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Abstract [EN]

This thesis deals with fixed-wing aircraft dynamics model identification and flight-
control system design using high fidelity aircraft simulator FlightGear.

First, the longitudinal and lateral linear state-space models are derived, which pro-
vide desired structure. The numeric values of these models are then identified using
complex identification techniques based on frequency responses in CIFER R© program,
and compared with results obtained by MATLAB R©/ Identification Toolbox R©. The nu-
meric vales are also computed from available FlightGear configuration and source files
for verification of identification results.

Second, flight-control system is designed using modern, multi-input/multi-output
(MIMO) techniques such as Linear Quadratic Regulator, and verified in the simulator
test flight.

Keywords: aircraft, dynamics model, identification, control system, LQR, simulation

Abstrakt [SK]

Táto práca sa zaoberá identifikáciou dynamického modelu lietadla s pevným krídlom
a návrhom riadiaceho systému s použitím letového simulátoru FlightGear.

Najprv je odvodený pozdĺžny a stranový lineárny stavový model lietadla, čo slúži
ako základ a požadovaná štruktúra pre identifikáciu. Numerické hodnoty modelov sa
následne určia pomocou komplexných techník založených na frekvenčných odozvách v
programe CIFER R© a v časovej oblasti v Identifikačnom Toolboxe MATLABu R©. Číselné
hodnoty sa takisto vypočítajú z dostupných konfiguračných a zdrojových súborov simulá-
toru FlightGear, čo slúži na overenie správnosti výsledkov.

Následne sa navrhne riadiaci systém s využitím moderných techník pre systémy s
viacerými vstupmi a výstupmi, ako je LQR regulátor, a návrh sa overí pomocou testova-
cieho letu v simulátore.

Kl’účové slová: lietadlo, dynamický model, identifikácia, riadiaci systém, LQR, simulá-
cia
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1. INTRODUCTION

1 Introduction

"Modern planes can be flown by a pilot and a dog. Dog to bite the pilot if he touches the controls,
and the pilot to feed the dog."

Aviation, and particularly, flight control design, has come a long way for this pilot’s
joke to be true. It all started in 1903 when Wright brothers successfully completed the first
powered flight in history. However, their emphasis to make pilot control the airplane,
instead of making it inherently stable, posed a huge difficulty in actually flying it. This
quickly led to development of an automatic control system. In 1912 an autopilot was
developed by the Sperry Gyroscope Company and tested on Curtiss flying boat.[3]

Skipping into 1970s, the invention of digital computer and flight control technology
advances allowed the F-16 aircraft to be designed with relaxed static stability and con-
trolled by state of the art fly-by-wire system.

In fact, most modern high performance jets, such as the already mentioned F-16, or
Grumman/NASA X-29A forward-swept wing project shown bellow, couldn’t even fly
without modern sophisticated flight control systems. Moreover, this trend is now paving
it’s way from military into civil aviation, like for example the Boom R© project, a 45 seat
supersonic jet airliner, which should be the successor of Concorde, and which is already
in testing phase.

This thesis presents an insight into design process of this modern control systems.

(a) Wright Flyer

(b) X-29A forward swept wing 1

(c) Boom 2

Figure 1: Aircraft evolution

1Image courtesy of Grumman/NASA
2Image courtesy of Boom Corporation
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1. INTRODUCTION

1.1 Classical control theory

Dynamics model is a foundation of every control system design. Classical control the-
ory deals exclusively with single-input/single-output (SISO) systems or their parts. This
allows only successive feedback loops closure, which leads to trial and error techniques
of selecting individual gains and can be time consuming. On the other hand, this theory
allows the system to be as simple as input-output description or transfer function, with
no physical insights.

1.2 Modern control theory

In contrast, modern control theory deals with multi-input/multi-output (MIMO) systems
and allows all the control gains of control system to be computed simultaneously, so that
all loops are closed at the same time. Foundation of this approach is state-space dynamics
model, which contains more information, such as physical insight into system, than sim-
ple SISO transfer function. Moreover, modern control theory allows the control systems
to be designed faster and in a more direct and clean way than classical techniques.

1.3 Obtaining flight dynamics model

To be able to use modern control theory techniques, a state-space dynamics model is
required. There are 2 techniques to obtain one:

1.) Simulation-based modeling, which involves adopting many a-priori assumptions
about aircraft characteristics. The model is constructed from aerodynamic, inertial and
structural characteristics of aircraft’s individual parts, such as wings, tail, etc. The aero-
dynamic modeling can be based on principles such as finite-element theory, computa-
tional fluid dynamics (CFD) or empirical data. This physics-based modeling can be very
labor intensive, time consuming, requiring the estimation or measurement of the aerody-
namic, inertial, and structural properties of the many elements of the aircraft, but can be
used before the aircraft is built.

2.) The second technique is system-identification modeling which is presented in
more detail in Part II of this thesis.

1.4 Thesis goals

• perform test flights with selected high-performance aircraft using high-fidelity sim-
ulation software, for example FlightGear. During this flight, various maneuvers are
executed to excite aircraft’s dynamics modes and selected flight data, such as air-
speed, Euler angles, angular velocities, etc are recorded.

• using test-flight data, perform system-identification to obtain aircraft’s state-space
model which is required for modern control algorithms. For the identification,
non-traditional approaches are evaluated, such as frequency based methods ex-
plained by Tischler in [1] and exploited in CIFER R© program, which are able to
identify structured state-space models, and results compared with more traditional
MATLAB R©/Identification Toolbox R©.

• design and implement control system for identified state-space model of selected
aircraft using modern MIMO techniques. The most common MIMO controller is
Linear Quadratic Regulator (LQR), which is described by Stevens in [3] and used
in this thesis.

• validate implemented control system on non-linear model, for example during test
flight in the simulation software.

14
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2. NOTATIONS

2 Notations

The following notation is used thorough this thesis.
Aerodynamic forces: Euler angles:

L - lift φ - roll
D - drag θ - pitch
C - cross-wind force ψ - yaw

Control surface deflections: Angular velocities:
el - elevator p - roll rate
thr - thrust q - pitch rate
ail - aileron r - yaw rate
rud - rudder

Aerodynamic angles: Airspeed in equilibrium: Ve

β - side-slip angle
α - angle of attack

3 Linear state-space model

Modern MIMO flight control system design methods, such as LQR used in the thesis, are
based on state-space theory and require an accurate state-space model.

The state-space model structure is traditionally derived from non-linear equations of
motion in a selected steady-state point - equilibrium, and is valid for small perturbations
from this point. The unknown parameters can be stability and control derivatives of the
classical flight mechanics equations, or physical constants, e.g. gravity.

3.1 Equilibrium and steady-state flight

Implicit state equations are of the form

f(Ẋ,X,U) = 0 (3.1)

where f is an array of n non-linear functions fi, X is a state vector, U is input vector. [3]

The coordinates of a singular point of the implicit non-linear state equations are given
by a solution, X = Xe, which satisfies

f(Ẋ,X,U) = 0, with Ẋ≡ 0; U≡ 0 or constant (3.2)

Steady-state aircraft flight can be defined as a "condition in which all of the force and
moment components in the body-fixed coordinate system are constant or zero." [3]

Figure 2: Steady-state flight

16



3. LINEAR STATE-SPACE MODEL

3.2 Model structure

Since the process of deriving linear state-space model from non-linear equations is out of
scope of this thesis, the model is used as given in [1] and [3].

The perturbation equations of motion of a MIMO linear-time-invariant (LTI) system
are composed of n states x1,x2, . . . ,xn and nc control inputs u1,u2, . . . ,un and can be written
in matrix form

Mẋ = Fx+Gu (3.3a)
y = H0x+H1ẋ (3.3b)

where matrices M,F,G,H0,H1 contain the unknown stability and control derivatives of
the classical flight-mechanics equations, or physical constants.

State-space model of a typical aircraft can be separated into longitudinal and lateral
parts, which can be later treated separately. This significantly reduces complexity of both
identification process and control systems design.

3.3 Longitudinal model

State vector
x =

[
α q v θ

]T (3.4)

Control vector
u =

[
el thr

]T (3.5)

State matrices

M =


Ve−Zα̇ 0 0 0
−Mα̇ 1 0 0

0 0 1 0
0 0 0 1

 , G =


Zel −Xthr sin(αe +αT )
Mel Mthr
Xel Xthr cos(αe +αT )
0 0



F =


Zα Ve +Zq ZV −XTV sin(αe +αT ) −gD sinγe

Mα +MTα
Mq MV +MTV 0

Xα 0 XV +XTV cos(αe +αT ) −gD cosγe

0 1 0 0

 , H0 = I4, H1 = 0

3.3.1 Modes

Dynamic modes of state-space model can be analyzed from position of it’s poles.

Short-period

Phugoid

Im

Re0

Figure 3: Typical poles position of longitudinal aircraft model
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3. LINEAR STATE-SPACE MODEL

Short-period
The short-period is dominated by changes in angle of attack α and pitch-rate q. [4]

Phugoid
The phugoid mode is dominated by large changes in velocity and corresponds to

cyclic trade-offs in kinetic energy (velocity) and potential energy (height). [4]

3.4 Lateral model

State vector
x =

[
β φ p r

]T (3.6)

Control vector
u =

[
ail rud

]T (3.7)

State matrices

M =


Ve 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , G =


Yail Yrud
0 0

Lail Lrud
Nail Nrud



F =


Yβ gD cosθe Yp Yr−Ve

0 0 cosγe/cosθe sinγe/cosθe

Lβ 0 Lp Lr

Nβ 0 Np Nr

 , H0 = I4, H1 = 0

3.4.1 Modes

Dutch-roll

Spiral

Im

Re

Roll subsidence

Figure 4: Typical poles position of lateral aircraft model

Roll subsidence
The roll-rate p is dominant in the roll subsidence. It is almost purely motion about

the body x-axis. This mode is the fastest of lateral-directional modes. [4]

Dutch-roll
The Dutch-roll is dominated by the variables β and r. It is slower than the roll subsi-

dence but faster than the spiral. [4]

Spiral
The spiral mode has dominance in bank-angle φ. Unlike the roll subsidence, however,

there is no accompanying large roll-rate. If this eigenvalue had been positive then the
interpretation would have been of slowly increasing bank angle. [4]
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4. SYSTEM IDENTIFICATION

4 System identification

According to Tischler [1], system identification is a highly versatile procedure for rapidly
and efficiently extracting accurate dynamic models from the measured response to spe-
cific control inputs. Models might characterize the dynamics as a whole or a subsystem,
such as an actuator, rotor system, or the engine.

An aircraft can be considered as an input-output system. The dynamics are excited by
the control inputs, which in the current case are the conventional aerodynamic surfaces:
aileron ail for roll control, elevator el for pitch control, rudder rud for yaw control and
throttle thr for speed control. Output signals as an aircraft dynamic response, are then
measured during excitation and recorded into time-history database for further analysis.
In this case, excitation and output signals recording are performed in FlightGear simula-
tor.

aileron

elevator

rudder

throttle

3 translational velocities

3 angular velocities

3 attitude angles

3 linear accelerometers

2 aerodynamic angles

Figure 5: Aircraft as an input-output system [1]

A dynamic model relates the control inputs to the aircraft dynamic response. This
model can be as complex as a set of differential equations of motion. Dynamic models are
needed for many applications, including analysis of aircraft stability and control, piloted
simulations, flight control design, and analysis of aircraft handling characteristics.

4.1 Simulation vs system identification

System identification and simulation modeling can be seen as inverse procedures. In
system modeling, aircraft behavior is characterized by differential equations of motions,
which are built up from mathematical modeling of individual aircraft’s parts, such as
wings, fuselage, tail etc. This method uses principles such as finite element methods or
empirical aerodynamics and structural data. On the other hand, in system identification,
the aircraft response is measured, and a dynamic model is extracted from the data, the
reverse of developing a simulation.

Key applications of system identification results include piloted simulation models,
comparison of wind-tunnel vs flight measurements, validation and improvements of
physics-based simulation models and flight control system development.

Assumptions
Physics-based

model
Simulation

Physical 

understanding

System

identification

Extracted 

model

Measured

aircraft motion

Predicted

aircraft motion

Figure 6: Simulation vs identification [1]
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4.2 Frequency response identification method

There are many methods used for system identification, which produce satisfactory re-
sults, but methods developed by Tischler[1] using frequency responses are well suited
for aircraft flight data, and will be evaluated and tested in this thesis. The results will be
compared with MATLAB R©/Identification Toolbox R© , which works in time domain.

Differences between the frequency response and time response methods as cited by
Tischler [1]:

Characteristic Frequency-response methods Time-response methods

Initial data consist of frequency re-
sponses (derived from
time-history data)

consist of time-history data

How models are
identified

by matching predicted fre-
quency responses against
measured frequency re-
sponses

by matching predicted time
histories against measured
time histories

Noise bias effects of noise in re-
sponse measurements and
process noise are eliminated
from the analysis

noise models must be identi-
fied; if noise is ignored, biases
will be introduced in identifi-
cation results

Independent mea-
sure provided

coherence function provides
a direct and independent
measure of system excitation,
data quality and system re-
sponse linearity

no independent metric to ac-
cess system excitation and
linearity

Responses response pairs are fit only
in the frequency range over
which the data is accurate

fit over the same time and fre-
quency ranges

Time delays direct and precise identifica-
tion

not identified directly

Bias or reference
shifts

no biases or reference shifts to
be identified

must be identified and can be
correlated with aerodynamic
parameters

Number of points small number of points are
included in iterative criterion

large number of points (time-
history data)

Algorithms or equa-
tions used

very efficient because fre-
quency responses are deter-
mined algebraically from up-
dated parameters

equations of motions must
be numerically intergated in
time for each iterative update

Unstable systems good results special techniques used can
degrade the quality of results

Table 1: Frequency methods vs time methods [1] p.16
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4.3 CIFER R© software

CIFER R© - Comprehensive Identification from FrEquency Responses, is a software which
uses frequency response based identification techniques. It has been developed by Tischler[1]
and its possibilities are evaluated in this thesis.

Figure 7: CIFER R© software [1]

The foundation of the CIFER R© software approach is the high-quality extraction of a
complete multi-input/multi-output (MIMO) set of non-parametric input-to-output fre-
quency responses. These responses fully characterize the coupled characteristics of the
system without a-priori assumptions.[1]

Advanced Chirp-Z transform and composite optimal window techniques developed
and exercised with over 25 years of flight project applications provide significant im-
provement in frequency-response quality relative to standard Fast Fourier Transforms
(FFTs). Sophisticated non-linear search algorithms are used to extract a state-space model
which matches the complete input/output frequency response data set.[1]

4.3.1 Key features

• identification algorithms that have been extensively applied and proven on many
flight projects

• implementation of frequency-response identification in a step-by-step sequence of
core programs

• multi-input frequency response solution

• highly flexible and interactive definition of identification model structures

• fully automated weighting-function selection based on frequency response accu-
racy

• reliable parameter accuracy metrics

• integrated procedure for identification and model structure determination

• time-domain verification of models, including identification of offsets and biases

• integrated and efficient databasing of all results
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5 Collection of time-history data

Key part of identification process is time-history data collection. In practice, this is done
by performing test flights using real aircrafts, where required measurements, e.g. con-
trol surface deflections, attitude angles, airspeed, angle of attack etc., are logged into
database. In this case, since a real aircraft is not available, an open-source flight simula-
tor, FlightGear, is used.

5.1 MATLAB R© -FlightGear interface

5.1.1 FlightGear

FlightGear is an open-source flight simulator. It supports a variety of popular platforms
(Windows, Mac, Linux, etc.) and is developed by volunteers from around the world.
Source code for the entire project is available and licensed under the GNU General Public
License.

Figure 8: FlightGear flight simulator

"The goal of the FlightGear project is to create a sophisticated and open flight simula-
tor framework for use in research or academic environments, pilot training, as an indus-
try engineering tool and as a fun, realistic, and challenging desktop flight simulator."

One of the most important features which is essential in aircraft dynamics identifi-
cation and control are fully exposed internal properties. That means, FlightGear allows
users and aircraft designers access to a very large number of internal state variables via
numerous access mechanisms. These state variables are organized into a convenient hi-
erarchal property-tree. Using the property-tree, it is possible to monitor just about any
internal state variable. It’s possible, for example, to remotely control FlightGear from an
external script, or to create model animations, sound effects, instrument animations and
network protocols for about any situation imaginable just by editing a small number of
human readable configuration files.

This is a powerful system that makes FlightGear immensely flexible, configurable,
and adaptable.
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5.1.2 Interface implementation

The easiest approach how to externally control aircraft model in FlightGear is via UDP
protocol. The required properties that need to be accessed are defined in the already
mentioned property-tree. The interface can be defined in an XML file, as shown bellow:

<?xml version="1.0"?>
<PropertyList>

<generic>
<input>

<line_separator>newline</line_separator>
<var_separator>tab</var_separator>
<chunk>

<name>/controls/flight/elevator</name>
<node>/controls/flight/elevator</node>
<type>float</type>
<format>%.4f</format>

</chunk>
</input>

</generic>
</PropertyList>

After creating XML files for both input (elevator, throttle) and output properties (air-
speed, pitch angle. . . ) and storing them in FlightGear protocols folder, FlightGear is
started via command line with following command:

fgfs --generic=socket ,out ,40,localhost ,5502,udp,output_con

The number 40 is sampling frequency at which UDP packets will be sent to and from
FlightGear. More about sampling frequency is in section 5.5. 5502 is a number of port to
which UDP packets will be send to.

The last thing to do is to create functions in MATLAB R©/Simulink R© to send and
receive UDP packets.

Figure 9: Flight gear MATLAB R©/Simulink R© interface

The picture above shows the interface. The result is an airplane model that can be
controlled from MATLAB R©/Simulink R© in real-time.
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5.2 Selected aircraft

For the purposes of this thesis, an icon in aviation industry has been selected - Concorde.
Concorde was a supersonic civil aircraft operated by British Airways and Air France.

The main reason why it was selected was one of the highest rating in FlightGear aircrafts
available for download and also because it is a high performance aircraft with typical
dynamics characteristics, unlike many fighter jets which have unstable static stability.

Figure 10: Concorde

5.2.1 Technical details

Length 61.66m

Wingspan 25.60m

Height 12.20m

Wing area 358.25m2

Empty weight 78,700kg

Max takeoff weight 185,000kg

Powerplant 4 × Rolls-Royce/SNECMA, Olympus 593 Mark 610 turbojet

Cruise speed Mach 2.04

Max operating altitude 60,000ft

Table 2: Concorde technical details
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5.3 Desired frequency range

Before starting the identification process, it is desired to define the frequency range of
applicability for the model.

Each modeling result of system identification (i.e., a frequency response, a transfer-
function model, or a state-space model) has associated with it a frequency range of appli-
cability, defined as "frequency range over which the identified model can be expected to
be valid." [1]

The required frequency range of applicability is determined by intended application
of the system identification model, i.e. handling qualities validation, control system de-
sign, structural modes. Since the thesis deals with control system design, the range of
[ωmin, ωmax] = [0.03;10] rad/s is selected.

5.4 Recommended excitation inputs

The excitation signals for system identification must be designed to suitably excite the
aircraft modes that are to be modeled. The best suited type of signal is frequency-sweep.

5.4.1 Frequency sweep

A class of control inputs that has a quasi-sinusoidal shape of increasing frequency. The
frequency-sweep input is, according to Tischler[1], particularly well suited for the fre-
quency response method for a number of reasons:

1. The power spectral density (PSD) has a very uniform distribution across the de-
sired frequency range. That means all dynamics modes are satisfactorily excited in
the desired frequency range and consistent level of frequency response coherence
(accuracy) is achieved.

2. Response time-histories are roughly symmetric. This means that the deviations in
inputs are generally equal around the equilibrium (trim) point. This symmetry is
important both for maintaining the flight centered around the trim condition and
for determining and subtracting out the trim value of the input and output signals
in the subsequent Fourier analysis.

3. The frequency range of excitation is strictly controlled during the test. The fre-
quency sweep test starts at a predefined minimum frequency and ends at a pre-
defined maximum frequency. Both frequencies are easily monitored in real time.
Controlling the frequency range of the test in this way can be quite important as-
pect of the safety of flight-test procedure (i.e avoid flutter and structural damage at
high frequencies)

5.4.2 Sweep construction

The record starts and ends with the aircraft in a trim state (3s). Record of the trim condi-
tion is important for the spectral analysis, which subtracts the trim state from the data.

The next point is that the sweep starts with two low frequency input cycles and then
progresses smoothly to the mid and higher frequencies. The low frequency input is not a
pure sine wave, and so this part of the sweep actually ensures good identification over a
range of frequencies around ωmin.

fmin =
ωmin

2π
(5.1)

fmax =
ωmax

2π
(5.2)
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5. COLLECTION OF TIME-HISTORY DATA

Tmin =
1

fmax
(5.3)

Tmax =
1

fmin
(5.4)

Guideline [1]:
Trec ≥ (4 to 5)Tmax (5.5)

Thus, about 40% of the sweep is associated with the two low frequency inputs (at
ωmin). The remaining time is used to complete the buildup to the maximum frequency
ωmax and to establish trim at the start and end of the record.
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Figure 11: Frequency sweep signal

The magnitude of the sweep input is typically in the range of ±10− 20% of control
inputs and does not have to be exactly symmetric or constant.

Multiple flight records are concatenated into a single one. This ensures a rich spectral
content.
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5.4.3 Computer-generated sweep

Due to lack of piloting skills, computer-generated sweep is used in this case, with manual
impulses when needed to keep the flight around trim conditions.

However, it must be properly synthesized in order to obtain the desired frequency
spectrum.

Computer generated excitation signal uses an exponential sweep and white noise.
The exponentially increasing sweep frequency is used to ensure that more time is spent
at the lower frequencies (longer characteristic periods) and less time at the higher fre-
quencies (shorter characteristic periods).

The frequency-sweep component is generated by the equation

δsweep = Asin[θ(t)] (5.6)

where A is the sweep amplitude, typically 10% of the maximum deflection limits, and

θ(t) =
∫ Trec

0
ω(t) dt (5.7)

The frequency progression is given by

ω = ωmin +K(ωmax−ωmin) (5.8)

where

K =C2

[
exp
(

C1 t
Trec

)
−1
]

(5.9)

The values C1 = 4.0 and C2 = 0.0187 have, according to Tischler [1], been found to be
suitable for a wide range of applications.

Computer-generated sine sweeps alone might sometimes not constitute an excitation
signal with sufficient spectral richness because they will not have any of the irregularities
in input shape that are evident in a pilot-generated sweep. So, if necessary, a band-limited
white-noise component can be added to the sweep to enrich the spectral content:

δexcitation = δsweep +δwhite−noise (5.10)

A typical rms (1σ) level of the noise signals is selected as

δwhite−noise : σ = 0.10A (5.11)

5.5 Sample rate and filters

The selection of the appropriate data collection sample rate and data system filters flows
directly from the frequency range of applicability of the identified model.

The white-noise component of collected signals should be processed with a low-pass
filter ω f to suppress high frequency content in the excitation.

Guideline [1]:

• filter cut-off frequency
ω f = 5 ·ωmax (5.12)

• sample rate
ωs = 5 ·ω f (5.13)
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6 Data consistency

6.1 Modeling measurements errors in flight-test data

Since the ideal, noise-free measurement doesn’t exist in real world, there might be multi-
ple errors in the obtained flight data.

Measurement errors are broadly classified as deterministic (systematic) or non-deterministic
(random). Common sources of deterministic errors include bias, scale factor and drift.

6.2 Kinematic consistency

For example, consider the measurement of Euler roll angle φ. In most cases, the flight
measurement φm can be expressed in terms of the estimated (i.e., corrected) value φe by
the parametric equation

φm(t− τφ) = λφφe(t)+bφ +nφ (6.1)

where the error parameters are: τφ ≡ time shift, λφ ≡ scale factor, and bφ ≡ bias to account
for the deterministic errors. The last parameter, nφ ≡ noise, is generally modeled as zero-
mean white-noise and encompasses random errors.[1]

6.2.1 Angular consistency

Linearized Euler relationships:
p = φ̇ (6.2)

q = θ̇ (6.3)

r = ψ̇ (6.4)

Laplace transform:
p = sφ (6.5)

q = sθ (6.6)

r = sψ (6.7)

Roll-angle measurement:
φm(t) = λφφ(t) (6.8)

Roll-rate measurement:
pm(t) = λp p(t) (6.9)

Frequency response:
pm

φm
(s) = Kse−τs (6.10)

where the constant K is the ratio of scale factors,

K =
λp

λφ

(6.11)

and any relative time shift in the data caused by filtering or skewing will be absorbed in
τ, the effective time delay. The values of K and τ are determined from a transfer-function
fit of the frequency response pm/φm.[1]
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7 SISO Frequency response identification

"The analysis of a signal or input-to-output process as a function of frequency (rather
than time) is referred to as spectral analysis." [1]

7.1 Definition of frequency response

The Fourier transform takes non-periodic time-based input and output signals x(t) and
y(t), respectively, and transforms them into two equivalent frequency based signals X( f )
and Y ( f ), where

X( f ) =
∫

∞

−∞

x(t)e− j2π f tdt (7.1)

and
Y ( f ) =

∫
∞

−∞

y(t)e− j2π f tdt (7.2)

are referred to as the Fourier coefficients.
Frequency response H( f ) is now the complex-valued function that relates Fourier

coefficients of the input X( f ) and output Y ( f ) by means of the equation

Y ( f ) = H( f )X( f ) (7.3)

The frequency-response function H( f ) is just the ratio of the output to the input trans-
forms.

H( f ) =
Y ( f )
X( f )

= HR( f )+ jHI( f ) (7.4)

Magnification factor = |H( f )|=
√

H2
R( f )+H2

I ( f ) (7.5)

Phase shift = ϕ( f ) = ∠H( f ) = arctan
[

HI( f )
HR( f )

]
(7.6)

The frequency response H( f ) fully characterizes the system’s dynamic behavior, in
terms of the best linear description of the input-to-output behavior, without imposing
a requirement for any a-priori knowledge about the internal structure of the system’s
equations of motion. [1]

7.2 Frequency response interpretation

A convenient graphical visualization of the frequency response function is a Bode plot,
which is a semi-log plot of the magnitude of H in decibels (HdB) and the phase of H in
degrees (Hdeg), both vs frequency, usually in rad/s. The vertical axis (dB, deg) uses linear
scale, and the horizontal axis (frequency) uses a log scale.

HdB = 20 log10 |H( jω)| (7.7)

Hdeg = ∠H( jω) deg (7.8)
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7.3 Fourier transform and spectral functions in practice

7.3.1 Discrete Fourier transform

The discrete Fourier transform (DFT) determines X( f ) at discrete frequencies fk from a
finite record of sampled data:

X( fk) = X(k∆ f ) = ∆t
N−1

∑
n=0

xn · exp
[
− j2π(kn)

n

]
(7.9)

where

X( fk) = Fourier coefficients, for k = 0,1,2, ...,N−1

xn = x(n∆t) = time−domain data record, for n = 0,1,2, ...,N−1

∆t = time increment

∆ f = 1/N∆t = frequency resolution

N = number of discrete frequency points

The number of discrete frequency points in the identified Fourier transform X( fk) is the
same as the number of discrete time points in the time-history data record xn, namely N.
The frequency points are distributed evenly from fmin = ∆ f to the sample rate ( fs = 1/∆t).
⇒ bad resolution within the required frequency range⇒ use chirp-z transform

7.3.2 Fast Fourier and chirp-z transform

Frequency response determination using Discrete Fourier transform is computationally
intensive. The Fast Fourier transform (FFT) is a numerically more efficient algorithm.

A specialized implementation of the FFT is the chirp-z transform (CZT), also known
as the zoom transform. The CZT is capable of a highly accurate frequency response de-
termination.

Key properties of the CZT vs FFT [1]:

1. The number of frequency points N is specified independently of the number of
time-history points L. This relaxes the rather severe FFT restriction that N = L.

2. The N frequency points of the CZT are distributed over an arbitrary arc of the unit
circle (i.e., only in the frequency range of interest), not over the frequency range of
the entire unit circle as in the case of the FFT. This increases the frequency resolution
in the range of interest (i.e. frequency range of interest is between ωmin and ωmax,
not up to fs/2)

3. The CZT is subject to reduced leakage, or digital contamination, and it has im-
proved accuracy as compared to the FFT.

7.3.3 Spectral functions

The products of the Fourier transform computation are the Fourier coefficients of the
input (excitation) X( f ) and output (response) Y ( f ). From these, three important spectral
functions are defined by Tischler [1]:

1. Input auto-spectrum

G̃xx( f ) =
2
T
|X( f )|2 (7.10)
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The input auto-spectrum, also referred to as the input power spectral density (PSD),
displays the distribution of the squared input x2 or excitation power as a function
of frequency f .

2. Output auto-spectrum

G̃yy( f ) =
2
T
|Y ( f )|2 (7.11)

A rough estimate of output auto-spectrum, or PSD, displays the distribution of the
squared output y2 or response power as a function of frequency.

3. Cross-spectrum

G̃xy( f ) =
2
T
[X∗( f )Y ( f )] (7.12)

The cross-spectrum displays the distribution of the product of input times output
xy or input-to-output power transfer as a function of frequency.

where ∗ denotes the complex conjugate value, and G̃ denotes a rough estimate. T = Trec

denotes a single flight record length.

7.3.4 Interpreting spectral functions

A direct application of the spectral functions is in the evaluation of excitation and aircraft
response frequency content for a system identification maneuver. Sudden descent in
the input auto-spectrum indicates that the pilot input might have passed through that
frequency too quickly, and maneuver has to be repeated.

7.3.5 Frequency response calculation

The frequency response function H( f ) can be estimated directly from the smooth spectral
function estimates at each frequency point f .

Ĥ( f ) =
Ĝxy( f )
Ĝxx( f )

=
Ĝyy( f )
Ĝyx( f )

(7.13)

7.3.6 Coherence function

Another important product of the smooth spectral functions is the coherence function
estimate γ̂2

xy, defined at each frequency f by

γ̂
2
xy( f ) =

∣∣Ĝ2
xy( f )

∣∣2∣∣Ĝxx( f )
∣∣ ∣∣Ĝyy( f )

∣∣ (7.14)

The coherence function can be interpreted physically as the fraction of the output spec-
trum Gyy that is linearly attributable to the input spectrum Gxx at frequency f . The values
of coherence function range between 0 and 1.

Following some basic rule of thumb, the coherence function can be used to effec-
tively and rapidly assess the accuracy of the frequency response identification. Generally
speaking, as long as the coherence function satisfies the condition

γ
2
xy ≥ 0.6 (7.15)

and is not oscillating, the frequency response will have acceptable accuracy. [1]
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7.4 Windowing

Random errors in the spectral function calculations can be greatly reduced using win-
dowing methods. The method of overlapped windowing, also called the method of
periodograms, is a key technique in practical spectral analysis that greatly reduces the
level of random error in the spectral estimates. This technique produces smooth spectral
estimates by averaging the rough estimates for multiple segments of data. [1]

The original time-history record (duration Trec) is segmented into a sequence of nr

shorter overlapping time segments or windows of length Twin, each window containing L
points. The time-history for the last window is filled out to its completion by appending
the trim value to the time history beyond the flight record duration. [1]

The time-history data in each window segment are weighted by the window shaping
function w(t) to form the weighted time-history segment. This window tapering reduces
the spectral errors associated with side-lobe leakage that is characteristic of strict rectan-
gular windowing. [1]

The window width Twin determines directly the minimum frequency fmin and fre-
quency resolution ∆ f of the DFT:

fmin = ∆ f =
1

Twin
=

1
L∆t

=
fs

L
(7.16)

fmax =
fs

5
(7.17)

7.4.1 Window size selection

Guideline Topic

nd ≥ 5 Number of independent windows based on combination of
record length and window length

Twin = 2Tmax Nominal window size Twin relative to the length of the
longest period of interest Tmax

Twin ≤ 0.5Trec Maximum window size Twin relative to the length of the
record Trec

Twin ≤ (1/5)TF Maximum window size Twin relative to the concatenated
record length TF = 3 ·Trec

Twin ≥ 20(2π/ωmax) Minimum window size Twin relative to the maximum fre-
quency of interest

Table 3: Window selection guidelines [1]

7.4.2 Composite windowing

Large window lengths produce good coherence (accuracy) results at lower frequencies,
and small window lengths at higher frequencies.

Composite windowing is a procedure, that merges frequency response results ob-
tained for different window lengths into one frequency response, with acceptable coher-
ence throughout the whole frequency range of interest.

More details about this procedure can can be found in Tischler [1].
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8 Transfer-function identification

Transfer function models, that accurately match the flight-data frequency responses and
characterize the overall input-to-output response dynamics can be identified. They are
most commonly used to represent the SISO on-axis response of the flight vehicle (e.g.
q/el) or subsystem. [1]

The system to be modeled is treated like a black box without any insight into actual
physics of the aircraft using force and moment equations and the associated physical con-
straints (e.g. gravity and kinematics). Instead, transfer-function models are composed of
a numerator and denominator polynomial in the Laplace variable s.

A transfer-function model of the generalized form

H(s) =
(b0sm +b1sm−1 + · · ·+bm)e−τeqs

(sn +a1sn−1 + · · ·+an)
(8.1)

is found that best matches the identification frequency response data, where

m≤ n (8.2)

The orders of the numerator m and denominator n are chosen in identification process to
achieve a good fit of the frequency response data in the frequency range of interest.

In the transfer-function identification process, each of the coefficients ai and bi of the
polynomials and equivalent time delay τeq can be individually fixed or freed (in the latter
case, to be optimized).

A numerical optimization algorithm determines the set of unknown (i.e. freed) quan-
tities in equation (8.1) that minimizes the magnitude and phase errors between the de-
sired SISO transfer-function model H and the associated composite frequency response
estimate (i.e. data) Ĥc. [1]

8.1 Cost function

The quadratic cost function J, suggested by Tischler[1], to be minimized is

J =
20
nω

ωnω

∑
ω1

Wγ

[
Wg(|Ĥc|− |H|)2 +Wp(∠Ĥc−∠H)2] (8.3)

where
| |= magnitude (dB) at each frequency ω

∠= phase (deg) at each frequency ω

nω = number of frequency points

ω1 and ωnω
= starting and ending frequencies of fit

By selecting the nω frequency points in a uniform spacing over a log-frequency scale
(rad/s), the minimization achieves a best fit on the Bode plot.
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The other parameters of cost function are as follows:

1. Wγ is a weighting function dependent on the value of the coherence function at each
frequency ω. The function used in CIFER R© software is:

Wγ(ω) =
[
1.58

(
1− e−γ2

xy

)]2
(8.4)

thereby emphasizing the most reliable data. For a coherence of γ2
xy = 0.6, this func-

tion reduces the weight on the squared errors by 50%.

2. Wg and Wp are the relative weights for magnitude and phase squared errors. The
normal convention is to use the values

Wq = 1.0 (8.5a)
Wp = 0.01745 (8.5b)

which sets 1 dB magnitude error comparable with 7.57◦ phase error.

As a guideline, a cost function of
J ≤ 100 (8.6)

generally reflects an acceptable level of accuracy for flight-dynamics modeling. [1]

9 State-space model identification

In many applications, the required end product of system identification is a state-space
model expressed in terms of aerodynamic stability and control derivatives or even the
physical system parameters as written in equations (3.3). State-space identification re-
sults are also very useful for simulation model validation or control system design, as
shown in this thesis.

Initial guesses for the model parameters can be obtained from previous transfer-
function identification results or from a-priori estimates based on first principles. [1]

The matrices M,F,G contain model parameters to be identified, but can also contain
a-priori model parameters and constants (e.g. gravity g).

Once the identification parameters are determined, the model equations are easily
expressed in conventional state-space form:

ẋ = Ax+Bu (9.1a)
y = Cx+Du (9.1b)

where

A = M−1F (9.2a)

B = M−1G (9.2b)

C = H0 +H1M−1F (9.2c)

D = H1M−1G (9.2d)

The form of (3.3) is chosen because if mass matrix terms M exist, this would result in
elements of A and B matrices that are a complex combination of the desired physical
parameters. [1]
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9. STATE-SPACE MODEL IDENTIFICATION

9.1 MIMO state-space model identification

The identification is performed by comparing the resulting MIMO frequency responses
of the state-space model with those of the flight data. The identification of MIMO state-
space models is achieved by a direct extension of the SISO cost function (8.3) to matrix
form. The identification cost function of the complete MIMO system (9.5) is simply the
sum of the individual cost functions (8.3). [1]

The frequency response matrix of the identification model H(s) relates the Laplace
transform of the output vector y to the Laplace transform of the input vector u:

Y(s) = H(s)U(s) (9.3)

The frequency-response matrix of the model to be identified H(s) is expressed as a
function of the state-space identification model matrices M,F,G,H0,H1:

H(s) = [H0 + sH1]
[
(sI−M−1F)−1M−1G

]
(9.4)

The solution of the MIMO identification problem involves determining the model matri-
ces M,F,G that produce a frequency response matrix H(s) that most closely matches the
frequency responses obtained from the flight data Ĥc. [1]

9.2 Cost function

Cost function, as suggested by Tischler[1], is analogous to the cost function of transfer-
function extended to matrix form:

J =
nT F

∑
l=1

{
20
nω

ωnω

∑
ω1

Wγ

[
Wg(|T̂c|− |T |)2 +Wp(∠T̂c−∠T )2]}

l

(9.5)

where nT F is number of selected frequency responses used for state-space identification.
As a guideline for acceptable state-space model identification, the average overall cost

function
Jave =

J
nT F
≤ 100 (9.6)
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9. STATE-SPACE MODEL IDENTIFICATION

9.3 Accuracy analysis

The identification process returns the state-space model that best matches the frequency
response flight data. A measure of accuracy or relative degree of confidence of the iden-
tification parameters (matrix elements) is needed for a number of reasons [1]:

1. The initial model structure usually needs to be refined.

2. A measure of parameter accuracy is needed to design a control system to ensure
robustness.

3. Evaluation of differences between flight-test identified parameters and simulation
parameters requires level of confidence.

9.3.1 Cramer-Rao inequality

The Cramer-Rao inequality CRi can be viewed as "the minimum standard deviation σi

in the parameter estimate, that would be obtained from many repeated maneuvers (test
flights)".[1]

Thus
σi ≥CRi

The relative values of the Cramer-Rao bounds among the identification parameters are
very important for refining the model structure. Large relative Cramer-Rao bounds for
individual parameters indicate poor identifiability and suggest that these parameters
should be eliminated (or fixed) in the model structure.[1]

Cramer-Rao bounds are best expressed as a percentage of the converged identification
values

CRi =

∣∣∣∣CRi

Θi

∣∣∣∣×100 (9.7)

The CIFER R© program refers to Cramer-Rao value as

2 ·CRi ≡ σi

and suggests a guideline
CRi ≤ 20% (9.8)

9.3.2 Insensitivity

Another accuracy measure, that is also a result of high Cramer-Rao bounds, which exceed
guideline (9.8), is insensitivity.

High sensitivity occurs, when changes in a single parameter have little or no effect on
converged cost function J, indicating that the parameter is not important in the selected
model structure, and can be eliminated.[1]

Insensitivity is also best presented as normalized percentage of the converged param-
eter value

Īi =

∣∣∣∣ Ii

Θi

∣∣∣∣×100% (9.9)

Again, CIFER R© suggests a guideline

Īi < 10% (9.10)
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9. STATE-SPACE MODEL IDENTIFICATION

9.3.3 Example of system order reduction

This section presents the process of reducing the order of identified state-space model
based on insensitivity and Cramer-Rao values.

Consider a system, with transfer function

H(s) =
s+1

(s+2)(s+1)

and full state-space model

Mf = I2, Ff = Af =

[
−3 −2
1 0

]
, Gf = Bf =

[
1
0

]
, H0f = Cf =

[
1 1

]
, H1f = I2

It is quite obvious that this system can be reduced to

Ar =
[
−2
]
, Br =

[
1
]
, Cr =

[
1
]

After exciting the full model in MATLAB R©/Simulink R© with frequency-sweep signal
and following all steps mentioned in identification part of this thesis, frequency response
data was obtained to be now used to identify state-space model.

The first iteration run of state-space identification process produced this result:

Ai =

[
−2.97 −1.99
0.97 0.1

]
, Bi =

[
1.85
0.86

]
, Ci =

[
1 1

]
It seems quite similar to the full system used for identification, but first look on accuracy
analysis shows, that although the achieved cost function is very good (J = 0.0263≤ 100),
the high Cramer-Rao and insensitivity values which break guidelines (9.8) and (9.10)
suggest, that this system can be reduced.

Matrix element Cramer-Rao [%] Insensitivity [%]

a11 4.73 ·103 85.17
a12 1.11 ·103 4.23 ·103

a21 4.68 ·103 83.65
a22 1.09 ·103 3.07 ·103

b11 5.17 ·103 0.98
b21 1.12 ·103 2.13

Following the rules in Tischler[1], the parameter with the highest value of insensitiv-
ity (a12) is set to zero and fixed (eliminated) in state-space model, and the identification
process is repeated in such several iterations until all sensitivity values fulfill the guide-
line (9.10).

Then, same iteration process is repeated for Cramer-Rao values, until they fulfill
guideline (9.8). This process of model structure reduction finally produces this satis-
factory result:

Ai =
[
−1.99

]
, Bi =

[
0.997

]
, Ci =

[
1
]

Matrix element Cramer-Rao [%] Insensitivity [%]

a11 15.65 4.59
b11 6.21 1.82
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10 Identification results

10.1 Longitudinal model

10.1.1 Data collection

Equilibrium point: ve = 260 kt = 133.75 m/s, he = 10 000 ft, αe = 6.2◦, θe = 6.2◦

Parameters of frequency-sweep excitation signal:

• frequency range of interest

[ωmin, ωmax] = [0.03, 10] rad/s

• filter cutoff and sampling frequency

ω f = 5 ·ωmax = 50 rad/s≈ 8 Hz, Fs = 5 ·
ω f

2π
= 40 Hz

• longest and shortest period of sweep signal

Tmin =
2π

ωmax
= 0.69 s, Tmax =

2π

ωmin
= 209.44 s

• record length
Trec = 5 ·Tmax = 1047.2 s

Test flight began with 3s period in trim state, and then sweep was executed, followed
by 3s trim state again at the end.

Three excitation test flights were performed for each longitudinal control input - el, thr
and recorded time-histories concatenated into single data set per input.

Sweep was generated by computer (MATLAB R©/ Simulink R©) and manual joystick
inputs were performed when needed to keep flight near selected equilibrium point.

Sweep signals had to be corrupted with white noise with amplitude of 10% of exci-
tation signal to achieve more rich frequency spectrum around ωmin. This produced far
better results (coherence at lower frequencies) than clean, noise-free sweep signals.

0 100 200 300 400 500 600 700 800 900 1000

-6

-4

-2

e
l (

d
e

g
)

Elevator sweep response

0 100 200 300 400 500 600 700 800 900 1000

130

135

140

v
 (

m
/s

)

0 100 200 300 400 500 600 700 800 900 1000

5

6

7

 (
d

e
g

)

0 100 200 300 400 500 600 700 800 900 1000

4

6

8

 (
d

e
g

)

0 100 200 300 400 500 600 700 800 900 1000

Time (s)

-1

0

1

q
 (

d
e

g
/s

)

(a) Elevator sweep

0 100 200 300 400 500 600 700 800 900 1000
0.4

0.6

0.8

th
r 

(n
o

rm
)

Throttle sweep response

0 100 200 300 400 500 600 700 800 900 1000
120

130

140

150

v
 (

m
/s

)

0 100 200 300 400 500 600 700 800 900 1000

5.5

6

6.5

7

7.5

 (
d

e
g

)

0 100 200 300 400 500 600 700 800 900 1000

5

10

 (
d

e
g

)

0 100 200 300 400 500 600 700 800 900 1000

Time (s)

-1

0

1

2

q
 (

d
e

g
/s

)

(b) Throttle sweep

Figure 12: Collected longitudinal data
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10.1.2 Data consistency

The first step in CIFER R© program is to check data consistency of pitch-rate q and pitch-
angle θ, which is product of q integration.

Identified frequency response θm
qm

is first visually compared with frequency response
of ideal integrator 1

s , which is shown in figure bellow.
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Figure 13: Angular consistency of θ and q

The yellow dashed line in magnitude and phase graph is another step of data con-
sistency verification, namely identification of SISO transfer-function Hi(s) = θm

qm
(s), as de-

scribed in section 6.
Transfer-function of ideal integrator:

H(s) =
1
s

Identified transfer-function (curve fit):

Hi(s) =
θm

qm
(s) =

K · e−τs

s
(s) =

0.978 · e−0.0037s

s
, J = 14.492≤ 100

The identified transfer-function is very close to transfer-function of ideal integrator H(s),
with acceptable value of cost function J fulfilling guideline (8.6) . Therefore, measure-
ments of θ and q are kinematically consistent.
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10.1.3 SISO frequency responses

Next step of system identification is SISO frequency responses, that is, to identify from
acquired time-histories magnitude and phase plots for each input/output pair and it’s
corresponding coherence function - level of accuracy.

For frequency response identification, 5 windows A,B,C,D,E are used with lengths
ranging from Twinmin = 20 · (2π)/ωmax = 13 s to Twinmax = 0.5 · Trec = 523 s, as explained in
section 7.4. Results can be seen in figure 14 for elevator and figure 15 for throttle input.
Long windows produce higher value coherence function and therefore better identifica-
tion accuracy at lower frequencies, while on the other hand, shorter windows produce
higher values coherence and better accuracy at higher frequencies.
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Figure 14: Frequency responses from elevator for 4 different window lengths
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It can be seen in figure 15 that identification accuracy (coherence) is not very accept-
able (γ < 0.6) in this case except airspeed output v. This can be explained by very low or
almost none response of α,θ, and q to throttle excitation input.

The advantage of frequency response identification method is that this data (or only
their selected frequency ranges) does not have to be used in further identification process,
since it does not contribute any valuable information.
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Figure 15: Frequency responses from throttle for 4 different window lengths
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10.1.4 Composite windowing

Frequency response results for each window A,B,C,D,E obtained in previous identifica-
tion step are now merged using composite windowing method described in section 7.4.2
and explained in more detail by Tischler [1].

Product of this method is SISO frequency response for each input/output pair of the
model, with acceptable coherence at almost whole frequency range of interest.

Results from CIFER R© are shown in figure 16 and 17 bellow, together with frequency
responses obtained from MATLAB R©/Identification Toolbox R© for comparison.
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Figure 16: Composite frequency responses from elevator input
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As mentioned in previous step, responses of α,θ and q from throttle does not have
acceptable coherence at high frequencies or at all, so they will not be used in state-space
identification process as it would corrupt final results rather than improve them.
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Figure 17: Composite frequency responses from throttle input
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10.1.5 SISO transfer function

The last substep to the final identification result, which is MIMO state-space model, is
identification of transfer-function of selected aircraft dynamics mode, in this case short-
period approximation.
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Figure 18: Transfer function identification of short-period mode

Short-period approximation is lower-order transfer function defined as [1]

q
el
(s) =

Mel(s+K)e−τs

[ζSP,ωSP]
(10.1)

where Mel is pitching moment due to elevator, ζSP,ωSP are damping and frequency of this
mode.

Using CIFER R© for SISO transfer identification in selected frequency range of [0.5, 10] rad/s,
the short-period mode approximation is

q
el
(s) =

−4.07(s+0.514)
(s+0.809)(s+8.194)

, J = 0.198≤ 100

It is obvious from identification result, that two distinct negative poles mean that short-
period mode of Concorde is overdamped.

Another important result is value of Mel .

Mel =−4.07

This value is just approximated, but it can be used as initial value for Mel in MIMO state-
space model identification.

Approximated poles of short-period mode also give some insight of what to expect
in further identification steps.
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10.1.6 MIMO state-space model

The final step of frequency response identification method is MIMO state-space model
identification.

Using SISO frequency responses obtained from composite windowing step and initial
value of Mel from short-period approximation, state-space matrices are identified in the
form of (3.3) by simultaneous fitting of estimated state-space model to selected frequency
responses using cost function (9.5).

Frequency responses with not acceptable coherence, e.g. from throttle to α,θ and q,
are dropped from this process, and of the remaining ones, only frequency ranges with
acceptable coherence are used, e.g. response from elevator to θ or airspeed is mostly
significant at lower frequencies, where phugoid mode is present, rather than in higher
etc. This also improves final results.

Figures bellow show SISO frequency responses with simultaneous MIMO fit result:
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Figure 19: Longitudinal state-space frequency responses fit, elevator input
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Fit of responses from throttle input to α,θ and q in figure 20 show that although they
were not used in MIMO identification process, the frequency responses of resulted state-
space model are quite close to former identified SISO responses, especially at lower fre-
quencies.
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Figure 20: Longitudinal state-space frequency responses fit, throttle input
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Another great advantage of frequency response identification methods and CIFER R© pro-
gram is, that desired form of state-space matrices of form (3.3) can be forced in identifica-
tion process. For example, zeros, known constants such as g,ve and trigonometric func-
tions of very small values like flight-path angle γ, can be set and fixed (not to be changed
during iteration fitting process) at appropriate places of matrices. Value of Mel identified
in short-period approximation transfer- function is also used and fixed in matrix G at
first, and then freed for finer estimation (Mel =−4.07→−4.12 ).

Bellow are identified state-space matrices of longitudinal aircraft model in selected
equilibrium point:

M =


Ve−Zα̇ 0 0 0
−Mα̇ 1 0 0

0 0 1 0
0 0 0 1

=


133 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1



F =


Zα Ve +Zq ZV −XTV sin(αe +αT ) −gD sinγe

Mα +MTα
Mq MV +MTV 0

Xα 0 XV +XTV cos(αe +αT ) −gD cosγe

0 1 0 0

=


−68.56 140.45 −0.13 0
−2.30 −8.14 0 0
16.11 0 0.0015 −9.81

0 1 0 0



G =


Zel −Xthr sin(αe +αT )
Mel Mthr
Xel Xthr cos(αe +αT )
0 0

=


0.13 0
−4.12 0
7.35 2.43

0 0

 , H0 = I4, H1 = 0

The model is finally refined and it’s accuracy analysis performed as suggested in section
9.3. Following table of accuracy analysis proves high quality of results.

Parameter Identified Value Cramer-Rao [%] (<20%) Insensitivity [%] (<10%)

f11 -68.56 6.95 1.41

f12 140.45 4.82 1.14

f13 -0.13 8.55 1.22

f21 -2.30 8.66 1.67

f22 -8.14 2.92 0.99

f31 16.11 6.95 1.29

g31 7.35 5.70 1.48

g32 2.43 3.89 1.92

Table 4: Accuracy analysis of longitudinal state-space model
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10.1.7 Comparison with MATLA R©/Identification Toolbox R©

Comparison of matrices, system poles and final frequency responses with results
of MATLAB R©/Identification Toolbox R© is shown bellow. Although values of some pa-
rameters and shape of plots are quite similar, it is not true overall.

Moreover, there is no mechanism like Cramer-Rao bounds and insensitivity to ana-
lyze accuracy of individual matrix elements produced by Identification Toolbox R©, which
shows another advantage of frequency response methods utilized in CIFER R©.

ACIF =


−0.52 1.06 −0.001 0
−2.29 −8.14 0 0
16.11 0 0.0015 −9.81

0 1 0 0

 , BCIF =


0.001 0
−4.12 0
7.35 2.43

0 0



Aidtbx =


−0.53 0.99 −0.0009 −0.0027
−2.38 −9.84 0.0011 0.0069
14.84 −35.06 0.0128 −9.56
0.012 0.96 0 0

 , Bidtbx =


−0.037 −0.0016
−4.60 0.017
−7.22 2.35
−0.019 0.0017


C = I4, D = 0

Placement of poles confirms initial estimation of short-period mode, which is overdamped.
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Figure 21: Comparison of longitudinal poles
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Figure 22: Comparison of MATLAB R©/Identification Toolbox R© with CIFER R© , elevator
input
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Figure 23: Comparison of MATLAB R©/Identification Toolbox R© with CIFER R© , throttle
input
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Finally, figure bellow shows comparison of two identified state-space models using
two different methods:
frequency response in CIFER, and subspace in MATLAB R©/Identification Toolbox R©.

In verification process of identified models, it is very important to use different input
signals that were used in excitation.

The figure compares responses to doublet input signals of both models with real-
flight of Concorde in FlightGear simulator. Both models give acceptable results in terms
of time-responses, except CIFER R© results is far better in airspeed response.

However, being able to identify individual elements of state-matrices with desired
structure and accuracy analysis can be required, for example, to properly identify aero-
dynamic parameters and derivatives of selected aircraft, which seems to be not possible
with subspace methods.
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Figure 24: Comparison of identified model with simulator output
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10.2 Lateral model

The very same procedure as in longitudinal model is used to identify lateral model with
aileron and rudder inputs.

10.2.1 Data collection

Equilibrium point: ve = 260 kt = 133.75 m/s, he = 10 000 ft, φe = 0◦, βe = 0◦

Parameters of frequency-sweep excitation signal:

• frequency range of interest

[ωmin, ωmax] = [0.03, 10] rad/s

• filter cutoff and sampling frequency

ω f = 5 ·ωmax = 50 rad/s≈ 8 Hz, Fs = 5 ·
ω f

2π
= 40 Hz

• longest and shortest period of sweep signal

Tmin =
2π

ωmax
= 0.69 s, Tmax =

2π

ωmin
= 209.44 s

• record length
Trec = 5 ·Tmax = 1047.2 s
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Figure 25: Collected lateral data
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10.2.2 Data consistency

The first step in CIFER R© program is to check data consistency of roll-rate p and roll-angle
φ, which is product of p integration.

Identified frequency response φm
pm

is first visually compared with frequency response
of ideal integrator 1

s , which is shown in figure bellow.
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Figure 26: Angular consistency of φ and p

The yellow dashed line in magnitude and phase graph is another step of data con-
sistency verification, namely identification of SISO transfer-function Hi(s) =

φm
pm
(s), as de-

scribed in section 6.
Transfer-function of ideal integrator:

H(s) =
1
s

Identified transfer-function (curve fit):

Hi(s) =
φm

pm
(s) =

K · e−τs

s
(s) =

0.9184
s

, J = 23.346≤ 100

The identified transfer-function is very close to transfer-function of ideal integrator H(s),
with acceptable value of cost function J fulfilling guideline (8.6) . Therefore, measure-
ments of φ and p are kinematically consistent.
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10.2.3 SISO frequency responses
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Figure 27: Frequency responses from aileron for 4 different window lengths
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Figure 28: Frequency responses from rudder for 4 different window lengths
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10.2.4 Composite windowing
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Figure 29: Composite frequency responses from aileron input
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Figure 30: Composite frequency responses from rudder input
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10.2.5 SISO transfer function

The last substep to the final lateral identification result, which is MIMO state-space model,
is identification of transfer-function of selected aircraft dynamics mode, in this case roll
subsidence approximation.
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Figure 31: Transfer function identification of roll-response to aileron

Roll subsidence approximation is lower-order transfer-function defined as [1]

p
ail

(s) =
Laile−τs

(s+1/Tr)
(10.2)

where Lail is rolling moment due to aileron, Tr is roll subsidence mode time constant and
inverse of roll damping stability derivative −Lp.

Using CIFER R© for SISO transfer-identification identification, the roll subsidence mode
approximation is

p
ail

(s) =
2.928

(s+1.137)
, J = 5.264≤ 100

1/Tr =−Lp⇒ Lp =−1.137

Lail = 2.928

Values of Lp and Lail are just approximated, but they can be again used as initial values
in MIMO state-space model identification.

Approximation of roll subsidence mode also gives some insight of what to expect in
further identification steps.
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10.2.6 MIMO state-space model

Figures bellow show SISO frequency responses with simultaneous MIMO fit result:
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Figure 32: Lateral state-space frequency responses fit, aileron input
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Figure 33: Lateral state-space frequency responses fit, rudder input
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Bellow are identified state-space matrices of lateral aircraft model in selected equilib-
rium point:

M =


Ve 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

=


133 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1



F =


Yβ gD cosθe Yp Yr−Ve

0 0 cγe/cθe sγe/cθe

Lβ 0 L′p Lr

Nβ 0 N′p Nr

=


−26.39 9.81 14.53 −155.61

0 0 1 0
−3.26 0 −1.19 0
0.66 0 0 −0.031



G =


Yail Yrud
0 0

Lail Lrud
Nail Nrud

=


0 0
0 0

2.81 0.283
0 −0.49

 , H0 = I4, H1 = 0

The model is finally refined and it’s accuracy analysis performed as suggested in sec-
tion 9.3. Following table of accuracy analysis again proves high quality of achieved result.

Parameter Identified Value Cramer-Rao [%] (< 20%) Insensitivity [%] (< 10%)

f11 -26.39 7.97 3.47

f13 14.53 5.28 1.82

f14 -155.61 3.27 0.80

f31 -3.26 4.59 1.14

f33 -1.19 12.38 2.70

f41 0.66 3.45 0.75

f44 -0.031 7.97 3.83

g31 2.81 3.92 0.92

g32 0.283 8.68 4.12

g42 -0.49 3.30 0.91

Table 5: Accuracy analysis of lateral state-space model
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10.2.7 Comparison with MATLAB/Identification Toolbox

Comparison of state-space matrices, system poles and final frequency responses with re-
sults of MATLAB R©/Identification Toolbox R© is shown bellow. Although values of some
parameters and shape of plots are quite similar, it is not true overall.

ACIF =


−0.198 0.074 0.11 −1.17

0 0 1 0
−3.26 0 −1.189 0
0.66 0 0 −0.031

 , BCIF =


0 0
0 0

2.81 0.283
0 −0.49



Aidtbx =


−0.145 0.063 0.11 −1.01
−0.11 0.001 0.93 −0.2
−3.52 0.013 −1.13 0.38
0.72 0.001 −0.009 −0.09

 , Bidtbx =


0.002 0.005
0.03 0.11
2.79 0.27
0.005 −0.53


C = I4, D = 0
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Figure 34: Comparison of lateral poles
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Figure 35: Comparison of MATLAB R©/Identification Toolbox R© with CIFER R© , aileron
input
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Figure 36: Comparison of MATLAB R©/Identification Toolbox R© with CIFER R© , rudder
input
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Finally, figure bellow shows comparison of two identified lateral state-space models
using two different methods:
frequency response in CIFER R©, and subspace in MATLAB R©/Identification Toolbox R©.

The figure compares responses to doublet inputs (different inputs than used in exci-
tation) of both models with real-flight of Concorde in FlightGear simulator. Both models
give acceptable results in terms of time-responses.

However, being able to identify individual elements of state-matrices with desired
structure and accuracy analysis can be required, for example, to properly identify aero-
dynamic parameters and derivatives of selected aircraft, which seems to be not possible
with subspace methods.
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Figure 37: Comparison of flight
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10.3 Comparison of computed and identified aerodynamic coefficients

1. Equilibrium

• airspeed Ve = 260 kt = 133 m/s

• angle of attack αe = 6.5◦ = 0.1134 rad

• altitude h = 10 000 ft = 3048 m

• air density at h (ISA) ρ = 0.9 km/m3

• dynamic pressure q̄ = 1
2 ρV 2

e = 8044.06 Pa

2. Aircraft parameters

• gross weight m = 175 706 kg

• mean aerodynamic chord c̄ = 27.66 m

• moments of inertia in body axes (as defined in FlightGear for Concorde)
– JX = m

10(Rx
b
2)

2 = 186 481,587 kg ·m2, where b is wingspan
– JY = m

10(Ry
d
2 )

2 = 241 2358,389 kg ·m2, where d is length
– JZ = m

10(Rz
e
2)

2 = 127 0702,08 kg ·m2, where e = (b+d)/2

where Rx = 0.255, Ry = 0.38, Rz = 0.39 for delta wing

• moments of inertia in stability (wind) axes
– J′x = Jx cos2 α+ Jz sin2

α− Jxz sin2α, Jxz = 0
– J′y = Jy

– J′z =
1
2(Jx− Jy)sin2α+ Jxz cos2α

3. Aerodynamic coefficients obtained from FlightGear files

• Lift-curve slope: CLα
= 4.4

• Pitch damping derivative: Cmq =−21 ·α[rad]

• Pitch stiffness derivative: Cmα
=−0.7 ·α[rad]

• Dihedral derivative Clβ =−0.1 · β̄[rad], β̄ = 5◦ = 0.0873 rad

• Yaw stiffness derivative Cnβ
= 0.12 · β̄[rad]

• Roll damping derivative Clp =−0.4 · β̄[rad]

Coefficient Computed value Identified value C-R [%] Insens. [%]

Zα = −q̄S
m (CDe +CLα

) -72.162 -68.56 6.95 1.41

Mq =
q̄Sc̄
JY

c̄
2Ve

Cmq -8.139 -8.14 2.92 0.99

Mα = q̄Sc̄
JY

Cmα
-2.623 -2.30 8.66 1.67

Lβ =
q̄Sb
J′x

Clβ -3.208 -3.26 4.59 1.14

Nβ =
q̄Sb
J′z

Cnβ
0.614 0.66 3.45 0.75

Lp =
q̄Sb
J′x

b
2Ve

Clp -1.226 -1.19 12.38 2.70

Table 6: Computed vs identified aerodynamic coefficients

Comparison of selected individual aerodynamic derivatives with values obtained and
computed from FlightGear files again proves high quality of achieved identification re-
sults, both longitudinal and lateral, with high degree of confidence based on Cramer-Rao
and insensitivity.
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11. INTRODUCTION

11 Introduction

11.1 Limitations of classical control

The essence of classical design is successive loop closure guided by a good deal of intu-
ition and experience that assists in selecting the control system structure. For instance,
it is desirable to provide inner rate feedback loops around a plant to reduce the effect of
plant parameter variations. In conjunction with this, standard compensator structures
are used designed to approximate derivative action to stabilize the system or integral
action to eliminate steady-state error.

The one-loop-at-a-time design approach is aided by such tools as root locus, Bode and
Nyquist plots, and so on, that enables to visualize how the system dynamics are being
modified. However, the design procedure becomes increasingly difficult as more loops
are added and does not guarantee success when the dynamics are multi-variable, that is,
when there are multiple inputs, multiple outputs, or multiple feedback loops.[3]

11.2 Modern control

Two concepts are central to modern control design. The first is that the design is based
directly on the state-variable model, which contains more information about the system
than the input-output (black box) description. The state-variable model was introduced
into system theory, along with matrix algebra, by R. Kalman.

The second central concept in the expression of performance specifications in terms
of a mathematically precise performance criterion which then yields matrix equations
for the control gains. Solving matrix equations, in contrast to individual control gains in
SISO theory, allows all the control gains to be computed simultaneously so that all loops
are closed at the same time.[3]

12 LQR controller theory

Modern techniques are used to design stability and augmentation systems (SAS) and au-
topilots. This is accomplished by regulating certain states of the aircraft to zero while
obtaining desirable closed-loop response characteristics. It involves the problem of stabi-
lizing the aircraft by placing the closed-loop poles at desirable locations.

Instead of computing one-loop-at a time as in classical control, a performance crite-
rion is selected. Once it is selected, the control gains are explicitly computed by matrix
design equations, and closed-loop stability will generally be guaranteed, unlike in classi-
cal control, where root-locus techniques must be used to pay attention to gain and phase
margins.

Different criteria will results in different closed-loop time responses and robustness
properties.

Let’s assume linear time-invariant state-variable model of the form in equation (9.1),
where x(t) ∈ IRn and u(t) ∈ IRm. The controls will be output feedback of the form

y =−Ku (12.1)

where K is an m× p matrix of constant feedback coefficients to be determined by the
design procedure.[3]
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12.1 Quadratic performance index

The objective of state regulation for the aircraft is to derive any initial condition error to
zero, thus guaranteeing stability. This may be achieved by selecting the control input u(t)
to minimize a quadratic cost index or performance index (PI) of the type

J =
1
2

∫
∞

0

(
xT Qx+uT Ru

)
dt (12.2)

where Q and R are symmetric positive-semidefinite weighting matrices.
Q is matrix penalizing states - control performance. R is symmetric matrix penalizing

control action.[3]

12.2 Solution of the LQR problem

Given the linear system (9.1), find the feedback coefficient matrix K in the control input
(12.1) that minimizes the value of the quadratic performance index (12.2).

By substituting the control (12.1) into (9.1a), the closed-loop system equations are
found to be

ẋ = (A−BKC)x≡ Acx (12.3)

The PI may be expressed in terms of K as

J =
1
2

∫
∞

0
xT (Q+CT KT RKC

)
x dt (12.4)

The design problem is now to select the gain K to that J is minimized.[3]

13 Controller design, with integral action

Integral action can be added by augmenting the system with integrators at selected chan-
nels to achieve zero steady-state error for constant reference or disturbances.

CAS - control augmentation systems, are designed using MATLAB’s lqr function.

13.1 Longitudinal CAS

Pitch attitude hold CAS, or autopilot, is designed with integral action to ensure zero
steady-state error for step pitch angle θ reference. Simultaneously, the airspeed v is stabi-
lized, hence MIMO controller.

Simple elevator servo and engine delay are also taken into account as actuators, with
τel = 0.1s and τthr = 2s.

13.1.1 Augmented system construction

Aaug = [A zeros(4,2) B; [0 0 0 1;0 0 1 0] zeros(2,4); [zeros
(2,6) diag([-0.5, -10])]];

Baug = [zeros(6,2); diag([0.5 10])];

13.1.2 Performance index selection

Q = diag([1,1,100,.10,1,1,.01,.01]);
R = diag([0.05,.2]);
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13.1.3 Control gain computation

Klong = lqr(Aaug , Baug , Q, R)

Figure 38: LQR pitch controller with airspeed stabilization
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Figure 39: Longitudinal CAS response to reference
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13.2 Lateral CAS

Roll-angle (bank) CAS, or autopilot, is designed with integrated yaw-damper and side-
slip angle (β) stabilization. Integral action is on β to ensure coordinated turn (β→ 0).

Aileron and rudder servos are not considered for design, but are validated by simu-
lation and are the same as elevator servo (τail = τrud = 0.1s).

13.2.1 Augmented system construction

Aaug = [A zeros(4,1); 1 0 0 0 0];
Baug = [B; 0 0];

13.2.2 Performance index selection

Q = diag([50 1 1 1 2]);
R = diag([1 1]);

13.2.3 Control gain computation

Klong = lqr(Aaug , Baug , Q, R)

Figure 40: LQR roll-angle controller with β stabilization
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Figure 41: Lateral CAS response to reference
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14 Results validation

Figures 42 and 43 show actual test flights performed by Concorde aircraft in FlightGear
simulator and controlled by MATLAB R©/Simulink R©. It’s clear that both longitudinal and
lateral augmented models follow desired references, pitch-angle, and roll-angle respec-
tively.

The designed CAS systems can be used as basis for another stage of control systems,
namely altitude and heading hold, or path following and ILS landing systems.
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Figure 42: Longitudinal control test flight
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Figure 43: Lateral control test flight
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15 Conclusion and further work

The thesis evaluated methods of flight dynamics model identification using frequency
response data, which was basis for the followed control system design of simulated air-
craft.

First, the interconnection between MATLAB R©/Simulink R© and high fidelity simula-
tor FlightGear was implemented. This allowed the real-time flight data acquisition of
selected aircraft, that was later used for flight dynamics model identification.

The identification itself was performed in software called CIFER R©, which exploits
latest advancements in dynamics model identification, particularly of aircraft and rotor-
craft, using frequency response data. The algorithms implemented and evaluated in this
software provide not only great control mechanisms of step-by-step identification process
with every subresult being analyzed and improved if necessary, but also high quality of
final results. This is the main advantage when compared to traditional time-domain sub-
space methods, which are utilized for example in MATLAB R©/Identification Toolbox R©.

The other main advantage of frequency response methods is structured state-space
identification, which allows state-space matrices to be identified with desired structure,
for example known constants and other parameters. This provides greater physical in-
sight into the model being identified, since each aerodynamic derivative and other pa-
rameters can be separately identified and its accuracy analyzed. The comparison of
selected individual aerodynamic parameters with values computed from data inside
FlightGear proved the high accuracy of identified models. Results from CIFER R©were
also compared with results of MATLAB R©/Identification Toolbox R©.

Dynamics models identified using CIFER R© software were later used for control sys-
tem design and implementation. The thesis presented one of the modern MIMO meth-
ods of flight control design, Linear Quadratic Regulator, which uses state-space model
instead of traditional SISO functions.

Using MIMO LQR regulators not only simplifies the design process, where one-loop-
at-a-time approach is replaced with performance index selection, but also allows to achieve
better transient responses with guaranteed stability margins.

The final solution was tested in already mentioned high fidelity simulator and test
flights again proved high quality of achieved results. Even better results could be achieved
with even more advanced flight control systems design methods, e.g. model predictive
controller, dynamic inversion etc. where full flight envelope of aircraft could be explored.

The presented process of aircraft dynamics model identification followed by it’s con-
trol system design and implementation using flight simulator can be used for example as
environment for rapid prototyping. Using other high fidelity simulators available, like
for example X-Plane R© by Laminar Research, which computes aerodynamics of 3D model
in real-time during flight, instead of a-priori known look-up tables like FlightGear, could
be very useful for fast and cheap control system design of a small UAVs. All it takes is
to model the UAV in 3D, put it into X-Plane R©, and perform the identification and control
system design as described in this thesis. This process could produce a prototype that is
ready to fly in real life, or basis for further enhancements.
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