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Anotace / Abstract
Tato diplomová práce p�edstavuje pln�
konvolu�ní sí� pro detekci 2D a 3D boun-
ding box� aut z obrázk�, se speciálním
zam��ením na vyuûití v autonomním
�ízení vozidel. Oproti p�edcházejícím
metodám, které pouûívají neuronové
sít� pro detekci 3D bouniding box�, sí�
p�edstavená v této práci je trénovatelná
tzv. end-to-end a umí detekovat objekty
v r�zn˝ch velikostech b�hem jediného
zpracování.

Je uvedena nová reprezentace 3D boun-
ding box�, která je nezávislá na matici
kamery (kame�e pouûité pro snímání
obrázk�). Tato vlastnost umoû�uje,
aby byl detektor trénován na n�kolika
r�zn˝ch datasetech najednou a záro-
ve� mohl detekovat 3D bounding boxy
na úpln� jin˝ch datasetech, neû byl
trénován.

Prezentovaná sí� dokáûe zpracovávat
0.5 MPx obrázky z KITTI datasetu v
rychlosti 10 snímk� za sekundu, coû je
p�ibliûn� o �ád rychleji, neû nejrychlejöí
sí�, která má lepöí v˝sledky detekce. Z
tohoto d�vodu m�ûe b˝t aplikovaná v
autonomním �ízení.

Klí�ová slova: detekce automobil�, neu-
ronové sít�, strojové u�ení, zpracování
obrazu.

The thesis presents a fully convolutional
neural network for 2D and 3D bounding
box detection of cars from monocular
images intended for autonomous driving
applications. In contrast with previous
deep neural network methods applied to
3D bounding box detection, the intro-
duced network is end-to-end trainable
and detects objects at multiple scales in
a single pass.

We introduce a novel 3D bounding box
representation, which is independent of
the image projection matrix (camera
used to take the images). Therefore,
the detector may be trained on several
di�erent datasets at a time and also de-
tect 3D bounding boxes on completely
di�erent datasets than it was trained
on.

The presented multi-scale end-to-end
network is capable of processing 0.5MPx
KITTI images in 10fps, which makes
it about an order of magnitude faster
than the closest competitor that has
superior detection results. Therefore,
it is possible to be used in autonomous
driving scenarios.

Keywords: car detection, 3D bounding
box, deep neural networks, deep learn-
ing, machine learning, image processing.
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Chapter 1
Introduction

The demand for driverless vehicles is rising in both the public and the commercial
sectors. In the public sector, people demand safer and less time consuming means of
transportation and on-demand services, which would be available within minutes. In
the private sector the motivation comes mainly from the e�ort to increase the reliability
and utilization of transportation vehicles. For example, an autonomous truck can be
driven nearly 24 hours a day, whereas human-driven vehicles have to stop for the driver
to rest.
Achieving fully autonomous driving in urban environment is a very challenging task
and, today, it is one of the main drivers of the development of a broad range of new
technologies. Achieving this goal can be compared to the space race in the 1960s.
Undoubtedly, space race lead to many inventions and technologies used not only for
space space exploration, but also in industry, health care, etc. The development of
autonomous driving systems has had a similar impact.
Object detection belongs to the core abilities of an autonomous systems as they are
required to perceive the surrounding environment. In the academic field, general object
detection and classification dominates. It has been a very extensively studied problem
and many classical computer vision approaches exist, e.g. [52, 49, 18, 16]. Recently,
deep learning and deep neural networks stole the show. In 2012, Krizhevsky et al. [29]
managed to beat all classical computer vision methods in the ImageNet Large-Scale
Visual Recognition Challenge (ILSVRC) [13].

Figure 1.1. 3D bounding boxes (left) and their top view (right) detected by the proposed
method. Note the imprecision in the top view when the detected cars do not lie exactly
on the ground plane. The front sides of 3D bounding boxes are depicted in green, the rear

sides in red.

Currently, systems based on deep neural networks are the state-of-the-art in image clas-
sification and object detection [41, 39]. Since the impressive achievement of Krizhevsky
et al. [29], deep neural networks have been successfully applied to various kinds of
problems, for example [26, 58, 47, 53]. This proves that they are a very powerful tool,
which may be easily and e�ectively adapted to tackle a large variety of tasks.
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1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The topic of this work is detection of cars and representing their pose with 3D bounding
boxes. The 3D bounding box (Fig. 1.2 right) is a very convenient and, for many
applications, su�cient representation of the objects in the 3D world. We, in line with
general practice, define the 3D bounding box as a tight rectangular cuboid around an
object that has 9 degrees of freedom (3 for position, 3 for rotation, and 3 for dimensions).
This information is su�cient to determine the position, orientation, and size of the
object in the 3D world, which can be used especially for path planning of an autonomous
car.

Figure 1.2. 2D bounding box (left) and 3D bounding box (right) annotation.

The vast majority of existing object detectors focuses on finding 2D bounding boxes
([21, 46, 40, 33] among others), which provide su�cient information for basic reasoning
about object positions (Fig. 1.2 left). However, it is insu�cient for autonomous driving
applications, where finding poses of objects in the 3D world is desired. This problem
has been tackled by a new voxel representation with more extensive preprocessing [55],
3D bounding box proposal generation [9] or estimation of 3D bounding boxes from
detected 2D bounding boxes [35]. These methods employ multi-step approaches, which
makes them slow and more di�cult to train. Instead, we took a di�erent approach.

We chose to implement an end-to-end system for 3D bounding box detection from
a mono camera (Fig. 1.1) by combining the current state-of-the-art methods for 2D
bounding box detection [40, 33, 27]. We opted for a DenseBox-like [27] approach, which
we adapted to regress the positions of 3D bounding boxes. On top of that, the network
architecture was changed to detect objects of several sizes in a single pass instead of
building an image pyramid. The whole network can be trained end-to-end from images
to detect projections of 3D bounding boxes of objects of di�erent sizes from a single
image (monocular system). The projections can then be reconstructed in the 3D world
providing that the ground plane is known.

1.1 Contributions
The idea of DenseBox [27] was applied to the detection of 3D bounding boxes in a single
(mono) image. A novel network architecture inspired by SSD [33] and MS-CNN [5] was
introduced to directly accommodate detection of objects at multiple scales. Specifically,
we used the idea of extraction of results from multiple network layers at the same time.

We suggested a new, compact representation of 3D bounding boxes, which is inde-
pendent of the camera (image projection matrix). It uses the projections of the 3D
bounding box corners into the image instead of storing real-world parameters. This
makes the detector capable of detecting 3D bounding boxes in images from any dataset
regardless of the used imaging system. The 3D world bounding boxes can then be
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 Overview of the Work

reconstructed when the correct image projection matrix and the ground plane equation
is provided.

The thesis makes contributions to the Jura vehicle test set, which consists of challenging
images of cars in various poses from roundabouts in Prague and Brussels. We refined
and completed the 2D bounding box annotation to include cars of all sizes and occlu-
sions, which the labeler was able to recognize just by looking at a single image. This
was important in order to carry out correct evaluations of the method.

1.2 Overview of the Work
First, we carry out a thorough review of the state-of-the-art methods in deep learning
applied to object detection and we provide justifications for selecting DenseBox as our
base method, which is further extended to directly support multi-scale detection as
done in SSD and MS-CNN.

The next chapter provides an insight into the theory behind deep neural networks
applied to our method. We describe the input and output representation used in our
network and provide the derivation of back-propagation for the used loss function. At
the end, the network architectures used in this work are shown.

The network description is followed by the description of the used datasets and data
representations. The BBTXT and BB3TXT label formats are introduced and the 3D
bounding box reconstruction procedure is explained in detail.

In Chapter 5, we justify the choices made while designing our neural network and
provide evaluation of the best 2D and 3D detection networks.

Finally, we discuss the problems of the proposed method and suggest their solutions
and further enhancements.

3



Chapter 2
Related Work

The chapter reviews the recent advances in deep learning approaches to object de-
tection and points out the ones, which relate to car detection in urban scenarios, i.e.
autonomous driving scenarios. Also, we justify the selection of the used DNN method.

2.1 Overview

The new era of deep neural networks started in 2012, when Krizhevsky et al. published
their results [29] on the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC)
[13]. Their deep neural network (DNN) with 5 convolutional layers followed by 2 fully-
connected layers beat their closest competitor based on SIFT [45] by approximately
10% in classification error rate. This moment was a huge breakthrough for DNNs as
they showed to be superior to classical computer vision methods. There were multiple
factors that led to this achievement, for example large amount of data available for
training the network, more powerful hardware able to carry out orders of magnitude
more training iterations than previously possible, new training algorithms and network
architecture with convolutional layers, and other.

Since then, many DNN methods have been developed for image classification and object
detection. In the next section we review those methods. The existing methods can be
divided into two groups: region-proposal methods and end-to-end-learning methods.
The former consist of a region proposal step and a DNN classifier of the proposed
regions, the latter is a DNN taking raw images and directly outputting information
about detected objects.

2.1.1 Region-proposal Methods

Krizhevsky et al. [29] showed that DNNs are a powerful tool for image classification. A
conversion of the classification task to the detection task can be achieved by classifying
every possible sub-window of an image. However, this approach requires enormous
computational power as a classifier must be run thousands of times per image. The
idea of region proposals addresses the issue. It aims to reduce the number of evaluated
windows (runs of a classifier) per single image by suggesting promising locations using
an algorithm that would be orders of magnitude faster than the classifier. Take selective
search [51] or edge boxes [59] as examples of region proposal methods.

R-CNN of Girshick et al. [21] makes use of selective search. It is a three-stage object
detector with selective search region proposal generator, further processed by a DNN
(same as was used by Krizhevsky et al. [29]) into a 4096 feature vector, which is then
classified by an SVM. This approach performed well, but was quite slow as it took
about 18s per image on a Tesla K20 GPU.

4



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1 Overview

Spatial pyramid pooling (SPPNet) was introduced by He et al. [24] to speed up the
computation of R-CNN. It avoids repeated evaluation of the whole DNN on each pro-
posal window by running the convolutional layers on the whole image and then pooling
the feature maps - creating a fixed-dimensional grid (1◊1, 2◊2, 3◊3 and 6◊6) across
the feature map. The fixed size feature vector (4096 elements) for each object proposal
is then created by concatenation of the pooled vectors from the grid cells.

SPPNet inspired the authors of R-CNN to create the Fast R-CNN [20] version of their
algorithm. It speeds up computation the same way as in SPPNet, however only one
pyramid layer (7 ◊ 7) was used. Also, the SVM on the output is replaced by fully
connected layers, which predict class probabilities, and interestingly also bounding box
coordinates directly.

In the meantime, Simonyan et al. were experimenting with very deep convolutional
networks [48], where they used only 3 ◊ 3 convolution and created the very successful
VGGNet, which has up to 19 layers and is used in many following papers, for example
[43, 10].

One of them was Ren et al., who introduced Faster R-CNN [43] that make use of the
VGG-16 net architecture. On top of that, they replace selective search with a region
proposal network (RPN), which shares convolutional layers with the classification DNN.
The RPN is basically a sliding window on the feature map, which outputs objectness
score and 9 bounding boxes (for 9 anchor boxes - 3 scales, 3 aspect ratios) per window
position. These proposals are then classified as in Fast R-CNN. This algorithm is able
to achieve about 15fps and performs very well.

An attempt was made by Lenc et al. [32] to drop the region proposal part from the
Faster R-CNN framework, however the results show that the e�ort was not successful.

The Faster R-CNN framework was even further improved by He et al. [25] and their
ResNet. It adds residual connections - shortcuts to the network, which make the net-
work learn only the di�erence between the input and output of building blocks. This
allows for training extremely deep networks with SGD because their design does not
su�er so much from gradient decay. Despite being so deep, the networks are less com-
plex than VGG-16 [48]. This is one of the latest state-of-the-art performing networks
on ImageNet.

3D Bounding Box Detection for Autonomous Driving Applications

A very sophisticated detection framework 3DOP was introduced by Chen et al. [10].
It uses stereo cameras to create a 3D point cloud, which is then used to find the
ground plane and score 3D box proposals (for cars, pedestrians, and cyclists), which
are generated on the ground plane (2 orientations (0¶ and 90¶) and 3 box templates
per class) in the places, where the point cloud is dense. The proposals are scored with
energy, which is based on measures from the point cloud. They use 3D integral image
and voxels to compute the emptiness of the space regions. The VGG-16 [48] architecture
is adapted to score the bounding boxes and also regress the orientation of the objects.
This is one of the current published state-of-the-art on the KITTI dataset [19].

Mono3D [9], an adaptation of 3DOP, was made to exclude the need for stereo images.
No point cloud is build, however the knowledge of the position of the ground plane
is assumed. Also, fully convolutional networks (FCNs) from external sources are used
to propose bounding boxes from object and class segmentations. Its performance is
slightly worse than in the stereo case [10] and the pipeline is even more complicated.
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2. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MS-CNN of Cai et al. [5] adapts an alternative approach. Instead of resizing the image
on the input or the feature layers they train a set of object proposal networks, which
are attached to di�erent depths of the convolution. This results in multi-scale region
proposals, which are then converted to feature vectors by ROI pooling and evaluated by
a fully connected network as in Fast R-CNN. This is also one of the current published
state-of-the-art on the KITTI dataset [19]. Our method was inspired by their way of
extracting detections from di�erent layers of the network.
An interesting work called SubCNN was published by Xiang et al. [55]. It makes use
of their novel voxel-pattern-based representation [54], which represent cars of di�er-
ent viewpoints, occlusions, and truncations. Groups of such patterns represent sub-
categories, which are detected on the output of their SubCNN network. Interestingly,
since the voxel patterns define spatial models, 3D segmentation and bounding box is
obtainable from the prototype database. However, the net is still just a classifier, which
requires the region-proposal stage.
Mousavian et al. [35] took a di�erent approach to 3D bounding box detection in their
Deep3DBox. From 2D bounding boxes provided by [55] they estimated the 3D bounding
boxes. The projection of the 3D bounding box is constrained by the 2D bounding box
as it has to tightly fit inside. They use DNNs to estimate the orientation and size of the
3D bounding box from the 2D one and then solve for the rest of the unknowns. This
is very interesting, since the dimensions of the 2D bounding box relate not only to the
distance of the car from the camera and its orientation, but also to the real-world size
of the car (SUV, sedan, etc.). The network thus has to learn the relation of a type of
a car to its real-world dimensions.

2.1.2 End-to-end Systems

Another approach was taken by Sermanet et al. in OverFeat [46]. They avoided the use
of object proposal generator by using a fully convolutional network (FCN) to predict
objects for each grid cell of a width/12 ◊ height/12 grid and then fused the predictions
to yield the output locations. This approach showed to be faster, but worse than
R-CNN [21].
A region proposal-free approach was suggested by Redmon et al. [40]. Their YOLO
network divides the input image into a 7 ◊ 7 grid of cells, which are responsible for
detecting objects with bounding box centers inside them. It has several convolutional
layers followed by 2 fully connected ones. This makes it possible for the network to
learn priors on the object positions within the input image. Also, very importantly, it
is an end-to-end trained neural network.
Other proposal-free networks are based on the fully convolutional framework (FCN),
where a prediction is extracted for each part of the input image. Such networks are
mainly used for image segmentation [34, 7, 38, 8], however, when carefully designed,
they can be used for object detection as well.
Recently, YOLO9000 [41] was introduced, which builds on YOLO, however the network
is converted into a fully convolutional scheme. The output of the network was changed
to a 13 ◊ 13 grid for a 416 ◊ 416 input image and the bounding box coordinates are not
predicted directly, but anchor boxes [43] were incorporated into the output layer. The
network can run in 40fps and performs on par with SSD [33] and ResNet [25].
SSD, another end-to-end approach was introduced by Liu et al. [33]. The architecture
of this network is almost the same as in YOLO9000 as it is also a fully convolutional

6
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network, which outputs class confidences and bounding box di�erences from anchor
boxes [43]. The di�erence is that YOLO9000 concatenates features from 2 feature maps
of di�erent sizes and trains a convolutional layer on top of these concatenated vectors,
whereas SSD trains a convolutional filter (layer) for each scale separately. Therefore,
SSD has more detection windows on the output. The performance of SSD is on the
state-of-the-art level on the Pascal VOC dataset [14].

Another well performing FCN framework on KITTI is DenseBox [27]. They use a fully
convolutional network to get a map of probabilities and bounding box coordinates of
objects. The probabilistic map is basically a Hough Map [3], where the pixels that are
in the center of the object are responsible for detecting it. It works very well on the
KITTI dataset [19] and therefore can be used for our purposes.

2.2 DenseBox - The Selected Base Method
A car detector for autonomous vehicles has certain requirements, which have to be met
in order for the detector to be usable. It has to be able to detect cars in all possible
viewpoints, deal very well with occlusion, which in the case of urban areas may be very
extensive. Lighting conditions also vary from very dark to very bright, including the
case when sun shines into the camera. Also, the detector must be reasonably fast and
robust and, finally, provide the autonomous car with the 3D poses of the surrounding
cars.

The current state-of-the-art 3D bounding box detectors based on DNN [35, 55, 9–10] can
deal with the aforementioned problems really well except for the time time to detection.
In Tab. 2.1 we see the comparison of the times it takes for each method to process one
image with dimensions 1240 ◊ 375 (0.5MPx) from the KITTI dataset on a GPU. All
times exceed 1s, which is very unsatisfactory for an application in a real time system
such as an autonomous car.

Method Description TTD
Deep3DBox [35] SubCNN RPN, DNN for pose estimation 1.5s
SubCNN [55] RPN, DNN for subcategory classification 2.0s
3DOP [10] Point cloud 3DBB proposal, DNN refinement 3.0s
Mono3D [9] Segmentation 3DBB proposal, DNN refinement 4.2s

Table 2.1. Comparison of the time to detection (TTD) of the best performing 3D-
bounding-box-detecting DNN methods on the KITTI dataset. Data taken from the

KITTI scoreboard. RPN: Region Proposal Network, 3DBB: 3D bounding box.

If we look at the state-of-the-art end-to-end systems for 2D bounding box detection,
such as YOLO [40–41] or SSD [33], they are all able to run in a frame rate larger
than 20fps on an image with dimensions about 500 ◊ 500 (0.25MPx). This is at least
15 times faster than the previously mentioned detectors, therefore, it makes the end-
to-end methods obvious candidates for our purpose.

Currently, one of the best performing published end-to-end systems on the KITTI
dataset is DenseBox [27]. It uses a very natural structure of the output as it estimates
a probabilistic map of object centers across the whole image, see Fig. 2.1 for illustration.
One can compare its nature to the Hough accumulator [3], used for example in [18].
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The detected objects are then extracted as the maxima from this probabilistic map.
This can be done for an image of arbitrary size as it is a fully convolutional network.
When thinking about this output representation, one can notice similarities to YOLO
or OverFeat [46], which can be thought of as having more coarse grids of responses.

Figure 2.1. Sample image (left) and a probabilistic map of object centers (right).

DenseBox also su�ers from the detection speed problem, but that is because it is not
such a mature and well crafted system as YOLO or SSD. YOLO and SSD process each
image in one pass, whereas DenseBox processed an image pyramid. The network can
be changed to work in a similar manner and with a similar number of parameters it
should achieve comparable speeds. This shows that DenseBox has a lot of potential.

Considering that the output of DenseBox can be easily adapted to predict the image
projections of the corners of 3D bounding boxes and its loss function is way simpler to
compute than in the case of YOLO or SSD, we chose to use a DenseBox-like output
structure. It allows us to easily train, test our progress, and tune parameters on a
single scale detector, which we then extend to a multi-scale one-pass detector. The
architecture of the multi-scale network is inspired by SSD and MS-CNN [5] in that
we extract probabilistic maps for di�erent scales from di�erent levels of the detection
network as illustrated in Fig. 3.2.

NOTE In general, we could have chosen any of the three (YOLO, SSD, DenseBox)
methods and change its output to generate 3D bounding boxes, however, another argu-
ment in favor of DenseBox was that it is much easier to implement and test on a small
scale, which was very helpful while taking the first steps.
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Chapter 3
Bounding Box Detection using DNN

This chapter contains a detailed description of the proposed network. We present the
chosen input and output representations, the loss function, and a discussion of the
network design choices and describe the resulting network designs.

3.1 Quick Overview of the Method
An artificial neural network is a non-linear projection from an N -dimensional space
XN µ RN to an M -dimensional space Y M µ RM , which can be described as a com-
position of linear and non-linear functions l

i

: XNi æ Y Mi called layers. Formally, an
artificial neural network with L layers may be written as

y = (l
L

¶ ... ¶ l2 ¶ l1)(x), y œ Y M , x œ XN .

The layers (except for the pooling layers) consist of neurons - elementary units per-
forming the following operation

l
ij

(xi) = „(xi · wij + b
j

),

where wij represents the weights applied to the elements of the layer input vector xi,
b

j

is the bias, and „ is the activation function, which introduces non-linearity to the
network. This is done for every neuron j in the layer i, therefore again producing a
vector yi of output values. Many types of layers and activation functions exist. As
artificial neural networks are a widely studied topic, we refer to [30, 23, 37] for further
details on the theoretical part and instead describe the specifics of our design.

Our artificial neural network has been designed to detect 2D and 3D bounding boxes
of cars from RGB images of any resolution captured by a monocular camera. We
used the very well known fully convolutional design in combination with the output
representation introduced by DenseBox [27]. This allows us to detect cars of various
sizes, including very small ones (from 20px of the longer side of their 2D bounding box),
and run the detector on an image of any resolution, providing that the network fits into
the GPU memory.

In short, one can think of our fully convolutional network (FCN) as a large window
sliding on the input image, which outputs the probability

1) of that window having a car
in its center for each window position on the input image (Fig. 3.1b). Another point
of view can be that the pixels of the output response map, which correspond to the
position of an object center (center of its 2D bounding box) are responsible for detecting
that object. Intuitively, the response maps in Fig. 3.1b assimilate the very well known

1) We will be calling this probability, however it is not probability in the statistical sense as it only measures
the strength of the response of the network, more like confidence.
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a) A busy intersection with cars coming from all directions.

b) Object center probability response maps (black) and response maps with 2D bounding
box coordinates (white) in scales denoted by xs, where s is the down-sampling factor with

respect to the input image. The larger the scale s, the larger objects the response
map detects.

Figure 3.1. Sample input image (a) and the corresponding response of a network for 2D
bounding box detection (b). In b) we show several scales of response maps down-sampled

by factor s, which are used to perform multi-scale detection.

Hough accumulators [3] from the Hough-transform-based object detectors. Yet another
point of view may be that the output response map is an extended grid (more dense)
of responses used in YOLO [41] or SSD [33].
Fig. 3.1b contains several scales of the mentioned response maps. This is because we
are performing multi-scale car detection, which may be achieved either by building
an image pyramid from the input image as it is done in DenseBox or, as we did it,
extracting the response maps from several di�erent layers of the network. This idea
was previously used in SSD [33] and MS-CNN [5] and is illustrated in Fig. 3.2. It is a
very convenient approach because it performs multi-scale detection in one pass through
the network as opposed to the repeated evaluation in the image pyramid case. For
this reason it is way faster. It also allows the network to learn more and more precise
description for larger and larger objects.

3.2 Input Layer
The network takes 3-channel RGB images on the input. For detection, the images can
be of arbitrary resolution1), in training, however, we use images of fixed dimensions (for
example 128 ◊ 256) in order to be able to process multiple images in a single batch.
The intensities of the image pixels [0, 255] are converted to span the interval [≠1, 1] in
the following way:

v ≠ 128
128 ,

1) Providing the network fits into the GPU memory.
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Figure 3.2. Extraction of response maps for multi-scale detection. The red arrows show
where the output response maps are extracted, their scale is denoted xs (i.e. x1, x2, x4).
The scales s used on the output may be chosen arbitrarily based on the sizes of the objects
we want to detect. The extraction is carried out using 1 ◊ 1 convolution with 5 filters in
the case of 2D bounding box and with 8 filters in the case of 3D bounding box detection.

where v stands for the original value, since values between ≠1 and 1 are more suitable
for neural networks. In training, the dataset is randomly shu�ed and the images are
randomly augmented with exposure and hue shifts and color noise.

3.2.1 Bounding Box Sampling

The detector has to learn to detect cars (bounding boxes) of various sizes. The orig-
inal sizes in the training set would not be enough, and hence we perform cropping of
bounding boxes to random scales.

We want to make sure that we have at least one bounding box in each training image.
Therefore, we randomly select a bounding box from the training set. The bounding
box size size

orig

= max(w, h), where w and h stand for the width and height of the
bounding box respectively. Then we randomly select a size size

new

(uniformly from a
user-defined interval) in which the bounding box will be cropped and rescale the whole
image so that the bounding box matches this new size size

new

. Then, a random crop
of the dimensions of the net input is extracted from the rescaled image. The random
crop is however restricted such that it has to contain the whole selected bounding box.
Examples of the sampled images with highlighted bounding boxes are shown in Fig. 3.3.

When training a multi-scale detection network, one has to adjust the size size
new

sam-
pling distribution. Intuitively, the length of the interval of sizes grows for increasing
scales s (Fig. 3.7). If we sampled uniformly from the interval of all sizes, we would end
up sampling more bounding boxes for larger scales. We require all scales to have the
same amount of training data (bounding boxes), therefore we have to convert the size
sampling distribution. We want for our new distribution to hold that

f(2kx) ≠ f(kx) = const, k œ N

because the interval of sizes doubles for each two consecutive scales s = 2i, 2i+1. For
example the interval for s = 2 might be [30, 60] (length 30) and for s = 4 [60, 120]

11
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Figure 3.3. Examples of sampled training images from the KITTI dataset with highlighted
ground truth.

(length 60). Selecting f(·) = log(·) satisfies the requirement

log(2kx) ≠ log(kx) = log
3

2kx

kx

4
= log 2 = const.

Uniformly sampling values from the log(size) space gives us the required property.

3.3 Hidden Layers
Our network uses two very well known types of hidden layers - convolutional layers
and pooling layers. We do not use any fully connected layers as our design is fully
convolutional.

3.3.1 Convolutional Layer

Convolution is an operator used in signal processing, which takes two functions f and
g and produces a third function (f ú g) defined as

(f ú g)[n] =
Œÿ

m=≠Œ
f [m]g[n ≠ m],

where n and m are integers (this is the discrete version of the definition of convolution).
We can interpret this as sliding a reversed linear filter across a vector. This definition
can be extended into two dimensions, where the notion translates to sliding a flipped
2D linear filter (matrix) across a matrix. In convolutional layers of neural networks we
omit the flipping since the parameters of the filter are learned and therefore the flip is
irrelevant.

Following the above definition, the convolution operator produces a matrix, which is on
each side extended by the half of its size, i.e. convolutional operator 3 ◊ 3 produces a
matrix of size (h + 2) ◊ (w + 2) (with non-zero values). However, we drop the extension
and keep the size of the matrix the same. This is convenient to keep the design of the
network organized.

When designing a network, one requires the output neurons to have a certain field of
view (the size of the part of the input image from which the input is taken). The field of
view (FOV) of the neurons - convolutional operators can be extended by enlarging the

12
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filter (e.g. to 7 ◊ 7) or by stacking several convolutional layers on top of each other. In
the latter case, each input neuron of a convolutional layer already has a certain FOV,
which enlarges the FOV of the neurons (operators) in the next layer (see Sec. 3.6 for
details on how to compute the FOV). This is the approach we used as it was shown
in [48] that it uses much less parameters and there is no drop in performance. It also
saves the memory required to compute the convolutional layer output.

The FOV of a convolutional operator can be increased even more by using so called
dilated convolution or atrous convolution, described in [57]. Dilated convolution intro-
duces holes in between the operator elements and therefore spans the operator over a
larger area of the input matrix. Conveniently, when stacked, these convolutions can
cover a very large area without reducing the resolution of the output matrix. See
Fig. 3.4 for illustration. Using the dilated convolutions is a design change over the
DenseBox architecture, where they achieve larger FOV by adding extra pooling layers
and deconvolving the result back to the required resolution. We argue that dilated
convolution is superior to their approach as it does not perform any extra resolution
reduction.
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Figure 3.4. The expanding FOV of repeatedly applied dilated convolution. (left) is clas-
sical 1-dilated 3 ◊ 3 convolution; (middle) is 2-dilated convolution applied on the (left)

result; (right) is 4-dilated convolution applied on the result of (middle).

During training, we look at convolutional layers as weight-sharing layers. It is because
the same convolutional operator with the same learned weights is applied many times
on the input matrix. When updating its weights, the gradient from all positions, where
the operator was applied is summed up - i.e. shared. This, however, introduces a
problem. If a large input matrix is used for training, the sum will have more operands
and the update will be larger because of this. It is a known problem1) and one has to
keep in mind that the learning rate needs to be adjusted accordingly.

ReLU Following current trends, after each convolutional layer, except the output ones,
we apply the rectified linear unit activation function max(0, x), evaluated in [12].

3.3.2 Pooling Layer

Pooling layer provides an informed dimension reduction of the input matrix. We use
max-pooling layers with kernel size 2 ◊ 2 and stride 2 in our network to scale down

1) https://github.com/BVLC/caffe/issues/3242
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the input matrix exactly by the factor of 2. Using pooling layers is arguably superior
to using convolutional layers with stride 2 to do dimension reduction because such a
reduction is not informed and just blindly skips every other input position.

3.4 Output Layer(s)
As already mentioned, we use the output representation taken from DenseBox [27]. We
have either 5 (for 2D bounding box) or 8 (for 3D bounding box) channels in the output
layer (see Fig. 3.5), whose dimensions are down-sampled with respect to the input image
by the scale factor s. In DenseBox, the factor s = 4 is used, however, in our case we are
performing multi-scale detection directly in one pass through the network (Fig. 3.2),
hence we have several scales s on the output, usually 2, 4, 8 or 2, 4, 8, 16, depending on
what sizes of objects we aim to detect.

prob
xmin
ymin
xmax
ymax

prob
fblx
fbly
fbrx
fbry
rblx
rbly
ftly

2D bounding box 3D bounding box

w/s

h/s

h/s

w/s

Figure 3.5. Illustration of the representation of the 2D and 3D bounding boxes on the
network output in scale s.

3.4.1 Target Representation

The pixels in the response map within some given radius r = d/2 from an object
center (center of its 2D bounding box) are responsible for detecting that object and
regressing the coordinates of its 2D or 3D bounding box (Fig. 3.6). In the case of a
2D bounding box we regress the coordinates of the top-left and bottom-right corners of
the 2D bounding box. In the case of a 3D bounding box we regress the position of the
projections of the rear-bottom-left, front-bottom-left, and front-bottom-right corners
and the y-coordinate of the front-top-left corner. For a detailed description of the 2D
and 3D bounding box representation see Sec. 4.2.1 and Sec. 4.2.2.

a) Annotated image. b) Target response map.

Figure 3.6. 2D bounding box annotation and the corresponding ground truth probability

response map required on the output of the network (black = 0, white = 1). The center
of each object in the current scale must be detected. The a�liation of each object to a

certain scale s is determined by its size (see Fig. 3.7).
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The choice of the radius r = d/2 (in Fig. 3.6) of the circle of pixels responsible for
detecting an object is arbitrary. However, we relate it to the size = max(w, h) of the
object 2D bounding box. Providing the circle ratio

cr = 2 ú r + 1
size

· s

and selecting r directly determines the size of objects that should be detected in the
response map of the scale s. For example, choosing cr = 0.25 and r = 2 gives size = 80
for scale s = 4, which means that the response map of scale s = 4 should detect objects
of size around 80 pixels. Notably, this provides the ideal size of object, which should
be detected in the response map of the scale s, however, in reality, we need to provide
a span of sizes of objects that will be detected by a certain scale s.
The scales of response maps in our network are a sequence of 2i, i œ N numbers. This
comes from the fact that each pooling layer shrinks the input matrix by 1/2 on each
side. We chose to make each scale s

i

responsible for detecting objects in the following
span (interval) of sizes

5
size

i

+ size
i≠1

2 ≠ oL

i

,
size

i

+ size
i+1

2 + oR

i

6
,

where oL

i

and oR

i

is the left and right overlap of the bounds respectively. The overlap
is provided in order to smoothen the boundary between two neighboring scales. It also
means that some objects may be detected in two response maps of di�erent scales.
Fig. 3.7 illustrates this.

0 20 40 80 16015 30 60 120 240

x1 x2 x4 x8

overlap

sizes, bounds

scales

Figure 3.7. The distribution of object sizes into di�erent response map scales xs (cr = 0.25,
r = 2). Each response map is responsible for detecting objects within the given bounds

plus the overlap with neighboring scales.

Gaussian response In our target probability response map we require either 0 for the
pixels out of the object centers or 1 for the pixels in the object centers. This results in
a steep change in the error on the edge between a correct and incorrect detection when
the network output is slightly misplaced (Fig. 3.8). Using a Gaussian instead guides
the learning algorithm better towards the required position. Therefore, we filter the
ground truth probability response map with a 3 ◊ 3 Gaussian filter with ‡ = 1. This
results in having Gaussian blobs in the positions of the circles and smoother transitions
(smaller error) for small misplacements in the response maps. For r = 2 the Gaussian
looks as shown in Fig. 3.9.

Figure 3.8. The response of a network trained on a binary response map (left) and its
error when compared to ground truth (right). The ring in the left image corresponds to

the steep change in the error, which is undesired.
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Figure 3.9. The Gaussian blob used instead of the binary circle with r = 2 in the probability

response map.

Coordinate response maps So far, we have been describing the probability response
map channel, however, the output contains other 4 (or 7) channels (Fig. 3.5) that regress
the 2D (or 3D) bounding box coordinates. The coordinates are necessarily relative to
the coordinate map pixel position in which they are regressed as we are using a FCN.
They are regressed in each pixel (understand pixel as a sample with 5 or 8 channels),
which has a value > 0 in the probability channel. This is because each positive pixel
(sample) in the net output represents a bounding box.

The relative coordinate values are scaled to approximately (0, 1), which is more suitable
for training of the network - provides gradients of similar magnitude to the ones from
the probability channel. The relative coordinate value v is converted to the value vÕ in
a coordinate response map in the scale s

i

as follows

vÕ = v

size
i

+ 0.5,

where size
i

is the ideal object size for the scale s
i

. This assures that a 2D bounding
box with the dimensions size

i

◊ size
i

will have coordinates in the relative coordinate
maps xÕ

min

= 0, yÕ
min

= 0, xÕ
max

= 1, and yÕ
max

= 1. Other bounding box dimensions
will have values around 0 and 1.

3.4.2 Loss Function

Ground truth probability and coordinate maps are created as described above. Our loss,
inspired by DenseBox, is based on the widely used squared Euclidean loss function

E = 1
2

Nÿ

i=1
(t

i

≠ y
i

)2,

where t
i

is the target value (ground truth) and y
i

is the network output, i iterates over
all N output layer neurons.

For simplicity we will be describing the loss for one image in the batch and for a single-
scale detection network, that is a network with only one output response map. The
channel c = 0 is the probability response map, the rest are coordinate response maps.

Lets denote tc

i

and yc

i

the target ground truth value and network output value of the
pixel i and the channel c in the response map (c œ {0, ..., 4} for 2D and c œ {0, ..., 7}
for 3D bounding box, i is just one dimensional pixel index for a simpler notation). The
loss function we compute is

E = 1
2N

Nÿ

i=1
(t0

i

≠ y0
i

)2 + 1
2N

P

(C ≠ 1)

Nÿ

i=1

C≠1ÿ

c=1
t0
i

(tc

i

≠ yc

i

)2, (1)
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where N
P

=
q

N

i=1[[t0
i

”= 0]] is the number of positive pixels in the target probability

response map, [[·]] denotes the Iverson bracket, and C is the number of output map
channels (either 5 or 8). Note that we multiply the coordinate part of the loss with t0

i

,
which in the case of using Gaussian blob in the probability response map decreases the
gradient from the pixels, which are further from the object center.

The above loss function is only used for display during training and is shown on all plots
in the evaluation section. The problem of the loss function is the biased target response
map. The number of positive pixels (samples) N

P

<< N
N

, where N
N

= N ≠ N
P

,
i.e. the number of negative pixels (see Fig. 3.6b). The gradient from the positive
samples would be overweighted by the gradient from the negative samples, therefore we
introduced a weight factor – > 1 to increase the significance of the positive samples.
The resulting loss function is

E = 1
2N

Nÿ

i=1

!
1 + [[t0

i

”= 0]](– ≠ 1)
"

(t0
i

≠ y0
i

)2 + 1
2N

P

(C ≠ 1)

Nÿ

i=1

C≠1ÿ

c=1
–t0

i

(tc

i

≠ yc

i

)2, (2)

where [[·]] denotes the Iverson bracket.

3.4.3 Gradient Computation

Back-propagation [31, 44] is the most frequently used algorithm for learning hidden
variables in neural networks. It is a method based on gradient descent, and hence we
are required to find the gradient (derivative) of the loss function with respect to each
hidden variable of the network. The value of each hidden variable is then updated
by the value of the gradient (3). The update is performed based on the outputs of
the network on a training set. It is important to note that instead of updating the
values after processing the whole dataset, we use a modified version of the learning
algorithm called stochastic gradient decent (SGD). This version performs the updates
after processing a certain number B (batch) of randomly selected training images.
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Figure 3.10. Illustration to support the derivation of the weight update �wj,i.

We now derive the computation of the weight updates �w
j,i

for the connections in the
output layer (see supporting illustration of the problem in Fig. 3.10). For simplicity,
lets consider B = 1 for the derivation. We derive the version without biases in the
neurons (5) because the computation of updates for them is similar.
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Following the notation from Fig. 3.10, the weight update is defined as

�w
j,i

= ≠÷
ˆE

ˆw
j,i

, (3)

where ÷ is the learning rate. We use chain rule to compute the derivative of the loss
function (2) as follows

ˆE

ˆw
j,i

= ˆE

ˆy
i

ˆy
i

ˆw
j,i

, (4)

y
i

= „ (s
i

) ,

s
i

=
ÿ

k

w
k,i

ȳ
k

. (5)

For the first term of (4) we have to distinguish between the weights on the connections
w0

j,i

belonging to the probability response map y0
i

and the weights wc

j,i

on the connections
to the coordinate response maps yc

i

, where c œ {1, ..., C ≠ 1}, which yields two di�erent
equations

ˆE

ˆy0
i

= ≠ 1
N

!
1 + [[t0

i

”= 0]](– ≠ 1)
"

(t0
i

≠ y0
i

), (6)

ˆE

ˆyc

i

= ≠ 1
N

P

(C ≠ 1)–t0
i

(tc

i

≠ yc

i

). (7)

The derivation of the second term of (4) is common for both cases and is easily solvable
using chain rule

ˆy
i

ˆw
j,i

= ˆy
i

ˆs
i

ˆs
i

ˆw
j,i

= „Õ ˆs
i

ˆw
j,i

, (8)

ˆs
i

ˆw
j,i

= ˆ (
q

k

w
k,i

ȳ
k

)
ˆw

j,i

= ȳ
j

, (9)

where „Õ is the derivative of the activation function and it depends on the chosen
activation function. If we plug (6), (7), (8), and (9) into (4) and then (3) we get two
final expressions for the weight updates of the connections of the neurons in the output
layer

�wc

j,i

=

Y
_]

_[

÷
1
N

!
1 + [[t0

i

”= 0]](– ≠ 1)
"

(t0
i
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i

)„Õȳ
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c = 0;

÷
1

N
P

(C ≠ 1)–t0
i

(tc

i

≠ yc

i

)„Õȳ
j

c ”= 0.
(10)

The equation (10) describes the weight update used in the output layer connections.
The derivation of the updates of the weights in the hidden layers will not be shown here
because they are carried out in the standard way. For details on back-propagation see
[31, 44] or a modern on-line book [37].
NOTE We made an important enhancement to the learning procedure. When learning
a multi-scale network, the gradient from response maps, which do not contain any object
(any positive pixel) is nullified. In Sec. 5.3.9 we show that it improves the performance
of the network. However, the reason why is questionable. The motivation behind
this change was to reduce the gradient from negative pixels of the response map, and
hence increase the influence of the gradient from the positive pixels, which is inevitably
happening. On the other hand, it reduces the ability of the network to learn not to
detect objects in scales, where they should not be detected. Apparently, this is not
happening too much and the advantages overweight the disadvantages.
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3.5 Detection Extraction

When an image passes through our detection network, it produces a multi-channel
response map (or a set of multi-channel response maps in the case of multi-scale detec-
tion). Each pixel in such a response map represents one detected bounding box (2D
or 3D) and the probability of the bounding box being an object. A sample probability

response map is shown in Fig. 3.11. In general, one object will be detected by several
pixels surrounding the center of its 2D bounding box. We need to find only the one
most appropriate pixel and output its response as a detection.

Figure 3.11. Example of the 0th output channel - probability response map. Detected
bounding box centers are at the positions of the maxima in the map.

A non-maxima suppression (NMS) algorithm needs to be used to reject all insignificant
and repeated detections. We use a two-stage solution, where we approach the probability

response map as a Hough accumulator [3]. First, local maxima on a 3◊3 neighborhood
are found. Then, a classical non-maxima suppression algorithm discards all detections,
which have lower confidence (in our case the probability response) than some other
detection with intersection over union greater than 0.5.

Using the two-stage approach is crucial in order to achieve reasonable speed of the
NMS algorithm. Extracting all detections from the response maps leads to the need to
suppress many more detections and therefore it is slower.

3.6 Computing FOV of Convolution

Before we introduce our network designs, it is important to explain how the field of
view (FOV) of a fully convolutional network and its layers is computed because the
designs are derived from how large FOV is needed in each of the layers.

A fully convolutional network produces an output value for each s ◊ s pixels of the
input image. The down-sampling s of the network is given by the number of pooling
layers and the strides of the used convolutions. The FOV of the network is the size of
the window on the input image, which influences one pixel in the output layer.

Stacking convolutional layers increases the FOV. A single convolutional layer can have
a FOV for example 3 ◊ 3, however, when two such layers are stacked on top of each
other, the FOV expands to 5 ◊ 5. It is caused by the fact that each pixel in the second
layer input already contains information from its 3 ◊ 3 neighborhood, see Fig. 3.12.
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Figure 3.12. Example of how FOV broadens while stacking convolutional and pooling
layers.

It is very important to know how to compute the FOV of a convolutional network (and
each convolutional layer) because it determines the size of the object that the network
can detect, i.e. we want the object to be fully contained within its FOV. We extract
output response maps from di�erent levels of the network (Fig. 3.2) because we want
to be able to detect objects of di�erent sizes.

Let’s denote fov
i

the FOV of the convolutional layer i. The down-sampling (scale) of
the layer i is represented by s

i

. Kernel size is k
i

and d
i

stands for the dilation factor,
where d = 1 is regular convolution. The FOV of a layer is given by the recurrent
equation

fov
i

= s
i

(d
i

(k
i

≠ 1) + 1) ≠ s
i≠1 + fov

i≠1. (11)
Applying equation (11) on our example from Fig. 3.12 gives us

fov0 = 0, s0 = 0,

fov1 = 1(1(3 ≠ 1) + 1) ≠ 0 + 0 = 3,

fov2 = 1(1(3 ≠ 1) + 1) ≠ 1 + 3 = 5,

fov3 = 1(2(3 ≠ 1) + 1) ≠ 1 + 5 = 9,

fov4 = 2(1(3 ≠ 1) + 1) ≠ 1 + 9 = 14,

which computes the correct FOV of the layers. Pooling layers and stride larger than 1
is represented by increasing scale s (down-sampling factor).

3.7 Used Architectures
When designing our network, we aimed for an object to be detected with a convolutional
layer with FOV two times larger than the object size. That is, the convolutional layer
must have FOV at least 2 ◊ size, where size is the ideal size of an object.

We mainly used two di�erent networks, which are described in Tab. 3.1 and 3.2. The
former network, code name r2_x4, detects only single-scale objects and was used in
the beginning for making design choices because it was way faster to train. In order to
make it detect multi-scale objects we used image pyramid as done in DenseBox. The
latter, code name r2_x2_to_x16_s2 is a new design for multi-scale detection in a single
pass. This network was the target of our work and is used in the final evaluations.

For every scale, where the ideal size is noted in Tab. 3.1 and 3.2 a 5 or 8 channel
response map is created. The response map is generated by an additional convolutional
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Kernel Stride Filters FOV Ideal size size span
3 ◊ 3 1 64 3 ◊ 3
3 ◊ 3, d = 2 1 64 9 ◊ 9
MAXPOOL 2
3 ◊ 3 1 128 14 ◊ 14
3 ◊ 3, d = 2 1 128 26 ◊ 26
MAXPOOL 2
3 ◊ 3 1 256 36 ◊ 36
3 ◊ 3, d = 1 1 256 52 ◊ 52
3 ◊ 3, d = 3 1 256 84 ◊ 84
3 ◊ 3, d = 7 1 256 148 ◊ 148 80 ◊ 80 [72, 96]

Table 3.1. The single-scale detection network r2_x4 with s = 4, cr = 0.25, r = 2. We use
this network for initial tests on an image pyramid. Note that the size span is smaller than

usual because we were using more scales in the image pyramid.

Kernel Stride Filters FOV Ideal size size span
3 ◊ 3 1 64 3 ◊ 3
3 ◊ 3, d = 2 2 64 9 ◊ 9
3 ◊ 3 1 128 14 ◊ 14
3 ◊ 3, d = 1 1 128 22 ◊ 22
3 ◊ 3, d = 3 1 128 38 ◊ 38
3 ◊ 3, d = 6 1 128 66 ◊ 66 33 ◊ 33 [22.5, 55.5]
MAXPOOL 2
3 ◊ 3 1 256 76 ◊ 76
3 ◊ 3, d = 1 1 256 92 ◊ 92
3 ◊ 3, d = 3 1 256 124 ◊ 124 66 ◊ 66 [44.5, 111]
MAXPOOL 2
3 ◊ 3 1 512 144 ◊ 144
3 ◊ 3, d = 1 1 512 176 ◊ 176
3 ◊ 3, d = 3 1 512 240 ◊ 240 133 ◊ 133 [89, 222]
MAXPOOL 2
3 ◊ 3 1 512 280 ◊ 280
3 ◊ 3, d = 1 1 512 344 ◊ 344
3 ◊ 3, d = 3 1 512 472 ◊ 472 266 ◊ 266 [178, 444]

Table 3.2. The multi-scale detection network r2_x2_to_x16_s2 with s = 2, 4, 8, 16, cr =
0.3, r = 2. The final design of the detection network. The same setup is used for 2D and
3D bounding box detection. It detects objects of sizes from 22.5 to 444 pixels, which is

su�cient for most applications.

layer (not shown in the tables) with 1 ◊ 1 kernel and 5 or 8 output channels, attached
to the last layer in the scale.

One can notice the missing maxpool layer after the first two convolutional layers in
the r2_x2_to_x16_s2 design (Tab. 3.2). The GPU memory required to store the pa-
rameters and data of a network is very high. One of the main reasons for this is the
computation of convolution, which needs to unfold the input matrix and copy it several
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times1). The size of the unfolded matrix is dependent on the number of outputs of
the layer. Using stride = 2 reduces the number of outputs of the layer drastically.
Also it removes the need for the maxpool layer as the output will be down-sampled by
the factor of 2. This seemingly little change saved us about 1/5 of the required GPU
memory for storing the network.

The last three convolutional layers in r2_x2_to_x16_s2 have only 512 filters. Normally,
the number of filters is doubled with decreasing the scale by 2. The reason for choosing
only 512 filters is the number of parameters of the network. If 1024 filters were used, the
network would have about 130MB of parameters. With 512, the network has only 60MB
of parameters. Our tests showed that the extra 70MB of parameters are not necessary.
We would need much longer training and those parameters would only influence the
last detection scale s = 16, which is not very abundant in our test images.

Note that the scale x4 (s = 4) in Tab. 3.1 has ideal object size = 80, whereas in the
second network (Tab. 3.2) the ideal object size = 66 for the scale x4 (s = 4). It is
caused by di�erent circle to object size ratio cr used in the two networks. A larger
circle ratio (in our case 0.25 vs. 0.3) requires smaller objects when the circle radius r
is kept. This choice was made in order for the r2_x2_to_x16_s2 network to be able to
detect smaller objects.

1) Details on how convolution is computed in Ca�e can be found at http://caffe.berkeleyvision.org/
tutorial/convolution.html.
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Chapter 4
Data and Labels

In this chapter we introduce the requirements on ground truth labels, followed by the
description of the used representation, which introduces two new file formats created to
store those labels. Four datasets used in this work are described and their comparison
is shown. Finally, we show how a 3D bounding box can be reprojected from image
coordinates into the world coordinates using the flat ground plane assumption.

4.1 Ground Truth Specification
In this work we use two di�erent ground truth labels - the 2D bounding box and
the 3D bounding box. Here we describe the required properties of these two types of
annotations.

In both cases, we require all objects (cars), which the annotator can distinguish in the
image to be annotated. The annotator should label cars of all sizes, occluded up to 90%,
and truncated up to 75%. For the annotators this essentially means to label all objects,
which they can recognize from the single image without having any extra knowledge
about the scene. See Fig. 4.1 for details.

Figure 4.1. An object that according to the methodology should be labeled (solid) vs.
object that should not be labeled (dashed). A car from which we would only see a small part
of the roof (dashed) would be labeled as don’t know since the labeler cannot distinguish
whether it actually is a car or some obstacle next to the road. This applies even if the
labeler has a prior knowledge from a sequence of images that it actually is a roof of a car.

4.1.1 2D Bounding Box

2D bounding boxes are minimum enclosing image-axis-aligned rectangles, which are
required to encompass the whole object - in our case the car. However, they are only
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useful if we can reason from them about the object size or even pose. This leads to the
labeler having to make up the hidden (occluded or truncated) parts of the objects such
as demonstrated in Fig. 4.2.
Looking at Fig. 4.2, we see that the incorrect bounding boxes only contain the visible
parts of the objects (Fig. 4.2a), however, this annotation is useless if we want to,
hypothetically, reason about the distance of the object from the camera as, in this case,
it has no relation to the actual size of the object. Also, in our algorithm, we create peaks
in the response map in the centers of the bounding boxes. If the incorrect bounding
boxes were used, the centers would be in di�erent positions with respect to the object
for each bounding box, which is not desired.

a) Incorrect annotation. b) Correct annotation.

Figure 4.2. Examples of incorrect and correct 2D bounding box annotations. See text of
Sec. 4.1.1 for explanation.

4.1.2 3D Bounding Box
3D bounding boxes are minimum enclosing rectangular cuboids of objects in the real
3D world. In the case of a 3D bounding box, occlusion and truncation translates to
3D as missing parts (missing parts of a point cloud created from a stereo image pair)
of the objects. Again, the labeler needs to think up these missing parts and draw a
tight rectangular cuboid encompassing the whole object in the 3D world. On top of
that, each 3D bounding box has a distinguished front and rear side, which determine
the pose of the object, see Fig. 4.3.

Figure 4.3. Sample image from the KITTI dataset with 3D bounding box annotations.
Front sides are displayed in green, rear sides in red.

Very importantly, a 3D bounding box is required to be placed on the ground plane. As
we are performing car detection, we can safely assume that cars will be pinned to the
ground plane until flying cars will have been developed. We use this assumption also in
our representation of the 3D bounding box, which is described further in this chapter.
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4.2 Representation
In order to work with the 2D and 3D bounding boxes we had to select the most suitable
representation for each and we created our own annotation file formats, which keep the
annotations in the specified forms.

4.2.1 2D Bounding Box - BBTXT

The 2D bounding boxes are represented by the coordinates of their top-left (x
min

, y
min

)
and bottom-right (x

max

, y
max

) corners. We created a special file format, which can be
used to store ground truth 2D bounding boxes as well as detections. The format of the
file is shown below, each line contains one bounding box. In the case of ground truth
we simply set confidence to 1.
filename label confidence xmin ymin xmax ymax

filename label confidence xmin ymin xmax ymax

...

4.2.2 3D Bounding Box - BB3TXT

For 3D bounding boxes we store the coordinates of the projections of the bounding
box corners into the image. This representation is very convenient as it makes the
coordinates independent of the used camera (and its image projection matrix). We
can make use of it in our network output as it allows us to train a single network
and then use it on images taken by any other camera (for example a di�erent dataset).
Importantly, we can use the coordinates of the projected points because we assume that
the bounding boxes lie on the ground plane and thus we are able to reconstruct the 3D
pose of the bounding box if the equation of the ground plane is known (Sec. 4.4).

If coordinates of all projected corners (8 + 8 in total) were stored we would have re-
dundant information. A bounding box in 3D has 9 degrees of freedom (DOF) - 3 for
position, 3 rotations, and 3 dimensions. By assuming the objects (cars) are pinned to
the ground plane we set roll and pitch angles to 0 with respect to the ground plane
and the bottom side is a subset of the ground plane, which removes one more degree of
freedom. The 3D bounding box therefore has 6 DOF.

FRONT

REAR

front-bottom-left

rear-bottom-left

front-bottom-right

front-top-left

Figure 4.4. 3D bounding box corners explained.

Regarding this analysis, we selected to store the coordinates of the projected rear-
bottom-left, front-bottom-left, and front-bottom-right corners and the y-coordinate of
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the front-top-left corner (Fig. 4.4). This is 7 numbers in total, which is to provide
redundancy on the perpendicularity of the front and left sides of the bounding box,
which will show to be beneficial in the reconstruction phase (see Sec. 4.4). Also it
allows us to draw 3 lines - front-bottom, left-bottom, and front-left into images without
doing any kind of reconstruction, which provide su�cient insight into the bounding
box’s position (see Fig. 4.5). Note that in order to draw the front-left line we assume
for simplicity that its projection to the image is vertical.

Figure 4.5. Information stored about 3D bounding boxes. Each bounding box is defined
by 7 coordinates (3 lines) - front-bottom (green), left-bottom (yellow), front-left (green).

We created a BB3TXT file format to store this information, which is shown below.
Conveniently, we also store the 2D bounding box, because it is needed to find the
center of the object. Also, we can then load this file into our evaluation script for 2D
bounding boxes.
filename label confidence xmin ymin xmax ymax fblx fbly fbrx fbry rblx rbly ftly

filename label confidence xmin ymin xmax ymax fblx fbly fbrx fbry rblx rbly ftly

...

The confidence is, again, in the case of ground truth set to 1. The variable names for
the projected bounding box corners in the above code translate in the following way:
fblxmeans x-coordinate of the front-bottom-left corner, the other variable names follow
this pattern.

4.3 Datasets
Throughout this work we used four di�erent datasets - the UIUC [2], Jura, KITTI
[19], and Pascal3D+ [56]. A quick overview of the sizes of the datasets is shown in
Tab. 4.1, the UIUC dataset is left out as we only use it to do first experiments but no
actual results are presented on it. We now describe label extraction, advantages and
disadvantages of each dataset.

4.3.1 UIUC
UIUC is a very old and small dataset consisting of gray-scale images of side view
cars. The training set contains crops of single-scale cars, which make it useless for
training FCN. However, we needed a simple dataset, where we could initially test our
network, therefore, we wrote a script, which takes the crops and randomly places them
on randomly cropped background images, adds some noise and exposure shift (Fig. 4.6).
This way we created a training set, which was then used for quick benchmarking of the
initial enhancements. For testing we used the single-scale version of the test dataset.
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Jura KITTI Pascal3D+
Subset train test train test all
Number of images 33937 559 7481 7518 6551
Number of cars 74250 2393 30938 - 7465
Width median [px] 39 111 79 - 396
Height median [px] 37 56 47 - 191

Table 4.1. Comparison of the sizes of the used datasets.

Figure 4.6. Sample images from the artificially created UIUC training dataset.

4.3.2 Jura

The Jura dataset is a collection of images from Prague and Brussels roundabouts and
highways. Therefore, it contains cars in a very wide variety of viewpoints, occlusions,
and lighting conditions - dark shadow or direct sunlight is abundant in this dataset,
see examples in Fig. 4.7. Most of the images are taken with a high-resolution camera,
either 1280 ◊ 1024 or 1208 ◊ 720. This resolution is su�cient to capture even very
distant cars and provide a lot of detail about the close cars.

Figure 4.7. Sample images from the Jura test dataset.

The test set consists of 559 images, which we precisely re-labeled with 2D bounding
boxes that comply with our labeling requirements (Sec. 4.1). The training set, even
though it contains plenty of cars, is not labeled precisely enough and many cars are
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missing. Often only the fully visible cars are annotated, which is not su�cient for our
purpose. Also, the bounding boxes are cropped to the image boundaries, which does
not comply with our labeling requirements. We carried out a few tests using the Jura
training set, however, the trained detectors were not satisfactory.

Variations Apart from just labeling 2D bounding boxes we also marked the boxes as
required or not required and we marked don’t-care regions. The bounding boxes labeled
as not required are poorly visible or largely occluded cars or cars, where it is hard even
for a human labeler to recognize that it is a car. Don’t-care regions usually contain
parking lots of cars, where it is basically impossible to label all cars correctly. Detections
from such regions are then ignored during evaluation.

The Jura test set was used as the only validation and test set throughout our experi-
ments. We use 4 variations of the dataset shown in Fig. 4.8. The first version simply
takes all cars without considering the other marks. The second also takes all cars, how-
ever removes detections, which are casted in the don’t-care regions (i.e. 2D bounding
boxes, which have more than 0.75 intersection with a don’t-care region). The third
only considers required cars. The fourth version considers only required cars and also
removes detections from the don’t-care regions. The di�erent variants are essentially
ordered by di�culty from the hardest to the easiest.

Figure 4.8. The legend of the precision/recall plots in the evaluation. Variations of the
Jura dataset.

4.3.3 KITTI

The KITTI dataset was introduced by Karlsruhe Institute of Technology in their 2012
publication [19]. It consist of images extracted from video sequences recorded in the
streets of Karlsruhe. It contains very precise annotations from point clouds, which
provide 3D bounding boxes needed for training our 3D detection network. The dataset
is split into a training (7481 images) and test (7518 images) sets by the authors. Only
the labels for the training set are provided as there is an active competition on the test
set on the KITTI website1).

The images have a very high width to height ratio 1240 ◊ 375, which makes this
dataset unique. Large lighting variations and especially extensive occlusions are present
(Fig. 4.9). Image projection matrices are available for both the training and test set,
thus 3D reconstruction may be carried out.

The labels contain 2D and 3D bounding boxes for several classes of objects, from which
we only extract the cars and vans into our training set. As the 2D bounding boxes are
cropped to the image boundaries, we had to extract a new set of 2D bounding boxes
from the projections of the 3D ones in order for the bounding boxes to comply with our
ground truth requirements. KITTI labels provide the 3D position of the center of the
bottom side of the bounding box, its rotation around y axis, and width, height, and
length - Fig. 4.10.

1) http://www.cvlibs.net/datasets/kitti/eval_object.php
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Figure 4.9. Sample images from the KITTI dataset.

Figure 4.10. Annotated KITTI 3D bounding box. The displayed vertex 0 and axes x, y,
z define the reference frame of the car. KITTI labels provide the position of the vertex
0 (center of the bottom bounding box side), the rotation around y axis, and the width,

height, and length of the 3D bounding box.

From the labeled dimensions we construct the 3D bounding box in the car reference
frame and convert it to the world reference frame by rotation around y and translation.
We can conveniently use matrix representation to carry out this operation

5
Xworld

1

6
=

5
Ry t
0 1

6 5
Xcar

1

6
,

where Ry represents the rotation matrix around y axis, t the translation vector from the
world origin to the vertex 0, and Xcar is a 3 ◊ 8 matrix, where each column represents
one corner of the 3D bounding box in the car reference frame. These vertices are then
projected to the image with the provided image projection matrix P.

In the case of 2D bounding box extraction we find the maxima and minima of the x and
y coordinates in the image, in the case of 3D bounding box extraction we just save the
coordinates of the projected rear-bottom-left, front-bottom-left, and front-bottom-right
corners and the y-coordinate of the front-top-left corner. It is important to note that
we remove bounding boxes with truncation larger than 75%.

The KITTI dataset is the only dataset we used for training the 3D detection networks
and the main dataset for training the 2D detection networks.
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4.3.4 Pascal3D+

The dataset used in the Pascal VOC [14] was designed to test classification and detection
of various objects. The main focus, however, was put on the classification task and,
therefore, the images usually contain only one object and the object can appear in very
di�erent poses.

Recently, a part of the dataset was extended with 3D annotations [56]. The annotators
fit predefined CAD models onto the objects, which provide 3D pose labels of the objects.
However, as mentioned before, the objects are in very wide variety of poses (Fig. 4.11)
and that is not desired for our 3D detection task since we require the car bounding
boxes to have vertical projections of the vertical 3D bounding box edges (horizontal
vanishing line of the ground plane).

We use the Pascal3D+ dataset only for training with 2D bounding boxes. The 3D an-
notations were used to extract 2D bounding boxes, which comply with our ground truth
specification (Sec. 4.1). The reason why we could not use the provided 2D bounding
boxes is that they were cropped to fit the image dimensions. It is the same problem as
in the case of KITTI.

Figure 4.11. Sample images with 3D bounding boxes from the Pascal3D+ dataset. The
3D bounding boxes could not be used because they are too imprecise and we also require

the ground plane to have horizontal vanishing line.

4.4 3D Bounding Box Reconstruction

The aim of this work is to detect 3D bounding boxes of cars from a monocular camera.
This task is obviously impossible without further knowledge of the scene (triangulation
requires stereo camera information in order to perceive depth of the scene). Instead
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of using stereo imagery we opt for a known flat ground plane assumption. That, to-
gether with the requirement of all bounding boxes being pinned to the ground plane
provides su�cient amount of information to reconstruct the 3D world positions of the
3D bounding boxes. We now describe the steps needed to carry out this reconstruction.

We assume a known ground plane with equation ax + by + cz + d = 0 (Sec. 4.5) with
the normal vector n = [a, b, c]T . Our representation of a 3D bounding box stores 7 im-
age coordinates of projected bounding box corners (rear-bottom-left, front-bottom-left,
front-bottom-right, and the y-coordinate of the front-top-left corner as mentioned in
Sec. 4.2.2, Fig. 4.4) of which only 6 are needed to carry out the reconstruction consid-
ering 3D bounding box is a rectangular cuboid (has right angles among all neighboring
sides). We explain why we use this redundant information further in Sec. 4.4.2. On
top of that, the 3 ◊ 4 image projection matrix P = KR[I| ≠ C], where I is the identity
matrix, needs to be known.

4.4.1 Inverse Projection

Let’s have a vertex X and the camera position C in the 3D world defined as 3◊1 vectors.
Projecting the point X into the camera with center in C, rotation R, and calibration K
gives

⁄x = KR(X ≠ C) = [KR|≠KRC]
5

X
1

6
,

where ⁄ œ R. This is because the point x = [u, v, 1]T in the image in fact represents the
whole ray from C with the direction X ≠ C. Considering the inverse projection, we can
only reconstruct the ray direction, but we need additional information to determine the
exact position of vertex X, resp. ⁄. We can write

⁄x = KRX ≠ KRC,

KRC + ⁄x = KRX,

C + ⁄(KR)≠1x = X,

which tells us that to get the direction of the ray through X we need to compute the
inverse of KR and the camera position C. This is easily achievable from the image
projection matrix P = KR[I| ≠ C], which we have available. The inverse of KR is trivial
to compute and the camera center can be computed as follows

C = ≠(KR)≠1p4,

where p4 is the fourth column of P.

4.4.2 Reconstruction of the Bottom Side

We use the ground plane equation ax + by + cz + d = 0 (n = [a, b, c]T ) and the inverse
projected rays to determine the position of the bottom side of the 3D bounding box
in the world. We can reconstruct the rear-bottom-left, front-bottom-left, and front-
bottom-right vertices using this information.

For simplicity of the explanation we will just use an artificial vertex X, which can be
substituted with the aforementioned vertices. From the inverse projection of image
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point x we obtain the ray lX = C + (KR)≠1x passing through C and X. If X lies in the
ground plane it must hold n · X + d = 0. Plugging in for X and solving for ⁄ gives us

n · (C + ⁄lX) + d = 0,

n · C + ⁄n · lX + d = 0,

⁄ = ≠n · C + d

n · lX
.

This way we can reconstruct all three points Xfbl, Xfbr, and Xrbl on the ground plane
and then compute Xrbr = Xfbr + (Xrbl ≠ Xfbl). However, since we have the re-projection
of three points we will obtain a parallelogram in the ground plane instead of a rectangle
(Fig. 4.12 solid). We ignored the fact that a 3D bounding box is a rectangular cuboid
and all neighboring sides should be perpendicular.

∆

Xfbl X’fbl

X’fbr Xfbr Xrbl

X’rbl

X’rbr Xrbr

XCM

Figure 4.12. Rectification of a parallelogram (solid) to a rectangle (dashed). Projection
of a 3D bounding box to the ground plane.

We can make use of the redundant information to improve the accuracy of the 3D
bounding box. The precision of the coordinates for each corner di�er depending on the
pose of the car, therefore, combining the information may reduce the imprecision in the
corners’ position. If we decided to only predict 6 coordinates in total, we would have
large imprecisions in certain poses of the car.

An illustration of how a parallelogram can be rectified into a rectangle is shown in
Fig. 4.12. We require that the center of mass XCM stays the same. A rectangle has
diagonals of equal length as opposed to a parallelogram. We can use this information
to rectify the parallelogram in a way that we keep the directions of the diagonals and
only adjust their lengths. Obviously, this may be done in many ways. We chose to use
the mean length of the lengths of the two diagonals. Using the notation in Fig. 4.12,
this is how it may be achieved:

d1 = Xfbl ≠ XCM, d2 = Xfbr ≠ XCM,

� = Îd1Î ≠ Îd2Î
2 ,

XÕ
fbl = XCM + d1

3
1 ≠ �

Îd1Î

4
,

XÕ
fbr = XCM + d2

3
1 + �

Îd2Î

4
.
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The new corners XÕ
rbl and XÕ

rbr are obtained in a similar way. Thus, we made use of the
redundant information that the representation provides and made the reconstruction
more robust.

4.4.3 Reconstruction of the Top Side

Once we have reconstructed the bottom side, in order to reconstruct the top side of the
3D bounding box we only need one piece of information - the height of the bounding
box. That is why we have the y-coordinate of the projection of the front-top-left corner
xftl in the 3D bounding box description.

Given that the rotation matrix R of the used cameras is identity (the ground plane has
horizontal vanishing line), the x-coordinate of the projection of the front-top-left corner
x

ftl

is equal to the x-coordinate of the projection of the front-bottom-left corner x
fbl

.
That is, the projection of the front-left line to the image is vertical (see Fig. 4.4).

The front-left line lies in a plane perpendicular to the bottom-left line. We can therefore
use the direction of the bottom-left line as the normal vector of the frontal plane nF =
[a

F

, b
F

, c
F

] and place the front-bottom-left point in the frontal plane to get

nF = Xfbl ≠ Xrbl,

d
F

= ≠(nF · Xfbl),

which determines the frontal plane a
F

x + b
F

y + c
F

z + d
F

= 0. Finding the intersection
of the frontal plane and the ray lftl = C + (KR)≠1xftl, in the same way as previously
described with the ground plane, gives us the position of the vertex Xftl in the 3D world.
From this we can determine the height of the bounding box and reconstruct the top
side by adding this height to the rectified bottom plane corners.

4.5 Ground Plane Extraction

The aforementioned 3D bounding box representation requires the ground plane equation
to be known in order to be able to reconstruct the bounding boxes in the 3D world.
Therefore, for each image, we need the equation of the ground plane. This information
is unknown in the datasets we use, however we can estimate it for the KITTI dataset.
Unfortunately, for the Jura dataset we just have to guess. We assume that the ground
plane equation is shared in all KITTI images and estimate it from the training set.

For each 3D bounding box there are 4 vertices, which lie in the ground plane. This
gives us 158388 vertices if we accumulate the bounding boxes from the whole training
set. We use RANSAC [17] to find the ground plane, which suits those vertices the best.

A pseudo-code of our RANSAC algorithm is shown in Fig. 4.13. Given the number
of iterations N and a set of vertices G in the ground plane we can run the RANSAC
estimation. A plane is defined by 3 vertices p1, p2, p3 and can be computed as follows:

l1 = p2 ≠ p1, l2 = p3 ≠ p1,

n = l1 ◊ l2,

d = ≠(n · p1),
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Given: N , G = {[x1, y1, z1]T , ..., [x

m

, y
m

, z
m

]T }.
Initialize: dst

min

= Œ.
For i = 1, ..., N :.Randomly sample 3 vertices from G..Extract the coe�cients of ax+ by + cz +d = 0 plane defined by the sampled vertices..Compute the sum of squared distances dst of all vertices in G from the plane.. If dst < dst

min

, then dst
min

= dst, store a, b, c, d.

Output the best fitting ax + by + cz + d = 0 plane coe�cients:

a, b, c, d.

Figure 4.13. The RANSAC algorithm for ground plane estimation.

where n = [a, b, c]T is the normal vector of the plane ax + by + cz + d = 0. The sum
of squared distances from the estimated plane of the points in G, which we aim to
minimize is

dst =
|G|ÿ

i=1

!
[a, b, c, d][x

i

, y
i

, z
i

, 1]T
"2

.

After running the RANSAC algorithm for 10000 iterations we obtained a ground plane
in the 3D world with the equation

y ≠ 1.49 = 0.

Images, which show the ground plane in the context of the points are in Fig. 4.14. Note
that the directions of the x and y axes are the same as image axes and the z axis points
forward from the camera. Since the world reference frame’s units are meters, the result
tells us that the ground plane is 1.49m below the camera mount.

Figure 4.14. The extracted ground plane y ≠ 1.49 = 0 from the KITTI dataset (blue).
The ground truth points (red), the reference car pose is shown with the blue-red-green 3D

bounding box.

PGP Files In order to be able to use this information for 3D bounding box reconstruc-
tion, we created a new file format called PGP, which contains the 3◊4 image projection
matrix P and the coe�cients of the ground plane equation ax+ by + cz +d = 0 for each
image. The file looks as follows:
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filename1 p00 p01 p02 p03 p10 p11 p12 p13 p20 p21 p22 p23 a b c d

filename2 p00 p01 p02 p03 p10 p11 p12 p13 p20 p21 p22 p23 a b c d

...

The PGP file is loaded during test time and serves for extraction of the whole 3D bound-
ing box and the 2D bounding box, which is enclosing all corners of the 3D bounding
box (Sec. 4.4).

NOTE The flat ground plane assumption is obviously very coarse. As shown in
Fig. 4.14, the points do not always lie on the same plane. It is caused by the fact
that sometimes the road goes uphill or downhill or the suspension of the car reacts to
unevenness of the road. As a result, the error of the reconstruction, when using such an
assumption may be quite large. Employing stereo information would be more suitable
for this purpose.
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Chapter 5
Evaluation

Designing a neural network requires many choices, whose impact may only be evaluated
by performing extensive testing. For this reason, in this chapter we first provide a
thorough analysis of the most important design choices we made during our work. The
impact of the changes is always evaluated on a 2D bounding box detection network,
trained on the KITTI training set and tested on the Jura test set. At the end, we
present the best results of our method on 2D and 3D bounding box detection.

5.1 Implementation
Many frameworks for implementing neural networks exist [4, 11, 1, 28], out of which we
chose to use the Ca�e [28] framework. Ca�e provides implementation for forward and
backward propagation of all widely used layers, and also allows for implementing our
own layer types. The default Ca�e layers support both CPU and CUDA capable GPU
during runtime, which makes it convenient for benchmarking on both GPU-equipped
and other computers.

For training, we implemented our own data reading layers, which accepted the BBTXT
and BB3TXT (Sec. 4.2.1 and 4.2.2) file format. These layers first read the whole ground
truth label file and then randomly sample bounding boxes from the images in the label
file, create batches of image crops and send them for further processing. They are
programmed to use multiple threads in order to avoid the data-reading bottleneck.

On top of that, custom loss layers were also implemented. They take care of the creation
of the target response maps and the computation of the gradient. As opposed to other
frameworks [4, 11, 1], in Ca�e, one is required to program also the computation of the
gradient. This was one of the reasons why we chose to use Ca�e because the user has
a larger amount of control over the training phase. It makes it possible to keep the
computation of the loss which is displayed to the user separate from the loss used for
the weight updates. Thus, we can conveniently compare training runs with di�erent
training parameters because the computation of the loss presented to the user stays the
same.

The scripts for plotting the results, browsing the detection files and data manipulation
were programmed in Python. Apart from other, we programmed scripts for plotting
the learning curves, precision/recall curves of the results, browsing the BBTXT and
BB3TXT detection files (including reconstruction of 3D bounding boxes), and dataset
format translators.

The whole implementation is thoroughly documented and uses Git version control. It
is available on GitHub1).

1) https://github.com/libornovax/master_thesis_code
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5.2 Measures
We introduce performance measures, which are used throughout the whole evaluation.
They are all very well known so we only provide a short description.
Intersection over union (IOU) measures the similarity of two bounding boxes. It is
used to compare detected bounding boxes and ground truth bounding boxes. We only
use the 2D version, even though it can be easily converted to 3D. It is computed as

IOU(b1, b2) = A(b1 fl b2)
A(b1 fi b2) ,

where A(·) represents area and bú are bounding boxes. For our evaluation we require
IOU Ø 0.5 to accept a detection as a correct one, in the KITTI benchmark they use
IOU Ø 0.7 for the car detection task.
Precision is the ratio of the detected objects TP + FP , which are detected correctly.
It tells us how many false positive FP detections the detector produces. It is defined
as follows

Precision = TP

TP + FP
.

Recall tells us the ratio of the ground truth objects TP + FN , which are detected by
the detector. It is defined as

Recall = TP

TP + FN
.

Average precision (AP) is used in the KITTI benchmark. It samples the preci-
sion/recall curve on 11 places, interpolates it and computes the arithmetic mean. There-
fore, this measure gives insight into how the precision/recall curve changes. For details
see [15].
Mean distance error (MDE) introduced by [35] gives an insight into the performance
of a 3D bounding box detector. The detections are matched to the ground truth using
IOU of 2D bounding boxes. After that, the distance of the detection - ground truth
pairs is computed in the 3D world. An MDE plot is created by splitting the pairs into
groups by the distance from the camera. This provides an insight on how the error in
position changes with respect to the distance of the bounding boxes from the camera.

5.3 Design Choices
This section is a walk through the experiments carried out in order to justify the design
choices we made during the network development.
All evaluations presented as precision/recall plots were carried out on the Jura test set
labeled with 2D bounding boxes. The networks were trained to detect 2D bounding
boxes only since this problem is simpler to train than the 3D bounding boxes (it has
less parameters on the output) and, therefore, may prevent us from having misleading
results caused by insu�cient training. It is also less prone to wrongly setting the
training parameters.
NOTE As the presented results are from a continuous process of the development
of the algorithm, the plots from di�erent sections cannot be objectively compared.
The di�erence of the algorithms between the sections might not be just the presented
enhancements, but also some smaller changes, which are not explained. Nevertheless,
the plots proving the impact of the described enhancement are always put side by side.
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5.3.1 Dilation vs. Up-sampling

The original DenseBox network does not use dilated convolution. Instead, the network
down-samples the image using pooling layers to scales s > 4 and then up-samples them
back using up-sampling convolutional layers. This seems like an excessive work to do,
and also it reduces the resolution of the output image. Whereas, if layers with dilated
convolution are used, we do not need the up-sampling layers and the resolution of the
output is kept.

We carried out a test on the UIUC dataset, which shows artifacts from the excessive
down-sampling and up-sampling in the output probability response map, which are
shown in Fig. 5.1 (middle) or also Fig. 5.2 (middle). One can notice a repeated structure
in the response map, which is a mistake as we require a smooth response. Using dilated
convolution removes this problem, see Fig. 5.1 (right). Also, using dilated convolution
reduces the number of layers needed to obtain a response map with the same resolution
as in the case of up-sampling as the up-sampling layers are simply omitted.

Figure 5.1. Test image (left), response map of a network with up-sampling (middle),
network with dilation (right). Note the repeated artifacts in the bottom-right of the middle

response map.

5.3.2 Gradient Scaling

The positive and negative pixels in the target response map have a very uneven ratio.
The negative pixels cover about 95% of the output response map. This is a problem
for training because it makes it hard for the training algorithm to take into account the
errors on the positive pixels.

DenseBox addresses this by randomly sampling negative pixels until the ratio of positive
and negative pixels is 1 : 1 and uses only gradient from these randomly sampled pixels
for training.

Their strategy, however, slows down training a lot. If positive pixels were 5% of the
response map it would mean that we only sample another 5% to represent the negative
pixels. This means that 90% of the response map remains unused and we are making a
lot of useless computation during training. Instead, we opted for weighting the gradient
from the positive pixels by a user-defined coe�cient – (see Sec. 3.4.2). Thus, the
gradient from all computed response map pixels is used and we do not waste any
computation.

Fig. 5.2 shows the di�erence between random sampling of the negative pixels and weight-
ing the positive pixels. The network was trained for the same number of iterations and
with the same setup. Clearly, the probability response map of the network trained with
weighting the positive pixel gradients is superior as it suppresses background much
better.
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Figure 5.2. Test image (left), response map of a network with random negative pixel
selection training (middle), network trained with weighted positive pixel gradient (right).

Setting –: Of course the choice of scaling the positive pixel gradient adds another
parameter – to be set for training. We carried out a quick test with setting –1 = 1/10
and –2 = 1/50 and examples of probability response maps obtained by these networks
can be seen in Fig. 5.3. Clearly, the network trained with – = 10 produces more biased
responses, whereas the other more assimilate Gaussian blobs. An important take from
this is also the fact that larger – produces false positives with a higher probability

response, therefore, making them harder to be separated by confidence thresholding.
We chose to use – = 1/30, which provides a good balance between the two properties.

Figure 5.3. Test image (left), response map of a network trained with – = 1/10 (middle),
network trained with – = 1/50 (right).

5.3.3 Learning Rate

The choice of the appropriate learning rate is very important. Using a low learning rate
may lead to very slow convergence of the learning, whereas using a learning rate which
is too high may make the learning diverge and the network would never learn.

For these tests we used the r2_x4 network trained on the KITTI dataset to
detect 2D bounding boxes in combination with an image pyramid with scales
{1.0, 0.66, 0.44, 0.29, 0.19}. The ideal bounding box size of this network is 80px.
Therefore, we were unable to detect bounding boxes smaller than approximately 60px.
We could not use a scale larger than 1.0 of the input image because the network did
not fit into the memory of the GPU.

It is very often suggested to use a large learning rate in the beginning because we are
very far from the optimum and we want to make larger steps in order to bring the
solution closer. Then, the further the training goes, the lower the learning rate should
be since we are already close to the optimum and we want to take smaller steps.

Initially, we employed this learning rate schedule as well, however, as Fig. 5.4 suggests,
the results were not very pleasing. We started with lr = 0.0001 and we lowered it by
the factor of 10 each 5000 iterations. However, lowering the learning rate only lead to
essentially stopping the network from learning.

We argue that this learning rate schedule does not make too much sense. If we look at
how the magnitude of the gradient evolves during learning, necessarily, the gradient is
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very large in the beginning as the network gives completely random outputs, however,
the further we are in the training process, the lower the gradients are because the
network keeps learning the problem. The standard learning rate schedule thus increases
the gradient even if it is large already (in the beginning) and then makes it even smaller
as it gets smaller (the later stages). What we want is a lower learning rate in the
beginning to overcome the early unstable gradient stages, then increase the learning
rate once the learning is stable enough. Such a strategy was already successfully used
in [40].

Following this observation, first we tried to employ the uniform learning rate lr = 0.0001
during the whole learning. Fig. 5.4 (top-middle) shows learning with such setup. It
is obvious that the training keeps converging during a much longer period. Also the
precision/recall curves suggest improvement on the test set.

Continuing with the intuition, we modified the learning rate schedule as follows. Start-
ing with lr = 0.0001 and then raising the learning rate to lr = 0.0005 after 500 itera-
tions. The results in Fig. 5.4 confirm that the change improved the performance.

Figure 5.4. Comparison of di�erent learning rate schedules’ influence on the network per-
formance. The top row shows the evolution of the training and validation error of a schedule
with a decreasing learning rate (left), uniform learning rate (middle), and increased learn-
ing rate (right). The bottom row compares the validation loss learning curves (left) and

displays corresponding precision/recall curves on the Jura test set (right).

NOTE For training the multi-scale network r2_x2_to_x16_s2 we had to change this
schedule even more as the gradient was unstable for a longer period of time and the
used learning rate was on the edge between successful training and divergence. Since
we were also using more training iterations (100000) we raised the learning rate once
2.5◊ at iteration 10000 and again 2.5◊ at iteration 20000. This resulted in even higher
learning rate in the end, but it was used in the stable part of the training, which was
beneficial.
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NOTE As we are using FCN, the gradient of the loss function with respect to each
weight depends on the number of the pixels of the output response map because the con-
volutional operators introduce weight sharing (this problem is mentioned in Sec. 3.3.1).
The aforementioned networks are trained on 256 ◊ 128 images, which means that the
output response map has 64 ◊ 32 pixels. If we train a network on a larger image, say
256 ◊ 256 (response map 64 ◊ 64), we need to scale down the learning rate accordingly.
In this example case we would have to use lr = 0.0001/2 = 0.00005 to achieve the same
training behavior.

5.3.4 Leaky ReLU

A leaky rectified linear unit (ReLU) is a generalization of ReLU, where instead of using
„(s

i

) = max(0, s
i

) the negative part is multiplied by some very small number, for
example

„(s
i

) =
;

s
i

s
i

Ø 0;
0.01s

i

s
i

< 0.

The advantage of this activation function is that it keeps information from the negative
numbers as well as the positive ones. On the other hand, its computation is slower.

We compare learning with standard ReLU and leaky ReLU in Fig. 5.5. Since the leaky
version of ReLU did not bring any improvement of the results, we chose not to use it
in our network.

Figure 5.5. A network trained with standard ReLU (left) vs. leaky ReLU (right).
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5.3.5 Reference Object size Span

In general, the network r2_x4 can be trained to detect objects of arbitrary sizes. It
only depends what we supply as the training data. We made a choice to compute the
reference object size from the size of the circle drawn to the response map and a given
circle ratio as explained in Sec. 3.4.1. However, not just one size but a whole interval
of randomly sampled sizes is used to train the network to provide some generalization.

The r2_x4 with the chosen cr = 0.25 detects objects with the size of 80px. In the
beginning, we chose the span of sizes with which the network is trained rather small
[76, 88], but later we decided to change it to [72, 96], which improves the performance
as shown in Fig. 5.6. The precision/recall curve moved slightly up, which signifies an
improvement in the detection performance.

Figure 5.6. Comparison of the networks trained with the reference size span [76, 88] (left)
and [72, 96] (right).

5.3.6 KITTI Dataset Filtering

The KITTI dataset includes, apart from other, labels for very occluded cars. The
problem is that many of those cars are barely visible because only about 5% of the car
is visible in the image. Unfortunately, this creates ambiguous situations because our
network is not able to spot such subtle di�erences. On top of that, our Jura test set
does not contain cars with very extensive occlusion.

We extracted a filtered dataset, where the cars with occlusion label Ø 2 (see [19])
are excluded and also very truncated cars Ø 0.75 are excluded. Fig. 5.7 shows the
comparison of the training performed on the dataset with original labels and with the
filtered labels. The network trained on the KITTI filtered dataset shows much better
performance on the test set (compare the precision/recall curves). We therefore used
the filtered version of the dataset for further experiments and for the final evaluation.

5.3.7 Gaussian vs. Binary Response

We chose to train our network to detect Gaussians in the positions of the centers of the
object in the probability response maps. The used methodology is described in detail
in Sec. 3.4.1. We opted for this solution mainly because it converted the sharp binary
response into a smoother response, which then resulted in the probability response map
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Figure 5.7. The networks trained on the original KITTI labels (left) and the filtered KITTI
labels (right).

to act more like confidence. The reason is that in the case of a binary response, the
values in between have unclear meaning, whereas if we train the network to predict
(regress) those numbers as well, then the values may be used better as a measure of
confidence in the prediction.

Fig. 5.8 illustrates this di�erence. It is important to look at the high-precision part
of the precision/recall curves. The di�erence is very subtle, but the binary-response-
trained network does not reach precision 1.0, whereas the version with the Gaussian
response does. It is because the responses of the former network are more random
around the max value (in our case 1), for that reason it produces more false detections
with high confidence, whereas the Gaussian smooths the responses around the max
value and gives it a better and less random meaning.

Figure 5.8. The di�erence in performance between a binary-response-trained network (left)
and a Gaussian-response-trained network (right).

5.3.8 Image Pyramid vs. Multi-scale Network

Conversion of the single-scale network to a multi-scale was a crucial step. The problem
of the single-scale network is that it is unable to detect smaller objects than for which
it is trained because the input image would have to be up-sampled. This is not possible
because the network then does not fit into the GPU memory, which was in our case
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limited to 12GB (already the latest high-end GPU). On top of that, performing multi-
scale detection with an image pyramid is slow as the image has to be re-sampled several
times and passed several times through the network. And, finally, using a single network
for all scales cannot properly exploit all information available in the image because the
image is down-sampled several times.

Having in mind the networks from SSD [33] and MS-CNN [5], we designed our own
network r2_x2_to_x16_s2, which performs multi-scale detection in a single pass (see
Sec. 3.7). The design tackles all the aforementioned problems of the single-scale network
running on an image pyramid. It is trained to detect objects of sizes from 22.5 to 444
pixels in one pass using 4 response map scales s = 2, 4, 8, 16. The comparison of the
performance of the r2_x4 and r2_x2_to_x16_s2 networks is shown in Fig. 5.9. The
multi-scale version clearly outperforms the single-scale version.

Figure 5.9. A single-scale network with image pyramid (left) and a multi-scale network
(right).

The multi-scale version also outperforms the image pyramid in terms of time. We
compare the times to detection for an image pyramid detector and a multi-scale network
in Tab. 5.1. The multi-scale network takes about 2/3 of the time needed by the single-
scale network with image pyramid, which is a significant di�erence.

Method Image 1280 ◊ 1024 Image 1240 ◊ 375
Single-scale + image pyramid 326 ± 49 134 ± 20
Multi-scale network 222 ± 34 95 ± 3

Table 5.1. Comparison of the times to detection (in milliseconds).

Gradient computation In the transition to a multi-scale network we have to cope once
again with the problem that comes from summing up gradients in fully convolutional
networks (mentioned in Sec. 3.3.1). The problem is that the response map has di�erent
dimensions for each scale, i.e. di�erent number of pixels, and hence a di�erent mag-
nitude of the sum of the gradients coming from the response map. The further in the
network we go, the lower the sum of gradients is. Since the scales in our network are
powers of 2, we can compensate for this by multiplying the gradient by s2, where s is
the scale (down-sampling factor).
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5.3.9 Gradient Nullifying in Multi-scale Networks

When training a multi-scale network, the gradient gets back-propagated from the output
response maps of all scales at the same time. However, not all scales always contain
objects, i.e. some response maps contain only negative pixels. This may lead to the
gradient from the negative pixels overweighting the gradient from the positive pixels.
We have already addressed the problem of overweighting the gradient from positive
pixels by introducing the coe�cient –, but this is a new problem, which arises in the
multi-scale setup.

We applied a simple solution. The gradient, which comes from response maps, which do
not contain any positive pixels is set to zero. Therefore, the gradient has no influence
on learning and is not overweighting the gradient coming from the positive pixels.

The di�erence in performance of a network trained with nullifying the gradients from
the response maps without positive pixels compared to regular training is shown in
Fig. 5.10. Note that the test is carried out on a network code name r2_x2_to_x8, which
we used for quick benchmarking instead of the more complicated r2_x2_to_x16_s2.
Nevertheless, the fact that the presented change helps is clear.

Figure 5.10. A network trained in a regular fashion (left) and a network trained with
nullifying the gradient from negative-only response maps (right).

5.3.10 Enhanced Confidence

In our current setup, confidence is taken only from the probability channel of the re-
sponse map. Since the network outputs 5 or 8 values for each bounding box, we were
curious if the coordinates of the bounding box could contain additional information
with which we could improve the confidence prediction.

To examine the related information contained in the bounding box coordinates’ chan-
nels we created plots of Pr(car|BB2D), which is the probability of an object being a
car given the dimensions of its 2D bounding box BB2D. They are shown in Fig. 5.11.
Note that the plots are specific for a given network, therefore they need to be gener-
ated for each network separately. They were created by evaluating a network on the
KITTI training set (on which the network was trained) and taking the bounding boxes,
which corresponded to the ground truth car positions in the response maps as posi-
tive (car) and the rest as negative (background). We show both Pr(car|BB2D) and
Pr(¬car|BB2D) because the ratios that are 0 in both plots were never predicted by
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a) x2. b) x4. c) x8. d) x16.

Figure 5.11. Pr(car|BB2D) (top row), Pr(¬car|BB2D) (bottom row) for di�erent re-
sponse map scales xs, where 2D bounding box BB2D is defined by its width (x-axis) and
height (y-axis). The dimensions are computed in the normalized network response space
(see the Coordinate response maps part of Sec. 3.4.1), therefore, the ideal object size cor-
responds to coordinates (1, 1). The axes of the plots are [0, 2] ◊ [0, 2] with reversed y-axis,

i.e. the diagonal blue line corresponds square bounding boxes.

the network (mostly the bottom-left part, which corresponds to tall narrow bounding
boxes).

The plots in Fig. 5.11 show that little information about Pr(car|BB2D) which would
be useful is stored in the coordinate responses. In the middle area of the top-right
section (short wide bounding boxes) the ¬car dominates, but the reason is that there
are much more ¬car responses than car responses. Essentially, the ¬car responses are
all over the place. The car responses dominate only on the edges of the trapezoid. This
is because the network is not taught to predict bounding box coordinates for the ¬car
responses, and thus they predict dimensions that are most common. It means that they
will never predict something completely wrong so the confidence in a prediction cannot
be degraded or upgraded by this information. The probability of car for such bounding
box shapes is in deed high, but the network would not predict ¬car on them anyway.

We carried out a test of the enhanced confidence defined as c0 + Pr(car|BB2D), where
c0 is the probability channel. The Pr(car|BB2D) was discretized into 50 ◊ 50 bins
spanning [0, 2] ◊ [0, 2] space of the width and height response. The result of the test in
Fig. 5.12 justifies our observation. The enhanced confidence was not a helpful step to
make and we will not use it in our network.

5.3.11 Training Set Choice

It is widely known that having more training data is very helpful while training DNNs.
So far we have been using only the KITTI training set to train our 2D bounding box
detection network, but what if we used also other datasets (Jura and Pascal3D+) or
even combined them? To explore these options we first carried out trainings on the
three datasets separately and only then combined them into one.
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Figure 5.12. The same network evaluated with the standard confidence from the probability

channel (left) and the enhanced confidence (right).

The sizes of the datasets (Tab. 4.1) suggest that the Jura dataset should have an
advantage as it has more than double the number of cars than the KITTI dataset.
However, the results in Fig. 5.13 suggest that it is not so. We blame this mostly on
the fact that not all cars are labeled in the Jura and Pascal3D+ training datasets, thus
resulting in the network being forced to learn contradictory information. We also made
an attempt to combine all the datasets together, which resulted in good performance
(Fig. 5.13 right), however, not superior to using the KITTI dataset only.

Figure 5.13. The same network trained on 4 di�erent datasets. Left to right: KITTI,
Pascal3D+, Jura, and the combination of all.

Following these results, we chose not to use other data than the KITTI training set for
learning our networks.

5.4 Car Detection Results
In the following sections, we present the best results we achieved with our network.
First, we describe the parameters and the setup used for training the networks, then
we compare our network to other detectors on the Jura and KITTI datasets.

5.4.1 2D Bounding Box Detection

The r2_x2_to_x16_s2 network for 2D bounding box detection was trained on the
KITTI Filtered dataset. We used batch size 32. Input image dimensions were 512◊512,
therefore we had to scale down the learning rate to 0.00000078125, which was then
raised 2.5◊ after 10000 iterations and again after 20000 iterations. We used stochastic
gradient descent (SGD) optimization with momentum 0.9 and weight decay 0.0005.
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Since the whole batch 32 did not fit into the GPU memory, we used the batch splitting
implemented in Ca�e into the chunks of 8 images. The network was trained on the
object reference size from 23 to 440 pixels.

Each training image is randomly augmented, i.e. horizontally flipped with the proba-
bility 0.5 and perturbed to make the network learn as robust representation as possible.
We perform hue shifts for each color channel in the RGB space separately, exposure
changes to account for various lighting conditions, and add white noise to each color
channel to simulate sensor noise. The extent of the augmentations is noted in Tab. 5.2.

Augmentation Min Max
Hue shift -30 30
Exposure change -40 50
White noise ‡ 0 25

Table 5.2. The image augmentation parameters. The hue shift and exposure change are
sampled from a uniform distribution, whereas the white noise is generated from a normal

distribution.

The training ran for 100000 iterations, which took about 10 days on a GeForce GTX
TITAN X. A snapshot was taken each 10000 iterations and the network tested on the
Jura test set. We selected the best result shown in Fig. 5.14 (sample images in Fig. 5.15)
based on precision/recall curves, which corresponded to the iteration 40000. Further
training seemed to overfit the network to the training data.

It is interesting to note the increasing amount of sudden high peaks in the training error
in Fig. 5.14 (left) as the network is getting better. We attribute these peak changes to
the outliers and hard positives in the training set. Perhaps, lowering the learning rate
in the later stages of the training would reduce these peaks since in our current setup
we keep the learning rate constant starting iteration 20000 till the end.

Figure 5.14. The best r2_x2_to_x16_s2 network for 2D bounding box detection trained
on the KITTI Filtered dataset (left) and evaluated on the Jura test set (right).

Comparison We were able to obtain results on the Jura test set for three other methods.
Our benchmark has been the WaldBoost [49] detector combined with a CNN refinement
on the output. It was trained on the Jura training set specifically. The two other
methods are YOLO9000 [41] and SSD [33]. We took their weights trained on the data
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Figure 5.15. Sample images from the Jura test set with the 2D bounding boxes from our
best r2_x2_to_x16_s2 network. Only detections with confidence Ø 0.7.

from the Pascal VOC challenge. Fig. 5.16 shows the comparison. Our method gives
superior results to all the others, however, the comparison is not very fair since each
method was trained on a di�erent dataset. Nevertheless, the WaldBoost detector should
be fitted more specifically to the Jura dataset, but its performance is inferior to our
FCN.

Figure 5.16. Comparison of our r2_x2_to_x16_s2 network to WaldBoost, YOLO9000,
and SSD. The left plot shows a thorough comparison of our method to WaldBoost, which
is our closest competitor on the Jura test set. Note the result of our 3D network in the

right plot (explained in Sec. 5.4.2).

KITTI Scoreboard We compared our network to the state-of-the-art detectors on the
KITTI test set. The only way to do this is to submit results to the KITTI on-line
scoreboard1) through a web interface. The labels of the KITTI test set are not known
to the public, making it a fair comparison of the algorithms. The evaluation measure
is average precision (AP), described in [15].

Since the KITTI test set has similar scenes as the training set, we decided to extract a
little di�erent training set then we were using for evaluation on the Jura test set. We
needed to also include very occluded cars because, for example, situations where cars
appear parked along the road are abundant in the test set. Therefore, a dataset with all

1) http://www.cvlibs.net/datasets/kitti/eval_object.php

49



5. Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
occlusion labels (only cars with truncation Ø 0.75 were excluded) was used for training
the network used for submission to the scoreboard. Otherwise, all training parameters
were exactly the same.

Again, the network after 40000 iterations was selected for the test. Tab. 5.3 shows our
position in the KITTI scoreboard among other methods and Fig. 5.17 sample images
with detections. Unfortunately, our method did not appear among the best scoring
ones but around the middle of the scoreboard (52/96). There are, however, positive
observations we can make. Our method is way faster than all published methods,
which appear in the scoreboard in front of us. We beat the original DenseBox on
the easy variant of the dataset. Also, given that our method is in the early stages
of its development, there is still a lot of room for improvement. We discuss possible
enhancements in Chap. 6.

# Method Moderate Easy Hard Time [s]
6 RRC [42] 90.22% 90.61% 87.44% 3.6
10 Deep MANTA [6] 90.03% 97.25% 80.62% 0.7
22 SubCNN [55] 88.86% 90.75% 79.24% 2
24 MS-CNN [5] 88.83% 90.46% 74.76% 0.4
32 Mono3D [9] 87.86% 90.27% 78.09% 4.2
39 DenseBox [27] 85.07% 82.33% 76.27% > 1
45 Faster R-CNN [43] 79.11% 87.90% 70.19% 2
52 Ours 75.76% 85.60% 66.99% 0.1
63 YOLO9000 [41] 69.01% 86.40% 59.57% 0.03

Table 5.3. 2D bounding box car detection KITTI Scoreboard as of May 2017, selection of
published methods only. RRC [42] and Deep MANTA [6] are new methods published in

CVPR 2017.

5.4.2 3D Bounding Box Detection

Exactly the same training procedure as in the 2D bounding box case was used to train
the r2_x2_to_x16_s2 network for 3D bounding box detection. The network was also
trained to detect objects of the size from 23 to 440 pixels. The only di�erence is that
the 8-channel output response map was used.

The SGD training also ran for 100000 iterations (Fig. 5.18 left), from which we chose the
best network based on its 2D bounding box detection results on the Jura test set. The
best precision/recall curves shown in Fig. 5.18 (right) were extracted on the network
corresponding to the iteration 80000. This suggests that the 3D detection network
needed double the training time than the 2D detection network to learn the problem.
The precision/recall curve on the whole Jura test set is shown in the 2D bounding box
detection comparison plot in Fig. 5.16 (right). See also sample images with detected
3D bounding boxes on the Jura test set (Fig. 5.19) and the KITTI test set (Fig. 5.20).

2D Bounding Box Extraction In order to plot the precision/recall curves of the 2D
bounding box performance of a 3D detection network we first had to extract the 2D
bounding boxes. To achieve this, we reconstructed each bounding box in the 3D world
(Sec. 4.4), then projected it back to the image and, finally, found the extremes of the
corners’ image coordinates. The extremes determine the enclosing 2D bounding box.
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Figure 5.17. Sample images from the KITTI test set with the 2D bounding boxes from
our best r2_x2_to_x16_s2 network. Only detections with confidence Ø 0.6.

Figure 5.18. The training (left) and the performance of the 3D r2_x2_to_x16_s2 detection
network on the 2D bounding box Jura test set (right). No validation loss is shown among
the learning curves (left) because we did not use any validation dataset for 3D bounding
box training. Also, see text on how the 2D bounding boxes were extracted from the 3D

detections to plot the precision/recall curves (right).

Obviously, this procedure is dependent on the ground plane equation and thus may lead
to imprecisions caused by the incorrect positioning of the ground plane. Nevertheless,
as Fig. 5.18 (right) shows, the 2D detection performance is still reasonable.
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Figure 5.19. Sample images from the Jura test set with the 3D bounding boxes from our
best r2_x2_to_x16_s2 network. Only detections with confidence Ø 0.7.

Figure 5.20. Sample images from the KITTI test set with the 3D bounding boxes from our
best r2_x2_to_x16_s2 network. Only detections with confidence Ø 0.6. See additional

images in Appendix A.

3D Detection Evaluation As the original KITTI evaluation does not contain a 3D
detection benchmark (except for orientation similarity) we chose to compare the 3D
detection performance on the mean distance error (MDE) introduced by [35]. This
measure tells us how far are our detected bounding boxes from the ground truth for
di�erent distances from the camera.
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Because the KITTI test set labels are not available to the public, to carry out this
evaluation we split the training set to the two disjoint sets introduced in [10]1). Roughly,
a half of the images is put in a training set and the other half into a validation set.
We denote these splits as KITTI XChen Train and KITTI XChen Val. A network was
trained on the reduced training set and then evaluated on the validation set.

The results in Fig. 5.21 show the detection performance of the network on the 2D Jura
test set. We see that the results are worse than in Fig. 5.18 (right) as the network
is trained on less training data. More interesting, however, is the plot on the right
showing mean distance error of the detected bounding boxes to the ground truth. Our
detector has a very low mean value of the errors, but quite a large standard deviation
suggesting that very large imprecisions are common.

NOTE As in SubCNN [35], we took the detections with 2D bounding box IOU Ø 0.7
and computed their distance in the 3D world to their matched ground truth. It is
very important to note that the positions of the ground truth 3D bounding boxes were
reconstructed from the BB3TXT annotation and the ground plane position, using the
same approach as for reconstructing the detected 3D bounding boxes! This means that
the 3D positions of the ground truth 3D bounding boxes we were evaluating against
were di�erent than the original 3D bounding box annotations provided by the KITTI
annotators because they were a�ected by the imprecise position of the ground plane.
However, we argue that this is a fair comparison as the reconstruction of the detections
is a�ected by the imprecision in the ground truth position as well. The detector would
just be punished for not having a precise ground plane, which has nothing to do with
the actual precision of the detector predictions.

Figure 5.21. The performance of the 3D r2_x2_to_x16_s2 detection network trained on
the KITTI XChen training subset on 2D bounding box detection (left) and a comparison
of the mean distance error (MDE) on the KITTI XChen Val dataset to SubCNN [55] and
Deep3DBox [35] (right). The results for SubCNN and Deep3DBox are taken from [35].

See the note in the text about how we computed the MDE for our detector.

1) The splits may be downloaded at https://xiaozhichen.github.io
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Chapter 6
Discussion and Analysis

The evaluation showed that we designed a new promising method based on the combi-
nation of ideas from the DenseBox, SSD, and MS-CNN algorithms, which is capable of
detecting 3D bounding boxes of cars from monocular images. However, as all methods,
it has several problems. We now asses these problems and suggest how to tackle them.

Truncated Cars A particular example of where our method lacks behind its competitors
is the detection of very truncated cars. Examples of such annotated cars are shown in
Fig. 6.1 in the bottom-right and bottom-left corner. This limitation comes from the
chosen representation on the output. In the current setup, our method requires the
center of the 2D bounding box of a car to be inside of the image in order to be able to
detect it.

Figure 6.1. Examples of very truncated cars in the KITTI dataset in the bottom-right
and bottom-left corner.

We argue that in practice detection of such cars from a camera is mostly not necessary.
Such cars are very close to the camera, therefore, easily detectable by a di�erent kind
of sensor (radar or lidar). Also, an autonomous car is equipped with multiple cameras,
and thus these cars can be easily detected on di�erent cameras. Finally, since the scene
is changing and the autonomous car is moving each of the close cars must have appeared
further (smaller in the camera) in some previous point in time, therefore our car would
have already had the information about the position of the car from the previous video
frames.

If one would require detection of very truncated cars anyway, the input image can be
padded with a black border, and thus provide room for the responses in the centers of
the truncated cars.

Extensively Overlapping Cars The detection of cars with large overlap is a problem
in general, which the presented detector shares as well. In our case, the problem is that
the circles drawn in the center of the 2D bounding boxes of the cars are overlapping
if the cars are in the same scale (response map) and occlude each other a lot. An
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a) 2D bounding box annotated image. b) Probability response map.

Figure 6.2. Image with ground truth annotations and the corresponding ground truth
probability response map. The response map is for the middle-scale cars and, therefore,
shows 6 di�erent Gaussian blobs corresponding to the 6 di�erent bounding boxes in the

middle of the image.

example of such a case is in Fig. 6.2. It is di�cult even for a human eye to recognize
the 6 di�erent bounding boxes in the middle of Fig. 6.2a.

The problem of our representation is that the circles of very overlapping cars are merged
together into a blur (Fig. 6.2b). It is even a bigger problem for the bounding box
coordinate response maps because there we have to decide which bounding box we are
regressing in each pixel. Since, in this case, one pixel in the response map corresponds
to multiple bounding boxes, it is a problem.

Similar problem appears for example in the representation of YOLO [40], where they
address it by allowing a single cell to detect 2 di�erent bounding boxes.

3D Pose Estimation Another problem is the regression of the coordinates of the
projected 3D bounding boxes. We directly predict the coordinates with respect to the
response map pixel position regardless of the car orientation. However, our observations
suggest that the network has a problem distinguishing the orientation of side-view cars.
As can bee seen in Fig. 6.3, instead of learning the correct coordinates of the projections
the network learns to average the coordinates of the left and right facing cars. This
results in a completely incorrect car pose, either facing the camera or the other way
around, or predicting some small bounding box in the middle.

Figure 6.3. 3D bounding box detection with unsure pose. The detector is unsure whether
the cars are facing left or right, and hence outputs the average coordinates of the 3D

bounding box which is a nonsense.
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The solution to this problem may be to use sub-categories divided by the orientation of
the car with respect to the camera. We want to avoid the network to learn to average
the coordinates of the left and right facing cars. Creating for example 4 orientation
sub-categories (frontal, rear, left, and right view) would prevent this from happening
as the coordinates would only be regressed in some given region.

Splitting the output of a neural network into multiple sub-categories has shown to be a
well-working approach. Anchor boxes, introduced in Faster R-CNN [43] and then also
used for example in SSD [33] and YOLO9000 [41], separate the bounding boxes on the
output into several distinct shapes. 3D voxel patterns (3DVP) [54] in SubCNN [55]
bring this to an extreme as they use hundredths of sub-categories based on orientation
and occlusion of the cars. SubCNN is currently one of the best performing methods on
KITTI. Training of these methods is carried out with discrete-continuous loss [35], which
splits the objects into sub-categories, and then regresses the bounding box coordinates
for each sub-category. Using such an approach is possible in our scenario as well and we
believe it would bring a radical improvement to the 3D bounding box pose estimation.

Double Detection Associated with the previous problem is that the detector some-
times tends to predict multiple bounding boxes for a single car. Fig. 6.4 shows a case
when a detector predicted a side-view bounding box and a rear-view bounding box on
the same car. The fact that this is happening makes sense since the two bounding boxes
have centers in di�erent places and, therefore, do not interfere with each other in the
probability response maps.

Figure 6.4. Double detection on a single car. The detector predicts both the side view
and the rear view bounding box.

It is a problem since the network does not learn to completely suppress the irrelevant
view by itself. A thorough solution requires a complex analysis of the detected bounding
boxes. One such approach could be non-maxima suppression (NMS) in the 3D world.
The two predicted bounding boxes significantly overlap in 3D, and thus filtering them
in 3D could bring the suppression of the incorrect view. We elaborate about 3D NMS
further in this chapter.

Hard Negatives It is a well known problem that neural networks are easily fooled, as
described for example in [36]. Very often, they produce detections with high confidence
that are in fact incorrect (false positives). Examples of such detections from our 2D
bounding box detector are in Fig. 6.5. Without a very thorough examination of the
learned network those false detections are inexplicable.
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Figure 6.5. Examples of false positives with high confidence. High confidence prediction
on sidewalk (left) and on a flock of people (right).

These detections may be caused for example by over-fitting to outliers in the training set,
which we can reduce using dropout layers [50]. We did not use this technique because
it prolongs training and training our network already took a significant amount of time
(5 days for 2D and 10 days for 3D bounding boxes), however it might be a possible
upgrade, which would reduce the false positive rate.

Another way to reduce the amount of false positives is hard negative mining during
training. Such approach is used in the original DenseBox, however since we changed
to positive/negative pixel weighting we did not re-implement it here. Hard negative
mining is, however, a known working technique for reducing false positives.

Ground Plane The reconstructed 3D world position of the detected bounding boxes
is heavily dependent on the position of the ground plane. The problem is that the
requirement of a flat ground plane does not hold for arbitrary scenes. Even in KITTI,
where the ground plane is very flat, we can sometimes see huge reconstruction errors
(Fig. 6.6). Arguably, this is the biggest drawback of our method. A better solution
would be to obtain a more precise ground plane equation from other sensors in the car
or use stereo images.

Figure 6.6. An example of a scene, where the road goes a bit down hill (see the used
ground plane horizon line). The top view of the scene (right) shows a huge error in the 3D
bounding box reconstruction (the y-axis is the distance from the camera in meters). The

farther bounding box is estimated to be about 15 meters long.

3D Bounding Box Non-maxima Suppression Currently, we are performing non-
maxima suppression of 3D bounding boxes on their 2D projection into the image (the
same way as we do it for 2D bounding boxes). This approach is not ideal because it
can filter out cars with IOU of their 2D bounding boxes even though they are actually

57



6. Discussion and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
correct detections. Providing we have more precise 3D reconstruction, the 3D bounding
boxes could be filtered directly in the 3D world. The requirement of low or none IOU
makes perfect sense when used for 3D bounding boxes as no two cars can intersect each
other.

Weight Initialization At the current training setup we always initialize the weights
randomly from scratch using the Glorot uniform initialization [22]. However, it was
shown that using pre-trained weights for initializing the neural network will most likely
lead to a superior performance. It would be interesting to try to initialize the weights
of the network for example with the VGG [48] pre-trained weights.

Unsure Ground Truth Coordinates In our ground truth specification (Sec. 4.1) we
require the labeler to make up the part of the bounding box from the occluded or
truncated part of the car. It is important since we need to extract the centers of the
object during training. However, we are teaching the network to precisely predict the
coordinates of the bounding box corners, which in this case may come from imprecisely
labeled coordinates since the labeler is just imagining where the car has its boundaries.

If the unsure coordinates were marked in the training labels as in Fig. 6.7 we could make
use of this information during training. The gradient from the unsure coordinates would
simply be nullified, therefore not taking part in training of the network. This way, the
network would learn only on the precise labels.

Figure 6.7. Ground truth labels with marked unsure sides (dashed red).
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Conclusion

This work tackles the problem of the detection of 3D bounding boxes from monocular
images using deep neural networks with the focus on autonomous driving applications.
The proposed algorithm uses the output representation of DenseBox and the multi-scale
network architecture inspired by SSD and MS-CNN, which were selected based on a
thorough review of the existing DNN object detection methods.

We presented a fully convolutional neural network (FCN) adapted to detect 2D or 3D
bounding boxes of cars from monocular images. The network was designed to detect
cars of various sizes in a single pass without the need for an image pyramid. In contrast
with previous deep neural network approaches to 3D bounding box detection, it is an
end-to-end trained network that does not utilize an object proposal phase.

The used design alterations were thoroughly evaluated on a 2D bounding box detection
network, first, in the single scale setting with image pyramid, and later in the multi-
scale setting. When compared to original DenseBox, our 2D bounding box detection
network has a superior performance on the KITTI easy car detection benchmark and
it is also more than an order of magnitude faster. It is able to process the KITTI
images in 10fps, thus being faster than all published methods, which have a superior
performance on the KITTI car detection benchmark.

We created a novel representation of the 3D bounding box, which stores the image
projections of the corners of the 3D bounding box. The proposed representation is very
convenient because it does not depend on the image projection matrix. A detector
using such representation on the output can, therefore, be used with no problems on a
completely di�erent dataset than it was trained on.

Finally, we present results of the 3D detection network and elaborate about the problems
of the method. Possible solutions to the problems are suggested together with the ideas
on further improvements of the method.
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Appendix A
3D Bounding Box Detections

Additional sample images from the KITTI test set with the detections from our best
3D bounding box detector described in Sec. 5.4.2, including the top view (xz-plane) of
the scene. Only detections with confidence Ø 0.6 are displayed. Note the missing cars
and the distortions in the cars’ dimensions in the top view when the scene does not
have a flat ground plane.
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Appendix B
Contents of the Attached CD

Path Description
/Master’s thesis.pdf This PDF file.
/Master’s thesis.mp4 Video with 2D and 3D detections on unseen data.
/datasets/ The BBTXT, BB3TXT, and PGP annotations.
/nets/ Trained networks and training scripts.
/results/ BBTXT and BB3TXT detections and PR curves.
/software/ The Python and C++ source code.
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