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Abstract

Tato práce se zabývá využitím kamery jako asistivní pomůcky ve speciálním telefonu
pro nevidomé založeném na systému Android a vyvíjeném v rámci Katedry kybernetiky
Českého vysokého učení technického v Praze.

V úvodu diskutuje uplatnění obecných úloh počítačového vidění v oblasti asistivních
technologií pro nevidomé a zrakově postižené. Řeší jak specifické využití kamery (pro
identifikaci objektů, bankovek, čtení textu), tak zpřístupnění základní funkce fotoapa-
rátu a ovládání telefonu jako takového.

V rámci práce je implementovaný nový algoritmus pro rozpoznávání bankovek založený
na BRISK deskriptoru a Gradient Boosted Trees klasifikátoru. Dále je rozebrána im-
plementace přístupného mobilního uživatelského rozhranní k existujícímu rozpoznávači
textu z reálných scén od společnosti Google a implementace jednoduché aplikace umož-
ňující nevidomým a slabozrakým s pomocí telefonu pořizovat fotografie a pracovat s
nimi.

Závěr práce popisuje uživatelské testování se šesti nevidomými a slabozrakými dob-
rovolníky, které v rámci vývoje výše zmíněných aplikací proběhlo. Aplikace vyvíjené
v rámci této práce, se až na některé detaily setkaly u zrakově postižené komunity s
pozitivním přijetím.

Klíčová slova

mobilní technologie; asistivní technologie; počítačové vidění; ocr; rozpoznávání textu;
rozpoznávání bankovek;

vi



Abstract

This thesis deals with the use of a mobile camera as an assistive tool in a special phone
for the blind and visually impaired people, based on the Android system and developed
in the Department of Cybernetics of the Czech Technical University in Prague.

In the introduction, it discusses the applicability of general tasks of computer vision in
the area of assistive technologies for the blind and visually impaired. It deals with both
the specific use of the camera (for identifying objects, banknotes, reading text labels),
as well as accessing the basic functionality of the camera itself.

A novel banknote recognition algorithm based on the BRISK descriptor and the Gra-
dient Boosted Trees Classifier is implemented as a part of this work. Implementation
of an accessible mobile user interface to Google’s existing real-time text recognition
library, as well as the implementation of a simple camera and image gallery application
is also discussed.

The conclusion of this thesis describes the user testing that took place during the
development of the above-mentioned applications. The applications developed as a
part of this thesis were (except for some minor details) received very positively by the
blind community.

Keywords

mobile technologies; assistive technologies; computer vision; ocr; text recognition; ban-
knote recognition

vii



Contents

1. Introduction 1

2. The “Core System” and other mobile accessibility solutions 3
2.1. Characteristic of the Core System . . . . . . . . . . . . . . . . . . . . . . 3
2.2. The TalkBack service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3. Complete solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.1. Kapsys SmartVision2 . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3.2. Claria Vox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.3. Corvus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4. Specialized applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4.1. TapTapSee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4.2. KNFB Reader . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4.3. Darwin Wallet . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3. Specification of Computer Vision tasks relevant for accessibility 10
3.1. Object recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1.1. Segmentation and Object Detection . . . . . . . . . . . . . . . . 10
3.1.2. Single class object recognition . . . . . . . . . . . . . . . . . . . . 11

Template based methods . . . . . . . . . . . . . . . . . . . . . . 12
Feature based methods . . . . . . . . . . . . . . . . . . . . . . . 12
Methods based on convolutional neural networks . . . . . . . . . 12

3.1.3. Multi-class object recognition . . . . . . . . . . . . . . . . . . . . 12
3.2. OCR / Text-in-the-wild recognition[29] . . . . . . . . . . . . . . . . . . . 14

3.2.1. Algorithms based on image binarization . . . . . . . . . . . . . . 14
3.2.2. Algorithms based on edge detection . . . . . . . . . . . . . . . . 15
3.2.3. Sliding window approach . . . . . . . . . . . . . . . . . . . . . . 16
3.2.4. Algorithms based on deep neural networks . . . . . . . . . . . . . 16

4. Banknote recognizer implementation 17
4.1. Functional requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2. Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3. Pre-processing and data augmentation . . . . . . . . . . . . . . . . . . . 17
4.4. Keypoint detection and description . . . . . . . . . . . . . . . . . . . . . 18
4.5. Bag of Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.6. Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.7. Geometric verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.8. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5. OCR implementation 24
5.1. OCR engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.1.1. Google TextRecognizer . . . . . . . . . . . . . . . . . . . . . . . . 24
5.1.2. Microsoft Cognitive - OCR . . . . . . . . . . . . . . . . . . . . . 25
5.1.3. Comparison - summary . . . . . . . . . . . . . . . . . . . . . . . 26

5.2. OCR user interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2.1. Camera/document positioning mode . . . . . . . . . . . . . . . . 27

Confidence score . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Upside-down detection . . . . . . . . . . . . . . . . . . . . . . . . 28

5.2.2. Text reading mode . . . . . . . . . . . . . . . . . . . . . . . . . . 28

viii



5.3. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.4. Examples of recognition results . . . . . . . . . . . . . . . . . . . . . . . 30

6. Camera and gallery application 31
6.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.2. Design of the camera application with assistive features . . . . . . . . . 31
6.3. Assistive features for image capture . . . . . . . . . . . . . . . . . . . . . 31

6.3.1. Face detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.3.2. Tilt detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.4. Labeling and saving of the image . . . . . . . . . . . . . . . . . . . . . . 33
6.4.1. Blur detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.4.2. Support for image recognition . . . . . . . . . . . . . . . . . . . . 33

Microsoft Cognitive API . . . . . . . . . . . . . . . . . . . . . . . 34
CloudSight API . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.4.3. Voice captioning . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Recording . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Encoding and storage . . . . . . . . . . . . . . . . . . . . . . . . 36
Other metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.5. Design of an image gallery application with assistive features . . . . . . 36
6.5.1. Browsing all images . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.5.2. Browsing by category . . . . . . . . . . . . . . . . . . . . . . . . 37
6.5.3. Browsing by date . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.5.4. Low-vision filters . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7. Testing 40
7.1. Pre-test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.2. Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7.2.1. Text recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.2.2. Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.2.3. Pictures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.2.4. Banknotes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7.3. Post-test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.4. Important findings of the testing . . . . . . . . . . . . . . . . . . . . . . 43

7.4.1. Text recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.4.2. Camera and images . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.4.3. Banknotes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.4.4. General findings . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7.5. Testing summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

8. Technical details 45
8.1. Technologies behind the Core System . . . . . . . . . . . . . . . . . . . . 45
8.2. Modules implemented as a part of this thesis . . . . . . . . . . . . . . . 45

8.2.1. The Banknote recognition engine . . . . . . . . . . . . . . . . . . 45
8.3. Text Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
8.4. Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
8.5. A list of third-party libraries used . . . . . . . . . . . . . . . . . . . . . . 46

9. Conclusion 47

Appendices

ix



A. Testing results 50
A.1. Pre-test questionnaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
A.2. Post-test questionnaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

A.2.1. Subject M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
A.2.2. Subject P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
A.2.3. Subject H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
A.2.4. Subject V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
A.2.5. Subject S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
A.2.6. Subject R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

B. Content of the enclosed CD 53

Bibliography 54

x



1. Introduction

During the last decade, smart mobile technologies have become prevalent in everyday
lives of ordinary people in developed countries as well as emerging nations. According
to [1], the penetration of smartphones in growing in both developed and developing
countries is estimated to be 68% and 43% respectively. The Figure 1 documents the
spread of cellphones and the ratio of “smart” and “basic” phones in different areas of
the world. So-called “smart” mobile devices are not only being used for communication.
In general, many people tend to use smartphones to perform tasks that could only be
performed on workstations and laptops in the past.

This work focuses on the usage of smartphones by blind and low vision people.

Blindness is the inability to see. The leading causes of chronic blindness include
cataract, glaucoma, age-related macular degeneration, corneal opacities, diabetic retinopa-
thy, trachoma, and eye conditions in children (e.g. caused by vitamin A deficiency).
Age-related blindness is increasing throughout the world, as is blindness due to uncon-
trolled diabetes. On the other hand, blindness caused by infection is decreasing, as
a result of public health action. Three-quarters of all blindness can be prevented or
treated. [2]

The World Health Organization (WHO) estimates that there are 285 million inhabitants
with severe and uncorrectable vision issues, 39 million of which are legally blind [3].

While medicine cannot restore the sight of all people suffering from vision loss, assistive
technologies can help them with their everyday tasks and improve their quality of life.

Figure 1. Regional medians of adults who report owning a smartphone/cellphone. [1]
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1. Introduction

Figure 2. Blindness and low-vision prevalence in the world (thousands per million of inhabi-
tants).[4]

By their nature, modern smartphones represent significant challenges to people with
disabilities of this kind. As of 2017, smartphones with a hardware keyboard are al-
most nonexistent [5]. Touchscreen display and visually oriented user interface represent
substantial obstacles, which is one of the reasons, why the blind and visually impaired
community is more conservative than the general population in accepting these devices.
For example in the Czech Republic, many blind people still use modified legacy Nokia
phones as their primary communication devices.

The application developed as a part of diploma thesis by Petr Svobodník from Czech
Technical University[6] represents an attempt to make popular Android-based smart-
phones accessible to people with serious vision loss. The solution presented in this work
is designed to be a part of a system that was built upon the application (from now on
called the Core System) and shares the same style of control with this system.

While the user interface of standard touchscreen smartphones presents a challenge to
disabled people, increasing computational and storage capacity of mobile devices, as
well as growing speeds and coverage of mobile Internet, provide unique possibilities
for the use of cell phones as universal assistive devices. It is also important to realize
that most people tend to carry their smartphones with them most of the times, so the
accessibility tools integrated into those phones are more readily available than dedicated
tools (i.e. color recognition devices, text reading devices).

This work focuses on assistive features that use the camera of the phone as their input,
as well as on making the camera function itself accessible to users who are interested
in using it to share images of the world around them with sighted people. It builds on
existing work by Jan Pechan[7], who attempted to extend the Core System with some
camera-based assistive features: namely banknote recognition and color indicator. The
banknote recognition algorithm will also be revisited and improved as a part of this
thesis in Chapter 4.
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2. The “Core System” and other mobile
accessibility solutions

This chapter discusses the design philosophy of the Core System and compares it to
other mobile accessibility solutions based on Android. Like said in the introduction,
the development of the the Core System started as a Master thesis of Petr Svobodník
[6]. The basic design philosophy directly influences the design of user interface of
accessibility tools suggested in this thesis. Some other contemporary systems mobile
accessibility systems will be discussed for reference.

2.1. Characteristic of the Core System

The core philosophy of the Core System is to provide a user interface tailored to the
target user group. Therefore, the user interface is very simplistic, minimalistic and
even crude for conventional standards. No graphical elements are used at all, as the
assumption is that the user utilizes mostly the sound feedback for orientation. Most of
the time, the phone running the Core System only displays a short textual label in big
font, which signifies current option in the menu.

The target hardware phone is a pure touchscreen phone; it only has three physical
buttons (power + volume rocker). The use of these buttons is same as in other Android
phones. All navigation in the menu is done using gestures performed on the touch
screen. The whole structure of the phone user interface is a directed graph (almost a
tree, with some exceptions). An excerpt of this menu structure is depicted in Figure 3.

The navigation in this menu is achieved using four touch screen gestures:
∙ tap in the left half of the screen (previous item in the list)
∙ tap in the right half of the screen (next item in the list)
∙ long press anywhere (next level of the menu tree)
∙ long press with two fingers (previous level of the menu tree)

During the navigation in the menu, the label of the current item and its position in
the menu is announced (for example “Messages, two of nine”). It is very important to
choose short and apt captions and, in the case of longer announcements, announce the
most important points in the beginning, as more proficient users will choose to skip the
announcement at any time (the voice output is interrupted by any action user makes).

Text input is achieved using a touchscreen keyboard with voice feedback, as well as
dictation input. An example of the user interface is shown in Figure 4.

The style of control should be consistent over the whole phone UI and the accessibility
tools suggested in this thesis incorporate it. The Core System also supports third-party
Android applications integrated via standard Android accessibility framework. Same
gestures are used for native Android applications, which makes the control of them

3



2. The “Core System” and other mobile accessibility solutions

Call
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Delete contact
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Name
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Music player

Internet radio

Banknote recognition

Color indicator

Magnifier

Figure 3. A short excerpt of first few levels the menu in the Core System

Figure 4. An example of the UI screens used in the Core System

somewhat more consistent with the Core System, albeit the very different nature of
Android applications does not allow for perfect consistency in control.

The the Core System runs on dedicated low-end hardware with following parameters:
∙ SoC with a quad-core ARMv7 CPU - MT6580
∙ 512 MB of RAM + 256 MB SWAP
∙ 2+2 GB of flash storage (user + system)
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2.2. The TalkBack service

∙ Android 5.1
∙ 3G (UMTS, HSPA, HSPA+) connection
∙ WiFi

All accessibility tools developed as a part of this thesis are supposed to run smoothly
on this relatively constrained device.

The greatest advantage of the Core System is the specialized user interface. The main
weakness is that only one device is supported and the device is rather low-end. Also, the
support for third party applications is limited. Users are expected to use applications
that are built in the Core System most of the time.

2.2. The TalkBack service

The TalkBack service is the standard way of making Android-powered touchscreen
phones accessible. The strong point of this accessibility solution is that it is offered
free of charge (often comes pre-installed on the phone already), it is open-source[8], and
together with Android accessibility framework[9] (which is part of the standard Android
system library[10]), it can make any compliant third party application accessible.

Like the Core System, TalkBack uses gestures for navigation. It is, however, way more
complex to use. It uses a virtual cursor which designates the UI element which is
currently active. This cursor can either be linearly moved over the component tree
(in a heuristic order) by gestures (similar to the Core System) or can be “dragged” by
user’s finger while the description of what’s under the cursor is announced (so-called
“explore by touch” mode).

TalkBack uses substantially more gestures than the Core System for navigation:

∙ slide left to right - move cursor forward
∙ slide right to left - move cursor backward
∙ slide top to bottom - increase reading granularity (characters - words - lines -

paragraphs)
∙ slide bottom to top - decrease reading granularity
∙ double tap - activate current item
∙ dragging top-down + left-right - global context menu
∙ dragging down-top + left-right - local context menu
∙ dragging top-down + right-left - go back
∙ dragging down-top + right-left - main screen
∙ dragging right-left + bottom-top - last applications
∙ drawing V on the screen - go to the last item in the list
∙ drawing an upside-down V on the screen - go to the first item in the list
∙ dragging two fingers from top edge of the screen to bottom - display Android

notification shade
∙ dragging two fingers from the middle of the screen to bottom or top - scroll up or

down (text, list, . . . )
∙ tap once and hold - perform long press on current item

The global context menu contains more options like (“read all text”, “spell the last
utterance” or “text-to-speech settings”). The local context menu items can be populated

5



2. The “Core System” and other mobile accessibility solutions

Figure 5. Examples of graphically-oriented user interface: Google Play, Spotify, Youtube

by the application to provide shortcuts relevant to accessibility (i.e. navigation by
headings in a web browser).

TalkBack uses the standard Android keyboard. Default Android keyboards have sup-
port for accessibility and will announce letters currently below user’s finger. The letter
is input by releasing the finger.

TalkBack only focuses on application accessibility. It does not provide any assistive
technology (like OCR - text recognition), nor it provides a text-to-speech service. These
have to be installed separately. TalkBack comes with a tutorial that explains the
gestures and allows a new user to practice the operation of their phone.

While the best solution for making a native application accessible, it has several serious
drawbacks:

1. even though TalkBack should make all applications accessible, many applications
are not usable due to sloppiness of their developers (lack of text labels, custom
widgets and gestures) or due to their nature (e.g. most games)

2. users find the system of gestures too complex to learn and remember
3. most modern applications are visually oriented and use layouts that are complex

and change during their use, which makes non-visual orientation extremely chal-
lenging (see Figure 5)

4. standard keyboard with voice feedback is not very convenient to use, especially
for beginners

2.3. Complete solutions

2.3.1. Kapsys SmartVision2

SmartVision2 is a commercial solution by a company called Kapsys[11], which is built
upon Android 6 and is being sold on dedicated devices. Unlike the Core System, it works
with the standard Android interface. It has a physical keyboard of classic design, and
its control philosophy builds upon TalkBack. The presence of the physical keyboard,
however, simplifies navigation and control of Android applications to some extent.
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2.4. Specialized applications

As for Accessibility tools, it comes with Color detector, Light detector, digital Magnifier
and an off-line photo OCR (which unfortunately seemed to be defunct on a sample
borrowed for the purpose of this thesis). It also offers NFC interface for daily objects
tagging and recognition.

2.3.2. Claria Vox

Claria Vox was another commercial solution developed by a company called Claria[12].
During the writing of this thesis, the company went out of business. Claria Vox at-
tempted to simulate a physical keyboard with a grid rubber overlay placed over a
standard touchscreen. It had a custom user interface with support for Android appli-
cations vocalized by standard TalkBack. Unlike other solutions controlled by gestures,
Claria Vox has a menu with numbered options. To select an option, one presses a
corresponding number on the keyboard grid.

Claria Vox came with some vision aids; Camera and gallery (with face detection and
photo tagging as an assistive feature), off-line OCR (German, French, English, Spanish,
Italian and Dutch), barcode scanner with product search and illumination level detec-
tion. A version of Claria for low-vision users, called Claria Zoom, can be downloaded
free-of-charge on Google Play. While using a different interface, it contains the same
vision aids present in Claria Vox. A brief test done as a part of this work suggest that
the OCR function in Claria fails to handle with reasonable accuracy even relatively
simple scenes presented in Chapter 5.

2.3.3. Corvus

Corvus[13] is a self-proclaimed “accessible kit” (sic!) for Android developed by a Slovak
company Stopka. It is an application that can be purchased and installed on any
phone with Android. Phones with pre-installed Corvus can also be purchased. A demo
version limited for 10 minutes is available from the company website. Corvus has a
custom, gesture-operated user interfaces with high-contrast text and graphics. It also
has a screen-reader that integrates to Android similarly to TalkBack, using its custom
gestures.

The philosophy of Corvus is rather similar to the Core System, but the system of
gestures is significantly more complex. Accessibility tools in Corvus include a light
detector and QR code reader, which is intended for tagging of daily objects.

2.4. Specialized applications

2.4.1. TapTapSee

TapTapSee[14] by CamFind Inc. is probably the best known assistive application for
object recognition. It uses a combination of object recognition, machine translation,
photo-OCR and human annotators to extract information from an image. Originally,
the application would only allow for limited number of recognition attempts and then
require user to buy credits. As of 2017, this limitation seems to be lifted and the
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2. The “Core System” and other mobile accessibility solutions

Figure 6. Commercial Android accessibility solutions. Left to right: Kapsys SmartVision2,
Claria Vox and Corvus

application can be used free of charge, without any explicitly stated limits (there is
probably still some kind of fair-user-policy on the number of recognitions performed).

TapTapSee is an on-line solution and cannot work without Internet connection. Main
drawback of this application is that the recognition is very slow. In some cases, it may
take more than 30 seconds.

2.4.2. KNFB Reader

KNFB Reader is an commercial OCR application by Sensotec[15]. It is primarily in-
tended as an assistive tool (accessibility of the application interface itself is mediated
by the TalkBack service). It uses a well-know state-of-the-art OCR engine developed
by a Russian company called ABBY[59]. The application is offered free-of-charge, but
the number of recognitions is limited to 25 pages in the trial mode.

KNFB Reader is mostly intended to handle classical paper documents or books. How-
ever, it can handle some more complicated scenarios too. The most important advan-
tage of this solution is that it is able to work without Internet connection. The most
important drawback is the price for full version which, as of 2017, was about 100 Euro.

2.4.3. Darwin Wallet

Darwin Wallet is an open-source (GPL) banknote recognition application for Android,
primarily intended as an assistive tool. Banknote recognition is very important in case
of currencies where values cannot be distinguished using banknote dimensions, like US
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2.4. Specialized applications

Figure 7. Examples of specialized accessibility tools: TapTapSee, KNFB Reader and Darwin
Wallet

dollars.

Darwin Wallet supports US and Australian dollars, British pounds, Euros, Russian and
Belarusian rubles, Georgian laris and Ukrainian hryvnias.

From the technical point, it uses OpenCV[16] library, Oriented BRIEF[17] detector/de-
scriptor and K-NN based tentative matching. A (potentially) banknote image is clas-
sified according to maximal relative number of matches to each of the templates in the
database. There is no feature weighting or geometry verification. There is only one
sample of each of the banknotes. The algorithm is reminiscent of implementation intro-
duced in [7], but it is written in native C++ instead of Java, which improves real-time
performance.
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3. Specification of Computer Vision tasks
relevant for accessibility

In the previous chapter, we have discussed few existing applications and solutions, some
of them incorporating computer vision algorithms. This chapter discusses possible uses
of general computer vision algorithms and techniques in assistive features.

3.1. Object recognition

The object recognition problem has been one of the central problems in the Computer
Vision field. The goal of an object recognition algorithm is to distinguish and identify
objects in images or video sequences. While humans can recognize objects in images
with very little effort, in most cases at least, this task is one of the hardest ones in the
computer vision field. The reason for this task to be problematic is that a complex
three-dimensional object can look very different when projected on a two-dimensional
plane from different angles or distances. In the real world, objects are often partially
occluded, and there is a multitude of objects present in a single image.

While very complex, general object recognition only has limited applicability as assistive
technology. Most objects of daily life can be more easily and reliably distinguished by
touch or other non-visual clues when physically available to a visually impaired person.
General object or scene recognition algorithm can, however, be a useful tool when a
blind person is faced with the task of identifying an unknown digital image.

There are three basic sub-problems of object detection and recognition, sorted by their
difficulty:

1. segmentation and object detection
2. single class object recognition
3. multi-class object recognition

3.1.1. Segmentation and Object Detection

The goal of segmentation is to partition an image into multiple (usually either disjoint
or hierarchical) sets of pixels.[18] The reason why segmentation is done is to simplify
the image for further processing. There are many different approaches to segmentation,
only the most popular will be mentioned in this thesis:

∙ segmentation by pixel color alone (local and global thresholding, k-means segmen-
tation)

∙ segmentation by pixel color inter-pixel measures (Huttenlocher-Felzenszwalb method
[19], watershed algorithm)

∙ using edge detection (Canny edge detector [20], some heuristics to produce closed
edges can be if needed)
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3.1. Object recognition

Figure 8. Examples of segmentation and other filters for “image enhancement” intended for
low-vision users.[24]

∙ using a convolutional neural network [21]

∙ semi-automatic segmentation (Grab-cut [22], SIOX [23])

A good application of segmentation related to accessibility is a low-vision filter (image
“enhancement”). An overview of image processing methods used for low-vision is avail-
able in [24]. A particular implementation is discussed in [25]. Figure 8 shows examples
of such image filters.

Segmentation can be used to partition and simplify the scene and enhance the mutual
contrast between segments to improve perception by people with severe vision loss.
Simpler methods like edge detection seem to give quite good results in this particular
tasks as the segmentation need not be perfect for human interpretation.

3.1.2. Single class object recognition

The goal of single class object recognition is to recognize a single dominant object
present in the image. As with segmentation, there are multiple approaches. The lim-
itation of single class object recognition is that the accuracy of recognition can be
negatively impacted by other objects present in the image (in some cases, it is even
clear which is the primary object).

There are three basic approaches to single class object recognition:
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3. Specification of Computer Vision tasks relevant for accessibility

Template based methods

These methods are based on a similarity between an example image from a database
(having a known class) and image patch extracted from the image being recognized
(possibly by sliding window technique).

Greyscale matching and gradient matching are the simplest methods that use cross-
correlation measure on greyscale or gradient images to decide whether a window cut
out of a picture matches the template or not.

More sophisticated methods are eigenfaces (PCA) and fisherfaces (LDA), which are
popular for face recognition.

The most important advantage of template based methods is their holistic approach
and robustness to illumination changes, local occlusions and defects. The disadvantage
is that that methods based on templates are not very robust to deformations.

Feature based methods

These methods are based on features that are apriori extracted from the image being
classified. Each feature is represented by a point within the image and some descriptor,
which is usually a float or binary high dimensionality vector. The trained database
consists of a list of key points and their descriptors, which is kept for every image in
the database.

A simple pipeline for feature a based method is depicted on Figure 9.

For larger databases, this basic pipeline is usually modified (mostly for performance
but also for other reasons, like feature weighting) and extended to adopt so-called Bag-
of-words model.

Methods based on convolutional neural networks

Single class image classification was one of the first problems successfully tackled by
convolutional neural networks. In particular, the Caffe framework[26] is one of the very
successful libraries pioneering single-class recognition by a neural architecture in the
ImageNet Large Scale Visual Recognition Challenge.[27] It is an open-source solution,
including the training parameters and the pre-trained network for image recognition.
The Figure 10 shows an example of recognition results produced by Caffe.

3.1.3. Multi-class object recognition

The goal of multi-class object recognition is to extract more complex description from
the image. The task is arguably much harder than single-class object recognition, but
the results are more useful in the context of assistive technology. The usual goal is to
obtain a caption describing the image in plain words a human annotator might have
written.

One of the recently published state-of-the-art methods for multi-class object recognition
is “Show, Attend and Tell”[28]. It uses so-called “attention” based framework to focus
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3.1. Object recognition

input image

feature extraction

descriptor computation

more images in the db?

take next untested image

no object found
no

tentatively match descriptors

geometric verification

enough confidence?

no

object classified

yes

Figure 9. A flow-chart of a simple feature based single class recognition method.

Figure 10. Single class object recognition: Caffe[26] on-line demo classification results of a
detailed image of the dog of the author of this thesis. It’s remarkable that Caffe was able to
give a sensible classification even though the image is not a very typical image of a dog.
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3. Specification of Computer Vision tasks relevant for accessibility

Figure 11. An infographic from [28] illustrating the basics of so called “attention” framework
for multi-class recognition.

on important parts of the image. Much in the same way human vision fixates when
you perceive a scene, the model learns to “attend” to selective regions while generating
a description. This “attention” part is done using recurrent neural network and a word
generator generates the final caption.

3.2. OCR / Text-in-the-wild recognition[29]

The problem of text-in-the-wild recognition, also known as photo-OCR or real-scene
text recognition, is a challenging problem of computer vision. There are specific issues
in text-in-the wild recognition that make it more difficult than recognition of printed
documents, which is considered to be a virtually solved problem.

The application of OCR for mobile accessibility is difficulty-wise somewhere between
traditional document OCR and full-blown unconstrained text-in-the-wild recognition.
While a mobile camera shot of a daily object or document with texts to be recognized
is generally simpler than complex images of texts present in the street or similar envi-
ronment, it is still significantly more challenging than a traditional document scanned
under controlled conditions.

Common typographical conventions present in printed documents are often ignored in
product labels and less formal “documents” which complicates the process of text-line
estimation and decision about word boundaries. Geometric distortions caused by a
camera photographing labels from various angles are present, as well as distortions
introduced by the camera lens itself. A real-scene photograph features various illumi-
nation conditions, which furthermore complicates the matter.

Traditionally, a photo-OCR system is a cascade or “pipeline” of several components.
Each component performs an isolated part of the task. There may be feedback loops
feeding back the information obtained at later stages to the previous stages to further
refine precision of the system.

3.2.1. Algorithms based on image binarization

The key advantage of a method based on image binarization is that scale invariance
is easy to achieve because textual regions of all scales and rotations can be extracted
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3.2. OCR / Text-in-the-wild recognition[29]

input image

text region detection or segmentation

text-line hypotheses forming classification of characters

final output formation, language model

recognized text regions

Figure 12. A traditional OCR pipeline. Most successful solutions have feedback loops (dashed)
that allow refinement of previous steps in the cascade based on the succeeding steps (i.e.
refinement of text-line hypotheses based on character classification).

from an image in a single pass. The main disadvantage is that this process produces
a set of connected components (blobs) and ignores any relations between these blobs
completely.

The binarization technique in this context is usually some kind of thresholding, either
global or local, or more sophisticated thresholding methods (which need not to produce
disjoint results), like MSER [18].

In practice, it means that if a glyph consists of more blobs, it is necessary to relate
them somehow, and if any of them can get lost during the process of binarization, it is
impossible to recover it without a complementary method. The method is dependent on
the fact that most of the letter regions consist of areas having uniform color (single-color
ink) and may have problems with textured letters or backgrounds.

A good example of an algorithm based on image binarization, in particular, an MSER
modification called CSER, is the TextSpotter algorithm developed by Matas and Neu-
mann from the Czech Technical University [30].

3.2.2. Algorithms based on edge detection

Methods exploiting edge detection are based on the assumption that a relatively steep
image gradient is present on borders of letters and numerals. Such gradient can be
detected by a standard edge detector (e.g. Canny). The most prominent method
utilizing the edge detection is the Stroke Width Transform described in [31]. The final
output of this method is a set of connected components, similar to methods based
on image binarization, however, the blobs are not obtained directly. A sophisticated
algorithm utilizing the notion of Stroke Width consistency is used to transform the
edges into component components.

This method is more robust to textured ink and background than image binarization.
It performs poorly on blurred glyphs because they are not featuring significant edges to
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3. Specification of Computer Vision tasks relevant for accessibility

separate a glyph from its background. Also, the SWT may fail in some outlined fonts
because it has difficulties to distinguish between a glyph itself and its outline.

3.2.3. Sliding window approach

Sliding windows have been utilized in several works, e.g. [32]. Sliding window de-
tectors have an advantage of being potentially more robust in situations that involve
connectivity defects than the methods mentioned above.

Letters may contain defects resulting that an originally single-component glyph can
be split into multiple connected components. Such letters will not be extracted by an
image binarization technique as a single object (unless some explicit post-processing
technique to merge such letters is used). The technique of sliding windows can directly
extract multi-component letters, which simplifies their further processing.

3.2.4. Algorithms based on deep neural networks

According to ICDAR 2015 Robust Reading Competition[33], which is one of the best
available benchmarks to compare photo-OCR methods, the most successful modern
photo-OCR methods are based on neural architectures [34] [35] [36].

These methods differ in exact details, and detailed description is beyond the scope of
this thesis. Some of them use traditional approaches like binarization as the first step
for text detection (e.g. the method TextRecognizer more described in section 5.1.1
seems to be doing it to improve real-time performance).

Some of them are fully neural architectures, end-to-end, these tend to be much slower,
but more robust to multiple connected component problem mentioned above. These
architectures also require arguably less hand-tuning, given enough annotated data suit-
able for training is available (which may be a great obstacle for smaller research teams).
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4. Banknote recognizer implementation

As a part of this thesis, an algorithm for banknote recognition has been developed. The
goal of this algorithm is to recognize values of paper banknotes presented to the phone
camera. The procedure should be robust, and training of new banknote sets should be
a quick and easy task not requiring the developer to be an expert in machine learning.

4.1. Functional requirements

Let’s define formal requirements for the banknote recognition solution:
∙ reliability, especially low number of false classifications
∙ off-line operation
∙ compactness of the database
∙ low runtime speed and memory consumption
∙ high robustness to lighting conditions

The algorithm has the following input and output:

Input: A sequence of images from the phone camera that might contain a banknote.
Output: Value of the recognized banknote or rejection (= don’t know).

The algorithm itself is presented to a user as a continuous camera capturing activity,
which is interrupted once a banknote is detected and recognized.

Conceptually, a modification of a traditional computer vision feature-based approach
described in 3.1.2 was used.

4.2. Dataset

The dataset for one currency consists of a complete set of scanned banknotes, both
front and back sides are used. Since it should be possible to add new datasets easily,
only a single exemplary of each banknote is used. To address the problem of proper
classifier training, a data augmentation technique is used. The goal is to synthesize
more examples of each banknote.

4.3. Pre-processing and data augmentation

The original input data are high-quality flatbed scanner images of banknotes, properly
cropped with serial numbers blurred. Then, they are downscaled to 750 px width.
Such examples are ideal compared to real-life banknote snapshots. Therefore a richer
training material to better represent real-life examples was needed.
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4. Banknote recognizer implementation

Figure 13. Original 10 Euro banknote scan and 5 synthesized views selected from the dataset
used for training.

Before the training, the data set is augmented by applying a random homography to
the image.

H0 =

⎡⎢⎣1 0 0
0 1 0
0 0 1

⎤⎥⎦ +

⎡⎢⎣𝑅11 𝑅12 𝑅13
𝑅21 𝑅22 𝑅23
𝑅31 𝑅32 𝑅33

⎤⎥⎦
Where 𝑅𝑖𝑗 are random floats from range (−0.01, 0.01).

Random translations in 𝑥 and 𝑦 are then added:

𝑡𝑥 = 𝑤

2 + 𝑞𝑤

𝑡𝑦 = ℎ

2 + 𝑞ℎ

H =

⎡⎢⎣1 0 𝑡𝑥

0 1 𝑡𝑦

0 0 1

⎤⎥⎦ · H0 ·

⎡⎢⎣1 0 −𝑡𝑥

0 1 −𝑡𝑦

0 0 1

⎤⎥⎦
Matrix H is the final homography used to transform the image (OpenCV implemen-
tation warpPerspective) is used. Image width and image height in pixels are de-
noted by 𝑤 and ℎ respectively. Numbers 𝑞𝑤 and 𝑞ℎ are random floats from interval
(−150, 150). Figure 13 shows the original 10 Euro banknote scan and few augmented
training samples.

For each banknote, 40 different views were synthesized, 20 for each side. For Euro
banknotes, this gives the dataset size of total 8 × 40 = 320 training images (values 5,
10, 20, 50 and 100 were used; 10 and 20 and 50 comes with two graphically different
versions).

4.4. Keypoint detection and description

After some experiments, the BRISK[37] algorithm was chosen as the best balance be-
tween computation and storage requirements of the descriptors vs. robustness and
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4.5. Bag of Words

Figure 14. Detected keypoints on few training samples.

repeatability. Some experiments with SURF[38] algorithm were made, however, high
storage and CPU demands out-weighted the reliability improvements, that were rela-
tively negligible in practice.

Another advantage of BRISK is that it is a patent-free algorithm, so a software con-
taining this algorithm can be freely used even in countries where software patents are
recognized (e.g. The United States).

After some experimentation, the best parameters for BRISK detection were determined
to be 𝑡 = 10, 𝑛 = 5, 𝑝 = 1 (t ∼ threshold, n ∼ number of octaves and p ∼ pattern
scale).

The neighborhood around each of the key points is described using a standard BRISK
descriptor, which is a binary (512-bit long vector) descriptor. The similarity between
two descriptors is computed simply as a Hamming distance.

4.5. Bag of Words

After performing data augmentation and computing the keypoints and descriptors for
each of the training images, we end up with a database of 320 images, together con-
taining about 200 000 key points, each key point having a 512-bit long feature vector.
This is a relatively large amount of data for processing on a mobile phone, especially
when near real-time processing is the goal.

Since it would be computationally prohibitive to implement exhaustive tentative match-
ing between an image to be classified and all images in the dataset, a bag-of-words
approach was chosen. As a desirable side-effect, this approach also helps to distinguish
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4. Banknote recognizer implementation

Figure 15. The graph of the change of k-medians error dependent on iteration (sum of Ham-
ming distances from respective centroids)

meaningful features from meaningless also (since we are doing classification here and
banknotes generally contain some similar graphical elements).

The problem with binary descriptors in the context of the Bag of Words technique
is that (unlike for real-valued vectors) no well-established technique exists to learn the
codebook from the training database of binary vectors. This is not an easy task because
the problem of finding a median string is NP-complete[39].

After some investigation, a generalized approximate string median algorithm[40], namely
the implementation presented in [41] was used. Although a more time-efficient algo-
rithm for approximate binary string median most likely exists, the codebook is only
computed once and ahead of time (and a standard computer can be used), usage of a
general string median algorithm is acceptable for this purpose.

The codebook was then computed using a k-medians algorithm with the k-means++
initialization[42] that was customized to work with Hamming distance instead of the
standard L2 distance. The final number of codewords used was 400, which was deter-
mined experimentally (a higher number of codewords did not seem to change the final
accuracy very much). The progress of error during algorithm iterations is shown on
Figure 15.
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4.6. Classification

4.6. Classification

After the codewords are obtained, the whole database is encoded using those codewords.
Each training image 𝑖 is then represented as an integer-valued vector x𝑖 of length 400
(number of codewords) and the class label 𝑦𝑖.

The classifier of choice for this problem was a Gradient Boosted Tree Forrest[43] model.

Similar to AdaBoost[44], this classifier iteratively builds a strong classifier from an
ensemble of weak ones, minimizing an internal error estimate (loss function). In this
case, the weak classifiers are fixed-height decision trees. The main advantage of this
kind of classifier is that it estimates a metric internally, so it does not depend on the
variable scale like other popular methods. Since we expect the variables to vary a lot in
their discriminative power, the problem of scaling and metric is something important
to avoid.

Some other classifiers, like Random Forests [45], SVM[46] and Multi-class Adaboost[47]
have also been briefly tested, but Gradient Boosted Trees proved to be the most success-
ful and relatively easy to train. The implementation GBTrees from OpenCV[16] was
used. The classic TF-IDF heuristic[48] was also tried, but the accuracy was relatively
low.

The Gradient Boosted Trees Forest has the following parameters:
∙ shrinkage (regularization parameter) - the value 0.08 was chosen using 5-fold cross-

validation, see Figure 16
∙ number of trees - the chosen value was 300 (the more trees, the more expressive

and the more likely overfit model will be produced)
∙ loss function - for a classification problem, the standard loss function to use is

cross-entropy (deviance) loss. 𝐾 such functions are build, one function for each
output class. The final function is

𝐿(𝑦, 𝑓1(𝑥), ..., 𝑓𝐾(𝑥)) = −
𝐾∑︁

𝑘=0
1(𝑦 = 𝑘) ln 𝑝𝑘(𝑥)

where
𝑝𝑘(𝑥) = exp 𝑓𝑘(𝑥)∑︀𝐾

𝑖=1 exp 𝑓𝑖(𝑥)
is the estimation of the probability of 𝑦 = 𝑘[16].

∙ maximum depth of a single week classifier tree - the default value 3 was used here

The final error of the classifier on real-world data taken by the phone camera was 7.8%.

4.7. Geometric verification

To further improve resilience to false classification and to implement rejection decision,
another step in the algorithm was added - geometric verification, which is done via
RANSAC[49] homography estimation.

From the classification step, we have the most likely class. Since each class corresponds
to a single image scan, it is possible to estimate a homography mapping between the
camera image and banknote prototype.
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4. Banknote recognizer implementation

Figure 16. The graph of cross-validation error dependent on shrinkage parameter.

We assume that a banknote is more or less a plane and we want to find a homography
that maps key points from the camera image on the key points of the template image.

We are looking for a homography matrix H between inlier points in the camera image
(𝑥′

𝑖,𝑦′
𝑖) and the points in the corresponding candidate template identified by the classifier

(𝑥𝑖,𝑦𝑖):

𝑢𝑖 ·

⎡⎢⎣𝑥′
𝑖

𝑦′
𝑖

1

⎤⎥⎦ ∼ H

⎡⎢⎣𝑥𝑖

𝑦𝑖

1

⎤⎥⎦
so that the back-projection error is minimal[16]:

argmin
𝐻

∑︁
𝑖∈inliers

(︂
𝑥′

𝑖 − ℎ11𝑥𝑖 + ℎ12𝑦𝑖 + ℎ13
ℎ31𝑥𝑖 + ℎ32𝑦𝑖 + ℎ33

)︂2
+

(︂
𝑦′

𝑖 − ℎ21𝑥𝑖 + ℎ22𝑦𝑖 + ℎ23
ℎ31𝑥𝑖 + ℎ32𝑦𝑖 + ℎ33

)︂2

For homography computation, tentative correspondences are needed. These are found
using the simple “brute force” matcher implemented in OpenCV. As only a single
matching between two images is done, this is acceptable.

The threshold for RANSAC outliers is chosen to be 20 pixels, which would be extremely
permissive in other CV tasks, but here we expect (but don’t explicitly correct) lens
distortion slight bending of the banknote itself, so this high threshold was chosen to
accommodate for this.
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4.8. Results

The RANSAC algorithm provides us with the matrix H and a list of key point in-
liers. The final decision (whether we indeed see a banknote or not) is made using few
heuristics:

1. Some absolute number of tentative correspondences is always needed to
compute homography reliably. We require at least 20 here. If less is present, we
do not even attempt RANSAC and the image is rejected as non-banknote.

2. Given the hypothetical H returned by RANSAC, we can compute the relative
area of the picture the banknote occupies. The banknote must not be extremely
small or extremely close. Only banknotes that occupy between 20% and 150%
of the image are considered plausible. Results outside of this range are rejected
as non-banknotes.

3. The absolute number of inliers must not be too low. If it is borderline (less
than 8 points, where 4 points are the absolute minimum for homography), the
image is rejected as non-banknote.

4. The relative number of inliers must not be too low. We require that at least
10% of the tentative correspondences be inliners. Else the image is rejected
as non-banknote.

4.8. Results

The algorithm was tested on a dataset consisting of real pictures of Euro banknotes
taken by the camera of the Core System.

The testing dataset contained the following classes 5A0, 5B0, 10A0, 10A1, 10B0, 10B1,
20A0, 20A1, 20B0, 20B1, 50A0, 50A1, 50B0, 50B1, 100A0, 100B0, nothing. Each
banknote class was included five times, in different angle and lighting conditions. The
banknotes used for testing were physically different from those used for training. 10
images of non-banknotes were also included in the dataset. This results in total 90
testing banknotes.

correctly classified banknote 86.25% 68
correctly rejected non-banknote 100% 10
incorrectly rejected banknote 13.3% 11
incorrectly classified banknote 1.1% 1
total 100% 90
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5. OCR implementation

This chapter describes the implementation of the text recognition feature for the Core
System.

5.1. OCR engines

Since implementation of a high quality OCR engine is beyond the scope of this thesis,
two off-the shelf photo OCR engines were selected: TextRecognizer from Google Play
Services and a OCR cloud service, which is a part of Microsoft Cognitive Services. An
attempt was made to combine the strengths and weaknesses of those two off-the-shelf
solution.

The goal of an OCR engine is to take an image from the camera and return a list of
labeled bounding boxes that correspond to detected text hierarchy (words / lines /
paragraphs). The bounding boxes should preferably contain some confidence measure
to give some hint for further processing.

5.1.1. Google TextRecognizer

Google TextRecognizer is an off-line OCR engine for Android operating system. It’s
designed to give almost real-time performance while maintaining reasonable accuracy.
The original algorithm behind TextRecognizer was developed by a company called
Quest Visual and made public in their Android application called WordLens[50], which
provided an augmented reality translator. Quest Visual was later acquired by Google,
who made the algorithm available free of charge on every device that has Google Play
Services installed, which includes the Core System.

The exact algorithms behind TextRecognizer are trade secret, but an informed guess
can be made about the choice of internal algorithms.

A brief look at the disassembly of the binary libocr.so, which is included with
Google Play Services package and is responsible for the OCR, suggests that the image
is segmented by some kind of binarization algorithm (namely the adaptive Sauvola and
global Otsu methods seem to be used) prior as the first stage of the OCR pipeline. It was
observed that only a greyscale image is passed to the native library through the JNI. The
presence of functions pixOtsuAdaptiveThreshold and pixSauvolaBinarize
from the Leptonica library[51] gives more hints about segmentation algorithms possibly
used. This finding is confirmed by observation of the algorithm behavior, namely its
almost real-time speed and inability to classify letters that cannot be extracted as a
single connected component in greyscale.

Segmented regions are most likely classified using a deep net powered by the TensorFlow
library[52], also developed by Google (ocr::photo::MognetCharClassifier in
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5.1. OCR engines

the library disassembly). The final text is produced by an n-gram language model. The
library explicitly supports Danish, Dutch, English, Finnish, French, German, Hungar-
ian, Italian, Latin, Norwegian, Polish, Portuguese, Romanian, Spanish and Swedish. It
however does not seem to use an explicit dictionary and the n-gram model it uses is
able to give reasonable results for other languages (including Czech language).

The main disadvantage of TextRecognizer is lower accuracy and lack of any programmer-
tunable configuration that would allow to customize the recognizer behavior for better
fit with intended application. Usage of TextRecognizer is demonstrated in Snippet 1.

Snippet 1. A basic function to recognize text inside a Bitmap using TextRecognizer
String readText(Bitmap input) {

TextRecognizer offlineOcr = new TextRecognizer.Builder(getContext())
.build();

SparseArray<TextBlock> result = offlineOcr.detect(new Frame.Builder
().setBitmap(image).build());

String recognitionResult = "";
for (int i = 0; i < result.size(); ++i) {

TextBlock item = result.valueAt(i);

List<Line> lines = (List<Line>) item.getComponents();
for(Line line: lines) {

recognitionResult += line.getValue() + "\n";
}
recognitionResult += "\n";

}

return recognitionResult;
}

5.1.2. Microsoft Cognitive - OCR

Microsoft Cognitive Services [53] is an umbrella name for several computer vision and
machine learning cloud services provided by Microsoft. All of these services are accessi-
ble using a relatively simple REST API[54] with JSON[55] output. It is a paid service,
however, Microsoft offers free licenses which are limited in maximum monthly number
of requests. The limit of the OCR service is 5000 requests monthly, which is more than
enough for evaluation purposes.

This OCR service supports the following languages: Mandarin, Czech, Danish, Dutch,
English, Finnish, French, German, Greek, Hungarian, Italian, Japanese, Korean, Nor-
wegian, Polish, Portuguese, Russian, Spanish, Swedish and Turkish.

Communication with the service is achieved using a simple HTTP POST request. The
body of the request can either contain an URL of an image that is downloadable on-line,
or binary data representing an image in JPEG, PNG, GIF or BMP formats.

If the recognition procedure is successful, a JSON encoded response is returned. A
sample of this response can be seen in Snippet 2.
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5. OCR implementation

Snippet 2. A sample recognition result returned by Microsoft Cognitive
{ "language": "en",
"textAngle": 0,
"orientation": "Up",
"regions": [
{ "boundingBox": "439,317,922,219",

"lines": [
{ "boundingBox": "439,317,922,91",
"words": [
{"boundingBox": "439,332,287,67",
"text": "IAESTE"},

{"boundingBox": "757,324,228,70",
"text": "Czech"},

{"boundingBox": "1019,317,342,91",
"text": "Republic"}

]},
{ "boundingBox": "485,435,827,101",
"words": [
{"boundingBox": "485,452,122,68",
"text": "Let"},

{"boundingBox": "633,466,86,52",
"text": "us"},

{"boundingBox": "751,442,185,94",
"text": "light"},

{"boundingBox": "953,458,199,76",
"text": "your"},

{"boundingBox": "1178,435,134,89",
"text": "fire"}

]
}

]
}

]
}

The request to remote server is made using the Android Volley[56] library and the
result is decoded using Google GSON[57]. The principles behind this OCR solution are
a trade secret of Microsoft. It does not seem to use thresholding of any kind, at least
not exclusively.

5.1.3. Comparison - summary

The following table shows most important qualitative differences between the two en-
gines:

solution TextRecognizer Microsoft Cognitive
usual recognition time cca 3 seconds cca 15 seconds
off-line yes no
pricing free paid per request
language support basic n-gram model full model for 20 languages
characters must be CC1 yes no
practical accuracy mid-high very high

To get some idea about the quality of used OCR engines, both of them were evaluated
on ICDAR 2015 Robust Reading competition[33], Focused Scene Text database. It is
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important to notice that typical ICDAR scene is different from a typical scene expected
for this application.

The following results were produced by the Deteval[58] protocol on ICDAR 2015 dataset
(full-resolution ICDAR images used):

precision recall h-mean avg time
TextRecognizer 0.661 0.767 0.680 4.2s / image
Microsoft Cognitive 0.832 0.908 0.868 13.3s / image

5.2. OCR user interface

Having two relatively strong OCR engines at hands, the main problem of this task was
how to design the user interface that will be easy to use even by people with no useful
vision.

Since TextRecognizer is giving almost-realtime results, a decision was made to use it
to perform live recognition on the camera feed. Microsoft Cognitive gives much better
result, but can only be reasonably used in a single-shot fashion, it is not suitable for
continuous recognition.

Considering all circumstances, the following application workflow has been devised:

1. camera/document positioning mode with immediate (and inaccurate) recognition
results

2. text reading mode, featuring browsing of the text by paragraphs and additional
options (save as note, send as text)

5.2.1. Camera/document positioning mode

The purpose of this mode is to allow quick examination of the document, with possi-
bly limited accuracy, but immediate results. Those results are continuously being an-
nounced - all text detected in the image is linearized and enqueued for text-to-speech.
Use can reset the TTS queue any time by tapping the screen.

Confidence score

The results TextRecognizer returns have a confidence score (a float number 0-1) assigned
to them. Those are not directly available by Google API, but they can be unofficially
retrieved using reflection. This confidence score is very useful since sometimes the text
can be detected but not recognized for various reasons. We can employ several heuristics
that are based on this confidence score to improve user experience.

To distinguish “confident” results from “gibberish” results, the following rule of thumb
is used: A “Line” is considered confident, iff the minimal confidence of all
words within this line is no less than 0.6. This rule is used to label each “Line”
as confident or inconfident. Only confident lines are enqueued for text-to-speech.
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5. OCR implementation

Upside-down detection

The TextRecognizer is reasonably robust to rotation, but will not recognize texts that
are upside down. Those text would be detected, but no sensible text is recognized.
This situation can be detected user simple heuristic:

1. if less than 3 lines are detected, don’t attempt to detect the upside-down situation
2. if more than 3 lines are detected, compute the percentage of confident lines. If

it’s less than 0.5, than we inform the user that we have detected text which is not
readable and they should attempt to rotate the page/object by 180 degrees.

5.2.2. Text reading mode

The purpose of the text reading mode is to allow user take a snapshot of current
document and comfortably examine the detected text. A still picture of the document
is taken and an attempt is made to recognize the content of the picture using Microsoft
Cognitive OCR.

The photograph is scaled down to 1600x1200 pixels and compressed by JPEG at qual-
ity=70. The result is sent via the REST API to the remote server for OCR. If the
connection fails or if the result is not delivered within a 30 second time-out, a fall-back
method of recognition is used. The fall-back method consists of feeding a full resolution
picture to TextRecognizer for recognition.

The recognition results from Microsoft Cognitive or TextRecognizer are then linearized
and split to paragraphs. Each paragraph is presented on a separate screen. User can
navigate between screens using standard gestures of the Core System.

5.3. Conclusion

A simple OCR application using off-the-shelf OCR engines was implemented. It is able
to run in both on-line and off-line modes, improving the results by using a remote OCR
service when Internet connection is available.

While this application has no ambitions to replace the standard flat-bed scanner +
PC + ABBY Fine Reader [59] setup for reading books and longer documents, such
mobile OCR solution can be successfully used in situations where a more immediate
result is desirable, like identification of unknown objects where no alternative means of
identification exists or are practical (delivered mail, receipts, bags with spices, cosmetic
products, book covers etc.).

Some real-life recognition results are presented in section 5.4.
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start

user requested thorough recognition?

grab a picture from camera feed

no

try on-line recognizer
yes

announce ‘‘Upside down’’

TextRecognizer::detect

on-line result available?

a hierarchy of annotated bounding boxes

process confidence info

is upside-down suspected?

yes

is significant change?

no

no

vibrate

is speaking?

yes

enqueue paragraphs with sufficient confidence for speech

no

run TextRecognizer::detect on full resolution image

no

split text to lines

yes

show navigable text

end

Figure 17. The workflow of proposed OCR application. The left subgraph depicts the “cam-
era/document positioning mode” and the right one the “reading mode”
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5.4. Examples of recognition results

This section demonstrate the real-life performance of the text recognition feature. The
green bounding boxes signify high confidence regions. These regions are read aloud to
user in real-time. Red bounding boxes depict low confidence regions that are ignored.
Two recognition results are shown, first one is immediate real-time recognition (I), the
second one is final recognition result (F).

I: IAESTE Czech Republic Let us light
your fire

I: ERRE H. HUSEBY ZRANITELNÝ
KOD KTERYCH SE MUZETE picH
JAVA n PERL PHP VBSCRIPT

F: IAESTE Czech Republic Let us light
your fire

F: ZRANITELNÝ KOD SVERREH.
HUSEBY NEJVÁŽNĚJŠÍ CHYBY’
ÁRÝCH SE MŮŽETE VEI AP-
LIKACÍCH DOPU SQL INJECTION
CROSS-SITE scRIPTINq TROJSKÉ
KONĚ MANIPULACE SE VSTU DATY
ŠIFROVÁNÍ HESEL AUTENTIZCE
ÉRO-BEZPEČNÝ KÓD V JAZYCÍCH
JAVA PERL PHP VBSCRIPT

I: alga bloom. tbasicnutrient EN Algae-
based nutrient for the fowering phase E5
Fertilizante a base de algas para la fase de
floración UVI na bázi fas pro fázi kvetení
Nutriente à base de algas para a fase de
floração

I: vyrobeno 2 českého mléka

F: alga bloom. basic nutrient EN Algae-
based nutrient for the flowering bhese ES
Fertilizante a base de algas para la fase
de floración C2 Živiny na bázi řas pro fázi
kvetení Nutriente à base de algas para a
fase de floração

F: Kefírové mléko vyrobeno z českého
mféka
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6. Camera and gallery application

6.1. Motivation

A part of the task of this thesis was to develop an accessible solution for camera and
gallery. While the camera and image gallery function may seem to be inaccessible “by
definition”, there are important reasons why a person with severe vision loss might want
to use it:

∙ people with no useful vision may want to record and significant moments or inter-
esting places for their sighted relatives and friends

∙ individuals with low-vision conditions may want to use the camera as a magnifier
or apply some high contrast filters to help them distinguish features and objects
in images more easily

∙ some visually impaired individuals may find it useful to take a picture of an un-
known object and share it with a sighted friend or use a machine learning recognizer
to recognize the image

6.2. Design of the camera application with assistive features

The camera application is based on the new Camera 2 API (android.hardware.camera2)
introduced in Android 5.1. The base for the application was the official example given
by Google [60]. This example was then modified to accommodate assistive features
described in this section.

The basic workflow of the camera can be summarized in three steps:
1. live preview (with optional audible feedback)
2. capture of the image itself
3. labeling and storage of the image

A more detailed work-flow graph is depicted in Figure 21.

6.3. Assistive features for image capture

6.3.1. Face detection

Since the first version, Android comes with off-the-shelf face detection algorithm in class
FaceDetector. This algorithm is able to detect multiple faces in real-time camera
feed. The face detection algorithm is not the classic Haar cascade, it is an algorithm
developed by Neven vision, later acquired by Google[61]. The implementation is open-
source and available in the Android source code tree, but is patented[62] and not very
well documented.
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Figure 18. Accelerometer axes and the 𝜑 angle.

Since face detection may be a useful feature for portraits and self-portraits, it was
included in the program.

6.3.2. Tilt detection

Tilt detection with auditory feedback is a crucial feature for blind photography. This
task can be efficiently done using an accelerometer, which is embedded within the Core
System.

Android API provides native support for accelerometers. There are three axes where
acceleration is measured, as depicted in Figure 18:

∙ x axis points in the direction of screen width
∙ y axis points is in the direction of screen height
∙ z axis which is in the direction of phone “depth” or “thickness”

Since the Core System only has a 2-axis accelerometer, only x and y axes could be used.
The z axis is ignored and is assumed that it is tangential to the earth surface. Under
those assumptions, we can compute the tilt angle in radians as 𝜑 = atan2(𝑑𝑥, 𝑑𝑦) + 𝜋.

The computed 𝜑 angle is then used to distinguish between four basic orientations:
1. 𝜑 ∈

[︁
𝜋
4 , 3𝜋

4

]︁
→ landscape

2. 𝜑 ∈
[︁

3𝜋
4 , 5𝜋

4

]︁
→ portrait

3. 𝜑 ∈
[︁

5𝜋
4 , 7𝜋

4

]︁
→ landscape, upside down

4. otherwise → portrait, upside down

The coarse orientation is announced by text-to-speech every time it changes.

After one of those four coarse orientations is established, relative angle deviation from
the basic (landscape, portrait, ...) orientation is needed for more precise acoustic tilt
feedback. This relative value is obtained by subtracting 𝜋

2 , 𝜋, 3𝜋
2 and 2𝜋 respectively,

depending on the coarse orientation detected above.

32



6.4. Labeling and saving of the image

The fine tilt is announced using a tone interval. The program contains a look-up table
𝑇 containing tone frequencies from C4 (262 Hz) to B8 (7902 Hz). C5 (523 Hz) was
selected as the reference tone 𝑡0. The interval played to the user always consists of the
base tone and some tone from the look-up table. The frequency of the second tone 𝑡1
is computed as follows:

𝑡1 = 𝑇 (𝑚𝑖𝑛 (⌊50 · 𝑡𝑎𝑛(|𝜑|) + idxT(𝑡0)⌋, 𝑇𝑚𝑎𝑥))

where 𝑖𝑑𝑥𝑇 (𝑡0) is the index of 𝑡0 in 𝑇 and 𝑇𝑚𝑎𝑥 is the last tone in 𝑇 .

The tones are then played in order 𝑡1 → 𝑡0 for 𝜑 < 0 and in order 𝑡0 → 𝑡1 otherwise,
giving a falling or rising musical interval respectively. The tones are played continuously
in a loop, once every 1.5 seconds, giving an immediate feedback about camera tilt.

6.4. Labeling and saving of the image

Once the user presses the volume rocker, the capture sequence is started. The beginning
and end of the capture sequence is announced by distinct sounds, so that the user knows
when to hold the phone steady. The user is then presented with a classical the Core
System menu where they can select one of the following options:

1. Save image
2. Recognize image
3. View image

6.4.1. Blur detection

After an image is taken, blur detection is performed to warn the person taking the
image the picture may be too blurred. There is an easy yet effective heuristic to detect
blurred images, which is based on variance of Laplacian.

First published in [63] and popularized by the website PyImageSearch[64], the method
convolves the greyscale image with a Laplacian kernel and then computes the variance
statistic on the resulting array. The single float number resulting from this computation
can then be used to decide if the image is blurry or not, by comparing it to a threshold
value. From experiments with the phone camera, the value of 100 seemed to work
reasonably well. I.e. if the variance of Laplacian is less then 50, the user is warned
about the picture being blurry before the menu is displayed, and they can choose to
take the image another time. Example of blur detection can be seen on Figure 19.

6.4.2. Support for image recognition

Experiments with various image recognition techniques were performed. In the end,
the most successful candidates for use in the Core System were Microsoft Cognitive
image recognition and CloudSight, which is the service behind TapTapSee mentioned
in Chapter 2.
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Figure 19. An example of blur detection. [64]

Microsoft Cognitive API

Microsoft Cognitive Services [53], already discussed in Chapter 5 offers an on-line service
for image recognition, under similar conditions to their OCR service (5000 requests per
month for free). Unlike for OCR, Microsoft published concrete papers and algorithms
behind this service [65] [66]. The algorithm used for this service won the 2015 CVPR
COCO Image Captioning Challenge. However, the subjective results of this are more
general than results provided by the CloudSight service and not so useful for use in an
assistive tool.

The functionality is accessible via a REST API similar to the one used for OCR. The
Snippet 3 shows an example of a raw returned result. The results contain a caption,
which is a simple sentence describing the image, and a list of tags.

Snippet 3. A sample image description result returned by Microsoft Cognitive
{ "Tags": [
"table", "food", "indoor", "sitting", "top", "doughnut",
"small", "plate", "donut", "wooden", "white", "sandwich"
],
"Captions": [{
"Text": "a close up of food on a table",
"Confidence": 0.8934385}
]
}

Only the description is currently displayed to the user. Recognition times are usually
around 10 seconds and only a single HTTP request is needed (unlike CloudSight).

CloudSight API

CloudSight is a company primarily focusing on image classification and captioning.
Their flagships are TapTapSee and CamFind applications, but the technology is also
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6.4. Labeling and saving of the image

available in a form of API for any third-party application [67]. The prices are rather
high, there is a free trial account available, which offers 500 image requests and requires
a credit card verification.

The main advantage of CloudSight is that it gives descriptions more suitable to visually
impaired people, including product names, text labels content etc. The disadvantage
compared to Microsoft Cognitive is that it has much longer processing time, is more
expensive and their servers are sometimes overloaded (only trial version tested), so no
caption will be produced at all.

The communication with this API is a bit more complicated. Due to longer processing
times (usually between 20 and 30 seconds), the request is split two HTTP calls:

1. The image is uploaded via a multi-part POST request. The POST request contains
the image in JPEG and optionally some additional metadata, like GPS coordinates
and coordinates of the focused region in the image. A response to this POST
request looks like in Snippet 4 and contains a token which is later used to retrieve
the result.

2. The program then periodically issues a GET request containing the token. The
server will reply by a JSON structure containing either "status":"completed",
"status":"not completed" or "status":"timeout" fields. The client
application should actively wait for the completed status and then present the
result. An example of the final recognition result is in the Snippet 5.

Snippet 4. A response from CloudSight after issuing an image recognition request.[67]

{
"url": "//images.cloudsightapi.com/uploads/image_request/image

/19/19404/19404152/Image.jpg",
"token": "AJKAWHKGLjqMd9KDNIXQfg",
}

Snippet 5. A final response from CloudSight, containing image description.[67]
{
"status" : "completed",
"name" : "red beats by dre headphones",
"flags" : ["adult"],
"ttl" : 60,
"url" : "//images.cloudsightapi.com/uploads/image_request/image

/19/19404/19404152/Image.jpg",
"token" : "WySLTJWESPTtt6v0oBmzKf"
}

Both APIs were implemented and the service to use can be selected by switching a
constant at application compile time. The final application will most likely use Microsoft
API, because it is more stable, cheaper and the recognition does not take that long.

6.4.3. Voice captioning

A substantial function of blind photography is image captioning. After few experiments,
the following approach was chosen: Users are prompted to record (up to) a 5 second
voice caption after they choose the “Save image” option from the menu. This recording
is later presented in the image viewer.
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Recording

Recording is achieved using standard Android means (AudioRecord). To achieve a
clear, understandable and normalized sound, Android NoiseSuppressor and
AutomaticGainControl sound filters are used during recording of the voice caption.

Encoding and storage

This voice note is then encoded using Opus codec [68] and saved directly in the Exif
metadata of the image using the Exif library [69]. While the Exif standard contains
a specification of embedding sound[70], it is not widely supported and uses obsolete
codecs with poor results, that’s why a custom solution was chosen for caption storage.

The Exif format supports custom metadata tags, so a new tag with an ID value 9990,
which is well above the commonly used tags was added to the Exif library. The data is
stored in pure binary format, as produced by the Opus codec.

Other metadata

Some other important metadata is also added during the saving process:
∙ date and time
∙ GPS coordinates (if available)
∙ phone orientation (landscape, portrait)
∙ results of a recognizer (if used during the saving process)
∙ information about camera (manufacturer, focal length, etc.)

6.5. Design of an image gallery application with assistive
features

No mobile camera implementation would be complete without a way to actually browse
the images and work with them. The specifics in this case are that the application
must be usable even to users with no useful sight. A prerequisite for this is good
quality captioning, which is achieved using the voice captioning function presented in
the previous section.

The work-flow graph of implemented image gallery can be seen in Figure 22.

6.5.1. Browsing all images

The easiest way to browse images is to browse all. The images are presented in reverse-
chronological order (newest first). Images are presented to user the same way as any
other menu of the Core System
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6.5.2. Browsing by category

In the image gallery settings, users can define arbitrary categories and sort images into
them. Categories work as “labels”, so an image can be assigned to more categories or
none at all. In the “browse by category” menu, user is presented with a list of categories
and they can pick one of them. A list consisting of all images with a given category is
then presented.

The list of all categories is stored in a Java serialization format in the private application
directory. Each category record consists of a randomly generated UUID and a category
name. Categorized images then contain a new Exif tag with ID value 9991, which
contains a JSON[55] array of category UUIDs. This way, users can rename categories
arbitrarily and the change is automatically reflected in all images.

6.5.3. Browsing by date

The last mode is browsing by date. The image Exif date is used for this purpose.
User is presented with the following menu, where they can list only images taken in a
particular time. Only those time categories that contain any images are presented to
the user.

∙ today
∙ this week
∙ this month
∙ 2017

– May
– April
– February
– . . .

∙ 2016
– December
– . . .

∙ . . .

The year menus are two-level and allow to filter pictures with month granularity, the
rest is a single-level.

6.5.4. Low-vision filters

Inspired by [24], three “low-vision filters” have been implemented for usage in the image
viewer.

∙ global thresholding based on Otsu method
∙ edge enhancement using Sobel edge detector
∙ high contrast

Examples of the output of these filters can be seen on Figure 6.5.4. The filters imple-
mented are loosely inspired by [25]. However, the usability testing and later consul-
tation with some low-vision people performed after implementation of the filters have
shown that visually impaired people rarely find these filters useful for images and prefer
unfiltered images. One of these filters can be optionally activated in settings.
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Figure 20. Implemented low-vision filters: original image, Otsu threshold, Sobel edges, high
contrast
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Figure 21. The workflow of proposed camera application.
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Figure 22. The workflow of proposed camera application.
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This chapter documents usability testing of suggested accessibility tools. Usability
testing is a technique used in user-centered interaction design to evaluate a product
by testing it on users.[71] The purpose of this testing is to discover usability problems
or sub-optimalities in a product (in this case a computer program) by testing it on
volunteers of the target group. The participants are encouraged to “think aloud” and
to give a sincere feedback.

The solution presented in this work is targeted towards users with vision loss level
ranging from intermediate vision impairment to no light perception. It is assumed,
that users with a better visual function would unlikely require a special solution for a
mobile phone.

The participants of this experiment were contacted with the help of Czech Blind United
(SONS). There were 6 participants in total, three men, and three women. All of them
were familiar with the Core System already, two of them were the Core System beta
testing users (though not familiar with the tested applications at the time of testing).
The responses to pre-test and post-test questionnaires are enclosed in Appendix A

The testing process was performed in three phases:
1. Pre-test questionnaire is administered right before the test. The goal of this ques-

tionnaire is to collect important details about the participants and to get to know
their expectations and interests relevant.

2. The testing itself, which consists of a set of tasks that have to be completed
sequentially. There is a test moderator who reads aloud the tasks and follows the
progress of the participant.

3. Post-test questionnaire is administered immediately after completion of the test-
ing, to collect feedback and immediate ideas of the participant.

Figure 23. Blind photography: These two pictures were taken during the testing by partici-
pants who had no light perception, guided only by assistive features of the camera application.
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7.1. Pre-test
1. Your age?

a) less than 20
b) 20-35
c) 35-50
d) 50-65
e) more than 65

2. Your gender?
a) male
b) female

3. Do you have a visual experience? (=Have you ever seen?)
a) yes
b) no

4. How would you rate the level of your visual impairment from the functional per-
spective?

a) intermediate vision impairment (able to read with reading glasses or optical
magnifiers, navigates mostly visually)

b) serious visual impairment (have some limited projection, able read only with
difficulties and with the help of digital magnifiers, navigates with the help of
a white cane)

c) blindness with no useful projection, unable to read at all, able to distinguish
light from darkness

d) no light perception at all
5. What accessibility solution you use for your mobile phone?
6. Do you use mobile data on your current mobile phone? Would you consider getting

a data plan if it was required for some accessibility features, like text or image
recognition?

a) yes
b) no, but would consider it
c) no, and would not consider it

7. Do you like the idea of integrating visual accessibility tools into a mobile phone?
a) yes
b) no

8. Would you find it helpful take pictures with your phone and share them with your
sighted relatives or friends?

a) yes
b) no

9. Which of the following accessibility features you’d likely use if they were integrated
into your phone?

a) color recognition
b) banknote recognition
c) text recognition (OCR)
d) digital video magnifier
e) digital image enhancement for captured still images (high contrast, inverse,

color filters, edge enhancement)
f) general object recognition
g) object labeling with help of optical markers (bar codes)
h) illumination level detection
i) LCD display recognition
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j) recognition of clothes
k) possibility of remote live audio/video conference with a sighted person to

help you with some task (relative, assistant, friend)

7.2. Tasks

Since users with a variable level of vision loss were participating in the experiment,
tasks had to be prepared so that they were relevant and possible to finish to all of
them. The tasks were split into three sub-sections: text recognition, camera and image
gallery, which were performed more or less independently.

7.2.1. Text recognition

1. Find the accessibility tool called “Text recognition” in the phone menu.
2. Slide one finger from the top of the screen to bottom to get a short context help

for this function.
3. There are three closed bags with spices in front of you. Use the application to find

a bag with “Oregano”.
4. The other side of the bag with “Oregano” contains a recipe for “Italian Mush-

rooms”. Try to locate the text in the view and use the “thorough recognition”
function to get the text of the recipe. Skim through the obtained text.

5. long press the lock button to get to the home screen

7.2.2. Camera

1. Find the function “Camera” in the menu and read the help
2. Run the camera and try out the tilt feedback function.
3. Run the camera and try to take a picture of a person. The voice feedback will

notify you when there is a face in the image.
4. Try out the function “image recognition”.
5. Save the resulting image, include some meaningful voice caption
6. Return back to the “Media” menu

7.2.3. Pictures

1. Find the function “Image Gallery”.
2. Try to find the picture you have taken among the others.
3. From the context menu, figure out the size of the image in pixels.
4. Delete the image.

7.2.4. Banknotes

1. Open the function “Banknote recognition”
2. Read the help of the application to get familiar with its control.
3. There is a banknote in front of you. Use the application to recognize its value.
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7.3. Post-test

7.3. Post-test

1. Did you find the tasks difficult?
2. What was the hardest part?
3. How you like the “Text Recognition” application? Any feedback or ideas for

improvement?
4. How you like the “Camera” application? Any feedback or ideas for improvement?
5. How you like the “Gallery” application? Any feedback or ideas for improvement?

7.4. Important findings of the testing

7.4.1. Text recognition

∙ two users requested the possibility to save recognized text in Notes
∙ all users except one were satisfied with text recognition accuracy
∙ most users find it faster to use such mobile solution (rather than using a PC+scanner)

for the purpose of identifying objects
∙ all users were able to use the OCR function to pick the right bag of spices

from a set of three bags, randomly shuffled and rotated
∙ half of the users succeeded in reading the recipe on the back of the bag, all

of them would rather use a flat-bed scanner for this task
∙ all users except one welcomed the dual-mode function (immediate reading vs.

thorough analysis)
∙ some participants struggled with correct positioning of the camera in imme-

diate reading mode (mostly with distance) and needed further instructions

7.4.2. Camera and images

∙ while blind participants liked the voice labeling feature in the camera and
gallery, low-vision users would prefer the labels to be optional or in text
only

∙ two users asked for a change of tilt detection feedback to vibrations (possibly
optionally)

∙ all users, including the blind ones succeeded in taking a picture of the test
moderator using assistive features in the camera application

∙ all users would welcome a function to share images by e-mail or MMS
∙ the low-vision users would like to have digital zoom in the camera capture activity

7.4.3. Banknotes

∙ all participants were able to recognize a 100 CZK note successfully
∙ four participants spontaneously mentioned not needing a tool for banknote

recognition
∙ two users mentioned usefulness of such application when traveling abroad, if for-

eign currencies were supported
∙ two participants complained that the recognition of the banknote taking too

long
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7.4.4. General findings
∙ four of six users liked the idea of tagging daily objects using QR codes and

in-phone database
∙ low-vision users were not seriously interested in “image enhancement” of

any kind
∙ majority of users like the idea of integrating accessibility tools into a mobile

phone, one subject thinks dedicated tools are usually better

7.5. Testing summary

Six volunteers with visual handicaps ranging from intermediate low-vision to no light
perception participated in the testing. All of them were already familiar with basic
control of the Core System, and they found the user interface of new tested applications
intuitive. The feedback on new applications was mostly positive. Participants quickly
understood the basic control and function of various features. The worst stumbling
block was understanding the correct way to hold the phone during the OCR task,
where three of six participants initially struggled, but after more thorough instructions
were all of them able to use the OCR function for text recognition successfully.

All participants were positive about proposed applications and solutions except for few
details mentioned in the previous section. These suggestions will be reflected in future
development. The banknote recognition function turned out to be not very useful in
principle, because most visually impaired people in Czech Republic, where banknotes
can be easily distinguished by their size, are able to do so. Participants would welcome if
the banknote recognition was faster, which should be possible to achieve if the algorithm
was parallelized.
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8. Technical details

This chapter describes some technical details of the solutions described in previous
chapters. This chapter refers to files and folders located on the enclosed CD. A complete
description of the CD content can be found in Appendix B.

The implementation consists of three mutually independent modules: camera+gallery,
text recognition and banknote recognition.

8.1. Technologies behind the Core System

The Core System consists of:

1. the main module, which is a standard Android 5.1 (API 22), which is written in
Java 7

2. a module for Xposed Framework (written also in Java 7), which enables the pro-
grammers to dynamically modify some aspects of the target operating system

3. some third-party native libraries

4. some helper applications (on-line update helper, text-to-speech) and customiza-
tions in the phone ROM

8.2. Modules implemented as a part of this thesis

8.2.1. The Banknote recognition engine

Banknote recognition module consists of two parts. The first part is used for dataset
augmentation and training of the classifier and is implemented in Python 2.7 for ver-
satility and ease of modification and prototyping. The resulting models are stored in
OpenCV FileStorage XML format and compressed by GZIP for compactness (albeit
not documented, OpenCV has direct support for handling GZIP-compressed storages).
Source codes of this training can be find in python folder.

The banknote recognizer running directly on the Core System is implemented in native
C++ 11 with the help of the OpenCV library and is connected with the rest of the
application using the standard JNI way. The user interface is implemented in Java 7
and integrated with the rest of the Core System. Source codes of the C++ and Java
part are in cxx/banknotes and java/coresystem/aids/banknotes directories
respectively.
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8.3. Text Recognition

The Text Recognition module is implemented in Java and uses the native TextRecognizer
library provided by Google Play API. The sources can be found in java/coresystem/aids/ocr.

8.4. Camera

The Camera and gallery modules are also implemented in Java 7 using Cam-
era2 API of Android. Low-vision filters as well as blur detection is implemented in
native C++ with OpenCV with JNI Java wrappers. The sources can be found in
java/coresystem/camera and java/coresystem/images, the implementation
of the filters can be found in cxx/coresystem/common/opencv-android.cpp.

8.5. A list of third-party libraries used
∙ OpenCV 2.4 library for image processing and pattern recognition algorithms, na-

tive C++ and Python bindings are used [16]
∙ Google Play Services (for text recognition) [72]
∙ com.android.volley – for all HTTP communication [56]
∙ top.oply.opuslib – for encoding of sound comments [73]
∙ it.sephiroth.android.exif – an extensible library for Exif manipulation

[69]
∙ CloudSight Java client – a library to simplify work with the CloudSight API [74]
∙ Numpy – for matrix computations in Python [75]
∙ Scipy – for statistical functions in Python [76]
∙ Matplotlib – for plotting during classifier development [77]
∙ Levenshtein – for approximate median string computation [41]
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9. Conclusion

When I lost my sight, Werner, people said I was brave. When my father left, people
said I was brave. But it is not bravery; I have no choice. I wake up and live my life.
Don’t you do the same? – Antony Doerr, All the Light We Cannot See

Visual impairment in the human history

Blindness as a handicap has been naturally occurring in every society in the history.
During the most of the history, visually impaired people (and all disabled people for
that matter), have been considered to be a social burden and if not taken care of by
their families, most would perish in the harsh environment. Blind babies would be
abandoned, and blind adults would often end up as beggars.

By the Enlightenment, societies began to acquire a belief that there was an obligation
to help the less fortunate, including the blind. It seems now obvious, that the most
valuable support, that can be offered to those less fortunate, is to teach them how to
compensate for their disabilities.

A (usually white) cane, the simplest yet unsurpassed assistive tool for the blind, has
been the symbol of blindness for centuries, later accompanied by the tactile writing
system developed by Louis Braille, which greatly supported the spread of literacy in
the blind community. The ability to read and write, which the blind community re-
gained with Braille’s invention, was the first step to education, emancipation, and
self-sufficiency of blind individuals.

Blindness and technology

Attempts to fix blindness or at least mitigate its impact on a blind person and the
people around them have certainly always been there. While many diseases that would
lead to practical blindness in the past are easily curable with modern medicine (e.g.
cataracts), a definitive cure for blindness, like an eye transplant, stem cell therapy or
a visual prosthesis comparable to (even a very bad) human eye, are still beyond our
grasp. Nevertheless, even for incurable vision problems, we can still develop engineering
solutions, modern “white canes” of a sort – digital accessibility tools.

Computer vision, as a scientific field, is experiencing unprecedented development, mostly
due to advances in deep learning. Many things that have long been considered impos-
sible, like automatic image captioning, are now a reality. We also live in the golden age
of mobile technology, and the computational power of devices we carry in our pockets
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is growing with every generation, surpassing previous generations of desktop computers
in their computational and storage capabilities.

A naive assumption might be, that given all this, mobile accessibility tools for the
visually impaired should be an ideal flagship for computer vision algorithms. In reality,
the interdisciplinary cooperation between developers of accessibility tools and computer
vision research is less than ideal.

Many technologies and algorithms that would be applicable in the field of assistive
technology are not being used there yet in practice. The choice of accessibility tools
that use the state-of-the-art technology is limited. The main reason seems to be that
development of computer vision algorithms is primarily motivated by academic (in the
case of university research teams) and economic (in the case of private companies)
goals, not so much by real needs of people. Also, awareness of ordinary people about
blind and partially sighted people is inadequate, considering how common blindness
and low-vision conditions are.

Contribution of this work

This work is a humble attempt to contribute to bridging the gap between science and
assistive technologies. The author of this thesis believes, that visually impaired people
can live independent lives, and given the right tools and training, can work and can be
a productive part of the society.

This manuscript has introduced three innovative accessibility tools:
1. a banknote recognition engine and application based on BRISK detector/descrip-

tor and Gradient Boosted Trees
2. a simple photo-OCR application harnessing two state-of-the-art text recognition

engines and empowering the blind to read labels on household objects and identify
them

3. a camera application with assistive features, support for two different cloud image
recognition services, voice captioning of the photos and a simple yet powerful
image browser featuring simple categorization and low-vision filters

It is important to note that all tools were developed in close cooperation with experts
from the Czech Blind United (SONS) and went through usability testing. The results
are perceived positively by the target group.

Future work

One of the concepts that could be covered in this thesis and were not, is the principle of
sonification, as introduced by the vOICe project[78] [79]. This project currently offers
a free Android application (see Figure 24) and a simple sonification implementation in
open-source C++.

The vOICe project focuses on converting images into so-called “soundscapes”, which
in the most basic principle consists of taking a greyscale image as if it were a sound
spectrogram and computing inverse short-time Fourier transform to convert a picture
into a binaural (3D) sound. Paired with special glasses and headphones, this concept
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Figure 24. The user interface of vOICe for Android.

could turn a mobile phone into a visual prosthesis.

Authors of this concept claim that with enough training, their testing subjects were able
to achieve “artificial synesthesia”, i.e. they effectively restored the sense of “seeing” (in
a very low resolution) with the help of this algorithm. Such algorithm would be a very
interesting way of viewing the images on a mobile phone for blind people, though the
training required to make sense of the sounds might be prohibitive.

Other, more mundane ideas for future work would be:
1. improvements in banknote recognition speed
2. more research into the low-vision filters
3. better upside-down detection for OCR
4. implementation of a segment display recognizer
5. implementation of QR code object labeling

Most of which were already discussed more in detail in the Chapter 7.
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Appendix A.

Testing results

A.1. Pre-test questionnaire

M P H V S R
1 age c b c d d c
2 sex male female male male female female

3 tester yes yes yes yes yes yes
4 visual xp yes yes yes yes yes yes
5 sight loss d a c d b c

6 phone type A+Tb, I+Vo A+Mag I+Vo Cs I+Vo Cs
7 assist a c a a a a

8 without net a b b b b a
9 share images yes yes yes yes yes yes

10 features a+c+f+g
+h+i+j+k

c+d+e+k c+f+g
+h+k

a+c+f+g
+h+i+j+k

a+c+d
+f+i+k

a+b+c+g
+h+i+j+k

Legend:
∙ P3: m = male, f = female
∙ P5

– A+Tb = Android with TalkBack service
– A+Mag = Android with Magnifier
– I+Vo = iPhone with VoiceOver
– Cs = the Core System

A.2. Post-test questionnaire

A.2.1. Subject M

1. “All tasks were extremely easy.”
2. “Horizon feedback in camera, it is unintuitive.”
3. “Works well, within realistic expectations. Upside-down detection gives too much

false positives.”
4. “Camera horizon feedback makes annoying beeps and is unintuitive. It is a good

function, but consider using vibrations instead. Otherwise works well. Likes the
voice labeling feature.”

5. Works well, especially the voice notes are very good. It would be great if text
labeling could be added too, possibly with automatic recognition of the voice
labels.
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6. “Works well, better usage instructions would be good though.”

A.2.2. Subject P
1. “All tasks were very easy, except for reading the recipe.”
2. “OCR engine did not meet my expectations, it would not be helpful. The contin-

uous reading function is not needed.”
3. “Improve detection accuracy, at this point, it’s not very useful for low-vision peo-

ple.”
4. “Camera horizon feedback is not needed and is unintuitive. Voice labeling makes

no sense, text labeling would be preferred. Low-vision filters are not very useful.”
5. “Basic, but works reasonably well. Improve the magnification function to make it

more smooth.”
6. “Not really needed for me, but seems to work.”

A.2.3. Subject H
1. “All tasks were easy.”
2. “OCR accuracy is good, but needs better light conditions.” (note: The subject H

had serious problems with reflections from a light fixture.)
3. “It took some fighting to figure out the right orientation of the object and phone.

Otherwise works well.”
4. “Camera horizon feedback is too noisy, albeit useful. Consider a different method

of horizon detection feedback. Voice labeling is very useful.”
5. “It is simple, but works well.”
6. “It is too slow. I can recognize banknotes easily without any tool.”

A.2.4. Subject V
1. “Tasks were easy. It takes some time to practice with a camera if you are blind

though.”
2. “Add the possibility to save recognized texts.”
3. “The OCR is not suitable for longer texts, but that’s expected. The accuracy

is good enough for quick tasks like recognition of labels on daily products, very
useful function.”

4. “I like the sound feedback and face announcement. The application is easy to use.”
5. “I like the possibility of recording my own notes and categorizing images. Sending

by MMS or e-mail would be nice.”
6. “I can’t imagine using it in practice. I can recognize banknotes by their size. May

be useful when traveling abroad though. The recognition time is a bit slow.”

A.2.5. Subject S
1. “It was easy. More practice would be needed though.”
2. “I struggled with keeping the right distance from the text in the OCR task.”
3. “The OCR application is good, I like the continuous reading function. Would not

use it for longer texts, but it is very nice for short ones.”
4. “The sound feedback seems useful and relatively intuitive, though a bit noisy. The

face detection and blur detection is quite useful.”
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5. “The gallery works as it should. Sometimes is a bit sluggish though.”
6. “Not really needed for me. But seems to work.”

A.2.6. Subject R
1. “The tasks were easy to medium difficulty.”
2. “I struggled with understanding the instructions how to hold the phone during

the OCR task. Once I understood, it worked rather well.”
3. “It is great, I like how it continually reads what’s there. I believe I can get better

at keeping the right distance from the object with practice”
4. “I like the sound feedback, it helps me keep the phone steady, though the tone is

too aggressive sometimes.”
5. “The voice notes labeling function is really useful for the gallery. I struggled with

the categorization function initially.”
6. “I’ve seen this function on the Core System before. It works okay, but support for

more currencies would be handy.”
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Content of the enclosed CD

hadacja2-msc.pdf – This text.
cxx – C++ banknote recognition engine.
python – Python scripts used for banknote recognition algorithm train-

ing.
java – Java source code of the Core System modules developed in this

thesis.
tex – LATEX sources and images used to build this thesis.
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