29) 
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Figure 8.6 Response of controlled spacecraft to an initial in-track error 𝛿𝑥(0)/ R = -.001 with orbital rate n=2 

 

Similarly, Fig. 8.6 shows the time response, for orbital rate n=2, where the spacecraft is initially 

in circular orbit but has an in-track error The error is eliminated in four orbital period (nt = 2n); 

the in-track error overshoots by 85% and returns to zero; the radial displacement is first down 

(𝛿𝑧 > 0) and then up; the thrust is positive to start with 2.565 ×10-3 × mg, and it changes sign 

about six times in the first orbit.  

Comparing figure 8.4 and figure 8.6 denotes that with increase in orbit rate the in-track error 

takes more time to return to zero. Hence, increase in orbital rate may cause more delay in 

settling of in-track errors. 
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Conclusion and further works 

 

In section 3,Attitude control of  satellite having reaction wheel using Bang-Off-Bang control 

is done .When the external disturbance is given ,it causes 𝜃 𝑎𝑛𝑑 𝜃̇ values to vary. This 

fluctuation has been controlled by implementation of the PI feedback controller and thruster as 

an actuator. Finally the variation caused by the external disturbance is reduced and the 𝜃 , 𝜃̇ 

values returns to nearly to zero.𝜃 𝑎𝑛𝑑 𝜃̇ takes almost 10 seconds to settle. Further work will be 

reducing the settling time of the system by using other control techniques. 

 

In section 4, Attitude control with reaction wheel is discussed. Coupling action of yaw and roll 

are considered .Slow Roll/Yaw control using gravity desaturation is analysed. State feedback 

control law is obtained and validated in the closed loop response. Also the response of the 

closed loop system to an impulsive roll and yaw disturbance for the slow roll/yaw control using 

roll and yaw reaction wheels and gravity desaturation is discussed. Also found 𝜙 and 𝜓 reaches 

its peak value and then it follows the desaturation period. As the gravity torque acts only in 

roll, the roll coupling is large when compared with the yaw coupling is also found. In this thesis 

only 2 axis control is discussed. Further work will be considering 3 axis satellite control 

involving Pitch, Yaw and Roll. 

 

In section 5, Spin stabilization scenarios are discussed. It is also found that the satellite will be 

stable only if it is spinning in major axis. It becomes as a constrain of not using satellite in its 

minor axis. Further work will considering the dual spin conditions, which allows the satellite 

to use in minor axis. 

 

In section 6,Attitude control with gimbaled momentum wheel is considered. Both passive and 

active control has been analysed. Normalized value of K has been obtained .Only in active 

control the 𝜙 and 𝜓 are returned to zero by over-transferring the angular momentum to the 

GMW from spacecraft, then using the excess  to bring S/C attitude to zero. The analysis is done 

only for two gimbal momentum wheels. Further, it can be extended for three gimbal 

momentum wheels and their coupling effects has to be analysed. 

 

In section 7, Attitude control schemes during thrust maneuvers using gimbaled engine is 

analysed. Control law is obtained for the chosen weighting factor, A. Also the closed loop 

response for a initial pitch rate is obtained. 

 

In section 8, State feedback control law is obtained for the considered weighting factor and the 

response of the controlled spacecraft to an in-track error is analysed  
Most of the satellite parameters used in the thesis are thought-out values. Further work should 

include the existing satellite mission parameters.   
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Appendix: 

Matlab code: 

Chapter 4 

 

% % Figure 4.2 Locus of closed-loop poles vs A for slow roll/yaw control 

using roll and yaw reaction wheels and gravity desaturation; a=b=.5; 

n=pi/50; epx=epz=.025;x=[phi p Hx psi r Hz]'; u=[ex ez]'; 

  

a=.5; 

b=.5;  

n=pi/50;  

epx=.025; 

epz=.025; 

F=[0 1 0 n 0 0;-3*a*n^2 -1 1/(1+epx) 0 -a*n 0 

    -3*a*n^2 0 0 0 -a*n 0; 

    -n 0 0 0 1 0; 

    0 b*n 0 0 -1 1/(1+epz);  

    0 b*n 0 0 0 0]; 

G=[0 1 0 0 0 0; 0 0 0 0 1 0]'; 

H=[1 0 0 0 0 0;0 0 0 1 0 0];  

A1=eye(2); B=eye(2); 

A=[0:.002:.02]'; ev=zeros(6,11); 

for i=1:11,  

    k=lqr(F,G,A(i)*H'*A1*H,B);  

    ev(:,i)=eig(F-G*k);  

end 

% 

figure(1); clf;  

subplot(121), 

plot(real(ev),imag(ev),'x', -.004,.004,'o');  
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grid; axis([-1 -.9 -.02 .02]); axis('square') 

xlabel('Real(s/\sigma)'); ylabel('Imag(s/\sigma)') 

text(-.99,.01,'Reaction Wheels'); text(-.965,.07,'dA=.002') 

text(-.985,.05,'n=(\pi/50)*\sigma');  

  

subplot(122), plot(real(ev),imag(ev),'x');  

grid; axis([-.1 0 -.1 .1]); 

axis square 

xlabel('Real(s/\sigma)'); text(-.025,.078,'Roll') 

text(-.025,.045,'Yaw'); text(-.075,.0825,'A=.01') 

text(-.06,.01,'.01'); text(-.03,.01,'.01'); text(-.012,.01,'TZ') 

 

 

%Figure 4.3 Response to an impulsive roll disturbance for slow roll/yaw 

&control using roll and yaw reaction wheels and gravity desaturation 

%stabilization of oblate S/C w. symmetry axis cross-track & response to 

%impulsive roll disturbance torque;  

% s=[phi p Hx psi r Hz]'; u=[ex ez]'; time in units of 1/n,  

% (p r Hx/Ix Hz/Iz sg) in n, u in R*I*n^2/N;  

% 

tf=2*pi; Ns=100; a=.5; b=.5; sg=50/pi; ep=.025;  

A=[0 1 0 1 0 0; 

    -3*a -sg sg*(1-ep) 0 -a 0; 

    -3*a 0 0 0 -a 0; 

    -1 0 0 0 1 0; 

    0 b 0 0 -sg sg*(1-ep); 

    0 b 0 0 0 0]; 

B=[0 1 0 0 0 0; 0 0 0 0 1 0]';  

C=[1 0 0 0 0 0; 0 0 0 1 0 0]; 

s0=[0 1 1 0 0 0]';       

Q=1000*eye(2); R=eye(2); 
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k=lqr(A,B,C'*Q*C,R); C1=[eye(6); 0 -1 1 0 0 0; 0 0 0 0 -1 1; -k]; 

D1=zeros(10,2); t=2*pi*[0:.01:1]'; 

u=zeros(101,2); y=lsim(A-B*k,B,C1,D1,u,t,s0); t=t/(2*pi); 

% 

figure(1); clf; subplot(221), plot(t,y(:,[1:3])); grid;  

axis([0 1 -.2 1]); legend('\phi','p','H_x');  

subplot(222), plot(t,y(:,[4:6])); grid; axis([0 1 -.2 1]); 

legend('\psi','r','H_z');  

subplot(223), plot(t,y(:,7),t,-y(:,9)/10); grid; 

axis([0 1 -.2 1]); xlabel('nt/2\pi)');  

legend('e_x','-\epsilon*p_w/10');  

subplot(224), plot(t,y(:,8),t,-y(:,10)/10); grid; 

axis([0 1 -1 .2]); xlabel('nt/2\pi');  

legend('e_z','-\epsilon*r_w/10',4); 

 

 

% Figure 4.4 Response to an impulsive roll disturbance for slow roll/yaw 

control using roll and yaw reaction wheels and gravity desaturation 

s=[phi p Hx psi r Hz]'; u=[ex ez]'; time in units of 1/n, (p r Hx/Ix 

Hz/Iz sg)% in n, u in R*I*n^2/N;                                  

 

tf=2*pi; 

Ns=100; 

a=.5; 

b=.5; 

sg=50/pi; 

ep=.02;  

A=[0 1 0 1 0 0; 

    -3*a -sg sg*(1-ep) 0 -a 0; 

    -3*a 0 0 0 -a 0; 

    -1 0 0 0 1 0;  

    0 b 0 0 -sg sg*(1-ep); 

    0 b 0 0 0 0]; 
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B=[0 1 0 0 0 0; 0 0 0 0 1 0]'; 

C=[1 0 0 0 0 0; 0 0 0 1 0 0]; 

s0=[0 0 0 0 1 1]';       

Q=1000*eye(2); R=eye(2); 

k=lqr(A,B,C'*Q*C,R); 

C1=[eye(6); 0 -1 1 0 0 0; 0 0 0 0 -1 1; -k]; D1=zeros(10,2); 

t=2*pi*[0:.01:1]'; u=zeros(101,2);  

y=lsim(A-B*k,B,C1,D1,u,t,s0); t=t/(2*pi); 

% 

figure(1); clf; subplot(221), plot(t,y(:,[1:3])); grid;  

legend('\phi','p','H_x'); axis([0 1 -.5 1]); 

subplot(222), plot(t,y(:,[4:6])); grid;  

legend('\psi','r','H_z'); axis([0 1 -.5 1]) 

subplot(223), plot(t,y(:,7),t,-y(:,9)/10); grid; 

xlabel('nt/2\pi)'); axis([0 1 -.5 1]) 

 

legend('e_x','-\epsilon p_w/10');  

subplot(224),plot(t,y(:,8),t,-y(:,10)/10); grid; 

xlabel('nt/2\pi'); axis([0 1 0 1.5]); 

legend('e_z','-\epsilon r_w/10'); 

 

 

Chapter 5 

 

%%Figure 5.3  Root locus vs damping constant D for disk-like spacecraft 

with nutation damping wheel x=[p,r,Om]'; la=Is/IT; ep=Iw/IT; %  time in 

1/ws, x in ws=spin rate; 

% D in units of Iw*ws; 

 

 

ep=.06;  

la=1.8;  
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J=[1 0 0;0 1 ep;0 1 1]; 

C=[0 la-1 -ep;-(la-1) 0 0;0 0 0]; 

C1=zeros(3);C1(3,3)=-1; 

D=[0:1/6:1]'; ev=zeros(3,7); 

for i=1:7, ev(:,i)=eig(J\(C+D(i)*C1)); 

 end 

% 

figure(1); clf; subplot(121),plot(real(ev),imag(ev),'x',0,.5,'o'); 

grid; axis([-1 .1 -1 1]);axis('square'); xlabel('Real(s/\omega_s)'); 

ylabel('Imag(s/\omega_s)'); text(-.35,.425,'Nutation'); 

text(-.475,.025,'D=.5'); subplot(122), 

plot(real(ev),imag(ev),'x',0,.5,'o'); grid; axis([-.04 .04 .4 .9]); 

axis square; xlabel('Real(s/\omega_s)'); text(-.005,.491,'D=.5'); 

 

 

 

% Figure 5.4. Response of disk-like spacecraft with nutation damping 

wheel to an impulsive roll disturbance torque % x=[p,r,Om]'; la=Is/IT; 

ep=Iw/IT; time in 1/ws, D in Iw*ws; 

 

ep=.06;  

la=1.8; 

D=.5; 

J=[1 0 0; 0 1 ep;0 1 1]; C=[0 la-1 -ep; -(la-1) 0 0; 0 0 -D]; 

F=J\C;G=[1 0 0]'; H=eye(3); 

L=zeros(3,1); 

x0=[1 0 0]'; t=(2*pi)*[0:.02:20]'; u=zeros(1001,1); 

y=lsim(F,G,H,L,u,t,x0); 

% 

figure(1); clf; subplot(211), plot(t/(2*pi),y(:,1)); axis([0 20 -4 4]) 

grid; ylabel('p/\omega_s'); subplot(212), plot(t/(2*pi),y(:,3));  

axis([0 20 -2 2]) ; grid; xlabel('\omega_s t/(2\pi)') 
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ylabel('\omega/\omega_s') 

 

 

 

 

 

 

 

 

%Figure 5.5 Root locus vs damping constant D for rod-like spacecraft with 

nutation damping wheel. x=[p,r,om]'; la=Is/IT; ep=Iw/IT; time in 1/ws, x 

in ws=spin rate; 

 

ep=.06;  

la=.8;  

J=[1 0 0;0 1 ep;0 1 1]; 

C=[0 la-1 -ep;-(la-1) 0 0;0 0 0]; 

C1=zeros(3);C1(3,3)=-1; 

D=[0:1/6:1]'; ev=zeros(3,7); 

for i=1:7, ev(:,i)=eig(J\(C+D(i)*C1)); 

 end 

% 

figure(1); clf; subplot(121),plot(real(ev),imag(ev),'x',0,.5,'o'); 

grid; axis([-1 .1 -1 1]);axis('square'); xlabel('Real(s/\omega_s)'); 

ylabel('Imag(s/\omega_s)'); text(-.35,.425,'Nutation'); 

text(-.475,.025,'D=.5'); subplot(122), 

plot(real(ev),imag(ev),'x',0,.5,'o'); grid; axis([-.04 .04 -.5 .7]); 

axis square; xlabel('Real(s/\omega_s)'); text(-.005,.491,'D=.5'); 

 

 

%Figure 5.6. Response of rod-like spacecraft with nutation damping wheel 

to an impulsive roll disturbance torque . x=[p,r,Om]'; la=Is/IT; 

ep=Iw/IT;time in 1/ws; 
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ep=.06; 

la=.8;  

D=.5;  

J=[1 0 0; 0 1 ep;0 1 1]; 

C=[0 la-1 -ep; -(la-1) 0 0; 0 0 -D]; F=J\C;G=[1 0 0]'; H=eye(3); 

L=zeros(3,1); 

x0=[1 0 0]'; t=(2*pi)*[0:.02:20]'; u=zeros(1001,1); 

y=lsim(F,G,H,L,u,t,x0); 

% 

figure(1); clf; subplot(211), plot(t/(2*pi),y(:,1)); axis([0 20 -4 4]) 

grid; ylabel('p/\omega_s'); subplot(212), plot(t/(2*pi),y(:,3));  

axis([0 20 -2 2]) ; grid; xlabel('\omega_s t/(2\pi)') 

ylabel('\omega/\omega_s') 

 

 

Chapter 6 

 

% Figure 6.5. Response of S/C with a GMW with passive control of GMW to 

impulsive roll and yaw disturbance torques with viscous damper between 

S/C and outer gimbal.(phi,psi) sensors and gimbal torque actuators; RL 

vs. K; xdot=Fx+Ga*w; x=[phig,psig,phi,% psi]'; w=[Hx,Hz]'; t in units of 

Ix/h, (Hx,Hz,D) in units of h; Iz in % units of Ix; K in units of h^2/Ix;      

 

D=1; 

Iz=1; 

F=[-D/Iz -D^2 0 0; 

             D^2/Iz -D 0 0]/(1+D^2); 

F=[F; 0 -1 0 0; 1/Iz 0 0 0];  

Ga=[D^2 -D/Iz; D D^2/Iz]/(1+D^2);  

Ga=[Ga; 1 0; 0 1/Iz]; 

H=eye(4); L=zeros(4,2); t=[0:.06:6]';  

yr=step(F,Ga,H,L,1,t); 
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% 

figure(1); clf; subplot(211), plot(t,yr); axis([ 0 6 0 1.5]); grid 

xlabel('t*h/Ix'); text(1.3,1.1,'\phi'); text(3.7,.25,'\phi_g') 

text(3.2,.6,'\psi'); text(1.3,.75,'\psi_g'); yy=step(F,Ga,H,L,2,t); 

subplot(212), plot(t,yy); grid; axis([0 6 -1.5 1.5]) 

xlabel('t*h/I_x');text(1.5,.6,'\psi'); text(2.5,.5,'\psi_g') 

text(2.5,-.5,'\phi'); text(.5,-.85,'\phi_g') 

 

 

%%Figure 6.6 Locus of closed-loop poles vs K for active control of S/C 

with a GMW. (phi,psi) sensors and gimbal torque actuators; RL vs. K; 

xdot=Fx+Ga*w; x=[phig,psig,phi,psi]'; w=[Hx,Hz]'; t in units of Ix/h, 

(Hx,Hz,D) in units of h; Iz inunits of Ix; K in units of h^2/Ix;                

 

 

D=1; 

Iz=1.2;  

K=[0:.05:.8]'; 

ev=zeros(4,5); 

for i=1:17 

  F=[-D/Iz -D^2 K(i)*D -K(i); 

      D^2/Iz -D K(i) K(i)*D]/(1+D^2); 

  F=[F; 0 -1 0 0; 1/Iz 0 0 0]; 

  ev(:,i)=eig(F);  

end 

% 

figure(1); clf; plot(real(ev),imag(ev),'x'); axis([-1 0 -1 1]) 

axis('square'); grid; xlabel('Real(s*I_x/h)'); ylabel('Imag(s*I_x/h)') 

text(-.3,.5,'K=.25'); text(-.18,.9,'.75'); text(-.3,.8,'Roll') 

text(-.22,.75,'.5'); text(-.46,.55,'.125'); text(-.2,.2,'Yaw') 
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%%Figure 6.7 Response of S/C with active control of a GMW to impulsive 

roll and yaw disturbance torques. (phi,psi) sensors 

% and gimbal torque actuators; xdot=Fx+Ga*w; x=[phig,psig,phi,psi]'; 

% w=[Hx,Hz]'; t in units of Ix/h, (Hx,Hz,D) in units of h; Iz in units  

% of Ix; K in units of h^2/Ix;   

 

D=1; 

Iz=1; 

K=.25; 

F=[-D/Iz -D^2 K*D -K; D^2/Iz -D K K*D]/(1+D^2); 

F=[F; 0 -1 0 0; 1/Iz 0 0 0]; 

Ga=[D^2 -D/Iz; D D^2/Iz]/(1+D^2); 

Ga=[Ga;1 0;0 1/Iz]; H=eye(4); L=zeros(4,2); t=[0:.16:16]'; 

yr=step(F,Ga,H,L,1,t); 

% 

figure(1); clf;  

 

subplot(211), plot(t,yr); grid; axis([0 16 -.5 1.5]) 

xlabel('t*h/I_x'); text(.6,1,'\phi'); text(2.2,-.3,'\phi_g') 

text(6,.7,'\psi'); text(6,1.2,'\psi_g') 

yy=step(F,Ga,H,L,2,t);  

 

subplot(212), plot(t,yy); grid 

axis([0 16 -1.5 1.5]); xlabel('t*h/I_x'); text(5,.5,'\psi') 

text(2,.5,'\psi_g'); text(2.5,-.45,'\phi'); text(.6,-1.3,'\phi_g') 

 

Chapter 7 

 

% % Figure 7.4 Spacecraft with gimbaled engine;locus of LQ regulator 

poles vs weighting factor A 

% x=[om ome del the]; u=Q; xdot=Ax+Bu; y=Qx; 

ep=.11851;  
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la=100.78; 

A=[0 0 -ep 0; 0 0 1-ep 0; -1 1 0 0; 1 0 0 0]; 

B=[1 -la 0 0]'; 

C=[0 0 0 1]; 

A1=[.001 .003 .01 .03 .1 .3 1]';  

ev=zeros(4,8); 

ev(:,1)=eig(A); 

  

for i=1:7, 

 k=lqr(A,B,C'*A1(i)*C,1); 

 ev(:,i+1)=eig(A-B*k);  

end 

% 

figure(1); clf; plot(real(ev),imag(ev),'x'); axis([-2 0 -2 2])  

axis('square'); grid; xlabel('Real(s/p)'); ylabel('Imag(s/p)') 

text(-1.8,.75,'A=1'); text(-1.55,.59,'.3'); text(-1.4,.46,'.1') 

text(-1.2,.35,'.03'); text(-1.1,.27,'.01'); text(-.95,.19,'.003') 

text(-.92,.1,'.001'); text(-.9,1.49,'A=1'); text(-.7,1.05,'.1') 

text(-.65,.7,'.01'); text(-.6,.41,'.001') 

 

 

 

% Figure 7.5 Spacecraft with gimbaled engine;response to initial angular 

velocity om(0)=p; x=[om,ome,del,the]; 

% u=Q; xdot=Fx+Gu; y=Hx; 

 

ep=.11851; 

la=100.78; 

F=[0 0 -ep 0;  

   0 0 1-ep 0; 

   -1 1 0 0; 

   1 0 0 0]; 
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G=[1 -la 0 0]'; 

H=[0 0 0 1]; 

K=lqr(F,G,H'*.01*H,1); 

x0=[1 0 0 0]'; 

t=[0:.14:14]'; 

u=zeros(1,101); H1=[eye(4); -k]; L1=zeros(5,1); 

y=lsim(F-G*K,G,H1,L1,u,t,x0); 

% 

figure(1); clf; subplot(211), plot(t,y(:,3),t,5*y(:,4),t,2*y(:,5)); 

axis([0 14 -5 10]); grid; xlabel('pt'); text(3.5,6,'5*\theta') 

text(6,-3.6,'\delta'); text(1,-4,'2*Q/b') 

 

 

Chapter 8 

 

% Figure 8.3 Stabilization of in-track/radial motion using proportional 

tangential thrusters; locus of LQ regulator poles vs A/B;  

x=[du,dw,dx,dz]'; u=Tx; y=[dx,dz]';time in 1/n, (du,dw) in nR, (dx,dz) in 

R, Tx in mg, R=earth radius,% n=orbit rate; 

 

 

A=[0 1 -1 0; 

    -1 0 0 2; 

    1 0 0 1; 

    0 1 -1 0]; 

B=[1 0 0 0]';  

C=[0 0 1 0;0 0 0 1];  

Q=[.25 1 4 9 16]';  

ev=zeros(4,6); ev(:,1)=eig(A); 

for i=1:5,k=lqr(A,B,C'*Q(i)*C,1); ev(:,i+1)=eig(A-B*k); end 

% 

figure(1); clf; plot(real(ev),imag(ev),'x',-3,0,'o',-1,0,'o'); 
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axis([-3 0 -3 3]); axis('square'); grid; xlabel('Real(s/n)') 

ylabel('Imag(s/n)'); text(-1,2.16,'A=16'); text(-1.35,1.95,'9') 

text(-.8,1.75,'4'); text(-.85,1.45,'1'); text(-.4,1.27,'.25') 

text(-1.1,.4,'A=1'); text(-1.9,.1,'16') 

  

 

 

% Figure 8.4 Response of controlled spacecraft to an initial in-track 

error ?x(0)/ R = -.001 with orbital rate n=1; x=[du,dw,dx,dz]'; u=Tx; 

y=[dx,dz]'; time in 1/n, (du,dw) in nR, (dx,dz) in R, Tx in mg, R=earth 

radius, n=orbit rate; 

F=[0 1 -1 0; 

    -1 0 0 2; 

    1 0 0 1; 

    0 1 -1 0]; 

G=[1 0 0 0]'; 

L=[0 0]';  

H=[0 0 1 0; 0 0 0 1]; 

k=lqr(F,G,H'*H,1); 

t=[0:.08:8]'; u=zeros(101,1); 

x0=[0 0 -.001 0]'; 

H1=[H; -k]; L1=[L;0]; 

y=lsim(F-G*k,G,H1,L1,u,t,x0); 

% 

figure(1); clf; subplot(211), plot(t,y(:,1:2),t,y(:,3)/2); grid 

axis([0 7 -.002 .0025]); xlabel('nt'); text(.3,.0009,'T_x/2mg') 

text(.9,.0006,'dz/R'); text(2.5,.0007,'dx/R') 

 

% Figure 8.5 Stabilization of in-track/radial motion using proportional 

tangential thrusters; locus of LQ regulator poles vs A/B; 

x=[du,dw,dx,dz]'; u=Tx; y=[dx,dz]';time in 1/n, (du,dw) in nR, (dx,dz) in 

R, Tx in mg, R=earth radius,% n=orbit rate,n=2; 

 

A =[0 2 -4 0; 
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   -2 0 0 8;  

   1 0 0 2; 

   0 1 -2 0]; 

B=[1 0 0 0]';  

C=[0 0 1 0;0 0 0 1];  

Q=[.25 1 4 9 16]'; ev=zeros(4,6); ev(:,1)=eig(A); 

for i=1:5,k=lqr(A,B,C'*Q(i)*C,1); ev(:,i+1)=eig(A-B*k); end 

% 

figure(1); clf; plot(real(ev),imag(ev),'x',-3,0,'o',-1,0,'o'); 

axis([-3 0 -3.5 3.5]); axis('square'); grid; xlabel('Real(s/n)') 

ylabel('Imag(s/n)'); text(-1,2.16,'A=16'); text(-1.35,1.95,'9') 

text(-.8,1.75,'4'); text(-.85,1.45,'1'); text(-.4,1.27,'.25') 

text(-1.1,.4,'A=1'); text(-1.9,.1,'16') 

 

 

 

 

 

 

 

 


